Sample records for spatial data

  1. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  2. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    NASA Astrophysics Data System (ADS)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  3. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  4. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  5. Incorporating Spatial Data into Enterprise Applications

    NASA Astrophysics Data System (ADS)

    Akiki, Pierre; Maalouf, Hoda

    The main goal of this chapter is to discuss the usage of spatial data within enterprise as well as smaller line-of-business applications. In particular, this chapter proposes new methodologies for storing and manipulating vague spatial data and provides methods for visualizing both crisp and vague spatial data. It also provides a comparison between different types of spatial data, mainly 2D crisp and vague spatial data, and their respective fields of application. Additionally, it compares existing commercial relational database management systems, which are the most widely used with enterprise applications, and discusses their deficiencies in terms of spatial data support. A new spatial extension package called Spatial Extensions (SPEX) is provided in this chapter and is tested on a software prototype.

  6. Research on key technologies for data-interoperability-based metadata, data compression and encryption, and their application

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun

    2006-10-01

    With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.

  7. Spatial Data Transfer Standard (SDTS)

    USGS Publications Warehouse

    ,

    1995-01-01

    The Spatial Data Transfer Standard (SOTS) is a mechanism for the transfer of spatial data between dissimilar computer systems. The SOTS specifies exchange constructs, addressing formats, structure, and content for spatially referenced vector and raster (including gridded) data. SOTS components are a conceptual model, specifications for a quality report, transfer module specifications, data dictionary specifications, and definitions of spatial features and attributes.

  8. Global Data Spatially Interrelate System for Scientific Big Data Spatial-Seamless Sharing

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wu, L.; Yang, Y.; Lei, X.; He, W.

    2014-04-01

    A good data sharing system with spatial-seamless services will prevent the scientists from tedious, boring, and time consuming work of spatial transformation, and hence encourage the usage of the scientific data, and increase the scientific innovation. Having been adopted as the framework of Earth datasets by Group on Earth Observation (GEO), Earth System Spatial Grid (ESSG) is potential to be the spatial reference of the Earth datasets. Based on the implementation of ESSG, SDOG-ESSG, a data sharing system named global data spatially interrelate system (GASE) was design to make the data sharing spatial-seamless. The architecture of GASE was introduced. The implementation of the two key components, V-Pools, and interrelating engine, and the prototype is presented. Any dataset is firstly resampled into SDOG-ESSG, and is divided into small blocks, and then are mapped into hierarchical system of the distributed file system in V-Pools, which together makes the data serving at a uniform spatial reference and at a high efficiency. Besides, the datasets from different data centres are interrelated by the interrelating engine at the uniform spatial reference of SDOGESSG, which enables the system to sharing the open datasets in the internet spatial-seamless.

  9. Exploratory study on Marine SDI implementation in Malaysia

    NASA Astrophysics Data System (ADS)

    Tarmidi, Zakri; Mohd Shariff, Abdul Rashid; Rodzi Mahmud, Ahmad; Zaiton Ibrahim, Zelina; Halim Hamzah, Abdul

    2016-06-01

    This paper discusses the explanatory study of the implementation of spatial data sharing between Malaysia's marine organisations. The survey method was selected with questionnaire as an instrument for data collection and analysis. The aim of the questionnaire was to determine the critical factors in enabling marine spatial data sharing in Malaysia, and the relationship between these indicators. A questionnaire was sent to 48 marine and coastal organisations in Malaysia, with 84.4% of respondents answering the questionnaire. The respondents selected were people who involved directly with GIS application in the organisations. The results show there are three main issues in implementing spatial data sharing; (1) GIS planning and implementation in the organisation, (2) spatial data sharing knowledge and implementation in the organisation and (3) collaboration to enable spatial data sharing within and between organisations. To improve GIS implementation, spatial data sharing implementation and collaboration in enabling spatial data sharing, a conceptual collaboration model was proposed with components of marine GIS strategic planning, spatial data sharing strategies and collaboration strategy.

  10. Spatial Data Transfer Standard (SDTS)

    USGS Publications Warehouse

    ,

    1999-01-01

    The American National Standards Institute?s (ANSI) Spatial Data Transfer Standard (SDTS) is a mechanism for archiving and transferring of spatial data (including metadata) between dissimilar computer systems. The SDTS specifies exchange constructs, such as format, structure, and content, for spatially referenced vector and raster (including gridded) data. The SDTS includes a flexible conceptual model, specifications for a quality report, transfer module specifications, data dictionary specifications, and definitions of spatial features and attributes.

  11. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  12. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  13. Clustering of Multivariate Geostatistical Data

    NASA Astrophysics Data System (ADS)

    Fouedjio, Francky

    2017-04-01

    Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.

  14. Proposal for a Web Encoding Service (wes) for Spatial Data Transactio

    NASA Astrophysics Data System (ADS)

    Siew, C. B.; Peters, S.; Rahman, A. A.

    2015-10-01

    Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial Consortium (OGC). Similar web services for 3D SDI are also being established in recent years, with extended capabilities to handle 3D spatial data. The increasing popularity of using City Geographic Markup Language (CityGML) for 3D city modelling applications leads to the needs for large spatial data handling for data delivery. This paper revisits the available web services in OGC Web Services (OWS), and propose the background concepts and requirements for encoding spatial data via Web Encoding Service (WES). Furthermore, the paper discusses the data flow of the encoder within web service, e.g. possible integration with Web Processing Service (WPS) or Web 3D Services (W3DS). The integration with available web service could be extended to other available web services for efficient handling of spatial data, especially 3D spatial data.

  15. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  16. Solutions for extracting file level spatial metadata from airborne mission data

    NASA Astrophysics Data System (ADS)

    Schwab, M. J.; Stanley, M.; Pals, J.; Brodzik, M.; Fowler, C.; Icebridge Engineering/Spatial Metadata

    2011-12-01

    Authors: Michael Stanley Mark Schwab Jon Pals Mary J. Brodzik Cathy Fowler Collaboration: Raytheon EED and NSIDC Raytheon / EED 5700 Rivertech Court Riverdale, MD 20737 NSIDC University of Colorado UCB 449 Boulder, CO 80309-0449 Data sets acquired from satellites and aircraft may differ in many ways. We will focus on the differences in spatial coverage between the two platforms. Satellite data sets over a given period typically cover large geographic regions. These data are collected in a consistent, predictable and well understood manner due to the uniformity of satellite orbits. Since satellite data collection paths are typically smooth and uniform the data from satellite instruments can usually be described with simple spatial metadata. Subsequently, these spatial metadata can be stored and searched easily and efficiently. Conversely, aircraft have significantly more freedom to change paths, circle, overlap, and vary altitude all of which add complexity to the spatial metadata. Aircraft are also subject to wind and other elements that result in even more complicated and unpredictable spatial coverage areas. This unpredictability and complexity makes it more difficult to extract usable spatial metadata from data sets collected on aircraft missions. It is not feasible to use all of the location data from aircraft mission data sets for use as spatial metadata. The number of data points in typical data sets poses serious performance problems for spatial searching. In order to provide efficient spatial searching of the large number of files cataloged in our systems, we need to extract approximate spatial descriptions as geo-polygons from a small number of vertices (fewer than two hundred). We present some of the challenges and solutions for creating airborne mission-derived spatial metadata. We are implementing these methods to create the spatial metadata for insertion of IceBridge mission data into ECS for public access through NSIDC and ECHO but, they are potentially extensible to any aircraft mission data.

