Sample records for spatial correlation properties

  1. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  2. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  3. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  4. Exploring the spatial variability of soil properties in an Alfisol Catena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.

    Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less

  5. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  6. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    NASA Astrophysics Data System (ADS)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  7. Relationship between sugarcane rust severity and soil properties in louisiana.

    PubMed

    Johnson, Richard M; Grisham, Michael P; Richard, Edward P

    2007-06-01

    ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.

  8. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  9. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  10. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  11. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  12. The relationship between the spatial scaling of biodiversity and ecosystem stability

    PubMed Central

    Delsol, Robin; Loreau, Michel; Haegeman, Bart

    2018-01-01

    Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225

  13. Factors Related to Spatial Patterns of Rural Land Fragmentation in Texas

    NASA Astrophysics Data System (ADS)

    Kjelland, Michael E.; Kreuter, Urs P.; Clendenin, George A.; Wilkins, R. Neal; Wu, X. Ben; Afanador, Edith Gonzalez; Grant, William E.

    2007-08-01

    Fragmentation of family-owned farms and ranches has been identified as the greatest single threat to wildlife habitat, water supply, and the long-term viability of agriculture in Texas. However, an integrative framework for insights into the pathways of land use change has been lacking. The specific objectives of the study are to test the hypotheses that the nonagricultural value (NAV) of rural land is a reliable indicator of trends in land fragmentation and that NAV in Texas is spatially correlated with population density, and to explore the idea that recent changes in property size patterns are better represented by a categorical model than by one that reflects incremental changes. We propose that the State-and-Transition model, developed to describe the dynamics of semi-arid ecosystems, provides an appropriate conceptual framework for characterizing categorical shifts in rural property patterns. Results suggest that changes in population density are spatially correlated with NAV and farm size, and that rural property size is spatially correlated with changes in NAV. With increasing NAV, the proportion of large properties tends to decrease while the area represented by small properties tends to increase. Although a correlation exists between NAV and population density, it is the trend in NAV that appears to be a stronger predictor of land fragmentation. The empirical relationships established herein, viewed within the conceptual framework of the State-and-Transition model, can provide a useful tool for evaluating land use policies for maintaining critical ecosystem services delivered from privately owned land in private land states, such as Texas.

  14. The cluster-cluster correlation function. [of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, M.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.

  15. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes in Ungauged Locations

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.

    2017-12-01

    The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.

  16. Analyses and assessments of span wise gust gradient data from NASA B-57B aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Ringnes, Erik A.

    1987-01-01

    Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft is reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose. Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto- and two-point spatial correlations and spectra. Procedures associated with calculations of two-point spatial correlations and spectra utilizing data were addressed. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described. Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.

  17. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  18. Spatial variations of the Sr I 4607 Å scattering polarization peak

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.

    2018-06-01

    Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.

  19. Spatial two-photon coherence of the entangled field produced by down-conversion using a partially spatially coherent pump beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Anand Kumar; Boyd, Robert W.

    2010-01-15

    We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less

  20. Implication of the first decision on visual information-sampling in the spatial frequency domain in pulmonary nodule recognition

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Manning, David; Donovan, Tim; Dix, Alan

    2010-02-01

    Aim: To investigate the impact on visual sampling strategy and pulmonary nodule recognition of image-based properties of background locations in dwelled regions where the first overt decision was made. . Background: Recent studies in mammography show that the first overt decision (TP or FP) has an influence on further image reading including the correctness of the following decisions. Furthermore, the correlation between the spatial frequency properties of the local background following decision sites and the first decision correctness has been reported. Methods: Subjects with different radiological experience were eye tracked during detection of pulmonary nodules from PA chest radiographs. Number of outcomes and the overall quality of performance are analysed in terms of the cases where correct or incorrect decisions were made. JAFROC methodology is applied. The spatial frequency properties of selected local backgrounds related to a certain decisions were studied. ANOVA was used to compare the logarithmic values of energy carried by non redundant stationary wavelet packet coefficients. Results: A strong correlation has been found between the number of TP as a first decision and the JAFROC score (r = 0.74). The number of FP as a first decision was found negatively correlated with JAFROC (r = -0.75). Moreover, the differential spatial frequency profiles outcomes depend on the first choice correctness.

  1. Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach

    NASA Astrophysics Data System (ADS)

    Di Palma, P. R.; Guyennon, N.; Heße, F.; Romano, E.

    2017-04-01

    Macroscopic properties of flow through porous media can be directly computed by solving the Navier-Stokes equations at the scales related to the actual flow processes, while considering the porous structures in an explicit way. The aim of this paper is to investigate the effects of the pore-scale spatial distribution on seepage velocity through numerical simulations of 3D fluid flow performed by the lattice Boltzmann method. To this end, we generate multiple random Gaussian fields whose spatial correlation follows an assigned semi-variogram function. The Exponential and Gaussian semi-variograms are chosen as extreme-cases of correlation for short distances and statistical properties of the resulting porous media (indicator field) are described using the Matèrn covariance model, with characteristic lengths of spatial autocorrelation (pore size) varying from 2% to 13% of the linear domain. To consider the sensitivity of the modeling results to the geostatistical representativeness of the domain as well as to the adopted resolution, porous media have been generated repetitively with re-initialized random seeds and three different resolutions have been tested for each resulting realization. The main difference among results is observed between the two adopted semi-variograms, indicating that the roughness (short distances autocorrelation) is the property mainly affecting the flux. However, computed seepage velocities show additionally a wide variability (about three orders of magnitude) for each semi-variogram model in relation to the assigned correlation length, corresponding to pore sizes. The spatial resolution affects more the results for short correlation lengths (i.e., small pore sizes), resulting in an increasing underestimation of the seepage velocity with the decreasing correlation length. On the other hand, results show an increasing uncertainty as the correlation length approaches the domain size.

  2. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  3. Species extinction thresholds in the face of spatially correlated periodic disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan

    2015-10-20

    The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.

  4. Functional overestimation due to spatial smoothing of fMRI data.

    PubMed

    Liu, Peng; Calhoun, Vince; Chen, Zikuan

    2017-11-01

    Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Perception and psychological evaluation for visual and auditory environment based on the correlation mechanisms

    NASA Astrophysics Data System (ADS)

    Fujii, Kenji

    2002-06-01

    In this dissertation, the correlation mechanism in modeling the process in the visual perception is introduced. It has been well described that the correlation mechanism is effective for describing subjective attributes in auditory perception. The main result is that it is possible to apply the correlation mechanism to the process in temporal vision and spatial vision, as well as in audition. (1) The psychophysical experiment was performed on subjective flicker rates for complex waveforms. A remarkable result is that the phenomenon of missing fundamental is found in temporal vision as analogous to the auditory pitch perception. This implies the existence of correlation mechanism in visual system. (2) For spatial vision, the autocorrelation analysis provides useful measures for describing three primary perceptual properties of visual texture: contrast, coarseness, and regularity. Another experiment showed that the degree of regularity is a salient cue for texture preference judgment. (3) In addition, the autocorrelation function (ACF) and inter-aural cross-correlation function (IACF) were applied for analysis of the temporal and spatial properties of environmental noise. It was confirmed that the acoustical properties of aircraft noise and traffic noise are well described. These analyses provided useful parameters extracted from the ACF and IACF in assessing the subjective annoyance for noise. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Junko Atagi, 6813 Mosonou, Saijo-cho, Higashi-Hiroshima 739-0024, Japan. E-mail address: atagi\\@urban.ne.jp.

  6. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  7. Spatial correlation analysis of urban traffic state under a perspective of community detection

    NASA Astrophysics Data System (ADS)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  8. The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams

    NASA Astrophysics Data System (ADS)

    Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei

    2016-08-01

    Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.

  9. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  10. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  11. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  12. Correlations between soil respiration and soil properties in sugarcane areas under green and slash-and-burn management systems

    NASA Astrophysics Data System (ADS)

    Rodrigo Panosso, Alan; Milori, Débora M. B. P.; Marques Júnior, José; Martin-Neto, Ladislau; La Scala, Newton, Jr.

    2010-05-01

    Soil management causes changes in soil physical, chemical, and biological properties that consequently affect its CO2 emission. In this work we studied soil respiration (FCO2) in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted after the harvest period in two side-by-side grids installed in adjacent areas, having 20 measurement points each. The objective of this work was to determinate whether soil physical and chemical properties within each plot were useful in order to explain the spatial variability of FCO2, supposedly influence by each management system. Most of the soil physical properties studied showed no significant differences between management systems, but on the other hand most of the chemical properties differed significantly when SB and G areas were compared. Total FCO2 was 31% higher in the SB plot (729 g CO2 m-2) when compared to the G plot (557 g CO2 m-2) throughout the 70-day period after harvest studied. This seems to be related to the sensitivity of FCO2 to precipitation events, as respiration in this plot increased significantly with increases in soil moisture. Despite temporal variability showed to be positively related to soil moisture, inside each management system there was a negative correlation (p<0.01) between the spatial changes of FCO2 and soil moisture (MS), R= -0.56 and -0.59 for G and SB respectively. There was no spatial correlation between FCO2 and soil organic matter in each management system, however, the humification index (Hum) of organic matter was negatively linear correlated with FCO2 in SB (R= -0.53, p<0.05) while positively linear correlated in G area (R=0.42, p<0.10). The multiple regression model analysis applied in each management system indicates that 63% of the FCO2 spatial variability in G managed could be explained by the model: FCO2(G)= 4.11978 -0.07672MS + 0.0045Hum +1.5352K -0.04474FWP, where K and FWP are potassium content and free water porosity in G area, respectively. On the other hand, 75% of FCO2 spatial variability in SB managed plot was accounted by the model: FCO2(SB) = 10.66774 -0.08624MS -0.02904Hum -2.42548K. Therefore, soil moisture, humification index of organic matter and potassium level were the main properties able to explain the spatial variability of FCO2 in both sugarcane management systems. This result indicates that changes in sugarcane management systems could result in changes on the soil chemical properties, mostly, especially humification index of organic matter. It seems that in conversion from slash-and-burn to green harvest system, free water porosity turns to be an important aspect in order to explain part of FCO2 spatial variability in green managed system.

  13. On the use of variable coherence in inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Baleine, Erwan

    Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

  14. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779

  15. Universal spatial correlation functions for describing and reconstructing soil microstructure.

    PubMed

    Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.

  16. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link.

    PubMed

    Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V

    2007-09-10

    By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.

  17. Quantum critical probing and simulation of colored quantum noise

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; de Vega, Inés

    2017-12-01

    We propose a protocol to simulate the evolution of a non-Markovian open quantum system by considering a collisional process with a many-body system, which plays the role of an environment. As a result of our protocol, the environment spatial correlations are mapped into the time correlations of a noise that drives the dynamics of the open system. Considering the weak coupling limit, the open system can also be considered as a probe of the environment properties. In this regard, when preparing the environment in its ground state, a measurement of the dynamics of the open system allows to determine the length of the environment spatial correlations and therefore its critical properties. To illustrate our proposal we simulate the full system dynamics with matrix-product-states and compare this to the reduced dynamics obtained with an approximated variational master equation.

  18. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.

    PubMed

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O

    2010-12-22

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.

  19. Random field assessment of nanoscopic inhomogeneity of bone

    PubMed Central

    Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu

    2010-01-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128

  20. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  1. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  2. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  3. Studies on spatial modes and the correlation anisotropy of entangled photons generated from 2D quadratic nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.

    2017-06-01

    Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.

  4. Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2016-03-01

    Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.

  5. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect

    NASA Astrophysics Data System (ADS)

    Majka, M.; Góra, P. F.

    2016-10-01

    While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.

  6. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.

  7. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-04-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  8. Spatial variability of soil properties and soil erodibility in the Alqueva dam watershed, Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-01-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this, three areas representative of different land uses (agroforestry grassland, Lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while K factor increased with intensive cultivation. The HJ-biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  9. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  10. Random field assessment of nanoscopic inhomogeneity of bone.

    PubMed

    Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu

    2010-12-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. What Do They Have in Common? Physical Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes at Ungauged Locations in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2017-12-01

    Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.

  12. Modeling uncertainty and correlation in soil properties using Restricted Pairing and implications for ensemble-based hillslope-scale soil moisture and temperature estimation

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2007-12-01

    Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.

  13. Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  14. Spatial variations in ac susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  15. Macroscopic Spatial Complexity of the Game of Life Cellular Automaton: A Simple Data Analysis

    NASA Astrophysics Data System (ADS)

    Hernández-Montoya, A. R.; Coronel-Brizio, H. F.; Rodríguez-Achach, M. E.

    In this chapter we present a simple data analysis of an ensemble of 20 time series, generated by averaging the spatial positions of the living cells for each state of the Game of Life Cellular Automaton (GoL). We show that at the macroscopic level described by these time series, complexity properties of GoL are also presented and the following emergent properties, typical of data extracted complex systems such as financial or economical come out: variations of the generated time series following an asymptotic power law distribution, large fluctuations tending to be followed by large fluctuations, and small fluctuations tending to be followed by small ones, and fast decay of linear correlations, however, the correlations associated to their absolute variations exhibit a long range memory. Finally, a Detrended Fluctuation Analysis (DFA) of the generated time series, indicates that the GoL spatial macro states described by the time series are not either completely ordered or random, in a measurable and very interesting way.

  16. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    PubMed

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (

  17. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  18. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  19. Spatial Correlation Of Streamflows: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.

  20. The integration of elastic wave properties and machine learning for the distribution of petrophysical properties in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.

    2018-05-01

    Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.

  1. Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.

    DTIC Science & Technology

    1983-05-31

    Documents includes data on: Architectures; Coherence Properties of Pulsed Laser Diodes; Acousto - optic device data; Dynamic Range Issues; Image correlation; Synthetic aperture radar; 2-D Fourier transform; and Moments.

  2. Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade

    NASA Astrophysics Data System (ADS)

    Kiss, T. S.; Gyenge, N.; Erdélyi, R.

    2017-01-01

    Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.

  3. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China.

    PubMed

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-28

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  4. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    PubMed Central

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  5. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  6. Correlations and spatial variability of soil physical properties in harvested piedmont forests

    Treesearch

    Emily A. Carter; J.N. Shaw

    2002-01-01

    Soil response to timber harvest trafficking was similar for eroded soils in two locations of the Piedmont of Alabama. Pre-harvest and post-harvest data indicated compaction to be present to a depth of 40 cm as indicated by cone index measurements, with the most significant changes occurring in the upper 20 cm. The degree of spatial dependence differed among soil...

  7. Optical evaluation of the wave filtering properties of graded undulated lattices

    NASA Astrophysics Data System (ADS)

    Trainiti, G.; Rimoli, J. J.; Ruzzene, M.

    2018-03-01

    We investigate and experimentally demonstrate the elastic wave filtering properties of graded undulated lattices. Square reticulates composed of curved beams are characterized by graded mechanical properties which result from the spatial modulation of the curvature parameter. Among such properties, the progressive formation of frequency bandgaps leads to strong wave attenuation over a broad frequency range. The experimental investigation of wave transmission and the detection of full wavefields effectively illustrate this behavior. Transmission measurements are conducted using a scanning laser Doppler vibrometer, while a dedicated digital image correlation procedure is implemented to capture in-plane wave motion at selected frequencies. The presented results illustrate the broadband attenuation characteristics resulting from spatial grading of the lattice curvature, whose in-depth investigation is enabled by the presented experimental procedures.

  8. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  9. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.

    PubMed

    Dale, Corby L; Simpson, Gregory V; Foxe, John J; Luks, Tracy L; Worden, Michael S

    2008-06-01

    Brain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task. Cues indicated relevance of left or right visual field locations for an upcoming motion or orientation discrimination. During a 1 s delay between cue and S2, multiple attention-related events occurred at frontal, parietal and occipital electrode sites. Differences in anticipatory activity associated with the non-spatial task properties were found late in the delay, while spatially-specific modulation of activity occurred during both early and late periods and continued during S2 processing. The magnitude of anticipatory activity preceding the S2 at frontal scalp sites (and not occipital) was predictive of the magnitude of subsequent selective attention effects on the S2 event-related potentials observed at occipital electrodes. Results support the existence of multiple anticipatory attention-related processes, some with differing specificity for spatial and non-spatial task properties, and the hypothesis that levels of activity in anterior areas are important for effective control of subsequent S2 selective attention.

  10. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  11. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  12. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  13. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  14. Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wiegmann, P. B.

    1999-06-01

    There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.

  15. A mini-review on econophysics: Comparative study of Chinese and western financial markets

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Jiang, Xiong-Fei; Ni, Peng-Yun

    2014-07-01

    We present a review of our recent research in econophysics, and focus on the comparative study of Chinese and western financial markets. By virtue of concepts and methods in statistical physics, we investigate the time correlations and spatial structure of financial markets based on empirical high-frequency data. We discover that the Chinese stock market shares common basic properties with the western stock markets, such as the fat-tail probability distribution of price returns, the long-range auto-correlation of volatilities, and the persistence probability of volatilities, while it exhibits very different higher-order time correlations of price returns and volatilities, spatial correlations of individual stock prices, and large-fluctuation dynamic behaviors. Furthermore, multi-agent-based models are developed to simulate the microscopic interaction and dynamic evolution of the stock markets.

  16. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  17. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  18. Percolation of spatially constrained Erdős-Rényi networks with degree correlations.

    PubMed

    Schmeltzer, C; Soriano, J; Sokolov, I M; Rüdiger, S

    2014-01-01

    Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.

  19. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.

    PubMed

    Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E

    2015-06-21

    We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.

  20. Spatial correlation-based side information refinement for distributed video coding

    NASA Astrophysics Data System (ADS)

    Taieb, Mohamed Haj; Chouinard, Jean-Yves; Wang, Demin

    2013-12-01

    Distributed video coding (DVC) architecture designs, based on distributed source coding principles, have benefitted from significant progresses lately, notably in terms of achievable rate-distortion performances. However, a significant performance gap still remains when compared to prediction-based video coding schemes such as H.264/AVC. This is mainly due to the non-ideal exploitation of the video sequence temporal correlation properties during the generation of side information (SI). In fact, the decoder side motion estimation provides only an approximation of the true motion. In this paper, a progressive DVC architecture is proposed, which exploits the spatial correlation of the video frames to improve the motion-compensated temporal interpolation (MCTI). Specifically, Wyner-Ziv (WZ) frames are divided into several spatially correlated groups that are then sent progressively to the receiver. SI refinement (SIR) is performed as long as these groups are being decoded, thus providing more accurate SI for the next groups. It is shown that the proposed progressive SIR method leads to significant improvements over the Discover DVC codec as well as other SIR schemes recently introduced in the literature.

  1. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  2. Correlation functions in first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Garrido, V.; Crespo, D.

    1997-09-01

    Most of the physical properties of systems underlying first-order phase transitions can be obtained from the spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed by using the particle size distribution obtained by a recently developed model (populational Kolmogorov-Johnson-Mehl-Avrami model). Since this model is less restrictive than that used in previously existing theories, the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The validity of the method is tested by comparison with the exact correlation functions, which had been obtained in the available cases by the time-cone method. Finally, the correlation functions corresponding to the microstructure developed in partitioning transformations are obtained.

  3. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130+/-5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell's inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-pair experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

  4. Spatial variability structure of soil CO2 emission and soil physical and chemical properties characterized by fractal dimension in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.

    2012-04-01

    Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.

  5. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the resultsmore » of numerical experiments. (laser applications and other topics in quantum electronics)« less

  6. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array.

    PubMed

    Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André

    2016-12-12

    We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

  7. Laboratory demonstration of Stellar Intensity Interferometry using a software correlator

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David

    2017-06-01

    In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.

  8. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China.

    PubMed

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  10. Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses

    PubMed Central

    Wittemyer, George; Polansky, Leo; Douglas-Hamilton, Iain; Getz, Wayne M.

    2008-01-01

    The internal state of an individual—as it relates to thirst, hunger, fear, or reproductive drive—can be inferred by referencing points on its movement path to external environmental and sociological variables. Using time-series approaches to characterize autocorrelative properties of step-length movements collated every 3 h for seven free-ranging African elephants, we examined the influence of social rank, predation risk, and seasonal variation in resource abundance on periodic properties of movement. The frequency domain methods of Fourier and wavelet analyses provide compact summaries of temporal autocorrelation and show both strong diurnal and seasonal based periodicities in the step-length time series. This autocorrelation is weaker during the wet season, indicating random movements are more common when ecological conditions are good. Periodograms of socially dominant individuals are consistent across seasons, whereas subordinate individuals show distinct differences diverging from that of dominants during the dry season. We link temporally localized statistical properties of movement to landscape features and find that diurnal movement correlation is more common within protected wildlife areas, and multiday movement correlations found among lower ranked individuals are typically outside of protected areas where predation risks are greatest. A frequency-related spatial analysis of movement-step lengths reveal that rest cycles related to the spatial distribution of critical resources (i.e., forage and water) are responsible for creating the observed patterns. Our approach generates unique information regarding the spatial-temporal interplay between environmental and individual characteristics, providing an original approach for understanding the movement ecology of individual animals and the spatial organization of animal populations. PMID:19060207

  11. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  12. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  13. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.

  14. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  15. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  16. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    NASA Astrophysics Data System (ADS)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  17. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales

    PubMed Central

    Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.

    2014-01-01

    Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949

  18. The Behavior of Matter under Nonequilibrium Conditions: Fundamental Aspects and Applications: Progress Report for Period August 15, 1989 - April 14, 1990

    DOE R&D Accomplishments Database

    Prigogine, I.

    1989-10-01

    As in the previous period, our work has been concerned with the study of the properties of nonequilibrium systems and especially with the mechanism of self-organization. As is well-known, the study of self-organization began with the investigation of hydrodynamical or chemical instabilities studied from the point of view of macroscopic physics. The main outcome is that nonequilibrium generates spatial correlations of macroscopic physics. The main outcome is that nonequilibrium generated spatial correlations of macroscopic range whose characteristics length is an intrinsic property and whose amplitude is determined by nonequilibrium constraints. A survey of the macroscopic approach to nonequilibrium states is given in the paper. "Nonequilibrium States and Long Range Correlations in Chemical Dynamics", by G. Nicolis at al. However, over the last few years important progress has been made in the simulation of nonequilibrium situations using mainly molecular dynamics. It appears now that processes corresponding to self-organization as well as the appearance of long-range correlations can be obtained in this way starting from a program involving Newtonian dynamics (generally the laws of interaction correspond to hard spheres or hard disks). Examples of such types of studies leading to Benard instabilities, to chemical clocks, or to spatial structure formation are given in this report. As a result, we may now view self-organization as a direct expression of tan appropriate microscopic dynamics. This is the reason why we have devoted much work to the study of large Poincare systems (LPS) involving continuous sets of resonances. These systems have been shown to lead, according to the constraints, either to equilibrium situations or to nonequilibrium states involving long range correlations. We discuss LPS in the frame of classical mechanics.

  19. Plasma properties in electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1987-01-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.

  20. The Use of Electromagnetic Induction Techniques for Soil Mapping

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2015-04-01

    Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.

  1. Space-time modeling of soil moisture

    NASA Astrophysics Data System (ADS)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  2. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-07-01

    Gas puff imaging (GPI) observations made in NSTX (Zweben et al 2017 Phys. Plasmas 24 102509) have revealed two-point spatial correlations of edge and scrape-off layer (SOL) turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or SOL), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.

  3. Propagation properties of a partially coherent radially polarized beam in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Guo; Wang, Lin; Wang, Jue; Zhou, Muchun; Song, Minmin

    2018-07-01

    Based on the extended Huygens-Fresnel integral, second-order moments of the Wigner distribution function of a partially coherent radially polarized beam propagating through atmospheric turbulence are derived. Besides, propagation properties such as the mean-squared beam width, angular width, effective radius of curvature, beam propagation factor and Rayleigh range can also be obtained and calculated numerically. It is shown that the propagation properties are dependent on the spatial correlation length, refraction index structure constant and propagation distance.

  4. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri.

    PubMed

    Nkonglolo, Nsalambi Vakanda; Johnson, Shane; Schmidt, Kent; Eivazi, Frieda

    2010-01-01

    Fluctuations of greenhouse gases emissions and soil properties occur at short spatial and temporal scales, however, results are often reported for larger scales studies. We monitored CO2, CH4, and N2O fluxes and soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) from 2004 to 2006 in a pasture. Soil air samples for determination of CO2, CH4 and N20 concentrations were collected from static and vented chambers and analyzed within two hours of collection with a gas chromatograph. T, K, R and D were measured in-situ using a KD2 probe. Soil samples were also taken for measurements of soil chemical and physical properties. The pasture acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 2005. In 2006, all gases fluxes were significantly correlated with T, K and R when the data for the entire year were considered. However, an in-depth examination of the data revealed the existence of month-to-month shifts, lack of correlation and differing spatial structures. These results stress the need for further studies on the relationship between soil properties and gases fluxes. K and R offer a promise as potential controlling factors for greenhouse gases fluxes in this pasture.

  5. Quantitative characterization of the spatial distribution of particles in materials: Application to materials processing

    NASA Technical Reports Server (NTRS)

    Parse, Joseph B.; Wert, J. A.

    1991-01-01

    Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.

  6. Spatial congruence in language and species richness but not threat in the world's top linguistic hotspot.

    PubMed

    Turvey, Samuel T; Pettorelli, Nathalie

    2014-12-07

    Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.

  7. Assortative mating and mutation diffusion in spatial evolutionary systems

    NASA Astrophysics Data System (ADS)

    Paley, C. J.; Taraskin, S. N.; Elliott, S. R.

    2010-04-01

    The influence of spatial structure on the equilibrium properties of a sexual population model defined on networks is studied numerically. Using a small-world-like topology of the networks as an investigative tool, the contributions to the fitness of assortative mating and of global mutant spread properties are considered. Simple measures of nearest-neighbor correlations and speed of spread of mutants through the system have been used to confirm that both of these dynamics are important contributory factors to the fitness. It is found that assortative mating increases the fitness of populations. Quick global spread of favorable mutations is shown to be a key factor increasing the equilibrium fitness of populations.

  8. Statistical Study between Solar Wind, Magnetosheath and Plasma Sheet Fluctuation Properties and Correlation with Magnetotail Bursty Bulk Flows

    NASA Astrophysics Data System (ADS)

    Chu, C. S.; Nykyri, K.; Dimmock, A. P.

    2017-12-01

    In this paper we test a hypothesis that magnetotail reconnection in the thin current sheet could be initiated by external fluctuations. Kelvin-Helmholtz instability (KHI) has been observed during southward IMF and it can produce, cold, dense plasma transport and compressional fluctuations that can move further into the magnetosphere. The properties of the KHI depend on the magnetosheath seed fluctuation spectrum (Nykyri et al., JGR, 2017). In this paper we present a statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet fluctuation properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet fluctuation properties (dn, dV and dB) and their dependence on IMF orientation and fluctuation properties and resulting magnetosheath state. These statistical maps are compared with spatial distribution of magnetotail Bursty Bulk Flows to study possible correlations with magnetotail reconnection and these fluctuations.

  9. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  10. Geometry and scaling laws of excursion and iso-sets of enstrophy and dissipation in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Elsas, José Hugo; Szalay, Alexander S.; Meneveau, Charles

    2018-04-01

    Motivated by interest in the geometry of high intensity events of turbulent flows, we examine the spatial correlation functions of sets where turbulent events are particularly intense. These sets are defined using indicator functions on excursion and iso-value sets. Their geometric scaling properties are analysed by examining possible power-law decay of their radial correlation function. We apply the analysis to enstrophy, dissipation and velocity gradient invariants Q and R and their joint spatial distributions, using data from a direct numerical simulation of isotropic turbulence at Reλ ≈ 430. While no fractal scaling is found in the inertial range using box-counting in the finite Reynolds number flow considered here, power-law scaling in the inertial range is found in the radial correlation functions. Thus, a geometric characterisation in terms of these sets' correlation dimension is possible. Strong dependence on the enstrophy and dissipation threshold is found, consistent with multifractal behaviour. Nevertheless, the lack of scaling of the box-counting analysis precludes direct quantitative comparisons with earlier work based on multifractal formalism. Surprising trends, such as a lower correlation dimension for strong dissipation events compared to strong enstrophy events, are observed and interpreted in terms of spatial coherence of vortices in the flow.

  11. Spatial signal correlation from an III-nitride synaptic device

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  12. Modelling soil properties in a crop field located in Croatia

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka

    2016-04-01

    Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high negative loading in coarse silt. Finally, the factor 3 had a positive loading in penetration resistance. The loadings of these three factors were mapped using ordinary kriging method. The analysis of incremental spatial correlation identified that the highest spatial correlation in the factor 1 was identified at 41.87 m, in factor 2 at 75.61 m and factor 3 at 143.9 m. In the case of factor 2, the maximum peak of spatial autocorrelation was significant at a p<0.05. This showed that the variable has a random distribution, as confirmed with the Moran's I spatial correlation analysis. In relation to the other factors the maximum peaks were significantly clustered at a p<0.001. These results suggested that the each factor has a different spatial pattern and the studied soil properties explained by each factor had a different spatial distribution. References Breivik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274. Galiati, A., Gristina, L., Crescimanno, Barone, E., Novara, A. (2016) Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degradation and Development, DOI: 10.1002/ldr.2389 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192.

  13. Correlation plenoptic imaging

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  14. Rainbow correlation imaging with macroscopic twin beam

    NASA Astrophysics Data System (ADS)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  15. Multifaceted brain networks reconfiguration in disorders of consciousness uncovered by co-activation patterns.

    PubMed

    Di Perri, Carol; Amico, Enrico; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Larroque, Stephen Karl; Soddu, Andrea; Marinazzo, Daniele; Laureys, Steven

    2018-01-01

    Given that recent research has shown that functional connectivity is not a static phenomenon, we aim to investigate the dynamic properties of the default mode network's (DMN) connectivity in patients with disorders of consciousness. Resting-state fMRI volumes of a convenience sample of 17 patients in unresponsive wakefulness syndrome (UWS) and controls were reduced to a spatiotemporal point process by selecting critical time points in the posterior cingulate cortex (PCC). Spatial clustering was performed on the extracted PCC time frames to obtain 8 different co-activation patterns (CAPs). We investigated spatial connectivity patterns positively and negatively correlated with PCC using both CAPs and standard stationary method. We calculated CAPs occurrences and the total number of frames. Compared to controls, patients showed (i) decreased within-network positive correlations and between-network negative correlations, (ii) emergence of "pathological" within-network negative correlations and between-network positive correlations (better defined with CAPs), and (iii) "pathological" increases in within-network positive correlations and between-network negative correlations (only detectable using CAPs). Patients showed decreased occurrence of DMN-like CAPs (1-2) compared to controls. No between-group differences were observed in the total number of frames CONCLUSION: CAPs reveal at a more fine-grained level the multifaceted spatial connectivity reconfiguration following the DMN disruption in UWS patients, which is more complex than previously thought and suggests alternative anatomical substrates for consciousness. BOLD fluctuations do not seem to differ between patients and controls, suggesting that BOLD response represents an intrinsic feature of the signal, and therefore that spatial configuration is more important for consciousness than BOLD activation itself. Hum Brain Mapp 39:89-103, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Detection of non-classical space-time correlations with a novel type of single-photon camera.

    PubMed

    Just, Felix; Filipenko, Mykhaylo; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd

    2014-07-14

    During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed hybrid photon detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we apply this device to the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.

  17. The Nonrandom Distribution of Interior Landforms for 100-km Diameter Craters on Mercury Suggests Regional Variations in Near-Surface Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herrick, R. R.

    2018-05-01

    There is great diversity of appearance in the interiors of 100-km diameter craters. The spatial distribution of interior landforms is clustered and nonrandom, but does not clearly correlate with Mercury's surface geology patterns.

  18. A class of covariate-dependent spatiotemporal covariance functions

    PubMed Central

    Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.

    2014-01-01

    In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199

  19. Use of forecasting signatures to help distinguish periodicity, randomness, and chaos in ripples and other spatial patterns

    USGS Publications Warehouse

    Rubin, D.M.

    1992-01-01

    Forecasting of one-dimensional time series previously has been used to help distinguish periodicity, chaos, and noise. This paper presents two-dimensional generalizations for making such distinctions for spatial patterns. The techniques are evaluated using synthetic spatial patterns and then are applied to a natural example: ripples formed in sand by blowing wind. Tests with the synthetic patterns demonstrate that the forecasting techniques can be applied to two-dimensional spatial patterns, with the same utility and limitations as when applied to one-dimensional time series. One limitation is that some combinations of periodicity and randomness exhibit forecasting signatures that mimic those of chaos. For example, sine waves distorted with correlated phase noise have forecasting errors that increase with forecasting distance, errors that, are minimized using nonlinear models at moderate embedding dimensions, and forecasting properties that differ significantly between the original and surrogates. Ripples formed in sand by flowing air or water typically vary in geometry from one to another, even when formed in a flow that is uniform on a large scale; each ripple modifies the local flow or sand-transport field, thereby influencing the geometry of the next ripple downcurrent. Spatial forecasting was used to evaluate the hypothesis that such a deterministic process - rather than randomness or quasiperiodicity - is responsible for the variation between successive ripples. This hypothesis is supported by a forecasting error that increases with forecasting distance, a greater accuracy of nonlinear relative to linear models, and significant differences between forecasts made with the original ripples and those made with surrogate patterns. Forecasting signatures cannot be used to distinguish ripple geometry from sine waves with correlated phase noise, but this kind of structure can be ruled out by two geometric properties of the ripples: Successive ripples are highly correlated in wavelength, and ripple crests display dislocations such as branchings and mergers. ?? 1992 American Institute of Physics.

  20. Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes

    NASA Astrophysics Data System (ADS)

    Caldwell, Todd G.; Young, Michael H.; McDonald, Eric V.; Zhu, Jianting

    2012-09-01

    Geological and ecological processes play critical roles in the evolution of desert piedmonts. Feedback between fast cyclic biotic and slow cumulative pedogenic processes on arid alluvial fan systems results in a heterogeneous landscape of interspace and canopy microsites. Defining the spatial extent between these processes will allow a better connection to ecosystem service and climate change. We use a soil chronosequence in the Mojave Desert and high spatial resolution infiltrometer measurements along transects radiating from canopies of perennial shrubs to assess the extent of biotic and abiotic processes and the heterogeneity of soil properties in arid shrublands. Results showed higher saturated conductivity under vegetation regardless of surface age, but it was more conspicuous on older, developed soils. At proximal locations to the shrub, bulk density, soil structure grade, silt, and clay content significantly increased radially from the canopy, while sand and organic material decreased. Soil properties at distal locations 2-5 times the canopy radius had no significant spatial correlation. The extent of the biotic influence of the shrub was 1.34 ± 0.32 times the canopy radius. Hydraulic properties were weakly correlated in space, but 75% of the variance could be attributed to sand content, soil structure grade, mean-particle diameter, and soil organic material, none of which are exclusively biotic or abiotic. The fast cyclic biotic processes occurring under vegetation are clearly overprinted on slow cumulative abiotic processes, resulting in the deterministic variability observed at the plant scale.

  1. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    USGS Publications Warehouse

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  2. Spatial regression analysis of traffic crashes in Seoul.

    PubMed

    Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F

    2016-06-01

    Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of Uncertainty on the Porous Media Description in the Subsurface Transport Analysis

    NASA Astrophysics Data System (ADS)

    Darvini, G.; Salandin, P.

    2008-12-01

    In the modelling of flow and transport phenomena in naturally heterogeneous media, the spatial variability of hydraulic properties, typically the hydraulic conductivity, is generally described by use of a variogram of constant sill and spatial correlation. While some analyses reported in the literature discuss of spatial inhomogeneity related to a trend in the mean hydraulic conductivity, the effect in the flow and transport due to an inexact definition of spatial statistical properties of media as far as we know had never taken into account. The relevance of this topic is manifest, and it is related to the uncertainty in the definition of spatial moments of hydraulic log-conductivity from an (usually) little number of data, as well as to the modelling of flow and transport processes by the Monte Carlo technique, whose numerical fields have poor ergodic properties and are not strictly statistically homogeneous. In this work we investigate the effects related to mean log-conductivity (logK) field behaviours different from the constant one due to different sources of inhomogeneity as: i) a deterministic trend; ii) a deterministic sinusoidal pattern and iii) a random behaviour deriving from the hierarchical sedimentary architecture of porous formations and iv) conditioning procedure on available measurements of the hydraulic conductivity. These mean log-conductivity behaviours are superimposed to a correlated weakly fluctuating logK field. The time evolution of the spatial moments of the plume driven by a statistically inhomogeneous steady state random velocity field is analyzed in a 2-D finite domain by taking into account different sizes of injection area. The problem is approached by both a classical Monte Carlo procedure and SFEM (stochastic finite element method). By the latter the moments are achieved by space-time integration of the velocity field covariance structure derived according to the first- order Taylor series expansion. Two different goals are foreseen: 1) from the results it will be possible to distinguish the contribute in the plume dispersion of the uncertainty in the statistics of the medium hydraulic properties in all the cases considered, and 2) we will try to highlight the loss of performances that seems to affect the first-order approaches in the transport phenomena that take place in hierarchical architecture of porous formations.

  4. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  5. Contribution of Small-Scale Correlated Fluctuations of Microstructural Properties of a Spatially Extended Geophysical Target Under the Assessment of Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Yurchak, Boris S.

    2010-01-01

    The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter from spatially extended geophysical targets (SEGT). We consider the microstructure irregularities of a SEGT as the essential factor that affect radar backscatter. To evaluate their contribution this study uses the "slice" approach: particles close to the front of incident radar wave are considered to reflect incident electromagnetic wave coherently. The radar equation for a SEGT is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice's reflectivity. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration. The slice approach applied allows parameterizing the features of the SEGT's inhomogeneities.

  6. Static and dynamic properties of two-dimensional Coulomb clusters.

    PubMed

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  7. A JACKNIFE APPROACH TO EXAMINE UNCERTAINTY AND TEMPORAL CHANGES IN THE SPATIL CORRELATION OF A VOC PLUME

    EPA Science Inventory

    ABSTRACT: The application of geostatistics to spatial interpolation of time-invariant properties in ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use of geostatistics on time-variant conditions such as ground-water quality is also be...

  8. Inspecting Friction Stir Welding using Electromagnetic Probes

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  9. Spatial Variation of Soil Respiration in a Cropland under Winter Wheat and Summer Maize Rotation in the North China Plain.

    PubMed

    Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng

    2016-01-01

    Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson's correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters can improve the role of remote sensing data as a proxy of plant photosynthesis in semi-empirical Rs models and benefit the acquisition of Rs in cropland ecosystems at large scales.

  10. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  11. Spatially patterned matrix elasticity directs stem cell fate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  12. Detailed soil mapping and relationships between soil characteristics and tree growth in an alluvial plain (Lombardy, Italy)

    NASA Astrophysics Data System (ADS)

    Ferré, Chiara; Comolli, Roberto

    2015-04-01

    The study area is located in an abandoned meander of the Oglio river (southern Lombardy, Italy), with young soils of alluvial origin (Calcaric Fluvisols). During 2002, in an area covering 20 hectares, a tree plant for wood production was realized (oak, hornbeam, ash, alder, and walnut; poplar only in the first part of the growth cycle). Objective of the study was to verify the existence of correlations between tree growth and soil characteristics. In 2004, the soil was sampled at 126 points, according to a regular grid, taking the surface soil horizon (Ap). The collected soil samples were analyzed in laboratory, measuring pH in H2O and KCl, texture, total carbonates, soil organic C (SOC), available P (Olsen), and exchangeable K. The pH in H2O varies between 7.7 and 8.1; the pH in KCl varies between 7.2 and 7.7; the more frequent particle-size classes are loam and sandy loam; SOC varies between 0.4 and 1.1%; total carbonates from 23 to 45%; exchangeable K between 0.01 and 0.25 cmol(+) kg-1; available P between 1.2 and 16.8 mg kg-1. At a distance of 12 years, in 2014, diameters at breast height of all the trees (2513 in total) were measured and their height was estimated on the basis of empirical equations obtained for each species, in order to calculate the tree volume. Spatial variability of soil properties was evaluated and mapped using multivariate geostatistical techniques. The analyses revealed the presence of different scales of spatial variation: micro-scale, short range scale (about 80 m for texture) and long range scale (about 220 m for texture). The spatial pattern of most soil properties (mainly texture and total carbonates) was probably associated with fluvial depositional processes. To evaluate soil-plant relationships, soil characteristics were collocated into the plant data set by estimating specific soil properties at each individual tree location. Soil spatial variability was reflected by the differences in plant growth. Statistical analysis of the collected data highlighted a number of statistically significant correlations between tree growth and soil features: clay content and total carbonates were almost always negatively correlated with tree growth; sand content, pH in KCl, available P and exchangeable K were almost always positively correlated; SOC content was negatively correlated, but only for oak.

  13. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.

    PubMed

    Frank, R R; Cipullo, S; Garcia, J; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2017-05-01

    The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH 4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of spatial coherence of light on the photoregulation processes in cells

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2016-07-01

    The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.

  15. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  16. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE PAGES

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-05-15

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  17. CORRELATOR 5.2 - A program for interactive lithostratigraphic correlation of wireline logs

    USGS Publications Warehouse

    Olea, R.A.

    2004-01-01

    The limited radius of investigation of petrophysical measurements made in boreholes and the relatively large distances between wells result in an incomplete sensing of the subsurface through well logging. CORRELATOR is a program for estimating geological properties between logged boreholes. An initial and fundamental step is the lithostratigraphic correlation of logs in different wells. The method employed by the program closely emulates the process of visual inspection used by experienced subsurface geologists in manual correlation. Mathematically, the determination of lithostratigraphical equivalence is based on the simultaneous assessment of similarity in shale content, similarity in the patterns of vertical variation in a petrophysical property that is measured with high vertical resolution, and spatial consistency of stratigraphic relationships as determined by an expert system. Multiple additional options for processing log readings allow maximization in the extraction of information from pairs of logs per well and great flexibility in the final display of results in the form of cross sections and dip diagrams. ?? 2004 Elsevier Ltd. All rights reserved.

  18. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.

  19. Infiltration processes in karstic chalk investigated through a spatial analysis of the geochemical properties of the groundwater: The effect of the superficial layer of clay-with-flints

    NASA Astrophysics Data System (ADS)

    Valdes, Danièle; Dupont, Jean-Paul; Laignel, Benoît; Slimani, Smaïl; Delbart, Célestine

    2014-11-01

    In the Paris Basin in Upper Normandy (France), the chalk plateaus are covered with thick deposits of loess and clay-with-flints, from a few meters to approximately 40 m thick locally. A perched groundwater is sometimes observed in the superficial layers in which evapotranspiration processes seem to occur. This study's objective was to understand the effects of the thick clay-with-flints layers on the infiltration processes. To achieve this, we adopted a spatial approach comparing the maps of the geochemical properties of the Chalk groundwater and the maps of the thickness of clay-with-flints. The French national groundwater database, ADES (Accès aux Données des Eaux, BRGM), provided the mean geochemical properties in the Chalk aquifer of Upper Normandy. This database was used to prepare maps of the environmental tracers: Ca2+, HCO3-, Mg2+, Cl-, Na+, NO3-, and SO42. The data are spatially well organized. Using principal component analysis (PCA), these maps were compared with the maps of the thickness of clay-with-flints. A focus on the coastal basins (northern Upper Normandy) shows a very strong spatial correlation between the maps of clay-with-flints thickness and all of the maps of the major ions. The thickness of clay-with-flints is negatively correlated with the autochthonous ions (HCO3- and Ca2+) and is positively correlated with the allochthonous ions (Cl-, Na+, SO42-, and NO3-). These results highlight that the thickness of clay-with-flints controls recharge. Two types of infiltration processes are proposed: (1) Thicker clay-with-flints allows storage in the perched groundwater, which allows evapotranspiration, resulting in high concentrations of allochthonous ions and a decrease in the dissolution potential of water and low concentrations of autochthonous ions. The infiltration of the perched groundwater is thus delayed and concentrated. (2) Thinner clay-with-flints causes the infiltration to be more diffuse, with low evapotranspiration and thus low concentrations of allochthonous ions in the Chalk groundwater; more, there is more dissolution and higher concentrations of autochthonous ions in the Chalk groundwater.