  17. Issues of Authenticity of Spatial Data.

    ERIC Educational Resources Information Center

    McGlamery, Patrick

    This paper discusses the authenticity of digital spatial data. The first section describes three formats for digital spatial data: vector, raster, and thematic. The second section addresses the integrity of spatial data, including six possible formats for the same information: (1) aerial photographic prints, time stamped, primary, remotely sensed…

  18. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    PubMed

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  19. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  20. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  1. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to themore » new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.« less

  2. Spatial Knowledge Infrastructures - Creating Value for Policy Makers and Benefits the Community

    NASA Astrophysics Data System (ADS)

    Arnold, L. M.

    2016-12-01

    The spatial data infrastructure is arguably one of the most significant advancements in the spatial sector. It's been a game changer for governments, providing for the coordination and sharing of spatial data across organisations and the provision of accessible information to the broader community of users. Today however, end-users such as policy-makers require far more from these spatial data infrastructures. They want more than just data; they want the knowledge that can be extracted from data and they don't want to have to download, manipulate and process data in order to get the knowledge they seek. It's time for the spatial sector to reduce its focus on data in spatial data infrastructures and take a more proactive step in emphasising and delivering the knowledge value. Nowadays, decision-makers want to be able to query at will the data to meet their immediate need for knowledge. This is a new value proposal for the decision-making consumer and will require a shift in thinking. This paper presents a model for a Spatial Knowledge Infrastructure and underpinning methods that will realise a new real-time approach to delivering knowledge. The methods embrace the new capabilities afforded through the sematic web, domain and process ontologies and natural query language processing. Semantic Web technologies today have the potential to transform the spatial industry into more than just a distribution channel for data. The Semantic Web RDF (Resource Description Framework) enables meaning to be drawn from data automatically. While pushing data out to end-users will remain a central role for data producers, the power of the semantic web is that end-users have the ability to marshal a broad range of spatial resources via a query to extract knowledge from available data. This can be done without actually having to configure systems specifically for the end-user. All data producers need do is make data accessible in RDF and the spatial analytics does the rest.

  3. Envisioning a Planetary Spatial Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.

    2017-02-01

    We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.

  4. R and Spatial Data

    EPA Science Inventory

    R is an open source language and environment for statistical computing and graphics that can also be used for both spatial analysis (i.e. geoprocessing and mapping of different types of spatial data) and spatial data analysis (i.e. the application of statistical descriptions and ...

  5. A book review of Spatial data analysis in ecology and agriculture using R

    USDA-ARS?s Scientific Manuscript database

    Spatial Data Analysis in Ecology and Agriculture Using R is a valuable resource to assist agricultural and ecological researchers with spatial data analyses using the R statistical software(www.r-project.org). Special emphasis is on spatial data sets; how-ever, the text also provides ample guidance ...

  6. Interpreting the ASTM 'content standard for digital geospatial metadata'

    USGS Publications Warehouse

    Nebert, Douglas D.

    1996-01-01

    ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.

  7. Rasdaman for Big Spatial Raster Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.

    2015-12-01

    Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.

  8. Spatializing health research: what we know and where we are heading

    PubMed Central

    Yang, Tse-Chuan; Shoff, Carla; Noah, Aggie J.

    2013-01-01

    Beyond individual-level factors, researchers have adopted a spatial perspective to explore potentially modifiable environmental determinants of health. A spatial perspective can be integrated into health research by incorporating spatial data into studies or analyzing georeferenced data. Given the rapid changes in data collection methods and the complex dynamics between individuals and environment, we argue that GIS functions have shortcomings with respect to analytical capability and are limited when it comes to visualizing the temporal component in spatio-temporal data. In addition, we maintain that relatively little effort has been made to handle spatial heterogeneity. To that end, health researchers should be persuaded to better justify the theoretical meaning underlying the spatial matrix in analysis, while spatial data collectors, GIS specialists, spatial analysis methodologists, and the different breeds of users should be encouraged to work together making health research move forward through addressing these issues. PMID:23733281

  9. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  10. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  11. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  12. Heteroskedasticity as a leading indicator of desertification in spatially explicit data.

    PubMed

    Seekell, David A; Dakos, Vasilis

    2015-06-01

    Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.

  13. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    PubMed

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  14. Spatial Data Transfer Standard (SDTS), part 5 : SDTS raster profile and extensions

    DOT National Transportation Integrated Search

    1999-02-01

    The Spatial Data Transfer Standard (SDTS) defines a general mechanism for the transfer of : geographically referenced spatial data and its supporting metadata, i.e., attributes, data quality reports, : coordinate reference systems, security informati...

  15. Research on presentation and query service of geo-spatial data based on ontology

    NASA Astrophysics Data System (ADS)

    Li, Hong-wei; Li, Qin-chao; Cai, Chang

    2008-10-01

    The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.

  16. A SOA-based approach to geographical data sharing

    NASA Astrophysics Data System (ADS)

    Li, Zonghua; Peng, Mingjun; Fan, Wei

    2009-10-01

    In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.

  17. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  18. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  19. A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection

    PubMed Central

    Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.

    2006-01-01

    Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353

  20. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  1. Latent spatial models and sampling design for landscape genetics

    Treesearch

    Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...

  2. UTOOLS: microcomputer software for spatial analysis and landscape visualization.

    Treesearch

    Alan A. Ager; Robert J. McGaughey

    1997-01-01

    UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...

  3. Spatial features register: toward standardization of spatial features

    USGS Publications Warehouse

    Cascio, Janette

    1994-01-01

    As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

  4. Development of spatial data guidelines and standards: spatial data set documentation to support hydrologic analysis in the U.S. Geological Survey

    USGS Publications Warehouse

    Fulton, James L.

    1992-01-01

    Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.

  5. Supporting spatial data harmonization process with the use of ontologies and Semantic Web technologies

    NASA Astrophysics Data System (ADS)

    Strzelecki, M.; Iwaniak, A.; Łukowicz, J.; Kaczmarek, I.

    2013-10-01

    Nowadays, spatial information is not only used by professionals, but also by common citizens, who uses it for their daily activities. Open Data initiative states that data should be freely and unreservedly available for all users. It also applies to spatial data. As spatial data becomes widely available it is essential to publish it in form which guarantees the possibility of integrating it with other, heterogeneous data sources. Interoperability is the possibility to combine spatial data sets from different sources in a consistent way as well as providing access to it. Providing syntactic interoperability based on well-known data formats is relatively simple, unlike providing semantic interoperability, due to the multiple possible data interpretation. One of the issues connected with the problem of achieving interoperability is data harmonization. It is a process of providing access to spatial data in a representation that allows combining it with other harmonized data in a coherent way by using a common set of data product specification. Spatial data harmonization is performed by creating definition of reclassification and transformation rules (mapping schema) for source application schema. Creation of those rules is a very demanding task which requires wide domain knowledge and a detailed look into application schemas. The paper focuses on proposing methods for supporting data harmonization process, by automated or supervised creation of mapping schemas with the use of ontologies, ontology matching methods and Semantic Web technologies.