  20. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  1. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  2. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    PubMed

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.

  3. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum. PMID:25468732

  4. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  5. Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim

    2017-04-01

    Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.

  6. Visualizing spatial correlation: structural and electronic orders in iron-based superconductors on atomic scale

    NASA Astrophysics Data System (ADS)

    Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei

    Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaochen; Singh, Arunima K.; Fang, Lei

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less

  8. On hierarchical solutions to the BBGKY hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  9. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    NASA Astrophysics Data System (ADS)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  10. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  11. Fundamental Properties of the Red Square

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Barnes, Peter; Cohen, Martin; Schmidt, Timothy

    2007-04-01

    This proposal follows the exciting recent discovery of the Red Square, the first near-sibling to the illustrious Red Rectangle; and also a potential example progenitor system for supernovae such as SN 1987A. Exploiting the unique extremely wide bandwidth correlator available at Mopra, we propose to rapidly and efficiently explore the molecular environment of this unique new object at 3 mm. This should reveal the fundamental properties of the gas in the underlying stellar system, and will provide the necessary springboard for future spatially-resolved work with interferometers.

  12. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis.

    PubMed

    Aicher, Wilhelm K; Rolauffs, Bernd

    2014-04-01

    Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA.

  13. Discrete quantum dot like emitters in monolayer MoSe{sub 2}: Spatial mapping, magneto-optics, and charge tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branny, Artur; Kumar, Santosh; Gerardot, Brian D., E-mail: b.d.gerardot@hw.ac.uk

    Transition metal dichalcogenide monolayers such as MoSe{sub 2}, MoS{sub 2}, and WSe{sub 2} are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe{sub 2}. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to −4,more » as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.« less

  14. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

    PubMed Central

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. PMID:22937029

  15. Temperature properties in the tropical tropopause layer and their correlations with Outgoing Longwave Radiation: FORMOSAT-3/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Wang, Kaiti; Wu, Yi-chao; Lin, Jia-Ting; Tan, Pei-Hua

    2018-06-01

    The properties of temperature at the level of lapse rate minimum (LRM) in the tropical tropopause layer between 20°S and 20°N are investigated using 3-year radio occultation observations based on the FORMOSAT-3/COSMIC mission from November of 2006 to October of 2009. The correlations between this LRM temperature and Outgoing Longwave Radiation (OLR) are analyzed by 5° × 5° grids in longitude and latitude. Two primary regions, one from 60°E to 180°E and the other from 90°W to 30°E, are found to have higher correlations and can be associated with regions of lower OLR values. The patterns of this spatial distributions of regions with higher correlations begin to change more obviously when the altitude ascends to the level of Cold Point Tropopause (CPT). This correlation at the LRM altitude in annual and seasonal scales also shows spatial distributions associated with OLR intensities. The altitudinal dependence of the correlations between temperature and OLR is further analyzed based on grids of high correlations with significance at LRM altitude, for the two primary regions. The results show that for the different time scales in this analysis (3-year, annual, and seasonal), the correlations all gradually decrease above the LRM levels but maintain a significant level to as high as 2.5-3.5 km. Below the LRM level, the correlation decreases with a slower rate as the altitude descends and still keeps significant at the deep 5 km level. These suggest that the vertical temperature profiles could be affected by the convection mechanism for a wide range of altitudes in the troposphere even above LRM altitude. Applying the same analysis on one complete La Niña event during the survey period also reveals similar features.

  16. Spatial Analysis of Slowly Oscillating Electric Activity in the Gut of Mice Using Low Impedance Arrayed Microelectrodes

    PubMed Central

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B.; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity. PMID:24124480

  17. Impact of surface morphology on the properties of light emission in InGaN epilayers

    NASA Astrophysics Data System (ADS)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  18. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden Delicious' and 'Granny Smith' (GS) apples under accelerated softening at high temperature (22 ºC)/high humidity (95%) for up to 30 days. The absorption spectra of peach and apple fruit were featured with the absorption peaks of major pigments (i.e., chlorophylls and anthocyanin) and water, while the reduced scattering coefficient generally decreased with the increase of wavelength. Partial least squares regression resulted in various levels of correlation of microa and micros' with the firmness, soluble solids content, and skin and flesh color parameters of peaches (r = 0.204--0.855) and apples (r = 0.460--0.885), and the combination of the two optical parameters generally gave higher correlations (up to 0.893). The mean value of microa and micros' for GD and GS apples for each storage date was positively correlated with acoustic/impact firmness, Young's modulus, and cell parameters (r = 0.585--0.948 for GD and r = 0.292--0.993 for GS). A two-layer diffusion model for determining the optical properties of fruit skin and flesh was further investigated through solid model samples. The average errors of determining two and four optical parameters were 6.8% and 15.3%, respectively, for the Monte Carlo reflectance data. The errors of determining the first or surface layer of the model samples were approximately 23.0% for microa and 18.4% for micros', indicating the difficulty and also potential in applying the two-layer diffusion model for fruit. This research has demonstrated the usefulness of hyperspectral imaging-based spatially-resolved technique for determining the optical properties and maturity/quality of fruits. However, further research is needed to reduce measurement variability or error caused by irregular or rough surface of fruit and the presence of fruit skin, and apply the technique to other foods and biological materials.

  19. Understanding the origins of uncertainty in landscape-scale variations of emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Milne, Alice; Haskard, Kathy; Webster, Colin; Truan, Imogen; Goulding, Keith

    2014-05-01

    Nitrous oxide is a potent greenhouse gas which is over 300 times more radiatively effective than carbon dioxide. In the UK, the agricultural sector is estimated to be responsible for over 80% of nitrous oxide emissions, with these emissions resulting from livestock and farmers adding nitrogen fertilizer to soils. For the purposes of reporting emissions to the IPCC, the estimates are calculated using simple models whereby readily-available national or international statistics are combined with IPCC default emission factors. The IPCC emission factor for direct emissions of nitrous oxide from soils has a very large uncertainty. This is primarily because the variability of nitrous oxide emissions in space is large and this results in uncertainty that may be regarded as sample noise. To both reduce uncertainty through improved modelling, and to communicate an understanding of this uncertainty, we must understand the origins of the variation. We analysed data on nitrous oxide emission rate and some other soil properties collected from a 7.5-km transect across contrasting land uses and parent materials in eastern England. We investigated the scale-dependence and spatial uniformity of the correlations between soil properties and emission rates from farm to landscape scale using wavelet analysis. The analysis revealed a complex pattern of scale-dependence. Emission rates were strongly correlated with a process-specific function of the water-filled pore space at the coarsest scale and nitrate at intermediate and coarsest scales. We also found significant correlations between pH and emission rates at the intermediate scales. The wavelet analysis showed that these correlations were not spatially uniform and that at certain scales changes in parent material coincided with significant changes in correlation. Our results indicate that, at the landscape scale, nitrate content and water-filled pore space are key soil properties for predicting nitrous oxide emissions and should therefore be incorporated into process models and emission factors for inventory calculations.

  20. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes

    NASA Astrophysics Data System (ADS)

    Kurumisawa, Kiyofumi; Haga, Kazuko; Hayashi, Daisuke; Owada, Hitoshi

    2017-06-01

    It is very important to predict alterations in the concrete used for fabricating disposal containers for radioactive waste. Therefore, it is necessary to understand the alteration of cementitious materials caused by calcium leaching when they are in contact with ground water in the long term. To evaluate the long-term transport characteristics of cementitious materials, the microstructural behavior of these materials should be considered. However, many predictive models of transport characteristics focus on the pore structure, while only few such models consider both, the spatial distribution of calcium silicate hydrate (C-S-H), portlandite, and the pore spaces. This study focused on the spatial distribution of these cement phases. The auto-correlation function of each phase of cementitious materials was calculated from two-dimensional backscattered electron imaging, and the three-dimensional spatial image of the cementitious material was produced using these auto-correlation functions. An attempt was made to estimate the diffusion coefficient of chloride from the three-dimensional spatial image. The estimated diffusion coefficient of the altered sample from the three-dimensional spatial image was found to be comparable to the measured value. This demonstrated that it is possible to predict the diffusion coefficient of the altered cement paste by using the proposed model.

  1. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    PubMed

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  2. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey

    NASA Astrophysics Data System (ADS)

    Göl, Ceyhun; Bulut, Sinan; Bolat, Ferhat

    2017-10-01

    The purpose of this research is to compare the spatial variability of soil organic carbon (SOC) in four adjacent land uses including the cultivated area, the grassland area, the plantation area and the natural forest area in the semi - arid region of Black Sea backward region of Turkey. Some of the soil properties, including total nitrogen, SOC, soil organic matter, and bulk density were measured on a grid with a 50 m sampling distance on the top soil (0-15 cm depth). Accordingly, a total of 120 samples were taken from the four adjacent land uses. Data was analyzed using geostatistical methods. The methods used were: Block kriging (BK), co - kriging (CK) with organic matter, total nitrogen and bulk density as auxiliary variables and inverse distance weighting (IDW) methods with the power of 1, 2 and 4. The methods were compared using a performance criteria that included root mean square error (RMSE), mean absolute error (MAE) and the coefficient of correlation (r). The one - way ANOVA test showed that differences between the natural (0.6653 ± 0.2901) - plantation forest (0.7109 ± 0.2729) areas and the grassland (1.3964 ± 0.6828) - cultivated areas (1.5851 ± 0.5541) were statistically significant at 0.05 level (F = 28.462). The best model for describing spatially variation of SOC was CK with the lowest error criteria (RMSE = 0.3342, MAE = 0.2292) and the highest coefficient of correlation (r = 0.84). The spatial structure of SOC could be well described by the spherical model. The nugget effect indicated that SOC was moderately dependent on the study area. The error distributions of the model showed that the improved model was unbiased in predicting the spatial distribution of SOC. This study's results revealed that an explanatory variable linked SOC increased success of spatial interpolation methods. In subsequent studies, this case should be taken into account for reaching more accurate outputs.

  3. 2-Point microstructure archetypes for improved elastic properties

    NASA Astrophysics Data System (ADS)

    Adams, Brent L.; Gao, Xiang

    2004-01-01

    Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. In the procedure described here the local state space is described in discrete form; and the focus is on placement of local state within a finite number of cells comprising rectangular models. It is illustrated that effective elastic properties (generalized Hashin Shtrikman bounds) can be obtained that are linear in components of the correlation statistics. Within this framework the concept of an eigen-microstructure within the microstructure hull is useful. Given the practical innumerability of the microstructure hull, however, we introduce a method for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by obtaining an archetype for an imaginary two-phase material where the objective is to maximize the combination C_{xxxx}^{*} + C_{xyxy}^{*}

  4. The Number Line Is a Critical Spatial-Numerical Representation: Evidence from a Fraction Intervention

    ERIC Educational Resources Information Center

    Hamdan, Noora; Gunderson, Elizabeth A.

    2017-01-01

    Children's ability to place fractions on a number line strongly correlates with math achievement. But does the number line play a causal role in fraction learning or does it simply index more advanced fraction knowledge? The number line may be a particularly effective representation for fraction learning because its properties align with the…

  5. Effect of Juvenile Pretraining on Adolescent Structural Hippocampal Attributes as a Substrate for Enhanced Spatial Performance

    ERIC Educational Resources Information Center

    Keeley, Robin J.; Wartman, Brianne C.; Hausler, Alexander N.; Holahan, Matthew R.

    2010-01-01

    Research has demonstrated that Long-Evans rats (LER) display superior mnemonic function over Wistar rats (WR). These differences are correlated with endogenous and input-dependent properties of the hippocampus. The present work sought to determine if juvenile pretraining might enhance hippocampal structural markers and if this would be associated…

  6. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  7. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  8. Fractal properties of background noise and target signal enhancement using CSEM data

    NASA Astrophysics Data System (ADS)

    Benavides, Alfonso; Everett, Mark E.; Pierce, Carl; Nguyen, Cam

    2003-09-01

    Controlled-source electromagnetic (CSEM) spatial profiles and 2-D conductivity maps were obtained on the Brazos Valley, TX floodplain to study the fractal statistics of geological signals and effects of man-made conductive targets using Geonics EM34, EM31 and EM63. Using target-free areas, a consistent power-law power spectrum (|A(k)| ~ k ^-β) for the profiles was found with β values typical of fractional Brownian motion (fBm). This means that the spatial variation of conductivity does not correspond to Gaussian statistics, where there are spatial correlations at different scales. The presence of targets tends to flatten the power-law power spectrum (PS) at small wavenumbers. Detection and localization of targets can be achieved using short-time Fourier transform (STFT). The presence of targets is enhanced because the signal energy is spread to higher wavenumbers (small scale numbers) in the positions occupied by the targets. In the case of poor spatial sampling or small amount of data, the information available from the power spectrum is not enough to separate spatial correlations from target signatures. Advantages are gained by using the spatial correlations of the fBm in order to reject the background response, and to enhance the signals from highly conductive targets. This approach was tested for the EM31 using a pre-processing step that combines apparent conductivity readings from two perpendicular transmitter-receiver orientations at each station. The response obtained using time-domain CSEM is influence to a lesser degree by geological noise and the target response can be processed to recover target features. The homotopy method is proposed to solve the inverse problem using a set of possible target models and a dynamic library of responses used to optimize the starting model.

  9. Progress towards the use of publicly available data networks to conduct cross-scale historical reconstructions of carbon dynamics in US Drylands

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Landolt, K.; Emanuel, R. E.; Therrell, M. D.; Nagle, N.; Grissino-Mayer, H. D.; Poulter, B.

    2016-12-01

    Emergent scale properties of water-limited or Dryland ecosystem's carbon flux are unknown at spatial scales from local to global and time scales of 10 - 1000 years or greater. The width of a tree ring is a metric of production that has been correlated with the amount of precipitation. This relationship has been used to reconstruct rainfall and fire histories in the Drylands of the southwestern US. The normalized difference vegetation index (NDVI) is globally measured by selected satellite sensors and is highly correlated with the fraction of solar radiation which is absorbed for photosynthesis by plants (FPAR), as well as with vegetation biomass, net primary productivity (NPP), and tree ring width. Publicly available web-based archives of free NDVI and tree ring data exist and have allowed historical temporal reconstructions of carbon dynamics for the past 300 to 500 years. Climate and tree ring databases have been used to spatially reconstruct drought dynamics for the last 500 years in the western US. In 2007, we hypothesized that NDVI and tree ring width could be used to spatially reconstruct carbon dynamics in US Drylands. In 2015, we succeeded with a 300-year historical spatial reconstruction of NPP in California using a Blue Oak tree ring chronology. Online eddy covariance flux tower measures of NPP are well correlated with satellite measures of NPP. This suggests that net ecosystem exchange (NEE = NPP - soil Respiration) could be historically reconstructed across Drylands. Ongoing research includes 1) scaling historical spatial reconstruction to US Drylands, 2) comparing the use of single versus multiple tree ring species (r2 = 68) and 3) use of the eddy flux tower network, remote sensing, and tree ring data to historically spatially reconstruct Dryland NEE.

  10. Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.

    2011-12-01

    We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.

  11. Coincident Occurrences of Tropical Individual Cirrus Clouds and Deep Convective Systems Derived from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Xu, Kuan-Man; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Chambers, Lin; Fan, Alice; Sun, Wenbo

    2007-01-01

    Measurements of cloud properties and atmospheric radiation taken between January and August 1998 by the Tropical Rainfall Measuring Mission (TRMM) satellite were used to investigate the effect of spatial and temporal scales on the coincident occurrences of tropical individual cirrus clouds (ICCs) and deep convective systems (DCSs). It is found that there is little or even negative correlation between instantaneous occurrences of ICC and DCS in small areas, in which both types of clouds cannot grow and expand simultaneously. When spatial and temporal domains are increased, ICCs become more dependent on DCSs due to the origination of many ICCs from DCSs and moisture supply from the DCS in the upper troposphere for the ICCs to grow, resulting in significant positive correlation between the two types of tropical high clouds in large spatial and long temporal scales. This result may suggest that the decrease of tropical high clouds with SST from model simulations is likely caused by restricted spatial domains and limited temporal periods. Finally, the radiative feedback due to the change in tropical high cloud area coverage with sea surface temperature appears small and about -0.14 W/sq m per degree Kelvin.

  12. Impact factors identification of spatial heterogeneity of herbaceous plant diversity on five southern islands of Miaodao Archipelago in North China

    NASA Astrophysics Data System (ADS)

    Chi, Yuan; Shi, Honghua; Wang, Xiaoli; Qin, Xuebo; Zheng, Wei; Peng, Shitao

    2016-09-01

    Herbaceous plants are widely distributed on islands and where they exhibit spatial heterogeneity. Accurately identifying the impact factors that drive spatial heterogeneity can reveal typical island biodiversity patterns. Five southern islands in the Miaodao Archipelago, North China were studied herein. The spatial distribution of herbaceous plant diversity on these islands was analyzed, and the impact factors and their degree of impact on spatial heterogeneity were identified using CCA ordination and ANOVA. The results reveal 114 herbaceous plant species, belonging to 94 genera from 34 families in the 50 plots sampled. The total species numbers on different islands were significantly positively correlated with island area, and the average α diversity was correlated with human activities, while the β diversity among islands was more affected by island area than mutual distances. Spatial heterogeneity within islands indicated that the diversities were generally high in areas with higher altitude, slope, total nitrogen, total carbon, and canopy density, and lower moisture content, pH, total phosphorus, total potassium, and aspect. Among the environmental factors, pH, canopy density, total K, total P, moisture content, altitude, and slope had significant gross effects, but only canopy density exhibited a significant net effect. Terrain affected diversity by restricting plantation, plantation in turn influenced soil properties and the two together affected diversity. Therefore, plantation was ultimately the fundamental driving factor for spatial heterogeneity in herbaceous plant diversity on the five islands.

  13. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico.

    PubMed

    Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  14. Numerical simulation of backward erosion piping in heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong

    2017-04-01

    Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.

  15. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment

    PubMed Central

    Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.

    2010-01-01

    Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528

  16. Spatial mapping of electronic states in κ-(BEDT-TTF)2X using infrared reflectivity

    PubMed Central

    Sasaki, Takahiko; Yoneyama, Naoki

    2009-01-01

    We review our recent work on spatial inhomogeneity of the electronic states in the strongly correlated molecular conductors κ-(BEDT-TTF)2X. Spatial mapping of infrared spectra (SMIS) is used for imaging the distribution of the local electronic states. In molecular materials, the infrared response of the specific molecular vibration mode with a strong electron–molecular vibration coupling can reflect the electronic states via the change in the vibration frequency. By spatially mapping the frequency shift of the molecular vibration mode, an electronic phase separation has been visualized near the first-order Mott transition in the bandwidth-controlled organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. In addition to reviewing SMIS of the phase separation, we briefly mention the electronic and optical properties of κ-(BEDT-TTF)2X. PMID:27877279

  17. Spatial entanglement of nonvacuum Gaussian states

    NASA Astrophysics Data System (ADS)

    Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej

    2016-06-01

    The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.

  18. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  19. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  20. Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment

    NASA Astrophysics Data System (ADS)

    Widmann, Martin; Bedia, Joaquin; Gutiérrez, Jose Manuel; Maraun, Douglas; Huth, Radan; Fischer, Andreas; Keller, Denise; Hertig, Elke; Vrac, Mathieu; Wibig, Joanna; Pagé, Christian; Cardoso, Rita M.; Soares, Pedro MM; Bosshard, Thomas; Casado, Maria Jesus; Ramos, Petra

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. Within VALUE a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods has been developed. In the first validation experiment the downscaling methods are validated in a setup with perfect predictors taken from the ERA-interim reanalysis for the period 1997 - 2008. This allows to investigate the isolated skill of downscaling methods without further error contributions from the large-scale predictors. One aspect of the validation is the representation of spatial variability. As part of the VALUE validation we have compared various properties of the spatial variability of downscaled daily temperature and precipitation with the corresponding properties in observations. We have used two test validation datasets, one European-wide set of 86 stations, and one higher-density network of 50 stations in Germany. Here we present results based on three approaches, namely the analysis of i.) correlation matrices, ii.) pairwise joint threshold exceedances, and iii.) regions of similar variability. We summarise the information contained in correlation matrices by calculating the dependence of the correlations on distance and deriving decorrelation lengths, as well as by determining the independent degrees of freedom. Probabilities for joint threshold exceedances and (where appropriate) non-exceedances are calculated for various user-relevant thresholds related for instance to extreme precipitation or frost and heat days. The dependence of these probabilities on distance is again characterised by calculating typical length scales that separate dependent from independent exceedances. Regionalisation is based on rotated Principal Component Analysis. The results indicate which downscaling methods are preferable if the dependency of variability at different locations is relevant for the user.

  1. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock.

    PubMed

    Gerke, Kirill M; Karsanina, Marina V; Mallants, Dirk

    2015-11-02

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing.

  2. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock

    PubMed Central

    Gerke, Kirill M.; Karsanina, Marina V.; Mallants, Dirk

    2015-01-01

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing. PMID:26522938

  3. Electronic and Morphological Inhomogeneities in Pristine and Deteriorated Perovskite Photovoltaic Films

    DOE PAGES

    Berweger, Samuel; MacDonald, Gordon A.; Yang, Mengjin; ...

    2017-02-02

    We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. Here, we find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI 2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of trapsmore » at the grain boundaries and self-doping, it also results in the emergence of PbI 2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI 2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.« less

  4. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.

    PubMed

    Song, Teh-Ru Alex; Simons, Mark

    2003-08-01

    We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.

  5. Attribution of soil information associated with modeling background clutter

    NASA Astrophysics Data System (ADS)

    Mason, George; Melloh, Rae

    2006-05-01

    This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.

  6. A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells*

    PubMed Central

    Boisvert, François-Michel; Ahmad, Yasmeen; Gierliński, Marek; Charrière, Fabien; Lamont, Douglas; Scott, Michelle; Barton, Geoff; Lamond, Angus I.