  6. Spatial Data Transfer Standard (SDTS), part 1 : logical specifications

    DOT National Transportation Integrated Search

    1997-11-20

    This document contains a specification of the Spatial Data Transfer Standard (SDTS), that will serve as a national spatial data transfer mechanism for the United States. As such it is designed to transfer a wide variety of data structures that are us...

  7. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  8. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  9. Data Updating Methods for Spatial Data Infrastructure that Maintain Infrastructure Quality and Enable its Sustainable Operation

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Takemoto, T.; Ito, Y.

    2012-07-01

    The Japanese government, local governments and businesses are working closely together to establish spatial data infrastructures in accordance with the Basic Act on the Advancement of Utilizing Geospatial Information (NSDI Act established in August 2007). Spatial data infrastructures are urgently required not only to accelerate computerization of the public administration, but also to help restoration and reconstruction of the areas struck by the East Japan Great Earthquake and future disaster prevention and reduction. For construction of a spatial data infrastructure, various guidelines have been formulated. But after an infrastructure is constructed, there is a problem of maintaining it. In one case, an organization updates its spatial data only once every several years because of budget problems. Departments and sections update the data on their own without careful consideration. That upsets the quality control of the entire data system and the system loses integrity, which is crucial to a spatial data infrastructure. To ensure quality, ideally, it is desirable to update data of the entire area every year. But, that is virtually impossible, considering the recent budget crunch. The method we suggest is to update spatial data items of higher importance only in order to maintain quality, not updating all the items across the board. We have explored a method of partially updating the data of these two geographical features while ensuring the accuracy of locations. Using this method, data on roads and buildings that greatly change with time can be updated almost in real time or at least within a year. The method will help increase the availability of a spatial data infrastructure. We have conducted an experiment on the spatial data infrastructure of a municipality using those data. As a result, we have found that it is possible to update data of both features almost in real time.

  10. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  11. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  12. “Spatial Energetics”: Integrating Data From GPS, Accelerometry, and GIS to Address Obesity and Inactivity

    PubMed Central

    James, Peter; Jankowska, Marta; Marx, Christine; Hart, Jaime E.; Berrigan, David; Kerr, Jacqueline; Hurvitz, Philip M.; Hipp, J. Aaron; Laden, Francine

    2016-01-01

    To address the current obesity and inactivity epidemics, public health researchers have attempted to identify spatial factors that influence physical inactivity and obesity. Technologic and methodologic developments have led to a revolutionary ability to examine dynamic, high-resolution measures of temporally matched location and behavior data through GPS, accelerometry, and GIS. These advances allow the investigation of spatial energetics, high–spatiotemporal resolution data on location and time-matched energetics, to examine how environmental characteristics, space, and time are linked to activity-related health behaviors with far more robust and detailed data than in previous work. Although the transdisciplinary field of spatial energetics demonstrates promise to provide novel insights on how individuals and populations interact with their environment, there remain significant conceptual, technical, analytical, and ethical challenges stemming from the complex data streams that spatial energetics research generates. First, it is essential to better understand what spatial energetics data represent, the relevant spatial context of analysis for these data, and if spatial energetics can establish causality for development of spatially relevant interventions. Second, there are significant technical problems for analysis of voluminous and complex data that may require development of spatially aware scalable computational infrastructures. Third, the field must come to agreement on appropriate statistical methodologies to account for multiple observations per person. Finally, these challenges must be considered within the context of maintaining participant privacy and security. This article describes gaps in current practice and understanding, and suggests solutions to move this promising area of research forward. PMID:27528538

  13. Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference

    PubMed Central

    Lee, Elizabeth C.; Asher, Jason M.; Goldlust, Sandra; Kraemer, John D.; Lawson, Andrew B.; Bansal, Shweta

    2016-01-01

    Spatial big data have the velocity, volume, and variety of big data sources and contain additional geographic information. Digital data sources, such as medical claims, mobile phone call data records, and geographically tagged tweets, have entered infectious diseases epidemiology as novel sources of data to complement traditional infectious disease surveillance. In this work, we provide examples of how spatial big data have been used thus far in epidemiological analyses and describe opportunities for these sources to improve disease-mitigation strategies and public health coordination. In addition, we consider the technical, practical, and ethical challenges with the use of spatial big data in infectious disease surveillance and inference. Finally, we discuss the implications of the rising use of spatial big data in epidemiology to health risk communication, and public health policy recommendations and coordination across scales. PMID:28830109

  14. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  15. Data Representations for Geographic Information Systems.

    ERIC Educational Resources Information Center

    Shaffer, Clifford A.

    1992-01-01

    Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…

  16. Understanding the effects of different social data on selecting priority conservation areas.

    PubMed

    Karimi, Azadeh; Tulloch, Ayesha I T; Brown, Greg; Hockings, Marc

    2017-12-01

    Conservation success is contingent on assessing social and environmental factors so that cost-effective implementation of strategies and actions can be placed in a broad social-ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land-use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial-prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land-use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2-51% different from those based on biological data alone. The inclusion of conservation-compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. © 2017 Society for Conservation Biology.

  17. Multimedia Exploratory Data Analysis for Geospatial Data Mining: The Case for Augmented Seriation.

    ERIC Educational Resources Information Center

    Gluck, Myke

    2001-01-01

    Reviews the role of exploratory data analysis (EDA) for spatial data mining and presents a case study addressing environmental risk assessments in New York State to illustrate the feasibility and usability of augmenting seriation for spatial data analysis. Describes augmentation with multimedia tools to understand relationships among spatial,…

  18. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  19. Unleashing spatially distributed ecohydrology modeling using Big Data tools

    NASA Astrophysics Data System (ADS)

    Miles, B.; Idaszak, R.

    2015-12-01

    Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.

  20. Retrieving and Indexing Spatial Data in the Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Sheng; Zhou, Daliang

    In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.

  1. Research on the key technology of update of land survey spatial data based on embedded GIS and GPS

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Liu, Yanfang; Yu, Hai; Xia, Yin

    2009-10-01

    According to the actual needs of the second land-use survey and the PDA's characteristics of small volume and small memory, it can be analyzed that the key technology of the data collection system of field survey based on GPS-PDA is the read speed of the data. In order to enhance the speed and efficiency of the analysis of the spatial data on mobile devices, we classify the layers of spatial data; get the Layer-Grid Index by getting the different levels and blocks of the layer of spatial data; then get the R-TREE index of the spatial data objects. Different scale levels of space are used in different levels management. The grid method is used to do the block management.

  2. Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference.

    PubMed

    Lee, Elizabeth C; Asher, Jason M; Goldlust, Sandra; Kraemer, John D; Lawson, Andrew B; Bansal, Shweta

    2016-12-01

    Spatial big data have the velocity, volume, and variety of big data sources and contain additional geographic information. Digital data sources, such as medical claims, mobile phone call data records, and geographically tagged tweets, have entered infectious diseases epidemiology as novel sources of data to complement traditional infectious disease surveillance. In this work, we provide examples of how spatial big data have been used thus far in epidemiological analyses and describe opportunities for these sources to improve disease-mitigation strategies and public health coordination. In addition, we consider the technical, practical, and ethical challenges with the use of spatial big data in infectious disease surveillance and inference. Finally, we discuss the implications of the rising use of spatial big data in epidemiology to health risk communication, and public health policy recommendations and coordination across scales. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Adaptive proxy map server for efficient vector spatial data rendering

    NASA Astrophysics Data System (ADS)

    Sayar, Ahmet

    2013-01-01

    The rapid transmission of vector map data over the Internet is becoming a bottleneck of spatial data delivery and visualization in web-based environment because of increasing data amount and limited network bandwidth. In order to improve both the transmission and rendering performances of vector spatial data over the Internet, we propose a proxy map server enabling parallel vector data fetching as well as caching to improve the performance of web-based map servers in a dynamic environment. Proxy map server is placed seamlessly anywhere between the client and the final services, intercepting users' requests. It employs an efficient parallelization technique based on spatial proximity and data density in case distributed replica exists for the same spatial data. The effectiveness of the proposed technique is proved at the end of the article by the application of creating map images enriched with earthquake seismic data records.