    2012-01-01

    Measuring the properties of endogenous cell proteins, such as expression level, subcellular localization, and turnover rates, on a whole proteome level remains a major challenge in the postgenome era. Quantitative methods for measuring mRNA expression do not reliably predict corresponding protein levels and provide little or no information on other protein properties. Here we describe a combined pulse-labeling, spatial proteomics and data analysis strategy to characterize the expression, localization, synthesis, degradation, and turnover rates of endogenously expressed, untagged human proteins in different subcellular compartments. Using quantitative mass spectrometry and stable isotope labeling with amino acids in cell culture, a total of 80,098 peptides from 8,041 HeLa proteins were quantified, and their spatial distribution between the cytoplasm, nucleus and nucleolus determined and visualized using specialized software tools developed in PepTracker. Using information from ion intensities and rates of change in isotope ratios, protein abundance levels and protein synthesis, degradation and turnover rates were calculated for the whole cell and for the respective cytoplasmic, nuclear, and nucleolar compartments. Expression levels of endogenous HeLa proteins varied by up to seven orders of magnitude. The average turnover rate for HeLa proteins was ∼20 h. Turnover rate did not correlate with either molecular weight or net charge, but did correlate with abundance, with highly abundant proteins showing longer than average half-lives. Fast turnover proteins had overall a higher frequency of PEST motifs than slow turnover proteins but no general correlation was observed between amino or carboxyl terminal amino acid identities and turnover rates. A subset of proteins was identified that exist in pools with different turnover rates depending on their subcellular localization. This strongly correlated with subunits of large, multiprotein complexes, suggesting a general mechanism whereby their assembly is controlled in a different subcellular location to their main site of function. PMID:21937730

  7. Resonant tunneling in GaAs/Al xGa 1-xAs superlattices with aperiodic potential profiles

    NASA Astrophysics Data System (ADS)

    Djelti, R.; Aziz, Z.; Bentata, S.; Besbes, A.

    2011-12-01

    Using the exact Airy function formalism and the transfer-matrix technique, we have numerically investigated in this paper the effect of intentional correlations in spatial disorder on transmission properties of one-dimensional superlattices. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that barriers (wells) of one kind always appear in triply. It is shown that the intentional correlations in disorder and superlattices structural parameters are responsible to obtain resonant tunneling in aperiodic structure.

  8. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.

  9. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  10. Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study

    PubMed Central

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922

  11. Spatial Variability in Enceladus' Plume Material Properties across Tiger Stripes: Observed Correlations and Implications

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Hedman, M. M.; Clark, R. N.; Postberg, F.

    2016-12-01

    The plume material emerging from Enceladus' south-pole has contributions from many sources distributed along four distinct fissures designated as Alexandria, Cairo, Baghdad and Damascus. In principle, the properties of the material escaping into the plume would depend upon the conditions within these individual fissures. Therefore, the particles emitted from different sources could have different properties. Indeed, observations made by the Visual and Infrared Mapping Spectrometer (VIMS) and Cosmic Dust Analyzer (CDA) instruments indicate differences in the water-ice grain sizes and abundance of organic-rich particles along the various fissures. These differences can be detected in both the plume surface deposits around the fissures [e.g. Brown et al., 2006; Jaumann et al, 2008] as well as in the active plume eruptions [Postberg et al., 2011; Dhingra et al., 2015, 2016]. Furthermore, these variations may represent systematic trends in particle size and organic content across the south polar terrain. We are analyzing these spatial correlations between different parameters and what they mean for the sub-surface environment in the active south polar terrain of Enceladus. Brown et al. (2006) Science, 311, 1425-1428Dhingra at al. (2015) 46th Lunar Planet. Sci. Conf., Abst#1648Dhingra et al. (2016) Icarus, under reviewJaumann et al. (2008) Icarus, 193, 407-419Postberg et al. (2011) Nature, 474, 620-622

  12. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  13. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  14. Use of Semivariances for Studies of Landsat TM Image Textural Properties of Loblolly Pine Forests

    Treesearch

    Jarek Zawadzki; Chris J. Cieszewski; Roger C. Lowe; Michael Zasada

    2005-01-01

    We evaluate the applicability of Landsat TM imagery for analyzing textural information of pine forest images by exploring the spatial correlation between pixels measured by semivariances and cross-semivariances calculated from transects of the Landsat TM images. Then, we explore differences in semivariances associated with images of young, middle-aged, and old, and...

  15. Cell response to quasi-monochromatic light with different coherence

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.; Solovykh, N. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2015-04-01

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λmax = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length Lcoh and the correlation radius rcor are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 - 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent - incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size.

  16. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  17. Correlated motion in the bulk of dense granular flows.

    PubMed

    Staron, Lydie

    2008-05-01

    Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .

  18. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.

    PubMed

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2008-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.

  19. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity

    PubMed Central

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2010-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000–2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R2 = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition. PMID:20582227

  20. Quantum enhanced superresolution microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oron, Dan; Tenne, Ron; Israel, Yonatan; Silberberg, Yaron

    2017-02-01

    Far-field optical microscopy beyond the Abbe diffraction limit, making use of nonlinear excitation (e.g. STED), or temporal fluctuations in fluorescence (PALM, STORM, SOFI) is already a reality. In contrast, overcoming the diffraction limit using non-classical properties of light is very difficult to achieve due to the fragility of quantum states of light. Here, we experimentally demonstrate superresolution microscopy based on quantum properties of light naturally emitted by fluorophores used as markers in fluorescence microscopy. Our approach is based on photon antibunching, the tendency of fluorophores to emit photons one by one rather than in bursts. Although a distinctively quantum phenomenon, antibunching is readily observed in most common fluorophores even at room temperature. This nonclassical resource can be utilized directly to enhance the imaging resolution, since the non-classical far-field intensity correlations induced by antibunching carry high spatial frequency information on the spatial distribution of emitters. Detecting photon statistics simultaneously in the entire field of view, we were able to detect non-classical correlations of the second and third order, and reconstructed images with resolution significantly beyond the diffraction limit. Alternatively, we demonstrate the utilization of antibunching for augmenting the capabilities of localization-based superresolution imaging in the presence of multiple emitters, using a novel detector comprised of an array of single photon detectors connected to a densely packed fiber bundle. These features allow us to enhance the spatial and temporal resolution with which multiple emitters can be imaged compared with other techniques that rely on CCD cameras.

  1. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    NASA Astrophysics Data System (ADS)

    Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.

    2014-02-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  2. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  3. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  4. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe) 5(Bi 2Se 3) 3

    DOE PAGES

    Ren, Xiaochen; Singh, Arunima K.; Fang, Lei; ...

    2016-09-07

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less

  5. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade

    PubMed Central

    Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.

    2014-01-01

    Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379

  6. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups

    NASA Astrophysics Data System (ADS)

    Capitán, José A.; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  7. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    PubMed

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  8. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  9. Counting or Chunking?

    PubMed Central

    Spotorno, Nicola; McMillan, Corey T.; Powers, John P.; Clark, Robin; Grossman, Murray

    2014-01-01

    A growing amount of empirical data is showing that the ability to manipulate quantities in a precise and efficient fashion is rooted in cognitive mechanisms devoted to specific aspects of numbers processing. The Analog number system (ANS) has a reasonable representation of quantities up to about 4, and represents larger quantities on the basis of a numerical ratio between quantities. In order to represent the precise cardinality of a number, the ANS may be supported by external algorithms such as language, leading to a “Precise Number System”. In the setting of limited language, other number-related systems can appear. For example the Parallel Individuation system (PIS) supports a “chunking mechanism” that clusters units of larger numerosities into smaller subsets. In the present study we investigated number processing in non-aphasic patients with Corticobasal Syndrome (CBS) and Posterior Cortical Atrophy (PCA), two neurodegenerative conditions that are associated with progressive parietal atrophy. The present study investigated these number systems in CBS and PCA by assessing the property of the ANS associated with smaller and larger numerosities, and the chunking property of the PIS. The results revealed that CBS/PCA patients are impaired in simple calculations (e.g., addition and subtraction) and that their performance strongly correlates with the size of the numbers involved in these calculations, revealing a clear magnitude effect. This magnitude effect correlated with gray matter atrophy in parietal regions. Moreover, a numeral-dots transcoding task showed that CBS/PCA patients are able to take advantage of clustering in the spatial distribution of the dots of the array. The relative advantage associated with chunking compared to a random spatial distribution correlated with both parietal and prefrontal regions. These results shed light on the properties of systems for representing number knowledge in non-aphasic patients with CBS and PCA. PMID:25278132

  10. The solvation of ions in acetonitrile and acetone. II. Monte Carlo simulations using polarizable solvent models

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H.

    2002-11-01

    Structural properties and energies of solvation are simulated for alkali and halide ions. The solvation structure is discussed in terms of various site-site distribution functions, of solvation numbers, and of orientational correlation functions of the solvent molecules around the ions. The solvent polarizability has notable effects which cannot be intuitively predicted. In particular, it is necessary to reproduce the experimental solvation numbers of small ions. The changes of solvation properties are investigated along the alkali and halide series. By comparing the solvation of ions in acetone to that in acetonitrile, it is shown that the spatial correlations among the solvent molecules around an ion result in a strong screening of the ion-solvent direct intermolecular potential and are essential to understand the changes in the solvation structures and energies between different solvents. The solvation properties derived from the simulations are compared to earlier predictions of the hypernetted chain (HNC) approximation of the molecular Ornstein-Zernike (MOZ) theory [J. Richardi, P. H. Fries, and H. Krienke, J. Chem. Phys. 108, 4079 (1998)]. The MOZ(HNC) formalism gives an overall qualitatively correct picture of the solvation and its various unexpected findings are corroborated. For the larger ions, its predictions become quantitative. The MOZ approach allows to calculate solvent-solvent and ion-solvent potentials of mean force, which shed light on the 3D labile molecular and ionic architectures in the solution. These potentials of mean force convey a unique information which is necessary to fully interpret the angle-averaged structural functions computed from the simulations. Finally, simulations of solutions at finite concentrations show that the solvent-solvent and ion-solvent spatial correlations at infinite dilution are marginally altered by the introduction of fair amounts of ions.

  11. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  12. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  13. Spatial Variability in Enceladus' Plume Material: Convergence of Evidence or Coincidence?

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger Nelson

    2016-10-01

    Systematic spatial trends in the properties of the plume material emerging from Enceladus' tiger stripes can be observed in multiple observations from the Cassini mission. Subtle near infrared spectral differences within the plume have been reported across tiger stripes based on Visual and Infrared Mapping Spectrometer (VIMS) observations at high spatial resolution [1]. These spectral differences are likely due to variable water-ice grain size distribution along the source fissures (i.e. tiger stripes) and perhaps by the presence/absence of water vapor emission [2]. We now report a correlation of this spatial trend (along tiger stripes) with several other published results including (a) differences in the ice particle sizes across tiger stripes on Enceladus' surface [3, 4], (b) the surface abundance of organic material [3] and finally, (c) the relative proportion of type II grains (associated with organic/siliceous material) in the plume [5] from Damascus to Alexandria as measured by the Cosmic Dust Analyzer (CDA) instrument.The general trend indicates that at least some of the plume properties (viz. particle size, organic abundance) achieve a peak over Damascus and then become gradually subtle towards Alexandria. The observed differences between tiger stripes eruptions and the nature of correlations (trends from Damascus to Alexandria) hold important clues to the subsurface environment at Enceladus including differences in the geological setting of the individual tiger stripes [6]. The latter is a likely possibility given the large spatial spread of eruptions in Encealdus' South Polar Terrain (SPT).[1] Dhingra et al., (2015) 46th Lunar Planet. Sci. Conf., Abstract#1648[2] Dhingra et al. (2016) Icarus, submitted[3] Brown et al. (2006) Science, 311, 1425-1428[4] Jaumann et al. (2008) Icarus, 193, 407-419[5] Postberg et al. (2011) Nature, doi:10.1038/nature10175[6] Yin and Pappalardo (2015) Icarus, 260, 409-439

  14. The spatial-temporal characteristics of type I collagen-based extracellular matrix.

    PubMed

    Jones, Christopher Allen Rucksack; Liang, Long; Lin, Daniel; Jiao, Yang; Sun, Bo

    2014-11-28

    Type I collagen abounds in mammalian extracellular matrix (ECM) and is crucial to many biophysical processes. While previous studies have mostly focused on bulk averaged properties, here we provide a comprehensive and quantitative spatial-temporal characterization of the microstructure of type I collagen-based ECM as the gelation temperature varies. The structural characteristics including the density and nematic correlation functions are obtained by analyzing confocal images of collagen gels prepared at a wide range of gelation temperatures (from 16 °C to 36 °C). As temperature increases, the gel microstructure varies from a "bundled" network with strong orientational correlation between the fibers to an isotropic homogeneous network with no significant orientational correlation, as manifested by the decaying of length scales in the correlation functions. We develop a kinetic Monte-Carlo collagen growth model to better understand how ECM microstructure depends on various environmental or kinetic factors. We show that the nucleation rate, growth rate, and an effective hydrodynamic alignment of collagen fibers fully determines the spatiotemporal fluctuations of the density and orientational order of collagen gel microstructure. Also the temperature dependence of the growth rate and nucleation rate follow the prediction of classical nucleation theory.

  15. High-order nonuniformly correlated beams

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  16. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification.

    PubMed

    Young, Laura K; Smithson, Hannah E

    2014-01-01

    There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.

  17. Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen

    2013-01-01

    Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130

  18. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  19. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  20. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    PubMed Central

    2011-01-01

    Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932

  1. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  2. Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu

    The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less

  3. Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects

    DOE PAGES

    Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...

    2016-11-09

    The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less

  4. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  5. Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy.

    PubMed

    Shoga, Janty S; Graham, Brian T; Wang, Liyun; Price, Christopher

    2017-10-01

    Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.

  6. Sampling design for spatially distributed hydrogeologic and environmental processes

    USGS Publications Warehouse

    Christakos, G.; Olea, R.A.

    1992-01-01

    A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.

  7. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance. Part 1

    DTIC Science & Technology

    2012-02-13

    ketocarotenoid pigment astaxanthin is deposited in the antennal scale of a stomatopod crustacean, Odontodactylus scyllarus. Positive correlation between...partial polarization and the presence of astaxanthin indicates that the antennal scale polarizes light with astaxanthin . Both the optical properties and...the fine structure of the polarizationally-active cuticle suggest that the dipole axes of the astaxanthin molecules are oriented nearly normal to the

  8. From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust

    NASA Astrophysics Data System (ADS)

    Saillard, M.; Audin, L.; Rousset, B.; Avouac, J. P.; Chlieh, M.; Hall, S. R.; Husson, L.; Farber, D.

    2017-12-01

    Measurement of interseismic strain along subduction zones reveals the location of both locked asperities, which might rupture during megathrust earthquakes, and creeping zones, which tend to arrest such seismic ruptures. The heterogeneous pattern of interseismic coupling presumably relates to spatial variations of frictional properties along the subduction interface and may also show up in the fore-arc morphology. To investigate this hypothesis, we compiled information on the extent of earthquake ruptures for the last 500 yrs and uplift rates derived from dated marine terraces along the South American coastline from central Peru to southern Chile. We additionally calculated a new interseismic coupling model for that same area based on a compilation of GPS data. We show that the coastline geometry, characterized by the distance between the coast and the trench; the latitudinal variations of long-term uplift rates; and the spatial pattern of interseismic coupling are correlated. Zones of faster and long-term permanent coastal uplift, evidenced by uplifted marine terraces, coincide with peninsulas and also with areas of creep on the megathrust where slip is mostly aseismic and tend to arrest seismic ruptures. This correlation suggests that these areas prevent elastic strain buildup and inhibit lateral seismic rupture propagation. Correlation between the location of these regions across and along strike of convergence and the long-term morphology of the subduction margin suggests that the barrier effect might be due to rheology, namely rate-strengthening friction, although geometric effects might also play a secondary role. Higher shear stress along creeping segments of the megathrust than along segments dominated by recurring large earthquakes would favor more rapid viscoplastic (permanent) deformation of the fore arc and thus uplift. Marine terrace sequences attest to frictional properties along the megathrust persisting for million-year time scales. Peninsulas are the surface expression of large subduction earthquakes segment boundaries and show evidence for their stability over multiple seismic cycles. We conclude spatial variations of frictional properties along the megathrust dictate the tectono-geomorphological evolution of the coastal zone and the extent of seismic ruptures along strike.

  9. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    PubMed Central

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-01-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494

  10. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.

    PubMed

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J; Jain, Rakesh K; Nadkarni, Seemantini K

    2016-12-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g 2 (t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10 -9 ), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa - 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10 -7 ). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.

  11. Thermal behaviour of nanofluids confined in nanochannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Michael, E-mail: d.drikakis@cranfield.ac.uk; Drikakis, Dimitris, E-mail: d.drikakis@cranfield.ac.uk; Asproulis, Nikolaos, E-mail: d.drikakis@cranfield.ac.uk

    2015-02-17

    This work investigates the effect of spatial restriction on the thermal properties of nanofluids. Using Molecular Dynamics simulations, a Copper-Argon nanofluid is restricted within idealized walls. The thermal conductivity of the suspension is calculated using the Green-Kubo relations and is correlated with the volume fraction of the copper particles within the system as well as the channel width. The thermal conductivity is further broken down into its individual components in the three dimensions, revealing anisotropy between the directions parallel and normal to the channel walls. The observed thermodynamic patterns are justified by considering how the spatial restriction affects the liquidmore » structure around the nanoparticle.« less

  12. Noise suppression system of OCDMA with spectral/spatial 2D hybrid code

    NASA Astrophysics Data System (ADS)

    Matem, Rima; Aljunid, S. A.; Junita, M. N.; Rashidi, C. B. M.; Shihab Aqrab, Israa

    2017-11-01

    In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN), shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.

  13. Environmental Controls on Multi-Scale Soil Nutrient Variability in the Tropics: the Importance of Land-Cover Change

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.

    2003-12-01

    The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.

  14. A model relating Eulerian spatial and temporal velocity correlations

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  15. Temporal evolution of the spatial covariability of rainfall in South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja

    2017-10-01

    The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.

  16. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    PubMed

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  17. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems †

    PubMed Central

    Aghaeinezhadfirouzja, Saeid; Liu, Hui

    2018-01-01

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data. PMID:29649177

  18. Effective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution.

    PubMed

    Janecek, Jirí; Netz, Roland R

    2009-02-21

    Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.

  19. Nonclassicality of Temporal Correlations.

    PubMed

    Brierley, Stephen; Kosowski, Adrian; Markiewicz, Marcin; Paterek, Tomasz; Przysiężna, Anna

    2015-09-18

    The results of spacelike separated measurements are independent of distant measurement settings, a property one might call two-way no-signaling. In contrast, timelike separated measurements are only one-way no-signaling since the past is independent of the future but not vice versa. For this reason some temporal correlations that are formally identical to nonclassical spatial correlations can still be modeled classically. We propose a new formulation of Bell's theorem for temporal correlations; namely, we define nonclassical temporal correlations as the ones which cannot be simulated by propagating in time the classical information content of a quantum system given by the Holevo bound. We first show that temporal correlations between results of any projective quantum measurements on a qubit can be simulated classically. Then we present a sequence of general measurements on a single m-level quantum system that cannot be explained by propagating in time an m-level classical system and using classical computers with unlimited memory.

  20. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  1. Social stressors and air pollution across New York City communities: a spatial approach for assessing correlations among multiple exposures.

    PubMed

    Shmool, Jessie L C; Kubzansky, Laura D; Newman, Ogonnaya Dotson; Spengler, John; Shepard, Peggy; Clougherty, Jane E

    2014-11-06

    Recent toxicological and epidemiological evidence suggests that chronic psychosocial stress may modify pollution effects on health. Thus, there is increasing interest in refined methods for assessing and incorporating non-chemical exposures, including social stressors, into environmental health research, towards identifying whether and how psychosocial stress interacts with chemical exposures to influence health and health disparities. We present a flexible, GIS-based approach for examining spatial patterns within and among a range of social stressors, and their spatial relationships with air pollution, across New York City, towards understanding their combined effects on health. We identified a wide suite of administrative indicators of community-level social stressors (2008-2010), and applied simultaneous autoregressive models and factor analysis to characterize spatial correlations among social stressors, and between social stressors and air pollutants, using New York City Community Air Survey (NYCCAS) data (2008-2009). Finally, we provide an exploratory ecologic analysis evaluating possible modification of the relationship between nitrogen dioxide (NO2) and childhood asthma Emergency Department (ED) visit rates by social stressors, to demonstrate how the methods used to assess stressor exposure (and/or consequent psychosocial stress) may alter model results. Administrative indicators of a range of social stressors (e.g., high crime rate, residential crowding rate) were not consistently correlated (rho = - 0.44 to 0.89), nor were they consistently correlated with indicators of socioeconomic position (rho = - 0.54 to 0.89). Factor analysis using 26 stressor indicators suggested geographically distinct patterns of social stressors, characterized by three factors: violent crime and physical disorder, crowding and poor access to resources, and noise disruption and property crimes. In an exploratory ecologic analysis, these factors were differentially associated with area-average NO2 and childhood asthma ED visits. For example, only the 'violent crime and disorder' factor was significantly associated with asthma ED visits, and only the 'crowding and resource access' factor modified the association between area-level NO2 and asthma ED visits. This spatial approach enabled quantification of complex spatial patterning and confounding between chemical and non-chemical exposures, and can inform study design for epidemiological studies of separate and combined effects of multiple urban exposures.

  2. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Method for optical data processing based on a two-pulse photon echo

    NASA Astrophysics Data System (ADS)

    Zakharov, S. M.; Manykin, Eduard A.

    1995-02-01

    The principles of optical processing based on dynamic spatial—temporal properties of two-pulse photon echo signals are considered. The properties of a resonant medium as an on-line filter of temporal and spatial frequencies are discussed. These properties are due to the sensitivity of such a medium to the Fourier spectrum of the second exiting pulse. Degeneracy of quantum resonant systems, demonstrated by the coherent response dependence on the square of the amplitude of the second pulse, can be used for 'simultaneous' correlation processing of optical 'signals'. Various methods for the processing of the Fourier optical image are discussed.

  3. Soil moisture and properties estimation by assimilating soil temperatures using particle batch smoother: A new perspective for DTS

    NASA Astrophysics Data System (ADS)

    Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.

    2015-12-01

    Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.

  4. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  5. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  6. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  7. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-07-02

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  8. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  9. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  10. How can we study reasoning in the brain?

    PubMed Central

    Papo, David

    2015-01-01

    The brain did not develop a dedicated device for reasoning. This fact bears dramatic consequences. While for perceptuo-motor functions neural activity is shaped by the input's statistical properties, and processing is carried out at high speed in hardwired spatially segregated modules, in reasoning, neural activity is driven by internal dynamics and processing times, stages, and functional brain geometry are largely unconstrained a priori. Here, it is shown that the complex properties of spontaneous activity, which can be ignored in a short-lived event-related world, become prominent at the long time scales of certain forms of reasoning. It is argued that the neural correlates of reasoning should in fact be defined in terms of non-trivial generic properties of spontaneous brain activity, and that this implies resorting to concepts, analytical tools, and ways of designing experiments that are as yet non-standard in cognitive neuroscience. The implications in terms of models of brain activity, shape of the neural correlates, methods of data analysis, observability of the phenomenon, and experimental designs are discussed. PMID:25964755

  11. How can we study reasoning in the brain?

    PubMed

    Papo, David

    2015-01-01

    The brain did not develop a dedicated device for reasoning. This fact bears dramatic consequences. While for perceptuo-motor functions neural activity is shaped by the input's statistical properties, and processing is carried out at high speed in hardwired spatially segregated modules, in reasoning, neural activity is driven by internal dynamics and processing times, stages, and functional brain geometry are largely unconstrained a priori. Here, it is shown that the complex properties of spontaneous activity, which can be ignored in a short-lived event-related world, become prominent at the long time scales of certain forms of reasoning. It is argued that the neural correlates of reasoning should in fact be defined in terms of non-trivial generic properties of spontaneous brain activity, and that this implies resorting to concepts, analytical tools, and ways of designing experiments that are as yet non-standard in cognitive neuroscience. The implications in terms of models of brain activity, shape of the neural correlates, methods of data analysis, observability of the phenomenon, and experimental designs are discussed.

  12. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.

    PubMed

    Reiss, Stephan; Sperlich, K; Hovakimyan, M; Martius, P; Guthoff, R F; Stolz, H; Stachs, O

    2012-08-01

    Use of Brillouin spectroscopy in ophthalmology enables noninvasive, spatially resolved determination of the rheological properties of crystalline lens tissue. Furthermore, the Brillouin shift correlates with the protein concentration inside the lens. In vitro measurements on extracted porcine lenses demonstrate that results obtained with Brillouin spectroscopy depend strongly on time after death. The intensity of the Brillouin signal decreases significantly as early as 5 h postmortem. Moreover, the fluctuation of the Brillouin frequency shift inside the lens increases with postmortem time. Images of lens tissue taken with a confocal reflectance microscope between measurements reveal a degenerative aging process. These tissue changes correlate with our results from Brillouin spectroscopy. It is concluded that only in vivo measurements appropriately reflect the rheological properties of the eye lens and its protein concentration.

  13. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on Hα Emitter Galaxies at 0.3 < z < 0.7

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin

    2017-03-01

    Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.

  14. Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information

    Treesearch

    F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz

    2017-01-01

    Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (

  15. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  16. From medium heterogeneity to flow and transport: A time-domain random walk approach

    NASA Astrophysics Data System (ADS)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  17. Upscaling anomalous reactive kinetics (A+B-->C) from pore scale Lagrangian velocity analysis

    NASA Astrophysics Data System (ADS)

    De Anna, P.; Tartakovsky, A. M.; Le Borgne, T.; Dentz, M.

    2011-12-01

    Natural flow fields in porous media display a complex spatio-temporal organization due to heterogeneous geological structures at different scales. This multiscale disorder implies anomalous dispersion, mixing and reaction kinetics (Berkowitz et al. RG 2006, Tartakovsky PRE 2010). Here, we focus on the upscaling of anomalous kinetics arising from pore scale, non Gaussian and correlated, velocity distributions. We consider reactive front simulations, where a component A displaces a component B that saturates initially the porous domain. The reactive component C is produced at the dispersive front located at interface between the A and B domains. The simulations are performed with the SPH method. As the mixing zone grows, the total mass of C produced increases with time. The scaling of this evolution with time is different from that which would be obtained from the homogeneous advection dispersion reaction equation. This anomalous kinetics property is related to spatial structure of the reactive mixture, and its evolution with time under the combined action of advective and diffusive processes. We discuss the different scaling regimes arising depending on the dominant process that governs mixing. In order to upscale these processes, we analyze the Lagrangian velocity properties, which are characterized by the non Gaussian distributions and long range temporal correlation. The main origin of these properties is the existence of very low velocity regions where solute particles can remain trapped for a long time. Another source of strong correlation is the channeling of flow in localized high velocity regions, which created finger-like structures in the concentration field. We show the spatial Markovian, and temporal non Markovian, nature of the Lagrangian velocity field. Therefore, an upscaled model can be defined as a correlated Continuous Time Random Walk (Le Borgne et al. PRL 2008). A key feature of this model is the definition of a transition probability density for Lagrangian velocities across a characteristic correlation distance. We quantify this transition probability density from pore scale simulations and use it in the effective stochastic model. In this framework, we investigate the ability of this effective model to represent correctly dispersion and mixing.

  18. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT

  19. Correlative measurements of the stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  20. Spatially resolving the dust properties and submillimetre excess in M 33

    NASA Astrophysics Data System (ADS)

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported. We have produced a map of submillimetre excess in the 500 μm SPIRE band for the disc of M 33. The excess can be as high as 50% and increases at large galactocentric distances. We further studied the relation of the excess with other physical properties of the galaxy and find that the excess is prominent in zones of diffuse ISM outside the main star-forming regions, where the molecular gas and dust surface density are low.

  1. Material Structure of a Graded Refractive Index Lens in Decapod Squid

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Heiney, Paul; Sweeney, Alison

    2013-03-01

    Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.

  2. The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-01-01

    The relationships between the morphometric parameters (MPs) of topography calculated on the basis of digital elevation model (ASTER GDEM, 30 m) and the properties of the plow layer of agrogray soils on a slope were analyzed. The contribution of MPs to the spatial variability of the soil moisture reached 42%; to the content of physical clay (<0.01 mm particles), 59%; to the humus content, 46%; to the total nitrogen content, 31%; to the content of nitrate nitrogen, 28%; to the content of mobile phosphorus, 40%; to the content of exchangeable potassium, 45%; to the content of exchangeable calcium, 67%; to the content of exchangeable magnesium, 40%; and to the soil pH, 42%. A comparative analysis of the plow layer within the eluvial and transitional parts of the slope was performed with the use of geomorphometric methods and digital soil mapping. The regression analysis showed statistically significant correlations between the properties of the plow layer and the MPs describing surface runoff, geometric forms of surface, and the soil temperature regime.

  3. Detecting fractal power-law long-range dependence in pre-sliced cooked pork ham surface intensity patterns using Detrended Fluctuation Analysis.

    PubMed

    Valous, Nektarios A; Drakakis, Konstantinos; Sun, Da-Wen

    2010-10-01

    The visual texture of pork ham slices reveals information about the different qualities and perceived image heterogeneity, which is encapsulated as spatial variations in geometry and spectral characteristics. Detrended Fluctuation Analysis (DFA) detects long-range correlations in nonstationary spatial sequences, by a self-similarity scaling exponent alpha. In the current work, the aim is to investigate the usefulness of alpha, using different colour channels (R, G, B, L*, a*, b*, H, S, V, and Grey), as a quantitative descriptor of visual texture in sliced ham surface patterns for the detection of long-range correlations in unidimensional spatial series of greyscale intensity pixel values at 0 degrees , 30 degrees , 45 degrees , 60 degrees , and 90 degrees rotations. Images were acquired from three qualities of pre-sliced pork ham, typically consumed in Ireland (200 slices per quality). Results indicated that the DFA approach can be used to characterize and quantify the textural appearance of the three ham qualities, for different image orientations, with a global scaling exponent. The spatial series extracted from the ham images display long-range dependence, indicating an average behaviour around 1/f-noise. Results indicate that alpha has a universal character in quantifying the visual texture of ham surface intensity patterns, with no considerable crossovers that alter the behaviour of the fluctuations. Fractal correlation properties can thus be a useful metric for capturing information embedded in the visual texture of hams. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, U.; Riley, W. J.

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  5. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is characterized by a velocity transition probability and the steady state velocity distribution. These are related to the Eulerian velocity distribution and the distribution and spatial organization of hydraulic conductivity. The CTRW model is used for the prediction of transport data (particle dispersion and breakthrough curves) from direct numerical flow and transport simulations in heterogeneous hydraulic conductivity fields. References: [1] Comolli, A., Hidalgo, J. J., Moussey, C., & Dentz, M. (2016). Non-Fickian Transport Under Heterogeneous Advection and Mobile-Immobile Mass Transfer. Transport in Porous Media, 1-25. [2] Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T., & Lester, D. R. (2016). Continuous time random walks for the evolution of Lagrangian velocities. Physical Review Fluids, 1(7), 074004.

  6. Symmetric cumulants as a probe of the proton substructure at LHC energies

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Petersen, Hannah; Soto-Ontoso, Alba

    2018-03-01

    We present a systematic study of the normalized symmetric cumulants, NSC(n,m), at the eccentricity level in proton-proton interactions at √{ s } = 13TeV within a wounded hot spot approach. We focus our attention on the influence of spatial correlations between the proton constituents, in our case gluonic hot spots, on this observable. We notice that the presence of short-range repulsive correlations between the hot spots systematically decreases the values of NSC (2 , 3) and NSC (2 , 4) in mid- to ultra-central collisions while increases them in peripheral interactions. In the case of NSC (2 , 3) we find that, as suggested by data, an anti-correlation of ε2 and ε3 in ultra-central collisions, i.e. NSC (2 , 3) < 0, is possible within the correlated scenario while it never occurs without correlations when the number of gluonic hot spots is set to three. We attribute this fact to the decisive role of correlations on enlarging the probability of interaction topologies that reduce the value of NSC (2 , 3) and, eventually, make it negative. Further, we explore the dependence of our conclusions on the number of hot spots, the values of the hot spot radius and the repulsive core distance. Our results add evidence to the idea that considering spatial correlations between the subnucleonic degrees of freedom of the proton may have a strong impact on the initial state properties of proton-proton interactions [1].

  7. The KONA Survey: A Near-IR Perspective of the Circumnuclear Environment of local Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold

    2018-06-01

    With the Keck OSIRIS Nearby AGN, KONA, survey we simultaneously probe the stellar, molecular gas, and ionized gas kinematics within the central 400 pc of a sample of 40 local representative AGN. KONA's spatially resolved spectra enable an unprecedented study of the feeding and feedback processes in bona- fide AGN. We present a study the nuclear K-band properties of these local Seyferts, as well as the integrated molecular hydrogen and stellar distribution and kinematic at radii varying from 25 to 200 pc. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities over 3 orders of magnitude in both K-band and X-ray luminosities, implying that the majority of the emission is non-stellar. No correlation is found between the 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicates the presence of nuclear star formation and attenuating material (gas and dust), which is found to be compact in some galaxies and in others extended. A comparison of the circumnuclear stellar and molecular hydrogen properties (flux distribution, surface brightness, and velocity dispersion) in Seyfert 1 and 2 sources will also be presented.

  8. Cell response to quasi-monochromatic light with different coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budagovsky, A V; Solovykh, N V; Budagovskaya, O N

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed whenmore » the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)« less

  9. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results raise concerns on the suitability of the plant functional type paradigm for terrestrial carbon cycling.

  11. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.

    PubMed

    Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan

    2015-06-23

    A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spatial versus sequential correlations for random access coding

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed

    2016-03-01

    Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.

  13. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  14. Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.

    PubMed

    van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin

    2018-04-25

    Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Improving the spatial representation of soil properties and hydrology using topographically derived watershed model initialization processes

    NASA Astrophysics Data System (ADS)

    Easton, Z. M.; Fuka, D.; Collick, A.; Kleinman, P. J. A.; Auerbach, D.; Sommerlot, A.; Wagena, M. B.

    2015-12-01

    Topography exerts critical controls on many hydrologic, geomorphologic, and environmental biophysical processes. Unfortunately many watershed modeling systems use topography only to define basin boundaries and stream channels and do not explicitly account for the topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. We develop and demonstrate a method that uses topography to spatially adjust soil morphological and soil hydrological attributes [soil texture, depth to the C-horizon, saturated conductivity, bulk density, porosity, and the field capacities at 33kpa (~ field capacity) and 1500kpa (~ wilting point) tensions]. In order to test the performance of the method the topographical adjusted soils and standard SSURGO soil (available at 1:20,000 scale) were overlaid on soil pedon pit data in the Grasslands Soil and Water Research Lab in Resiel, TX. The topographically adjusted soils exhibited significant correlations with measurements from the soil pits, while the SSURGO soil data showed almost no correlation to measured data. We also applied the method to the Grasslands Soil and Water Research watershed using the Soil and Water Assessment Tool (SWAT) model to 15 separate fields as a proxy to propagate changes in soil properties into field scale hydrological responses. Results of this test showed that the topographically adjusted soils resulted better model predictions of field runoff in 50% of the field, with the SSURGO soils preforming better in the remainder of the fields. However, the topographically adjusted soils generally predicted baseflow response more accurately, reflecting the influence of these soil properties on non-storm responses. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases improve model performance.

  16. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  17. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Gonzalez, A.; Dafonte, J. D.; Armesto, M. V.; Raposo, J. R.

    2012-12-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area.

  18. Integrative Spatial Data Analytics for Public Health Studies of New York State

    PubMed Central

    Chen, Xin; Wang, Fusheng

    2016-01-01

    Increased accessibility of health data made available by the government provides unique opportunity for spatial analytics with much higher resolution to discover patterns of diseases, and their correlation with spatial impact indicators. This paper demonstrated our vision of integrative spatial analytics for public health by linking the New York Cancer Mapping Dataset with datasets containing potential spatial impact indicators. We performed spatial based discovery of disease patterns and variations across New York State, and identify potential correlations between diseases and demographic, socio-economic and environmental indicators. Our methods were validated by three correlation studies: the correlation between stomach cancer and Asian race, the correlation between breast cancer and high education population, and the correlation between lung cancer and air toxics. Our work will allow public health researchers, government officials or other practitioners to adequately identify, analyze, and monitor health problems at the community or neighborhood level for New York State. PMID:28269834

  19. Spatial and temporal variations in lagoon and coastal processes of the southern Brazilian coast

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Herz, R.

    1980-01-01

    From a collection of information gathered during a long period, through the orbital platforms SKYLAB and LANDSAT, it was possible to establish a method for the systematic study of the dynamical regime of lagoon and marine surface waters, on coastal plain of Rio Grande do Sul. The series of multispectral images analyzed by visual and automatic techniques put in evidence spatial and temporal variations reflected in the optical properties of waters, which carry different loads of materials in suspension. The identified patterns offer a synoptic picture of phenomena of great amplitude, from which trends of circulation can be inferred, correlating the atmospheric and hydrologic variables simultaneously to the overflight of orbital vehicles.

  20. Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits

    PubMed Central

    Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.

    2018-01-01

    Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415

  1. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; ...

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  2. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy.

    PubMed

    Tremsin, Anton S; Gao, Yan; Dial, Laura C; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  3. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  4. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  5. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    PubMed Central

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components. PMID:27877885

  6. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    USGS Publications Warehouse

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions difficult. Such complexity may limit the accuracy of scaling approaches to mapping SOC and soil redistribution.

  7. Electromagnetic Compatibility Testing Studies

    NASA Technical Reports Server (NTRS)

    Trost, Thomas F.; Mitra, Atindra K.

    1996-01-01

    This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.

  8. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  9. Spectral characteristics of background error covariance and multiscale data assimilation

    DOE PAGES

    Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...

    2016-05-17

    The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less

  10. A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.

  11. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE PAGES

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; ...

    2017-03-10

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  12. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  13. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  14. Nonlocal Electron Coherence in MoS2 Flakes Correlated through Spatial Self Phase Modulation

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Wu, Qiong; Sun, Fei; Tian, Yichao; Zuo, Xu; Meng, Sheng; Zhao, Jimin

    2015-03-01

    Electron coherence among different flake domains of MoS2 has been generated using ultrafast or continuous wave laser beams. Such electron coherence generates characteristic far-field diffraction patterns through a purely coherent nonlinear optical effect--spatial self-phase modulation (SSPM). A wind-chime model is developed to describe the establishment of the electron coherence through correlating the photo-excited electrons among different flakes using coherent light. Owing to its finite gap band structure, we find different mechanisms, including two-photon processes, might be responsible for the SSPM in MoS2 [with a large nonlinear dielectric susceptibility χ (3) = 1.6 × 10-9 e.s.u. (SI: 2.23 × 10-17 m2/V2) per layer]. Finally, we realized all optical switching based on SSPM, demonstrating that the electron coherence generation we report here is a ubiquitous property of layered quantum materials, by which novel optical applications are accessible. National Natural Science Foundation of China (11274372).

  15. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  16. Ten Years of Gamma-Ray Bursts Observations with BATSE

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The observed gamma-ray temporal, spectral, intensity and spatial distribution characteristics of GRBs from data obtained from BATSE/Compton Observatory, will be described. The talk will concentrate on recent studies of burst properties, correlations of GRB parameters and other statistical studies that have only recently come to light with the unprecedented sample of over 2700 GRBS. Recent studies of possible observational biases, un-triggered GRBs and threshold calculations for BATSE will also be described.

  17. Joint Discussion/Mini-Workshop: Gamma-Ray Bursts and their Hosts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2000-01-01

    The observed gamma-ray temporal, spectral, intensity and spatial distribution characteristics of GRBs, primarily from data obtained from the Compton Observatory, will be described. The talk will concentrate on recent studies of burst properties, correlations of GRB parameters and other statistical studies that have only recently come to light with the unprecedented sample of over two thousand GRBs, along with some mention of studies in progress by members of the BATSE team.

  18. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury

    2007-09-20

    Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less

  19. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  20. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  1. Infection dynamics on spatial small-world network models

    NASA Astrophysics Data System (ADS)

    Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario

    2017-11-01

    The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.

  2. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  3. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  4. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method

    PubMed Central

    2013-01-01

    Background Molecular imaging using magnetic nanoparticles (MNPs)—magnetic particle imaging (MPI)—has attracted interest for the early diagnosis of cancer and cardiovascular disease. However, because a steep local magnetic field distribution is required to obtain a defined image, sophisticated hardware is required. Therefore, it is desirable to realize excellent image quality even with low-performance hardware. In this study, the spatial resolution of MPI was evaluated using an image reconstruction method based on the correlation information of the magnetization signal in a time domain and by applying MNP samples made from biocompatible ferucarbotran that have adjusted particle diameters. Methods The magnetization characteristics and particle diameters of four types of MNP samples made from ferucarbotran were evaluated. A numerical analysis based on our proposed method that calculates the image intensity from correlation information between the magnetization signal generated from MNPs and the system function was attempted, and the obtained image quality was compared with that using the prototype in terms of image resolution and image artifacts. Results MNP samples obtained by adjusting ferucarbotran showed superior properties to conventional ferucarbotran samples, and numerical analysis showed that the same image quality could be obtained using a gradient magnetic field generator with 0.6 times the performance. However, because image blurring was included theoretically by the proposed method, an algorithm will be required to improve performance. Conclusions MNP samples obtained by adjusting ferucarbotran showed magnetizing properties superior to conventional ferucarbotran samples, and by using such samples, comparable image quality (spatial resolution) could be obtained with a lower gradient magnetic field intensity. PMID:23734917

  5. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches.

    PubMed

    Singh, Akath; Santra, Priyabrata; Kumar, Mahesh; Panwar, Navraten; Meghwal, P R

    2016-09-01

    Soil organic carbon (SOC) is a major indicator of long-term sustenance of agricultural production system. Apart from sustaining productivity, SOC plays a crucial role in context of climate change. Keeping in mind these potentials, spatial variation of SOC contents of a fruit orchard comprising several arid fruit plantations located at arid region of India is assessed in this study through geostatistical approaches. For this purpose, surface and subsurface soil samples from 175 locations from a fruit orchard spreading over 14.33 ha area were collected along with geographical coordinates. SOC content and soil physicochemical properties of collected soil samples were determined followed by geostatistical analysis for mapping purposes. Average SOC stock density of the orchard was 14.48 Mg ha(-1) for 0- to 30-cm soil layer ranging from 9.01 Mg ha(-1) in Carissa carandas to 19.52 Mg ha(-1) in Prosopis cineraria block. Range of spatial variation of SOC content was found about 100 m, while two other soil physicochemical properties, e.g., pH and electrical conductivity (EC) also showed similar spatial trend. This indicated that minimum sampling distance for future SOC mapping programme may be kept lower than 100 m for better accuracy. Ordinary kriging technique satisfactorily predicted SOC contents (in percent) at unsampled locations with root-mean-squared residual (RMSR) of 0.35-0.37. Co-kriging approach was found slightly superior (RMSR = 0.26-0.28) than ordinary kriging for spatial prediction of SOC contents because of significant correlations of SOC contents with pH and EC. Uncertainty of SOC estimation was also presented in terms of 90 % confidence interval. Spatial estimates of SOC stock through ordinary kriging or co-kriging approach were also found with low uncertainty of estimation than non-spatial estimates, e.g., arithmetic averaging approach. Among different fruit block plantations of the orchard, the block with Prosopis cineraria ('khejri') has higher SOC stock density than others.

  6. Single Canonical Model of Reflexive Memory and Spatial Attention

    PubMed Central

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  7. Scaling and allometry in the building geometries of Greater London

    NASA Astrophysics Data System (ADS)

    Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P.

    2008-06-01

    Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [ Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [ Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.

  8. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeatedmore » after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.« less

  9. Frequency correlation of probe waves backscattered from small scale ionospheric irregularities generated by high power HF radio waves

    NASA Astrophysics Data System (ADS)

    Puchkov, V. A.

    2016-09-01

    Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.

  10. Spatial Representativeness of PM2.5 Concentrations Obtained Using Observations From Network Stations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqin; Zhao, Chuanfeng; Jiang, Jonathan H.; Wang, Chunying; Yang, Xin; Yung, Yuk L.