  4. Data center thermal management

    DOEpatents

    Hamann, Hendrik F.; Li, Hongfei

    2016-02-09

    Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.

  5. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  6. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  7. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  8. A scoping review of spatial cluster analysis techniques for point-event data.

    PubMed

    Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott

    2013-05-01

    Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.

  9. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  10. Arc_Mat: a Matlab-based spatial data analysis toolbox

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Lesage, James

    2010-03-01

    This article presents an overview of Arc_Mat, a Matlab-based spatial data analysis software package whose source code has been placed in the public domain. An earlier version of the Arc_Mat toolbox was developed to extract map polygon and database information from ESRI shapefiles and provide high quality mapping in the Matlab software environment. We discuss revisions to the toolbox that: utilize enhanced computing and graphing capabilities of more recent versions of Matlab, restructure the toolbox with object-oriented programming features, and provide more comprehensive functions for spatial data analysis. The Arc_Mat toolbox functionality includes basic choropleth mapping; exploratory spatial data analysis that provides exploratory views of spatial data through various graphs, for example, histogram, Moran scatterplot, three-dimensional scatterplot, density distribution plot, and parallel coordinate plots; and more formal spatial data modeling that draws on the extensive Spatial Econometrics Toolbox functions. A brief review of the design aspects of the revised Arc_Mat is described, and we provide some illustrative examples that highlight representative uses of the toolbox. Finally, we discuss programming with and customizing the Arc_Mat toolbox functionalities.

  11. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    DTIC Science & Technology

    2007-03-01

    time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT

  12. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  13. Representation of vegetation by continental data sets derived from NOAA-AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.

    1991-01-01

    Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.

  14. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  15. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    USDA-ARS?s Scientific Manuscript database

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  16. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  17. Assessing the quality of open spatial data for mobile location-based services research and applications

    NASA Astrophysics Data System (ADS)

    Ciepłuch, C.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanely, A. C.

    2011-12-01

    New trends in GIS such as Volunteered Geographical Information (VGI), Citizen Science, and Urban Sensing, have changed the shape of the geoinformatics landscape. The OpenStreetMap (OSM) project provided us with an exciting, evolving, free and open solution as a base dataset for our geoserver and spatial data provider for our research. OSM is probably the best known and best supported example of VGI and user generated spatial content on the Internet. In this paper we will describe current results from the development of quality indicators for measures for OSM data. Initially we have analysed the Ireland OSM data in grid cells (5km) to gather statistical data about the completeness, accuracy, and fitness for purpose of the underlying spatial data. This analysis included: density of user contributions, spatial density of points and polygons, types of tags and metadata used, dominant contributors in a particular area or for a particular geographic feature type, etc. There greatest OSM activity and spatial data density is highly correlated with centres of large population. The ability to quantify and assess if VGI, such as OSM, is of sufficient quality for mobile mapping applications and Location-based services is critical to the future success of VGI as a spatial data source for these technologies.

  18. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    PubMed

    Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E

    2017-01-01

    Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.

  19. Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency

    PubMed Central

    Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio

    2017-01-01

    Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034

  20. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  1. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.

  2. Improvement in Recursive Hierarchical Segmentation of Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2006-01-01

    A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.

  3. Towards democracy in spatial planning through spatial information built by communities: The investigation of spatial information built by citizens from participatory mapping to volunteered geographic information in Indonesia

    NASA Astrophysics Data System (ADS)

    Yudono, Adipandang

    2017-06-01

    Recently, crowd-sourced information is used to produce and improve collective knowledge and community capacity building. Triggered by broadening and expanding access to the Internet and cellular telephones, the utilisation of crowd-sourcing for policy advocacy, e-government and e-participation has increased globally [1]. Crowd-sourced information can conceivably support government’s or general social initiatives to inform, counsel, and cooperate, by engaging subjects and empowering decentralisation and democratization [2]. Crowd-sourcing has turned into a major technique for interactive mapping initiatives by urban or rural community because of its capability to incorporate a wide range of data. Continuously accumulated spatial data can be sorted, layered, and envisioned in ways that even beginners can comprehend with ease. Interactive spatial visualization has the possibility to be a useful democratic planning tool to empower citizens participating in spatial data provision and sharing in government programmes. Since the global emergence of World Wide Web (WWW) technology, the interaction between information providers and users has increased. Local communities are able to produce and share spatial data to produce web interfaces with territorial information in mapping application programming interfaces (APIs) public, such as Google maps, OSM and Wikimapia [3][4][5]. In terms of the democratic spatial planning action, Volunteered Geographic Information (VGI) is considered an effective voluntary method of helping people feel comfortable with the technology and other co-participants in order to shape coalitions of local knowledge. This paper has aim to investigate ‘How is spatial data created by citizens used in Indonesia?’ by discussing the characteristics of spatial data usage by citizens to support spatial policy formulation, starting with the history of participatory mapping to current VGI development in Indonesia.

  4. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  5. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  6. Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data

    DTIC Science & Technology

    2007-09-01

    spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.

  7. New data sources and derived products for the SRER digital spatial database

    Treesearch

    Craig Wissler; Deborah Angell

    2003-01-01

    The Santa Rita Experimental Range (SRER) digital database was developed to automate and preserve ecological data and increase their accessibility. The digital data holdings include a spatial database that is used to integrate ecological data in a known reference system and to support spatial analyses. Recently, the Advanced Resource Technology (ART) facility has added...

  8. Advanced data structures for the interpretation of image and cartographic data in geo-based information systems

    NASA Technical Reports Server (NTRS)

    Peuquet, D. J.

    1986-01-01

    A growing need to usse geographic information systems (GIS) to improve the flexibility and overall performance of very large, heterogeneous data bases was examined. The Vaster structure and the Topological Grid structure were compared to test whether such hybrid structures represent an improvement in performance. The use of artificial intelligence in a geographic/earth sciences data base context is being explored. The architecture of the Knowledge Based GIS (KBGIS) has a dual object/spatial data base and a three tier hierarchial search subsystem. Quadtree Spatial Spectra (QTSS) are derived, based on the quadtree data structure, to generate and represent spatial distribution information for large volumes of spatial data.

  9. Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.

    PubMed

    Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander

    2016-01-01

    Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.

  10. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  11. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  12. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  13. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  14. Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics with Level Set Transformation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Song, Xuehang; Ye, Ming

    A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less

  15. Challenges of Replacing NAD 83, NAVD 88, and IGLD 85: Exploiting the Characteristics of 3-D Digital Spatial Data

    NASA Astrophysics Data System (ADS)

    Burkholder, E. F.

    2016-12-01

    One way to address challenges of replacing NAD 83, NGVD 88 and IGLD 85 is to exploit the characteristics of 3-D digital spatial data. This presentation describes the 3-D global spatial data model (GSDM) which accommodates rigorous scientific endeavors while simultaneously supporting a local flat-earth view of the world. The GSDM is based upon the assumption of a single origin for 3-D spatial data and uses rules of solid geometry for manipulating spatial data components. This approach exploits the characteristics of 3-D digital spatial data and preserves the quality of geodetic measurements while providing spatial data users the option of working with rectangular flat-earth components and computational procedures for local applications. This flexibility is provided by using a bidirectional rotation matrix that allows any 3-D vector to be used in a geodetic reference frame for high-end applications and/or the local frame for flat-earth users. The GSDM is viewed as compatible with the datum products being developed by NGS and provides for unambiguous exchange of 3-D spatial data between disciplines and users worldwide. Three geometrical models will be summarized - geodetic, map projection, and 3-D. Geodetic computations are performed on an ellipsoid and are without equal in providing rigorous coordinate values for latitude, longitude, and ellipsoid height. Members of the user community have, for generations, sought ways to "flatten the world" to accommodate a flat-earth view and to avoid the complexity of working on an ellipsoid. Map projections have been defined for a wide variety of applications and remain very useful for visualizing spatial data. But, the GSDM supports computations based on 3-D components that have not been distorted in a 2-D map projection. The GSDM does not invalidate either geodesy or cartographic computational processes but provides a geometrically correct view of any point cloud from any point selected by the user. As a bonus, the GSDM also defines spatial data accuracy and includes procedures for establishing, tracking and using spatial data accuracy - increasingly important in many applications but especially relevant given development of procedures for tracking drones (primarily absolute) and intelligent vehicles (primarily relative).

  16. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  17. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  18. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  19. Spatial surplus production modeling of Atlantic tunas and billfish.

    PubMed

    Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G

    2011-10-01

    We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.

  20. An Empirical Bayes Approach to Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Morris, C. N.; Kostal, H.

    1983-01-01

    Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.

  1. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  2. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    PubMed

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  3. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation

    PubMed Central

    2012-01-01

    The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward. PMID:22591595

  4. Considering spatial heterogeneity in the distributed lag non-linear model when analyzing spatiotemporal data.

    PubMed

    Chien, Lung-Chang; Guo, Yuming; Li, Xiao; Yu, Hwa-Lung

    2018-01-01

    The distributed lag non-linear (DLNM) model has been frequently used in time series environmental health research. However, its functionality for assessing spatial heterogeneity is still restricted, especially in analyzing spatiotemporal data. This study proposed a solution to take a spatial function into account in the DLNM, and compared the influence with and without considering spatial heterogeneity in a case study. This research applied the DLNM to investigate non-linear lag effect up to 7 days in a case study about the spatiotemporal impact of fine particulate matter (PM 2.5 ) on preschool children's acute respiratory infection in 41 districts of northern Taiwan during 2005 to 2007. We applied two spatiotemporal methods to impute missing air pollutant data, and included the Markov random fields to analyze district boundary data in the DLNM. When analyzing the original data without a spatial function, the overall PM 2.5 effect accumulated from all lag-specific effects had a slight variation at smaller PM 2.5 measurements, but eventually decreased to relative risk significantly <1 when PM 2.5 increased. While analyzing spatiotemporal imputed data without a spatial function, the overall PM 2.5 effect did not decrease but increased in monotone as PM 2.5 increased over 20 μg/m 3 . After adding a spatial function in the DLNM, spatiotemporal imputed data conducted similar results compared with the overall effect from the original data. Moreover, the spatial function showed a clear and uneven pattern in Taipei, revealing that preschool children living in 31 districts of Taipei were vulnerable to acute respiratory infection. Our findings suggest the necessity of including a spatial function in the DLNM to make a spatiotemporal analysis available and to conduct more reliable and explainable research. This study also revealed the analytical impact if spatial heterogeneity is ignored.

  5. Research of GIS-services applicability for solution of spatial analysis tasks.

    NASA Astrophysics Data System (ADS)

    Terekhin, D. A.; Botygin, I. A.; Sherstneva, A. I.; Sherstnev, V. S.

    2017-01-01

    Experiments for working out the areas of applying various gis-services in the tasks of spatial analysis are discussed in this paper. Google Maps, Yandex Maps, Microsoft SQL Server are used as services of spatial analysis. All services have shown a comparable speed of analyzing the spatial data when carrying out elemental spatial requests (building up the buffer zone of a point object) as well as the preferences of Microsoft SQL Server in operating with more complicated spatial requests. When building up elemental spatial requests, internet-services show higher efficiency due to cliental data handling with JavaScript-subprograms. A weak point of public internet-services is an impossibility to handle data on a server side and a barren variety of spatial analysis functions. Microsoft SQL Server offers a large variety of functions needed for spatial analysis on the server side. The authors conclude that when solving practical problems, the capabilities of internet-services used in building up routes and completing other functions with spatial analysis with Microsoft SQL Server should be involved.

  6. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  7. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology.

    PubMed

    VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi

    2018-04-17

    Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.

  8. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  9. Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis

    PubMed Central

    Zipf, Alexander

    2016-01-01

    Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially. PMID:27611199

  10. A log-Weibull spatial scan statistic for time to event data.

    PubMed

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  11. Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.

    PubMed

    Liu, Da; Li, Jianxun

    2016-12-16

    Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.

  12. Spatial Statistical Data Fusion (SSDF)

    NASA Technical Reports Server (NTRS)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is fundamentally different than other approaches to data fusion for remote sensing data because it is inferential rather than merely descriptive. All approaches combine data in a way that minimizes some specified loss function. Most of these are more or less ad hoc criteria based on what looks good to the eye, or some criteria that relate only to the data at hand.

  13. Integrating the statistical analysis of spatial data in ecology

    Treesearch

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  14. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

    Treesearch

    Patrick C. Tobin

    2004-01-01

    The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...

  15. Improving data management and dissemination in web based information systems by semantic enrichment of descriptive data aspects

    NASA Astrophysics Data System (ADS)

    Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan

    2010-10-01

    The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.

  16. Validating crash locations for quantitative spatial analysis: a GIS-based approach.

    PubMed

    Loo, Becky P Y

    2006-09-01

    In this paper, the spatial variables of the crash database in Hong Kong from 1993 to 2004 are validated. The proposed spatial data validation system makes use of three databases (the crash, road network and district board databases) and relies on GIS to carry out most of the validation steps so that the human resource required for manually checking the accuracy of the spatial data can be enormously reduced. With the GIS-based spatial data validation system, it was found that about 65-80% of the police crash records from 1993 to 2004 had correct road names and district board information. In 2004, the police crash database contained about 12.7% mistakes for road names and 9.7% mistakes for district boards. The situation was broadly comparable to the United Kingdom. However, the results also suggest that safety researchers should carefully validate spatial data in the crash database before scientific analysis.

  17. Efficient statistical mapping of avian count data

    USGS Publications Warehouse

    Royle, J. Andrew; Wikle, C.K.

    2005-01-01

    We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.