    2018-03-01

    Haze has been a focused air pollution phenomenon in China, and its characterization is highly desired. Aerosol properties obtained from a single station are frequently used to represent the haze condition over a large domain, such as tens of kilometers, which could result in high uncertainties due to their spatial variation. Using a high-resolution network observation over an urban city in North China from November 2015 to February 2016, this study examines the spatial representativeness of ground station observations of particulate matter with diameters less than 2.5 μm (PM2.5). We developed a new method to determine the representative area of PM2.5 measurements from limited stations. The key idea is to determine the PM2.5 spatial representative area using its spatial variability and temporal correlation. We also determine stations with large representative area using two grid networks with different resolutions. Based on the high spatial resolution measurements, the representative area of PM2.5 at one station can be determined from the grids with high correlations and small differences of PM2.5. The representative area for a single station in the study period ranges from 0.25 to 16.25 km2 but is less than 3 km2 for more than half of the stations. The representative area varies with locations, and observation at 10 optimal stations would have a good representativeness of those obtained from 169 stations for the 4 month time scale studied. Both evaluations with an empirical orthogonal function analysis and with independent data set corroborate the validity of the results found in this study.

  11. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  12. Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.

    PubMed

    Aguero-Valverde, Jonathan

    2013-10-01

    Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties

    NASA Technical Reports Server (NTRS)

    Bania, Thomas M.

    1992-01-01

    The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.

  14. Visual development in primates: Neural mechanisms and critical periods

    PubMed Central

    Kiorpes, Lynne

    2015-01-01

    Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the LGN. In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development. PMID:25649764

  15. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.

  16. Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part II: Textural Analysis.

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Sengupta, S. K.; Kuo, K. S.

    1988-04-01

    Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus fields are examined using the Spatial Gray Level Co-Occurrence Matrix method. The co-occurrence statistics are computed for pixel separations ranging from 57 m to 29 km and at angles of 0°, 45°, 90° and 135°. Nine different textual measures are used to define the cloud field spatial relationships. However, the measures of contrast and correlation appear to be most useful in distinguishing cloud structure.Cloud field macrotexture describes general cloud field characteristics at distances greater than the size of typical cloud elements. It is determined from the spatial asymptotic values of the texture measures. The slope of the texture curves at small distances provides a measure of the microtexture of individual cloud cells. Cloud fields composed primarily of small cells have very steep slopes and reach their asymptotic values at short distances from the origin. As the cells composing the cloud field grow larger, the slope becomes more gradual and the asymptotic distance increases accordingly. Low asymptotic values of correlation show that stratocumulus cloud fields have no large scale organized structure.Besides the ability to distinguish cloud field structure, texture appears to be a potentially valuable tool in cloud classification. Stratocumulus clouds are characterized by low values of angular second moment and large values of entropy. Cirrus clouds appear to have extremely low values of contrast, low values of entropy, and very large values of correlation.Finally, we propose that sampled high spatial resolution satellite data be used in conjunction with coarser resolution operational satellite data to detect and identify cloud field structure and directionality and to locate regions of subresolution scale cloud contamination.

  17. Estimating the spatial distribution of soil organic matter density and geochemical properties in a polygonal shaped Arctic Tundra using core sample analysis and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2016-12-01

    The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.

  18. THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less

  19. The 1.1 mm Continuum Survey of the Small Magellanic Cloud: Physical Properties and Evolution of the Dust-selected Clouds

    NASA Astrophysics Data System (ADS)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.

    2017-01-01

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. Optical and tunneling microscopy and spectroscopy at the ultimate spatial limit

    NASA Astrophysics Data System (ADS)

    Chen, Chi

    2009-12-01

    The combination of optical detection system with a scanning tunneling microscope (STM) leads to the possibility of resolving radiative transition probability with the ultrahigh spatial resolution of STM in real space. This opens an innovative approach toward revealing the correlation between molecular structure, electronic characteristics, and optical properties. This thesis describes a series of experiments that manifests this correlation, including atomic silver chains and single porphine molecules. In atomic silver chains, the number and positions of the emission maxima in the photon images match the nodes in the dI/d V images of "particle-in-a-box" states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions, which provides an understanding of the mechanism of STM induced light emission. From single porphine molecules, orthogonal spatial contrast of two types of vibronic coupling is resolved by both photon spectroscopy and vibronic-mode-selected photon images. Intramolecular transitions from the two orthogonal LUMOs individually couple to different molecular normal modes. This is the first demonstration of the photon emission probability of a single molecule and its direct correlations with the molecular orbitals. This also provides the first real space experimental evidence to separate the tangled effects of molecular conformations and nano-environments on the inhomogeneity of molecular emission. DSB molecules are found to have two conformational isomers and one of them shows surface chirality. All these conformers and enantiomers can be switched to each other by electron injection. Different DSB conformers present distinct manipulation dynamics, which demonstrate how different conformations and their preferred adsorption geometries can have pronounced influence on the molecular mechanics on the surface. Overall, this thesis studies the very fundamental nature of single molecules and artificial nanostructures by integrating all kinds of important functions of STM: topography, spectroscopy, manipulation, and photon emission. Detailed correlations between the emission patterns and orbital structures are revealed by the ultimate spatial resolution of our "STM photon microscopy".

  1. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    PubMed Central

    Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities. PMID:27652001

  2. An Approach to Stochastic Peridynamic Theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmie, Paul N.

    In many material systems, man-made or natural, we have an incomplete knowledge of geometric or material properties, which leads to uncertainty in predicting their performance under dynamic loading. Given the uncertainty and a high degree of spatial variability in properties of materials subjected to impact, a stochastic theory of continuum mechanics would be useful for modeling dynamic response of such systems. Peridynamic theory is such a theory. It is formulated as an integro- differential equation that does not employ spatial derivatives, and provides for a consistent formulation of both deformation and failure of materials. We discuss an approach to stochasticmore » peridynamic theory and illustrate the formulation with examples of impact loading of geological materials with uncorrelated or correlated material properties. We examine wave propagation and damage to the material. The most salient feature is the absence of spallation, referred to as disorder toughness, which generalizes similar results from earlier quasi-static damage mechanics. Acknowledgements This research was made possible by the support from DTRA grant HDTRA1-08-10-BRCWM. I thank Dr. Martin Ostoja-Starzewski for introducing me to the mechanics of random materials and collaborating with me throughout and after this DTRA project.« less

  3. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors.

    PubMed

    Ai, Shiwei; Liu, Bailin; Yang, Ying; Ding, Jian; Yang, Wenzhi; Bai, Xiaojuan; Naeem, Sajid; Zhang, Yingmei

    2018-05-30

    Heavy metal pollution in farmlands is highly concerned as crops' easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants' uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  5. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  6. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Treesearch

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  7. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  8. Competing opinions and stubborness: Connecting models to data.

    PubMed

    Burghardt, Keith; Rand, William; Girvan, Michelle

    2016-03-01

    We introduce a general contagionlike model for competing opinions that includes dynamic resistance to alternative opinions. We show that this model can describe candidate vote distributions, spatial vote correlations, and a slow approach to opinion consensus with sensible parameter values. These empirical properties of large group dynamics, previously understood using distinct models, may be different aspects of human behavior that can be captured by a more unified model, such as the one introduced in this paper.

  9. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers

    PubMed Central

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.

    2013-01-01

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459

  10. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers.

    PubMed

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J

    2013-10-08

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.

  11. Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.

    PubMed

    Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry

    2010-06-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.

  12. Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis

    PubMed Central

    Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry

    2014-01-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal,more » we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.« less

  14. Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection

    NASA Astrophysics Data System (ADS)

    Brunetti, Carlotta; Linde, Niklas

    2018-01-01

    Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical properties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydrogeological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.

  15. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  16. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-12-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  17. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain.

    NASA Astrophysics Data System (ADS)

    Marinho, Mara de A.; Dafonte, Jorge D.; Armesto, Montserrat V.; Paz-González, Antonio; Raposo, Juan R.

    2013-04-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area. Acknowledgements: This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. de A. Marinho.

  18. [Temporal and spatial characteristics of ecological risk in Shunyi, Beijing, China based on landscape structure.

    PubMed

    Qing, Feng Ting; Peng, Yu

    2016-05-01

    Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.

  19. Using temporal detrending to observe the spatial correlation of traffic.

    PubMed

    Ermagun, Alireza; Chatterjee, Snigdhansu; Levinson, David

    2017-01-01

    This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.

  20. Using temporal detrending to observe the spatial correlation of traffic

    PubMed Central

    2017-01-01

    This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models. PMID:28472093

  1. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean values may be biased but the spatial localization of sulfate and ammonium is well reproduced. The size distribution is compared to the AERONET product and it is shown that the model fairly reproduces the main values for the fine and coarse mode. In particular, for the fine mode, the model overestimates the aerosol mass in Africa and underestimates it in Europe.

  2. Stochastic simulation of spatially correlated geo-processes

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.

  3. Spatial Variability of Plant Available Water, Soil Organic Carbon, and Microbial Biomass under Divergent Land Uses: A Comparison among Regression-Kriging, Cokriging, and Regression-Cokriging

    NASA Astrophysics Data System (ADS)

    Kiani, M.; Hernandez Ramirez, G.; Quideau, S.

    2016-12-01

    Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.

  4. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  5. Laser speckle imaging in the spatial frequency domain

    PubMed Central

    Mazhar, Amaan; Cuccia, David J.; Rice, Tyler B.; Carp, Stefan A.; Durkin, Anthony J.; Boas, David A.; Choi, Bernard; Tromberg, Bruce J.

    2011-01-01

    Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism. PMID:21698018

  6. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  7. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  8. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  9. Quasi-biennial oscillations in the cross-correlation of properties of macrospicules

    NASA Astrophysics Data System (ADS)

    Kiss, T. S.; Gyenge, N.; Erdélyi, R.

    2018-01-01

    Jets, whatever small (e.g. spicules) or large (e.g. macrospicules) their size, may play a key role in momentum and energy transport from photosphere to chromosphere and at least to the low corona. Here, we investigate the properties of abundant, large-scale dynamic jets observable in the solar atmosphere: the macrospicules (MS). These jets are observationally more distinct phenomena than their little, and perhaps more ubiquitous, cousins, the spicules. Investigation of long-term variation of the properties of macrospicules may help to a better understanding of their underlying physics of generation and role in coronal heating. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory, a new dataset, with several hundreds of macrospicules, was constructed encompassing a period of observations over six years. Here, we analyse the measured properties and relations between these properties of macrospicules as function of time during the observed time interval. We found that cross-correlations of several of these macrospicule properties display a strong oscillatory pattern. Next, wavelet analysis is used to provide more detailed information about the temporal behaviour of the various properties of MS. For coronal hole macrospicules, a significant peak is found at around 2-year period. This peak also exists partially or is shifted to longer period, in the case of quiet Sun macrospicules. These observed findings may be rooted in the underlying mechanism generating the solar magnetic field, i.e. the global solar dynamo.

  10. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  11. Neutron imaging with lithium indium diselenide: Surface properties, spatial resolution, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.

    2017-11-01

    An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.

  12. Stochastic calculus of protein filament formation under spatial confinement

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.

    2018-05-01

    The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.

  13. Stochastic population dynamics in spatially extended predator-prey systems

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.

  14. Aquifer Hydrogeologic Layer Zonation at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelieva-Trofimova, Elena A.; Kanevski, Mikhail; timonin, v.

    2003-09-10

    Sedimentary aquifer layers are characterized by spatial variability of hydraulic properties. Nevertheless, zones with similar values of hydraulic parameters (parameter zones) can be distinguished. This parameter zonation approach is an alternative to the analysis of spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic properties. The current work is devoted to the problem of zonation of the Hanford formation, the uppermost sedimentary aquifer unit (U1) included in hydrogeologic models at the Hanford site. U1 is characterized by 5 zonesmore » with different hydraulic properties. Each sampled location is ascribed to a parameter zone by an expert. This initial classification is accompanied by a measure of quality (also indicated by an expert) that addresses the level of classification confidence. In the current study, the coneptual zonation map developed by an expert geologist was used as an a priori model. The parameter zonation problem was formulated as a multiclass classification task. Different geostatistical and machine learning algorithms were adapted and applied to solve this problem, including: indicator kriging, conditional simulations, neural networks of different architectures, and support vector machines. All methods were trained using additional soft information based on expert estimates. Regularization methods were used to overcome possible overfitting. The zonation problem was complicated because there were few samples for some zones (classes) and by the spatial non-stationarity of the data. Special approaches were developed to overcome these complications. The comparison of different methods was performed using qualitative and quantitative statistical methods and image analysis. We examined the correspondence of the results with the geologically based interpretation, including the reproduction of the spatial orientation of the different classes and the spatial correlation structure of the classes. The uncertainty of the classification task was examined using both probabilistic interpretation of the estimators and by examining the results of a set of stochastic realizations. Characterization of the classification uncertainty is the main advantage of the proposed methods.« less

  15. Two superconducting transitions in single-crystal La 2 - x Ba x CuO 4

    DOE PAGES

    Tee, X. Y.; Ito, T.; Ushiyama, T.; ...

    2017-02-27

    Here, we use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La 2-xBa xCuO 4. We also found a superconducting transition temperature T cs associated with the ab-plane surface region which is considerably higher than the bulk T c. This effect is pronounced in the region of charge carrier doping x with strong spin-charge stripe correlations, reaching T cs = 36 K or 1.64T c.

  16. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  17. Correlations Between Micromagnetic, Microstructural and Microchemical Properties in Ultrathin Epitaxial Magnetic Structures. Magnetic Microstructure Observed With Electron Holography in STEM

    DTIC Science & Technology

    1998-06-10

    and Small Particles, Marian Mankos, J.M. Cowley, M.R. Scheinfein, Material Reseach Society Bulletin, October 95’, 45, (1995). 77 Quantitative...Micromagnetics: Electron Holography of Magnetic Thin Films and Multilayers, Marian Mankos, M.R. Scheinfein, J.M. Cowley, IEEE Trans. MAG-32(5), 4150 (1996...Spatial Resolution, Marian . Mankos, Z.J. Yang, M.R. Scheinfein, J.M. Cowley, IEEE-Trans. MAG 30(6), 4497 (1994). 67 Far Out-of-Focus Electron Holography

  18. Detection of correlated fragments in a sequence of images by superimposed Fourier holograms

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-08-01

    The problem of detecting correlated fragments in a sequence of images recorded by the superimposing holograms within the Fourier holography scheme with angular multiplication of a spatially modulated reference beam is considered. The approach to the solution of this problem is based on the properties of the variance of the image sum. It is shown that this problem can be solved by providing a constant distance between the signal and reference images when recording superimposed holograms and a partial mutual correlatedness of reference images. The detection efficiency is analysed from the point of view of estimated image data capacity, the degree of mutual correlation of reference images, and the hologram recording conditions. The results of a numerical experiment under the most complicated conditions (representation of images by realisations of homogeneous random fields) confirm the theoretical conclusions.

  19. Spatial confinement induces hairpins in nicked circular DNA

    PubMed Central

    Japaridze, Aleksandre; Orlandini, Enzo; Smith, Kathleen Beth; Gmür, Lucas; Valle, Francesco; Micheletti, Cristian

    2017-01-01

    Abstract In living cells, DNA is highly confined in space with the help of condensing agents, DNA binding proteins and high levels of supercoiling. Due to challenges associated with experimentally studying DNA under confinement, little is known about the impact of spatial confinement on the local structure of the DNA. Here, we have used well characterized slits of different sizes to collect high resolution atomic force microscopy images of confined circular DNA with the aim of assessing the impact of the spatial confinement on global and local conformational properties of DNA. Our findings, supported by numerical simulations, indicate that confinement imposes a large mechanical stress on the DNA as evidenced by a pronounced anisotropy and tangent–tangent correlation function with respect to non-constrained DNA. For the strongest confinement we observed nanometer sized hairpins and interwound structures associated with the nicked sites in the DNA sequence. Based on these findings, we propose that spatial DNA confinement in vivo can promote the formation of localized defects at mechanically weak sites that could be co-opted for biological regulatory functions. PMID:28201616

  20. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  1. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland.

    PubMed

    Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  2. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  3. Performance on a virtual reality angled laparoscope task correlates with spatial ability of trainees.

    PubMed

    Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A

    2010-08-01

    The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.

  4. Teacher spatial skills are linked to differences in geometry instruction.

    PubMed

    Otumfuor, Beryl Ann; Carr, Martha

    2017-12-01

    Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.

  5. MORPHOLOGICAL PROPERTIES OF Lyα EMITTERS AT REDSHIFT 4.86 IN THE COSMOS FIELD: CLUMPY STAR FORMATION OR MERGER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Masakazu A. R.; Taniguchi, Yoshiaki; Kajisawa, Masaru

    2016-03-01

    We investigate morphological properties of 61 Lyα emitters (LAEs) at z = 4.86 identified in the COSMOS field, based on Hubble Space Telescope Advanced Camera for Surveys (ACS) imaging data in the F814W band. Out of the 61 LAEs, we find the ACS counterparts for 54 LAEs. Eight LAEs show double-component structures with a mean projected separation of 0.″63 (∼4.0 kpc at z = 4.86). Considering the faintness of these ACS sources, we carefully evaluate their morphological properties, that is, size and ellipticity. While some of them are compact and indistinguishable from the point-spread function (PSF) half-light radius of 0.″07 (∼0.45 kpc),more » the others are clearly larger than the PSF size and spatially extended up to 0.″3 (∼1.9 kpc). We find that the ACS sources show a positive correlation between ellipticity and size and that the ACS sources with large size and round shape are absent. Our Monte Carlo simulation suggests that the correlation can be explained by (1) the deformation effects via PSF broadening and shot noise or (2) the source blending in which two or more sources with small separation are blended in our ACS image and detected as a single elongated source. Therefore, the 46 single-component LAEs could contain the sources that consist of double (or multiple) components with small spatial separation (i.e., ≲0.″3 or 1.9 kpc). Further observation with high angular resolution at longer wavelengths (e.g., rest-frame wavelengths of ≳4000 Å) is inevitable to decipher which interpretation is adequate for our LAE sample.« less

  6. Statistical dynamo theory: Mode excitation.

    PubMed

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  7. Spatial and temporal distribution of singlet oxygen in Lake Superior.

    PubMed

    Peterson, Britt M; McNally, Ann M; Cory, Rose M; Thoemke, John D; Cotner, James B; McNeill, Kristopher

    2012-07-03

    A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.

  8. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    NASA Astrophysics Data System (ADS)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground motion uncertainties. The approach is designed to integrate loss distribution functions with different degrees of correlation for portfolio analysis. The analysis is based on USGS 2002 regional seismicity model.

  9. Intercomparisons of Marine Boundary Layer Cloud Properties from the ARM CAP-MBL Campaign and Two MODIS Cloud Products

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-01-01

    From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.

  10. Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-02-01

    From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.

  11. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.

    PubMed

    Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas

    2014-01-01

    For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.

  12. Structure and Variability of Water Vapor in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    2001-01-01

    Upper-tropospheric humidity (UTH) has been synoptically mapped via an algorithm that rejects small-scale undersampled variance, which is intrinsic to asymptotic measurements of water vapor, cloud, and other convective properties. Mapped distributions of UTH have been used, jointly with high-resolution Global Cloud Imagery (GCI), to study how the upper troposphere is humidified. The time-mean distribution of UTH is spatially correlated to the time-mean distribution of cold cloud fraction (eta)(sub c) (T < than 230 K). Regions of large UTH coincide with regions of large eta(sub c), which mark deep convection. They also coincide with regions of reduced vertical stability, in which the vertical gradient of theta is weakened by convective mixing. Coldest cloud cover is attended convective overshoots above the local tropopause, which is simultaneously coldest and highest. Together, these features reflect the upper-troposphere being ventilated by convection, which mixes in moist air from lower levels. Histograms of UTH and eta(sub c) have been applied to construct the joint probability density function, which quantifies the relationship between these properties. The expected value of UTH in convective regions is strongly correlated to the expected value of eta(sub c). In ensembles of asymptotic samples, the correlation between epsilon[UTH] and epsilon[eta(sub c)] exceeds 0.80. As these expectations reflect the most likely values, the strong correlation between epsilon[UTH] and epsilon[eta(sub c)] indicates that the large-scale organization of UTH is strongly shaped by convective pumping of moisture from lower levels. The same relationship holds for unsteady fields - even though, instantaneously, those fields are comprised almost entirely of small-scale convective structure. The spatial autocorrelation of UTH, constructed at high resolution from overpass data along ascending and descending tracks of the orbit, is limited to only a couple of degrees in the horizontal. This mirrors the spatial autocorrelation of eta(sub c), which likewise operates coherently on short scales. The short correlation scale of UTH, which reflects the scale of individual convective systems, is comparable to the spacing of retrievals from MLS. These scales are undersampled in the asynoptic measurements. Despite their prevalence, the mapping algorithm described above successfully recovers synoptic behavior operating coherently on large scales. It reveals eastward migration of anomalous UTH from the Indian ocean to the central Pacific, in association with the modulation of convection by the Madden-Julian oscillation. Additional information is contained in the original extended abstract.

  13. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

    PubMed

    Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping

    2016-12-01

    As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.

  14. Predicting chroma from luma with frequency domain intra prediction

    NASA Astrophysics Data System (ADS)

    Egge, Nathan E.; Valin, Jean-Marc

    2015-03-01

    This paper describes a technique for performing intra prediction of the chroma planes based on the reconstructed luma plane in the frequency domain. This prediction exploits the fact that while RGB to YUV color conversion has the property that it decorrelates the color planes globally across an image, there is still some correlation locally at the block level.1 Previous proposals compute a linear model of the spatial relationship between the luma plane (Y) and the two chroma planes (U and V).2 In codecs that use lapped transforms this is not possible since transform support extends across the block boundaries3 and thus neighboring blocks are unavailable during intra- prediction. We design a frequency domain intra predictor for chroma that exploits the same local correlation with lower complexity than the spatial predictor and which works with lapped transforms. We then describe a low- complexity algorithm that directly uses luma coefficients as a chroma predictor based on gain-shape quantization and band partitioning. An experiment is performed that compares these two techniques inside the experimental Daala video codec and shows the lower complexity algorithm to be a better chroma predictor.