  18. Confidentiality and spatially explicit data: Concerns and challenges

    PubMed Central

    VanWey, Leah K.; Rindfuss, Ronald R.; Gutmann, Myron P.; Entwisle, Barbara; Balk, Deborah L.

    2005-01-01

    Recent theoretical, methodological, and technological advances in the spatial sciences create an opportunity for social scientists to address questions about the reciprocal relationship between context (spatial organization, environment, etc.) and individual behavior. This emerging research community has yet to adequately address the new threats to the confidentiality of respondent data in spatially explicit social survey or census data files, however. This paper presents four sometimes conflicting principles for the conduct of ethical and high-quality science using such data: protection of confidentiality, the social–spatial linkage, data sharing, and data preservation. The conflict among these four principles is particularly evident in the display of spatially explicit data through maps combined with the sharing of tabular data files. This paper reviews these two research activities and shows how current practices favor one of the principles over the others and do not satisfactorily resolve the conflict among them. Maps are indispensable for the display of results but also reveal information on the location of respondents and sampling clusters that can then be used in combination with shared data files to identify respondents. The current practice of sharing modified or incomplete data sets or using data enclaves is not ideal for either the advancement of science or the protection of confidentiality. Further basic research and open debate are needed to advance both understanding of and solutions to this dilemma. PMID:16230608

  19. Digital Archive Issues from the Perspective of an Earth Science Data Producer

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    2004-01-01

    Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.

  20. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  1. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  2. UUI: Reusable Spatial Data Services in Unified User Interface at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Hegde, Mahabaleshwa; Bryant, Keith; Pham, Long B.

    2016-01-01

    Unified User Interface (UUI) is a next-generation operational data access tool that has been developed at Goddard Earth Sciences Data and Information Services Center(GES DISC) to provide a simple, unified, and intuitive one-stop shop experience for the key data services available at GES DISC, including subsetting (Simple Subset Wizard -SSW), granule file search (Mirador), plotting (Giovanni), and other legacy spatial data services. UUI has been built based on a flexible infrastructure of reusable web services self-contained building blocks that can easily be plugged into spatial applications, including third-party clients or services, to easily enable new functionality as new datasets and services become available. In this presentation, we will discuss our experience in designing UUI services based on open industry standards. We will also explain how the resulting framework can be used for a rapid development, deployment, and integration of spatial data services, facilitating efficient access and dissemination of spatial data sets.

  3. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  4. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  5. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    PubMed

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.

  6. APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.

    USGS Publications Warehouse

    Miller, Betty M.; Domaratz, Michael A.

    1984-01-01

    Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.

  7. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    PubMed

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  8. Infant mortality in Brazil, 1980-2000: A spatial panel data analysis

    PubMed Central

    2012-01-01

    Background Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e.g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country. PMID:22410079

  9. Accuration of Time Series and Spatial Interpolation Method for Prediction of Precipitation Distribution on the Geographical Information System

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Hartomo, K. D.

    2018-01-01

    The Spatial Plan of the Province of Central Java 2009-2029 identifies that most regencies or cities in Central Java Province are very vulnerable to landslide disaster. The data are also supported by other data from Indonesian Disaster Risk Index (In Indonesia called Indeks Risiko Bencana Indonesia) 2013 that suggest that some areas in Central Java Province exhibit a high risk of natural disasters. This research aims to develop an application architecture and analysis methodology in GIS to predict and to map rainfall distribution. We propose our GIS architectural application of “Multiplatform Architectural Spatiotemporal” and data analysis methods of “Triple Exponential Smoothing” and “Spatial Interpolation” as our significant scientific contribution. This research consists of 2 (two) parts, namely attribute data prediction using TES method and spatial data prediction using Inverse Distance Weight (IDW) method. We conduct our research in 19 subdistricts in the Boyolali Regency, Central Java Province, Indonesia. Our main research data is the biweekly rainfall data in 2000-2016 Climatology, Meteorology, and Geophysics Agency (In Indonesia called Badan Meteorologi, Klimatologi, dan Geofisika) of Central Java Province and Laboratory of Plant Disease Observations Region V Surakarta, Central Java. The application architecture and analytical methodology of “Multiplatform Architectural Spatiotemporal” and spatial data analysis methodology of “Triple Exponential Smoothing” and “Spatial Interpolation” can be developed as a GIS application framework of rainfall distribution for various applied fields. The comparison between the TES and IDW methods show that relative to time series prediction, spatial interpolation exhibit values that are approaching actual. Spatial interpolation is closer to actual data because computed values are the rainfall data of the nearest location or the neighbour of sample values. However, the IDW’s main weakness is that some area might exhibit the rainfall value of 0. The representation of 0 in the spatial interpolation is mainly caused by the absence of rainfall data in the nearest sample point or too far distance that produces smaller weight.

  10. Spatial analysis of agro-ecological data: Detection of spatial patterns combining three different methodical approaches

    NASA Astrophysics Data System (ADS)

    Heuer, A.; Casper, M. C.; Vohland, M.

    2009-04-01

    Processes in natural systems and the resulting patterns occur in ecological space and time. To study natural structures and to understand the functional processes it is necessary to identify the relevant spatial and temporal space at which these all occur; or with other words to isolate spatial and temporal patterns. In this contribution we will concentrate on the spatial aspects of agro-ecological data analysis. Data were derived from two agricultural plots, each of about 5 hectares, in the area of Newel, located in Western Palatinate, Germany. The plots had been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. Data about physical and chemical soil properties, vegetation and topography were i) collected by measurements in the field during three vegetation periods (2005-2008) and/or ii) derived from hyperspectral image data, acquired by a HyMap airborne imaging sensor (2005). To detect spatial variability within the plots, we applied three different approaches that examine and describe relationships among data. First, we used variography to get an overview of the data. A comparison of the experimental variograms facilitated to distinguish variables, which seemed to occur in related or dissimilar spatial space. Second, based on data available in raster-format basic cell statistics were conducted, using a geographic information system. Here we could make advantage of the powerful classification and visualization tool, which supported the spatial distribution of patterns. Third, we used an approach that is being used for visualization of complex highly dimensional environmental data, the Kohonen self-organizing map. The self-organizing map (SOM) uses multidimensional data that gets further reduced in dimensionality (2-D) to detect similarities in data sets and correlation between single variables. One of SOM's advantages is its powerful visualization capability. The combination of the three approaches leads to comprehensive and reasonable results, which will be presented in detail. It can be concluded, that the chosen strategy made it possible to complement preliminary findings, to validate the results of a single approach and to clearly delineate spatial patterns.

  11. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    USDA-ARS?s Scientific Manuscript database

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  12. Using Exploratory Spatial Data Analysis to Leverage Social Indicator Databases: The Discovery of Interesting Patterns

    ERIC Educational Resources Information Center

    Anselin, Luc; Sridharan, Sanjeev; Gholston, Susan

    2007-01-01

    With the proliferation of social indicator databases, the need for powerful techniques to study patterns of change has grown. In this paper, the utility of spatial data analytical methods such as exploratory spatial data analysis (ESDA) is suggested as a means to leverage the information contained in social indicator databases. The principles…

  13. Documentation and analysis of a geographic information system application for combining data layers, using nonpoint-source pollution as an example

    USGS Publications Warehouse

    Kiesler, James L.

    2002-01-01

    An analysis of the application indicates that the selected data layers to be combined should be at the greatest spatial resolution possible; however, all data layers do not have to be at the same spatial resolution. The spatial variation of the data layers should be adequately defined. The size of each grid cell should be small enough to maintain the spatial definition of smaller features within the data layers. The most accurate results are shown to occur when the values for the grid cells representing the individual data layers are summed and the mean of the summed grid-cell values is used to describe the watershed of interest.

  14. Urban Spatial Pattern and Interaction based on Analysis of Nighttime Remote Sensing Data and Geo-social Media Information

    NASA Astrophysics Data System (ADS)

    Ratnasari, Nila; Dwi Candra, Erika; Herdianta Saputra, Defa; Putra Perdana, Aji

    2016-11-01

    Urban development in Indonesia significantly incerasing in line with rapid development of infrastructure, utility, and transportation network. Recently, people live depend on lights at night and social media and these two aspects can depicted urban spatial pattern and interaction. This research used nighttime remote sensing data with the VIIRS (Visible Infrared Imaging Radiometer Suite) day-night band detects lights, gas flares, auroras, and wildfires. Geo-social media information derived from twitter data gave big picture on spatial interaction from the geospatial footprint. Combined both data produced comprehensive urban spatial pattern and interaction in general for Indonesian territory. The result is shown as a preliminary study of integrating nighttime remote sensing data and geospatial footprint from twitter data.

  15. Accelerating Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems

    PubMed Central

    Wang, Kaibo; Huai, Yin; Lee, Rubao; Wang, Fusheng; Zhang, Xiaodong; Saltz, Joel H.

    2012-01-01

    As an important application of spatial databases in pathology imaging analysis, cross-comparing the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely data- and compute-intensive operations, requiring high throughput at an affordable cost. However, the performance of spatial database systems has not been satisfactory since their implementations of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU algorithm and a pipelined system framework with task migration support. Extensive experiments with real-world data sets demonstrate the effectiveness of our solution, which improves the performance of spatial cross-comparison by over 18 times compared with a parallelized spatial database approach. PMID:23355955

  16. Spatial decision support system for tobacco enterprise based on spatial data mining

    NASA Astrophysics Data System (ADS)

    Mei, Xin; Liu, Junyi; Zhang, Xuexia; Cui, Weihong

    2007-11-01

    Tobacco enterprise is a special enterprise, which has strong correlation to regional geography. But in the past research and application, the combination between tobacco and GIS is limited to use digital maps to assist cigarette distribution. How to comprehensively import 3S technique and spatial data mining (SDM) to construct spatial decision support system (SDSS) of tobacco enterprise is the main research aspect in this paper. The paper concretely analyzes the GIS requirements in tobacco enterprise for planning location of production, monitoring production management and product sale at the beginning. Then holistic solution is presented and frame design for tobacco enterprise spatial decision based on SDM is given. This paper describes how to use spatial analysis and data mining to realize the spatial decision processing such as monitoring tobacco planted acreage, analyzing and planning the cigarette sale network and so on.

  17. Spatial methods for deriving crop rotation history

    NASA Astrophysics Data System (ADS)

    Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.

    2017-08-01

    Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.

  18. Design and implementation of a distributed large-scale spatial database system based on J2EE

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia

    2003-03-01

    With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.

  19. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASAWorld Wind. We illustrate our methods by visualizing over 170,000 global downloadmore » requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the hot spot areas of research. Most importantly, our methods demonstrate an easy way to geovisualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).« less

  1. Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation

    PubMed Central

    Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong

    2017-01-01

    Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175

  2. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014

    NASA Astrophysics Data System (ADS)

    Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B.

    2017-12-01

    Great significance exists in accurately estimating spatial-temporal patterns of gross primary production (GPP) because of its important role in global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatially time-sires GPP. However, the estimation of the accuracy of GPP simulations from LUE at both spatial and temporal scales is still a challenging work. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images of 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPPVPM and SIF data over both single year (2010) and multiple years (2007-2014) in China. Annual GPPVPM is significantly positive correlated with SIF (R2>0.43) spatially for all years during 2007-2014 and all seasons in 2010 (R2>0.37). GPP dynamic trends is high spatial-temporal heterogeneous in China during 2007-2014. The results of this study indicate that GPPVPM is temporally and spatially in line with SIF data, and space-borne SIF data have great potential in validating and parameterizing GPP estimation of LUE-based models.

  3. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  4. [A spatially explicit analysis of traffic accidents involving pedestrians and cyclists in Berlin].

    PubMed

    Lakes, Tobia

    2017-12-01

    In many German cities and counties, sustainable mobility concepts that strengthen pedestrian and cyclist traffic are promoted. From the perspectives of urban development, traffic planning and public healthcare, a spatially differentiated analysis of traffic accident data is decisive. 1) The identification of spatial and temporal patterns of the distribution of accidents involving cyclists and pedestrians, 2) the identification of hotspots and exploration of possible underlying causes and 3) the critical discussion of benefits and challenges of the results and the derivation of conclusions. Spatio-temporal distributions of data from accident statistics in Berlin involving pedestrians and cyclists from 2011 to 2015 were analysed with geographic information systems (GIS). While the total number of accidents remains relatively stable for pedestrian and cyclist accidents, the spatial distribution analysis shows, however, that there are significant spatial clusters (hotspots) of traffic accidents with a strong concentration in the inner city area. In a critical discussion, the benefits of geographic concepts are identified, such as spatially explicit health data (in this case traffic accident data), the importance of the integration of other data sources for the evaluation of the health impact of areas (traffic accident statistics of the police), and the possibilities and limitations of spatial-temporal data analysis (spatial point-density analyses) for the derivation of decision-supported recommendations and for the evaluation of policy measures of health prevention and of health-relevant urban development.

  5. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  6. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  7. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  8. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  9. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  10. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  11. Linked Micromaps: Statistical Summaries in a Spatial Context

    EPA Science Inventory

    Communicating summaries of spatial data to decision makers and the public is challenging. We present a graphical method that provides both a geographic context and a statistical summary for such spatial data. Monitoring programs have a need for such geographical summaries. For ...

  12. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  13. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  14. One new method for road data shape change detection

    NASA Astrophysics Data System (ADS)

    Tang, Luliang; Li, Qingquan; Xu, Feng; Chang, Xiaomeng

    2009-10-01

    Similarity is a psychological cognition; this paper defines the Difference Distance and puts forward the Similarity Measuring Model for linear spatial data (SMM-L) based on the integration of the Distance View and the Feature Set View which are the views for similarity cognition. Based on the study of the relationship between the spatial data change and the similarity, a change detection algorithm for linear spatial data is developed, and a test on road data change detection is realized.

  15. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    USGS Publications Warehouse

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  16. CERES Search and Subset Tool

    Atmospheric Science Data Center

    2016-06-24

    ... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ...

  17. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    NASA Astrophysics Data System (ADS)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.

  18. Characterizing spatial uncertainty when integrating social data in conservation planning.

    PubMed

    Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C

    2014-12-01

    Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.

  19. Spatial Data from Transportation Studies and Surveys | Transportation

    Science.gov Websites

    transportation studies and surveys, submit an application for approval to connect to a restricted secure portal environment. For a list of studies and surveys, see cleansed data. Application Process For accessing spatial data, learn about the application and approval process. If you'd like to apply to access the spatial

  20. Creating a Road Map for Planetary Data Spatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.

    2017-09-01

    There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.