  15. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  16. Spatially resolved D-T(2) correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    PubMed

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  18. PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Geraint F.; Braun, Robert; McConnachie, Alan W.

    2013-01-20

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps betweenmore » stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.« less

  19. PAndAS in the Mist: The Stellar and Gaseous Mass within the Halos of M31 and M33

    NASA Astrophysics Data System (ADS)

    Lewis, Geraint F.; Braun, Robert; McConnachie, Alan W.; Irwin, Michael J.; Ibata, Rodrigo A.; Chapman, Scott C.; Ferguson, Annette M. N.; Martin, Nicolas F.; Fardal, Mark; Dubinski, John; Widrow, Larry; Mackey, A. Dougal; Babul, Arif; Tanvir, Nial R.; Rich, Michael

    2013-01-01

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

  20. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  1. Coexistence of species with different dispersal across landscapes: a critical role of spatial correlation in disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Woolnough, Daelyn A; Miller, Adam D; Li, Zhenqing; Nijs, Ivan

    2016-05-11

    Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation. © 2016 The Author(s).

  2. Pair correlation functions for identifying spatial correlation in discrete domains

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.

    2018-06-01

    Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.

  3. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  4. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  5. Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO2 Thin Films by Resonant Soft X-ray Holography.

    PubMed

    Vidas, Luciana; Günther, Christian M; Miller, Timothy A; Pfau, Bastian; Perez-Salinas, Daniel; Martínez, Elías; Schneider, Michael; Gührs, Erik; Gargiani, Pierluigi; Valvidares, Manuel; Marvel, Robert E; Hallman, Kent A; Haglund, Richard F; Eisebitt, Stefan; Wall, Simon

    2018-05-18

    We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO 2 , and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

  6. Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: The mesoscopic Eulerian formalism and the two-point probability density function method

    NASA Astrophysics Data System (ADS)

    Simonin, Olivier; Zaichik, Leonid I.; Alipchenkov, Vladimir M.; Février, Pierre

    2006-12-01

    The objective of the paper is to elucidate a connection between two approaches that have been separately proposed for modelling the statistical spatial properties of inertial particles in turbulent fluid flows. One of the approaches proposed recently by Février, Simonin, and Squires [J. Fluid Mech. 533, 1 (2005)] is based on the partitioning of particle turbulent velocity field into spatially correlated (mesoscopic Eulerian) and random-uncorrelated (quasi-Brownian) components. The other approach stems from a kinetic equation for the two-point probability density function of the velocity distributions of two particles [Zaichik and Alipchenkov, Phys. Fluids 15, 1776 (2003)]. Comparisons between these approaches are performed for isotropic homogeneous turbulence and demonstrate encouraging agreement.

  7. Time-dependent vibrational spectral analysis of first principles trajectory of methylamine with wavelet transform.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2017-04-12

    The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

  8. Derivation of spatial patterns of soil hydraulic properties based on pedotransfer functions

    USDA-ARS?s Scientific Manuscript database

    Spatial patterns in soil hydrology are the product of the spatial distribution of soil hydraulic properties. These properties are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily a...

  9. Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Seok, Ji Yeon; Li, Aigen

    2017-02-01

    A distinct set of broad emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm, is often detected in protoplanetary disks (PPDs). These features are commonly attributed to polycyclic aromatic hydrocarbons (PAHs). We model these emission features in the infrared spectra of 69 PPDs around 14 T Tauri and 55 Herbig Ae/Be stars in terms of astronomical PAHs. For each PPD, we derive the size distribution and the charge state of the PAHs. We then examine the correlations of the PAH properties (I.e., sizes and ionization fractions) with the stellar properties (e.g., stellar effective temperature, luminosity, and mass). We find that the characteristic size of the PAHs tends to correlate with the stellar effective temperature ({T}{eff}) and interpret this as the preferential photodissociation of small PAHs in systems with higher {T}{eff} of which the stellar photons are more energetic. In addition, the PAH size shows a moderate correlation with the red-ward wavelength shift of the 7.7 μm PAH feature that is commonly observed in disks around cool stars. The ionization fraction of PAHs does not seem to correlate with any stellar parameters. This is because the charging of PAHs depends on not only the stellar properties (e.g., {T}{eff}, luminosity) but also their spatial distribution in the disks. The marginally negative correlation between PAH size and stellar age suggests that continuous replenishment of PAHs via the outgassing of cometary bodies and/or the collisional grinding of planetesimals and asteroids is required to maintain the abundance of small PAHs against complete destruction by photodissociation.

  10. Confined wormlike chains in external fields

    NASA Astrophysics Data System (ADS)

    Morrison, Greg

    The confinement of biomolecules is ubiquitous in nature, such as the spatial constraints of viral encapsulation, histone binding, and chromosomal packing. Advances in microfluidics and nanopore fabrication have permitted powerful new tools in single molecule manipulation and gene sequencing through molecular confinement as well. In order to fully understand and exploit these systems, the ability to predict the structure of spatially confined molecules is essential. In this talk, I describe a mean field approach to determine the properties of stiff polymers confined to cylinders and slits, which is relevant for a variety of biological and experimental conditions. I show that this approach is able to not only reproduce known scaling laws for confined wormlike chains, but also provides an improvement over existing weakly bending rod approximations in determining the detailed chain properties (such as correlation functions). Using this approach, we also show that it is possible to study the effect of an externally applied tension or static electric field in a natural and analytically tractable way. These external perturbations can alter the scaling laws and introduce important new length scales into the system, relevant for histone unbinding and single-molecule analysis of DNA.

  11. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  12. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.

  13. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Platnick, Steven E.

    2011-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

  14. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  15. Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.

    2003-01-01

    The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.

  16. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the addition of heavy metal stains and washing samples in a series of ethanol solutions and acetone. Gross-scale characterisation involved scanning samples using a Nikon Metrology HM X 225 µCT. For micro-scale analysis a working surface was revealed by microtoming the sample. Ultrathin sections were then collected and analysed using a JEOL 1200 Ex II TEM, and FIB-tomography datasets obtained using an FEI Quanta 3D FIB-SEM. Finally, to locate the surface and relate TEM and FIB-tomography datasets to the original floc, samples were rescanned using the µCT. Image processing was initially conducted in ImageJ. Following this datasets were imported into Amira 5.5 where pixel intensity thresholding allowed particle-matrix boundaries to be defined. Using 'landmarks' datasets were then registered to enable their co-visualisation in 3D models. Analysis of registered datasets reveals the complex non-fractal nature of flocs, whose properties span several of orders of magnitude. Primary particles are organised into discrete 'bundles', the arrangement of which directly influences their gross morphology. This strategy, which allows the co-visualisation of spatially registered multi-scale 3D datasets, provides unique insights into the true nature floc which would other have been impossible.

  17. Evolution and sign control of square-wave-like anisotropic magneto-resistance in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3}/LaAlO{sub 3}(001) manganite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Keating, S.

    2016-04-14

    We investigated magneto-transport properties of a compressively strained spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} (LPCMO) thin film micro-bridge deposited on LaAlO{sub 3}. Angular dependence of the magneto-resistance R(θ) of this bridge, where θ is the angle between the magnetic field and the current directions in the film plane, exhibits sharp positive and negative percolation jumps near T{sub MIT}. The sign and the magnitude of these jumps can be tuned using the magnetic field. Such behavior has not been observed in LPCMO micro-bridges subjected to tensile strain, indicating a correlation between the type of the lattice strain, the distribution ofmore » electronic domains, and the anisotropic magneto-resistance in spatially confined manganite systems.« less

  18. Stratification Modelling of Key Bacterial Taxa Driven by Metabolic Dynamics in Meromictic Lakes.

    PubMed

    Zhu, Kaicheng; Lauro, Federico M; Su, Haibin

    2018-06-22

    In meromictic lakes, the water column is stratified into distinguishable steady layers with different physico-chemical properties. The bottom portion, known as monimolimnion, has been studied for the functional stratification of microbial populations. Recent experiments have reported the profiles of bacterial and nutrient spatial distributions, but quantitative understanding is invoked to unravel the underlying mechanism of maintaining the discrete spatial organization. Here a reaction-diffusion model is developed to highlight the spatial pattern coupled with the light-driven metabolism of bacteria, which is resilient to a wide range of dynamical correlation between bacterial and nutrient species at the molecular level. Particularly, exact analytical solutions of the system are presented together with numerical results, in a good agreement with measurements in Ace lake and Rogoznica lake. Furthermore, one quantitative prediction is reported here on the dynamics of the seasonal stratification patterns in Ace lake. The active role played by the bacterial metabolism at microscale clearly shapes the biogeochemistry landscape of lake-wide ecology at macroscale.

  19. Analysis of spatial-temporal heterogeneity in remotely sensed aerosol properties observed during 2005-2015 over three countries along the Gulf of Guinea Coast in Southern West Africa

    NASA Astrophysics Data System (ADS)

    Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard

    2018-06-01

    In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.

  20. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  1. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.

  2. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    DOE PAGES

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; ...

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less

  3. Evidence for subsurface water ice in Korolev crater, Mars

    USGS Publications Warehouse

    Armstrong, J.C.; Titus, T.N.; Kieffer, H.H.

    2005-01-01

    Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ???73?? latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. ?? 2004 Elsevier Inc. All rights reserved.

  4. Correlated Errors in the Surface Code

    NASA Astrophysics Data System (ADS)

    Lopez, Daniel; Mucciolo, E. R.; Novais, E.

    2012-02-01

    A milestone step into the development of quantum information technology would be the ability to design and operate a reliable quantum memory. The greatest obstacle to create such a device has been decoherence due to the unavoidable interaction between the quantum system and its environment. Quantum Error Correction is therefore an essential ingredient to any quantum computing information device. A great deal of attention has been given to surface codes, since it has very good scaling properties. In this seminar, we discuss the time evolution of a qubit encoded in the logical basis of a surface code. The system is interacting with a bosonic environment at zero temperature. Our results show how much spatial and time correlations can be detrimental to the efficiency of the code.

  5. Dynamic stimulation of quantum coherence in systems of lattice bosons.

    PubMed

    Robertson, Andrew; Galitski, Victor M; Refael, Gil

    2011-04-22

    Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

  6. Local reaction kinetics by imaging☆

    PubMed Central

    Suchorski, Yuri; Rupprechter, Günther

    2016-01-01

    In the present contribution we present an overview of our recent studies using the “kinetics by imaging” approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics. PMID:26865736

  7. Coherence and dimensionality of intense spatiospectral twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan

    2015-07-01

    Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.

  8. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  9. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  10. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.

  11. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  12. Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.

    2017-06-01

    Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.

  13. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  14. Predictive Coding: A Fresh View of Inhibition in the Retina

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. V.; Laughlin, S. B.; Dubs, A.

    1982-11-01

    Interneurons exhibiting centre--surround antagonism within their receptive fields are commonly found in peripheral visual pathways. We propose that this organization enables the visual system to encode spatial detail in a manner that minimizes the deleterious effects of intrinsic noise, by exploiting the spatial correlation that exists within natural scenes. The antagonistic surround takes a weighted mean of the signals in neighbouring receptors to generate a statistical prediction of the signal at the centre. The predicted value is subtracted from the actual centre signal, thus minimizing the range of outputs transmitted by the centre. In this way the entire dynamic range of the interneuron can be devoted to encoding a small range of intensities, thus rendering fine detail detectable against intrinsic noise injected at later stages in processing. This predictive encoding scheme also reduces spatial redundancy, thereby enabling the array of interneurons to transmit a larger number of distinguishable images, taking into account the expected structure of the visual world. The profile of the required inhibitory field is derived from statistical estimation theory. This profile depends strongly upon the signal: noise ratio and weakly upon the extent of lateral spatial correlation. The receptive fields that are quantitatively predicted by the theory resemble those of X-type retinal ganglion cells and show that the inhibitory surround should become weaker and more diffuse at low intensities. The latter property is unequivocally demonstrated in the first-order interneurons of the fly's compound eye. The theory is extended to the time domain to account for the phasic responses of fly interneurons. These comparisons suggest that, in the early stages of processing, the visual system is concerned primarily with coding the visual image to protect against subsequent intrinsic noise, rather than with reconstructing the scene or extracting specific features from it. The treatment emphasizes that a neuron's dynamic range should be matched to both its receptive field and the statistical properties of the visual pattern expected within this field. Finally, the analysis is synthetic because it is an extension of the background suppression hypothesis (Barlow & Levick 1976), satisfies the redundancy reduction hypothesis (Barlow 1961 a, b) and is equivalent to deblurring under certain conditions (Ratliff 1965).

  15. The inferior colliculus encodes the Franssen auditory spatial illusion

    PubMed Central

    Rajala, Abigail Z.; Yan, Yonghe; Dent, Micheal L.; Populin, Luis C.

    2014-01-01

    Illusions are effective tools for the study of the neural mechanisms underlying perception because neural responses can be correlated to the physical properties of stimuli and the subject’s perceptions. The Franssen illusion (FI) is an auditory spatial illusion evoked by presenting a transient, abrupt tone and a slowly rising, sustained tone of the same frequency simultaneously on opposite sides of the subject. Perception of the FI consists of hearing a single sound, the sustained tone, on the side that the transient was presented. Both subcortical and cortical mechanisms for the FI have been proposed, but, to date, there is no direct evidence for either. The data show that humans and rhesus monkeys perceive the FI similarly. Recordings were taken from single units of the inferior colliculus in the monkey while they indicated the perceived location of sound sources with their gaze. The results show that the transient component of the Franssen stimulus, with a shorter first spike latency and higher discharge rate than the sustained tone, encodes the perception of sound location. Furthermore, the persistent erroneous perception of the sustained stimulus location is due to continued excitation of the same neurons, first activated by the transient, by the sustained stimulus without location information. These results demonstrate for the first time, on a trial-by-trial basis, a correlation between perception of an auditory spatial illusion and a subcortical physiological substrate. PMID:23899307

  16. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  17. Progress on Discrete Fracture Network models with implications on the predictions of permeability and flow channeling structure

    NASA Astrophysics Data System (ADS)

    Darcel, C.; Davy, P.; Le Goc, R.; Maillot, J.; Selroos, J. O.

    2017-12-01

    We present progress on Discrete Fracture Network (DFN) flow modeling, including realistic advanced DFN spatial structures and local fracture transmissivity properties, through an application to the Forsmark site in Sweden. DFN models are a framework to combine fracture datasets from different sources and scales and to interpolate them in combining statistical distributions and stereological relations. The resulting DFN upscaling function - size density distribution - is a model component key to extrapolating fracture size densities between data gaps, from borehole core up to site scale. Another important feature of DFN models lays in the spatial correlations between fractures, with still unevaluated consequences on flow predictions. Indeed, although common Poisson (i.e. spatially random) models are widely used, they do not reflect these geological evidences for more complex structures. To model them, we define a DFN growth process from kinematic rules for nucleation, growth and stopping conditions. It mimics in a simplified way the geological fracturing processes and produces DFN characteristics -both upscaling function and spatial correlations- fully consistent with field observations. DFN structures are first compared for constant transmissivities. Flow simulations for the kinematic and equivalent Poisson DFN models show striking differences: with the kinematic DFN, connectivity and permeability are significantly smaller, down to a difference of one order of magnitude, and flow is much more channelized. Further flow analyses are performed with more realistic transmissivity distribution conditions (sealed parts, relations to fracture sizes, orientations and in-situ stress field). The relative importance of the overall DFN structure in the final flow predictions is discussed.

  18. Receptive-field subfields of V2 neurons in macaque monkeys are adult-like near birth.

    PubMed

    Zhang, Bin; Tao, Xiaofeng; Shen, Guofu; Smith, Earl L; Ohzawa, Izumi; Chino, Yuzo M

    2013-02-06

    Infant primates can discriminate texture-defined form despite their relatively low visual acuity. The neuronal mechanisms underlying this remarkable visual capacity of infants have not been studied in nonhuman primates. Since many V2 neurons in adult monkeys can extract the local features in complex stimuli that are required for form vision, we used two-dimensional dynamic noise stimuli and local spectral reverse correlation to measure whether the spatial map of receptive-field subfields in individual V2 neurons is sufficiently mature near birth to capture local features. As in adults, most V2 neurons in 4-week-old monkeys showed a relatively high degree of homogeneity in the spatial matrix of facilitatory subfields. However, ∼25% of V2 neurons had the subfield map where the neighboring facilitatory subfields substantially differed in their preferred orientations and spatial frequencies. Over 80% of V2 neurons in both infants and adults had "tuned" suppressive profiles in their subfield maps that could alter the tuning properties of facilitatory profiles. The differences in the preferred orientations between facilitatory and suppressive profiles were relatively large but extended over a broad range. Response immaturities in infants were mild; the overall strength of facilitatory subfield responses was lower than that in adults, and the optimal correlation delay ("latency") was longer in 4-week-old infants. These results suggest that as early as 4 weeks of age, the spatial receptive-field structure of V2 neurons is as complex as in adults and the ability of V2 neurons to compare local features of neighboring stimulus elements is nearly adult like.

  19. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  20. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  1. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E. K.; Prokofiev, A. V.; Velichko, E. N.; Pleshakov, I. V.; Kuzmin, Yu I.

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe3O4) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  2. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  3. OSO 8 X-ray spectra of clusters of galaxies. II - Discussion

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.

    1979-01-01

    An observational description of X-ray clusters of galaxies is given based on OSO 8 X-ray results for spatially integrated spectra of 20 such clusters and various correlations obtained from these results. It is found from a correlation between temperature and velocity dispersion that the X-ray core radius should be less than the galaxy core radius or, alternatively, that the polytropic index is about 1.1 for most of the 20 clusters. Analysis of a correlation between temperature and emission integral yields evidence that more massive clusters accumulate a larger fraction of their mass as intracluster gas. Galaxy densities and optical morphology, as they correlate with X-ray properties, are reexamined for indications as to how mass injection by galaxies affects the density structure of the gas. The physical arguments used to derive iron abundances from observed equivalent widths of iron line features in X-ray spectra are critically evaluated, and the associated uncertainties in abundances derived in this manner are estimated to be quite large.

  4. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    NASA Astrophysics Data System (ADS)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  5. Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc

    NASA Astrophysics Data System (ADS)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-01-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.

  6. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  7. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  8. Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.

    PubMed

    Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C

    2017-01-01

    This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of inhibitory feedback on correlated firing of spiking neural network.

    PubMed

    Xie, Jinli; Wang, Zhijie

    2013-08-01

    Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.

  10. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  11. Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Il

    This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.

  12. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia

    USGS Publications Warehouse

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.

    2004-01-01

    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (<2-3 m) landslides. These calculations used soil properties of shear strength and hydraulic conductivity from laboratory measurements of soil samples collected from field sites where debris flows initiated. Rainfall data collected by radar every 6 minutes provided a basis for calculating the temporal variation of slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.

  13. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  14. SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.

    2016-04-20

    The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less

  15. Pre-Processed Recursive Lattice Reduction for Complexity Reduction in Spatially and Temporally Correlated MIMO Channels

    NASA Astrophysics Data System (ADS)

    An, Chan-Ho; Yang, Janghoon; Jang, Seunghun; Kim, Dong Ku

    In this letter, a pre-processed lattice reduction (PLR) scheme is developed for the lattice reduction aided (LRA) detection of multiple input multiple-output (MIMO) systems in spatially correlated channel. The PLR computes the LLL-reduced matrix of the equivalent matrix, which is the product of the present channel matrix and unimodular transformation matrix for LR of spatial correlation matrix, rather than the present channel matrix itself. In conjunction with PLR followed by recursive lattice reduction (RLR) scheme [7], pre-processed RLR (PRLR) is shown to efficiently carry out the LR of the channel matrix, especially for the burst packet message in spatially and temporally correlated channel while matching the performance of conventional LRA detection.

  16. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  17. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed

    Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.

  18. One perspective on spatial variability in geologic mapping

    USGS Publications Warehouse

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  19. [Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: A case study in Zhoukou City, Henan, China.

    PubMed

    Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu

    2016-04-22

    Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.

  20. A Generalized Spatial Measure for Resilience of Microbial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Lindemann, Stephen R.; Song, Hyun-Seob

    2016-04-07

    The emergent property of resilience is the ability of a system to return to an original state after a disturbance. Resilience may be used as an early warning system for significant or irreversible community transition, i.e., a community with diminishing or low resilience may be close to catastrophic shift in function or an irreversible collapse. Typically, resilience is quantified using recovery time, which may be difficult or impossible to directly measure in microbial systems. A recent study in the literature showed that under certain conditions, a set of spatial-based metrics termed recovery length, can be correlated to recovery time, andmore » thus may be a reasonable alternative measure of resilience. As a limitation, however, this spatial metric of resilience is useful only for step-change perturbations. Building upon the concept of recovery length, we propose a more general form of the spatial metric of resilience that can be applied to any shape of perturbation profiles (i.e., a sharp or smooth gradient). We termed this new spatial measure “perturbation-adjusted spatial metric of resilience” (PASMORE). We demonstrate the applicability of the proposed metric using a mathematical model of a microbial mat. PASMORE can help identify when a system, such as a microbial community, is on the verge of collapse or nearing an irreversible transition across a tipping point.« less

  1. Dynamical Scaling Implications of Ferrari, Prähofer, and Spohn's Remarkable Spatial Scaling Results for Facet-Edge Fluctuations

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto

    2014-06-01

    Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R), 2004), we rederived and extended their result heuristically. With experimental colleagues we used STM line scans to corroborate their prediction that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions was shown to go as , decidedly different from the behavior for fluctuations of isolated steps.

  2. Quantum entanglement in time

    NASA Astrophysics Data System (ADS)

    Nowakowski, Marcin

    2017-05-01

    In this paper we present a concept of quantum entanglement in time in a context of entangled consistent histories. These considerations are supported by presentation of necessary tools closely related to those acting on a space of spatial multipartite quantum states. We show that in similarity to monogamy of quantum entanglement in space, quantum entanglement in time is also endowed with this property for a particular history. Basing on these observations, we discuss further bounding of temporal correlations and derive analytically the Tsirelson bound implied by entangled histories for the Leggett-Garg inequalities.

  3. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.

  4. Temporal and spatial correlation patterns of air pollutants in Chinese cities

    PubMed Central

    Dai, Yue-Hua

    2017-01-01

    As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599

  5. Linking the structures, free volumes, and properties of ionic liquid mixtures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01407d

    PubMed Central

    Brooks, Nicholas J.; Castiglione, Franca; Doherty, Cara M.; Dolan, Andrew; Hill, Anita J.; Hunt, Patricia A.; Matthews, Richard P.; Mauri, Michele; Mele, Andrea; Simonutti, Roberto; Villar-Garcia, Ignacio J.; Weber, Cameron C.

    2017-01-01

    The formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [C4C1im]+ cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and 129Xe NMR techniques. Anion size has the greatest effect on the spatial arrangement of the ILs and their mixtures in terms of the size of the non-polar domains and inter-ion distances. It was found that differences in coulombic attraction between oppositely charged ions arising from the distribution of charge density amongst the atoms of the anion also significantly influences these inter-ion distances. PALS and 129Xe NMR results pertaining to the free volume of these mixtures were found to strongly correlate with each other despite the vastly different timescales of these techniques. Furthermore, the excess free volumes calculated from each of these measurements were in excellent agreement with the excess volumes of mixing measured for the IL mixtures investigated. The correspondence of these techniques indicates that the static and dynamic free volume of these liquid mixtures are strongly linked. Consequently, fluxional processes such as hydrogen bonding do not significantly contribute to the free volumes of these liquids compared to the spatial arrangement of ions arising from their size, shape and coulombic attraction. Given the relationship between free volume and transport properties such as viscosity and conductivity, these results provide a link between the structures of IL mixtures, the thermodynamics of mixing and their physicochemical properties. PMID:29619199

  6. A statistical approach to recognize source classes for unassociated sources in the first Fermi-LAT catalog

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-06-15

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of γ-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit γ rays, 630 of these sources are "unassociated" (i.e., have no obvious counterparts at other wavelengths).We employ two statistical analyses of the primary γ-ray characteristics for these unassociated sources in an effort to correlate their γ-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-likemore » sources in the 1FGL unassociated sources. Furthermore, the results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We also discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in ~80% of the sources.« less

  7. Metallicity fluctuation statistics in the interstellar medium and young stars - I. Variance and correlation

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Ting, Yuan-Sen

    2018-04-01

    The distributions of a galaxy's gas and stars in chemical space encode a tremendous amount of information about that galaxy's physical properties and assembly history. However, present methods for extracting information from chemical distributions are based either on coarse averages measured over galactic scales (e.g. metallicity gradients) or on searching for clusters in chemical space that can be identified with individual star clusters or gas clouds on ˜1 pc scales. These approaches discard most of the information, because in galaxies gas and young stars are observed to be distributed fractally, with correlations on all scales, and the same is likely to be true of metals. In this paper we introduce a first theoretical model, based on stochastically forced diffusion, capable of predicting the multiscale statistics of metal fields. We derive the variance, correlation function, and power spectrum of the metal distribution from first principles, and determine how these quantities depend on elements' astrophysical origin sites and on the large-scale properties of galaxies. Among other results, we explain for the first time why the typical abundance scatter observed in the interstellar media of nearby galaxies is ≈0.1 dex, and we predict that this scatter will be correlated on spatial scales of ˜0.5-1 kpc, and over time-scales of ˜100-300 Myr. We discuss the implications of our results for future chemical tagging studies.

  8. A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of {gamma}-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit {gamma} rays, 630 of these sources are 'unassociated' (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary {gamma}-ray characteristics for these unassociated sources in an effort to correlate their {gamma}-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like andmore » 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source 'classifications' appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to 'probable source classes' for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in {approx}80% of the sources.« less

  9. A Statistical Approach to Recognizing Source Classes for Unassociated Sources in the First FERMI-LAT Catalog

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; hide

    2012-01-01

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of gamma -ray sources using a uniform analysis method. After correlating with the mostcomplete catalogs of source types known to emit gamma rays, 630 of these sources are "unassociated" (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in approximately 80% of the sources.

  10. A statistical approach to recognize source classes for unassociated sources in the first Fermi-LAT catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of γ-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit γ rays, 630 of these sources are "unassociated" (i.e., have no obvious counterparts at other wavelengths).We employ two statistical analyses of the primary γ-ray characteristics for these unassociated sources in an effort to correlate their γ-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-likemore » sources in the 1FGL unassociated sources. Furthermore, the results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We also discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in ~80% of the sources.« less

  11. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  12. The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z {approx} 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Guillermo A.; Lira, Paulina; Francke, Harold

    2008-07-10

    We present K-band imaging of two {approx}30{sup '} x 30{sup '} fields covered by the Multiwavelength Survey by Yale-Chile (MUSYC) Wide NIR Survey. The SDSS 1030+05 and Cast 1255 fields were imaged with the Infrared Side Port Imager (ISPI) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) to a 5 {sigma} point-source limiting depth of K {approx} 20 (Vega). Combining these data with the MUSYC optical UBVRIz imaging, we created multiband K-selected source catalogs for both fields. These catalogs, together with the MUSYC K-band catalog of the Extended Chandra Deep Field South (ECDF-S) field, weremore » used to select K < 20 BzK galaxies over an area of 0.71 deg{sup 2}. This is the largest area ever surveyed for BzK galaxies. We present number counts, redshift distributions, and stellar masses for our sample of 3261 BzK galaxies (2502 star-forming [sBzK] and 759 passively evolving [pBzK]), as well as reddening and star formation rate estimates for the star-forming BzK systems. We also present two-point angular correlation functions and spatial correlation lengths for both sBzK and pBzK galaxies and show that previous estimates of the correlation function of these galaxies were affected by cosmic variance due to the small areas surveyed. We have measured correlation lengths r{sub 0} of 8.89 {+-} 2.03 and 10.82 {+-} 1.72 Mpc for sBzK and pBzK galaxies, respectively. This is the first reported measurement of the spatial correlation function of passive BzK galaxies. In the {lambda}CDM scenario of galaxy formation, these correlation lengths at z {approx} 2 translate into minimum masses of {approx}4 x 10{sup 12} and {approx}9 x 10{sup 12} M{sub sun} for the dark matter halos hosting sBzK and pBzK galaxies, respectively. The clustering properties of the galaxies in our sample are consistent with their being the descendants of bright Lyman break galaxies at z {approx} 3, and the progenitors of present-day >1L{sup *} galaxies.« less

  13. Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

    PubMed Central

    Cho, Yujin; Dierre, Benjamin; Sekiguchi, Takashi; Suehiro, Takayuki; Takahashi, Kohsei; Takeda, Takashi; Xie, Rong-Jun; Yamamoto, Yoshinobu; Hirosaki, Naoto

    2016-01-01

    Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL. PMID:27911365

  14. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  15. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation

    NASA Astrophysics Data System (ADS)

    Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.

    2009-08-01

    Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.

  16. Spatial relationships among cereal yields and selected soil physical and chemical properties.

    PubMed

    Lipiec, Jerzy; Usowicz, Bogusław

    2018-08-15

    Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  18. A spatial scaling relationship for soil moisture in a semiarid landscape, using spatial scaling relationships for pedology

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.

    2013-12-01

    In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.

  19. Revealing Spatial Variation and Correlation of Urban Travels from Big Trajectory Data

    NASA Astrophysics Data System (ADS)

    Li, X.; Tu, W.; Shen, S.; Yue, Y.; Luo, N.; Li, Q.

    2017-09-01

    With the development of information and communication technology, spatial-temporal data that contain rich human mobility information are growing rapidly. However, the consistency of multi-mode human travel behind multi-source spatial-temporal data is not clear. To this aim, we utilized a week of taxies' and buses' GPS trajectory data and smart card data in Shenzhen, China to extract city-wide travel information of taxi, bus and metro and tested the correlation of multi-mode travel characteristics. Both the global correlation and local correlation of typical travel indicator were examined. The results show that: (1) Significant differences exist in of urban multi-mode travels. The correlation between bus travels and taxi travels, metro travel and taxi travels are globally low but locally high. (2) There are spatial differences of the correlation relationship between bus, metro and taxi travel. These findings help us understanding urban travels deeply therefore facilitate both the transport policy making and human-space interaction research.

  20. Characterizing regional soil mineral composition using spectroscopyand geostatistics

    USGS Publications Warehouse

    Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.

    2013-01-01

    This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.

  1. Field Comparisons of Three Biomarker Detection Methods in Icelandic Mars Analogue Environments

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Amador, E. S.; Cable, M. L.; Chaudry, N.; Cullen, T.; Jacobsen, M.; Murusekan, G.; Schwieterman, E.; Stevens, A.; Stockton, A.; Yin, C.; Cullen, D.; Geppert, W.

    2014-12-01

    The ability to estimate the spatial and temporal distributions of biomarkers has been identified as a key need for planning life detection strategies. In a typical planetary exploration scenario, sampling site selection will be informed only by remote sensing data; however, if a difference of a few tens of meters, or centimeters, makes a significant difference in the results, science objectives may not be met. We conducted an analogue planetary expedition to test the correlation of three common biomarker detection methods -- cell counts through fluorescence microscopy, ATP quantification, and quantitative PCR with universal primer sets (bacteria, archaea, and fungi) -- and their spatial scale representativeness. Sampling sites in recent Icelandic lava fields (Fimmvörđuháls and Eldfell) spanned four nested spatial scales: 1 m, 10 m, 100 m, and > 1 km. Each site was homogeneous at typical 'remote sampling' resolution (overall temperature, apparent moisture content, and regolith grain size). No correlation between cell counts and either ATP or qPCR data was significant at any distance scale; ATP quantification and the archaeal and fungal qPCR data showed a marginal negative correlation at the 1 m level. Visible cell count data was statistically site-dependent for sites 10 m and 100 m apart, but not for sites > 1 km apart, whereas ATP results and qPCR data showed site dependence at all four scales. Distance had no significant effect on variability in cell counts and qPCR data, but was positively correlated with ATP variability. These results highlight the difficulty of choosing a 'good' biomarker: not only may different methods yield conflicting results, but they may also be differentially representative of the overall area. We intend to expand on this work with a follow-up campaign using comprehensive assays of physicochemical site properties to better distinguish between effects of environmental variability and intrinsic biomarker variability.

  2. Fine scale climatic and soil variability effects on plant species cover along the Front Range of Colorado, USA

    NASA Astrophysics Data System (ADS)

    Cumming, William Frank Preston

    Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.

  3. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.

  4. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  5. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  6. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  7. Spatial transferring of ecosystem services and property rights allocation of ecological compensation

    NASA Astrophysics Data System (ADS)

    Wen, Wujun; Xu, Geng; Wang, Xingjie

    2011-09-01

    Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.

  8. Assessing the role of spatial correlations during collective cell spreading

    PubMed Central

    Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.

    2014-01-01

    Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987

  9. Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex

    PubMed Central

    Rikhye, Rajeev V.

    2015-01-01

    Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254

  10. The θ-γ neural code.

    PubMed

    Lisman, John E; Jensen, Ole

    2013-03-20

    Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.

    PubMed

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-05-28

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.

  12. An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2011-03-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.

  13. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope

    PubMed Central

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177

  14. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lin; Gong, Huili; Dai, Zhenxue

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of  K in alluvial fans.« less

  15. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    DOE PAGES

    Zhu, Lin; Gong, Huili; Dai, Zhenxue; ...

    2017-02-03

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of  K in alluvial fans.« less

  16. Spatial Variability of Grapevine Bud Burst Percentage and Its Association with Soil Properties at Field Scale

    PubMed Central

    Li, Tao; Hao, Xinmei; Kang, Shaozhong

    2016-01-01

    There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692

  17. Using direct current resistivity sounding and geostatistics to aid in hydrogeological studies in the Choshuichi alluvial fan, Taiwan.

    PubMed

    Yang, Chieh-Hou; Lee, Wei-Feng

    2002-01-01

    Ground water reservoirs in the Choshuichi alluvial fan, central western Taiwan, were investigated using direct-current (DC) resistivity soundings at 190 locations, combined with hydrogeological measurements from 37 wells. In addition, attempts were made to calculate aquifer transmissivity from both surface DC resistivity measurements and geostatistically derived predictions of aquifer properties. DC resistivity sounding data are highly correlated to the hydraulic parameters in the Choshuichi alluvial fan. By estimating the spatial distribution of hydraulic conductivity from the kriged well data and the cokriged thickness of the correlative aquifer from both resistivity sounding data and well information, the transmissivity of the aquifer at each location can be obtained from the product of kriged hydraulic conductivity and computed thickness of the geoelectric layer. Thus, the spatial variation of the transmissivities in the study area is obtained. Our work is more comparable to Ahmed et al. (1988) than to the work of Niwas and Singhal (1981). The first "constraint" from Niwas and Singhal's work is a result of their use of linear regression. The geostatistical approach taken here (and by Ahmed et al. [1988]) is a natural improvement on the linear regression approach.

  18. Scale-invariant structure of energy fluctuations in real earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Chang, Zhe; Wang, Huanyu; Lu, Hong

    2017-11-01

    Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.

  19. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  20. Analysis of spatial correlations in a model two-dimensional liquid through eigenvalues and eigenvectors of atomic-level stress matrices.

    PubMed

    Levashov, V A; Stepanov, M G

    2016-01-01

    Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.

  1. A high-significance measurement of correlation between unresolved IRAS sources and optically-selected galaxy clusters

    NASA Astrophysics Data System (ADS)

    Hincks, Adam D.; Hajian, Amir; Addison, Graeme E.

    2013-05-01

    We cross-correlate the 100 μm Improved Reprocessing of the IRAS Survey (IRIS) map and galaxy clusters at 0.1 < z < 0.3 in the maxBCG catalogue taken from the Sloan Digital Sky Survey, measuring an angular cross-power spectrum over multipole moments 150 < l < 3000 at a total significance of over 40σ. The cross-spectrum, which arises from the spatial correlation between unresolved dusty galaxies that make up the cosmic infrared background (CIB) in the IRIS map and the galaxy clusters, is well-fit by a single power law with an index of -1.28±0.12, similar to the clustering of unresolved galaxies from cross-correlating far-infrared and submillimetre maps at longer wavelengths. Using a recent, phenomenological model for the spectral and clustering properties of the IRIS galaxies, we constrain the large-scale bias of the maxBCG clusters to be 2.6±1.4, consistent with existing analyses of the real-space cluster correlation function. The success of our method suggests that future CIB-optical cross-correlations using Planck and Herschel data will significantly improve our understanding of the clustering and redshift distribution of the faint CIB sources.

  2. A Study of Charge Transport: Correlated Energetic Disorder in Organic Semiconductors, and the Fragment Hamiltonian

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan Robert

    This dissertation details work done on two different descriptions of charge transport. The first topic is energetic disorder in organic semiconductors, and its effect on charge transport. This is motivated primarily by solar cells, which can be broadly classified as either inorganic or organic. The inorganic class of solar cells is older, and more well-developed, with the most common type being constructed from crystalline silicon. The large silicon crystals required for these cells are expensive to manufacture, which gave rise to interest in photovoltaic cells made from much less costly organic polymers. These organic materials are also less efficient than their silicon counterparts, due to a large degree of spatial and energetic disorder. In this document, the sources and structure of energetic disorder in organic semiconductors are explored, with an emphasis on spatial correlations in energetic disorder. In order for an organic photovoltaic device to function, there must be photogeneration of an exciton (a bound electron-hole pair), exciton transport, exciton dissociation, and transport of the individual charges to their respective terminals. In the case of this thesis, the main focus is exciton dissociation. The effects of correlation on exciton dissociation are examined through computer simulation, and compared to the theory and simulations of previous researchers. We conclude that energetic disorder in organic semiconductors is spatially correlated, and that this correlation improves the ability of excitons to dissociate. The second topic of this dissertation is the Fragment Hamiltonian model. This is a model currently in development as a means of describing charge transport across a range of systems. Currently there are many different systems which exhibit various charge transport behaviors, which are described by several different models. The overarching goal of the Fragment Hamiltonian model is to construct a description of charge transport which accurately describes the behavior of multiple different materials (i.e. metallic conductors or ceramic insulators) in the appropriate limits. The Fragment Hamiltonian model is explored in the context of the tight-binding model, and properties such as the conductivity of several different systems are deduced.

  3. Array of nanoparticles coupling with quantum-dot: Lattice plasmon quantum features

    NASA Astrophysics Data System (ADS)

    Salmanogli, Ahmad; Gecim, H. Selcuk

    2018-06-01

    In this study, we analyze the interaction of lattice plasmon with quantum-dot in order to mainly examine the quantum features of the lattice plasmon containing the photonic/plasmonic properties. Despite optical properties of the localized plasmon, the lattice plasmon severely depends on the array geometry, which may influence its quantum features such as uncertainty and the second-order correlation function. To investigate this interaction, we consider a closed system containing an array of the plasmonic nanoparticles and quantum-dot. We analyze this system with full quantum theory by which the array electric far field is quantized and the strength coupling of the quantum-dot array is analytically calculated. Moreover, the system's dynamics are evaluated and studied via the Heisenberg-Langevin equations to attain the system optical modes. We also analytically examine the Purcell factor, which shows the effect of the lattice plasmon on the quantum-dot spontaneous emission. Finally, the lattice plasmon uncertainty and its time evolution of the second-order correlation function at different spatial points are examined. These parameters are dramatically affected by the retarded field effect of the array nanoparticles. We found a severe quantum fluctuation at points where the lattice plasmon occurs, suggesting that the lattice plasmon photons are correlated.

  4. Geometry of quantum Hall states: Gravitational anomaly and transport coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Tankut, E-mail: tcan@scgp.stonybrook.edu; Laskin, Michael; Wiegmann, Paul B.

    2015-11-15

    We show that universal transport coefficients of the fractional quantum Hall effect (FQHE) can be understood as a response to variations of spatial geometry. Some transport properties are essentially governed by the gravitational anomaly. We develop a general method to compute correlation functions of FQH states in a curved space, where local transformation properties of these states are examined through local geometric variations. We introduce the notion of a generating functional and relate it to geometric invariant functionals recently studied in geometry. We develop two complementary methods to study the geometry of the FQHE. One method is based on iteratingmore » a Ward identity, while the other is based on a field theoretical formulation of the FQHE through a path integral formalism.« less

  5. Reliability Correction for Functional Connectivity: Theory and Implementation

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng

    2016-01-01

    Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163

  6. Spatial correlation of the dynamic propensity of a glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Razul, M. Shajahan G.; Matharoo, Gurpreet S.; Poole, Peter H.

    2011-06-01

    We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T <= 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.

  7. The statistical properties of vortex flows in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar

    2015-08-01

    Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere

  8. Biodiversity and agriculture in dynamic landscapes: Integrating ground and remotely-sensed baseline surveys.

    PubMed

    Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo

    2016-07-15

    Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS 2

    DOE PAGES

    Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh; ...

    2014-12-18

    A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. We investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS 2) under photo-excitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS 2, after the metallic phase transformation (1T-phase), the photocurrent peak ismore » observed towards the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are few meV for 1T- and ~200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photo responsivity by more than one order of magnitude, a crucial parameter in achieving high performance optoelectronic devices. The obtained results pave a pathway for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where Ohmic contacts are necessary for achieving high efficiency devices with low power consumption.« less

  10. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  11. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES

    PubMed Central

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-01-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A.; Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientationalmore » correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.« less

  13. Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples

    NASA Astrophysics Data System (ADS)

    Starnoni, M.; Pokrajac, D.; Neilson, J. E.

    2017-09-01

    Accurate determination of the petrophysical properties of rocks, namely REV, mean pore and grain size and absolute permeability, is essential for a broad range of engineering applications. Here, the petrophysical properties of rocks are calculated using an integrated approach comprising image processing, statistical correlation and numerical simulations. The Stokes equations of creeping flow for incompressible fluids are solved using the Finite-Volume SIMPLE algorithm. Simulations are then carried out on three-dimensional digital images obtained from micro-CT scanning of two rock formations: one sandstone and one carbonate. Permeability is predicted from the computed flow field using Darcy's law. It is shown that REV, REA and mean pore and grain size are effectively estimated using the two-point spatial correlation function. Homogeneity and anisotropy are also evaluated using the same statistical tools. A comparison of different absolute permeability estimates is also presented, revealing a good agreement between the numerical value and the experimentally determined one for the carbonate sample, but a large discrepancy for the sandstone. Finally, a new convergence criterion for the SIMPLE algorithm, and more generally for the family of pressure-correction methods, is presented. This criterion is based on satisfaction of bulk momentum balance, which makes it particularly useful for pore-scale modelling of reservoir rocks.

  14. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juices

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Lu, Renfu

    2005-11-01

    Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.

  15. Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia

    Treesearch

    Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold

    1994-01-01

    In this study a cross-correlation statistic is used to analyse the spatial relationship among stand characteristics of natural, undisturbed shortleaf pine stands sampled during 1961-72 and 1972-82 in northern Georgia. Stand characteristics included stand age, site index, tree density, hardwood competition, and mortality. In each time period, the spatial cross-...

  16. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    PubMed

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  18. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  19. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  20. The Conformations of Confined Polymers in an External Potential

    NASA Astrophysics Data System (ADS)

    Morrison, Greg

    The confinement of biomolecules is ubiquitous in nature, such as the spatial constraints of viral encapsulation, histone binding, and chromosomal packing. Advances in microfluidics and nanopore fabrication have permitted powerful new tools in single molecule manipulation and gene sequencing through molecular confinement as well. In order to fully understand and exploit these systems, the ability to predict the structure of spatially confined molecules is essential. In this talk, I describe a mean field approach to determine the properties of stiff polymers confined to cylinders and slits, which is relevant for a variety of biological and experimental conditions. I show that this approach is able to not only reproduce known scaling laws for confined wormlike chains, but also provides an improvement over existing weakly bending rod approximations in determining the detailed chain properties (such as correlation functions). Using this approach, we also show that it is possible to study the effect of an externally applied tension or static electric field in a natural and analytically tractable way. These external perturbations can alter the scaling laws and introduce important new length scales into the system, relevant for histone unbinding and single-molecule analysis of DNA.

Top