  1. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei

    2014-10-01

    Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.

  2. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    NASA Astrophysics Data System (ADS)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  3. Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python

    NASA Astrophysics Data System (ADS)

    Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor

    2017-04-01

    As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via ODBC or JDBC respectively, 2) an instance to represent the spatial data stored in the database as a dataframe in Python, called the IdaGeoDataFrame, with a specific geometry attribute which recognises a planar geometry column in dashDB and 3) Python wrappers for spatial functions like within, distance, area, buffer} and more which dashDB currently supports to make the querying process from Python much simpler for the users. The spatial functions translate well-known geopandas-like syntax into SQL queries utilising the database connection to perform spatial operations in-database and can operate on single geometries as well two different geometries from different IdaGeoDataFrames. The in-database queries strictly follow the standards of OpenGIS Implementation Specification for Geographic information - Simple feature access for SQL. The results of the operations obtained can thereby be accessed dynamically via interactive Jupyter notebooks from any system which supports Python, without any additional dependencies and can also be combined with other open source libraries such as matplotlib and folium in-built within Jupyter notebooks for visualization purposes. We built a use case to analyse crime hotspots in New York city to validate our implementation and visualized the results as a choropleth map for each borough.

  4. Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data.

    PubMed

    Wu, Jidong; Li, Ying; Li, Ning; Shi, Peijun

    2018-01-01

    The extent of economic losses due to a natural hazard and disaster depends largely on the spatial distribution of asset values in relation to the hazard intensity distribution within the affected area. Given that statistical data on asset value are collected by administrative units in China, generating spatially explicit asset exposure maps remains a key challenge for rapid postdisaster economic loss assessment. The goal of this study is to introduce a top-down (or downscaling) approach to disaggregate administrative-unit level asset value to grid-cell level. To do so, finding the highly correlated "surrogate" indicators is the key. A combination of three data sets-nighttime light grid, LandScan population grid, and road density grid, is used as ancillary asset density distribution information for spatializing the asset value. As a result, a high spatial resolution asset value map of China for 2015 is generated. The spatial data set contains aggregated economic value at risk at 30 arc-second spatial resolution. Accuracy of the spatial disaggregation reflects redistribution errors introduced by the disaggregation process as well as errors from the original ancillary data sets. The overall accuracy of the results proves to be promising. The example of using the developed disaggregated asset value map in exposure assessment of watersheds demonstrates that the data set offers immense analytical flexibility for overlay analysis according to the hazard extent. This product will help current efforts to analyze spatial characteristics of exposure and to uncover the contributions of both physical and social drivers of natural hazard and disaster across space and time. © 2017 Society for Risk Analysis.

  5. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014.

    PubMed

    Ma, Jun; Xiao, Xiangming; Zhang, Yao; Doughty, Russell; Chen, Bangqian; Zhao, Bin

    2018-10-15

    Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images with 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPP VPM ) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPP VPM and SIF data over a single year (2010) and multiple years (2007-2014) in most areas of China. GPP VPM is also significantly positive correlated with GOME-2 SIF (R 2  > 0.43) spatially for seasonal scales. However, poor consistency was detected between GPP VPM and SIF data at yearly scale. GPP dynamic trends have high spatial-temporal variation in China during 2007-2014. Temperature, leaf area index (LAI), and precipitation are the most important factors influence GPP VPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and Southwestern China, respectively. The results of this study indicate that GPP VPM is temporally and spatially in line with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  7. Revisiting the Procedures for the Vector Data Quality Assurance in Practice

    NASA Astrophysics Data System (ADS)

    Erdoğan, M.; Torun, A.; Boyacı, D.

    2012-07-01

    Immense use of topographical data in spatial data visualization, business GIS (Geographic Information Systems) solutions and applications, mobile and location-based services forced the topo-data providers to create standard, up-to-date and complete data sets in a sustainable frame. Data quality has been studied and researched for more than two decades. There have been un-countable numbers of references on its semantics, its conceptual logical and representations and many applications on spatial databases and GIS. However, there is a gap between research and practice in the sense of spatial data quality which increases the costs and decreases the efficiency of data production. Spatial data quality is well-known by academia and industry but usually in different context. The research on spatial data quality stated several issues having practical use such as descriptive information, metadata, fulfillment of spatial relationships among data, integrity measures, geometric constraints etc. The industry and data producers realize them in three stages; pre-, co- and post data capturing. The pre-data capturing stage covers semantic modelling, data definition, cataloguing, modelling, data dictionary and schema creation processes. The co-data capturing stage covers general rules of spatial relationships, data and model specific rules such as topologic and model building relationships, geometric threshold, data extraction guidelines, object-object, object-belonging class, object-non-belonging class, class-class relationships to be taken into account during data capturing. And post-data capturing stage covers specified QC (quality check) benchmarks and checking compliance to general and specific rules. The vector data quality criteria are different from the views of producers and users. But these criteria are generally driven by the needs, expectations and feedbacks of the users. This paper presents a practical method which closes the gap between theory and practice. Development of spatial data quality concepts into developments and application requires existence of conceptual, logical and most importantly physical existence of data model, rules and knowledge of realization in a form of geo-spatial data. The applicable metrics and thresholds are determined on this concrete base. This study discusses application of geo-spatial data quality issues and QA (quality assurance) and QC procedures in the topographic data production. Firstly we introduce MGCP (Multinational Geospatial Co-production Program) data profile of NATO (North Atlantic Treaty Organization) DFDD (DGIWG Feature Data Dictionary), the requirements of data owner, the view of data producers for both data capturing and QC and finally QA to fulfil user needs. Then, our practical and new approach which divides the quality into three phases is introduced. Finally, implementation of our approach to accomplish metrics, measures and thresholds of quality definitions is discussed. In this paper, especially geometry and semantics quality and quality control procedures that can be performed by the producers are discussed. Some applicable best-practices that we experienced on techniques of quality control, defining regulations that define the objectives and data production procedures are given in the final remarks. These quality control procedures should include the visual checks over the source data, captured vector data and printouts, some automatic checks that can be performed by software and some semi-automatic checks by the interaction with quality control personnel. Finally, these quality control procedures should ensure the geometric, semantic, attribution and metadata quality of vector data.

  8. Applicability of Various Interpolation Approaches for High Resolution Spatial Mapping of Climate Data in Korea

    NASA Astrophysics Data System (ADS)

    Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.

    2018-04-01

    The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  9. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  10. Protecting Location Privacy for Outsourced Spatial Data in Cloud Storage

    PubMed Central

    Gui, Xiaolin; An, Jian; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance. PMID:25097865

  11. Protecting location privacy for outsourced spatial data in cloud storage.

    PubMed

    Tian, Feng; Gui, Xiaolin; An, Jian; Yang, Pan; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC(∗)) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC(∗) and DSC are more secure than SHC, and DSC achieves the best index generation performance.

  12. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  13. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation.

    PubMed

    Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie

    2012-01-17

    We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.

  14. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  15. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  16. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  17. The Use of Spatial Data Infrastructure in Environmental Management:an Example from the Spatial Planning Practice in Poland.

    PubMed

    Zwirowicz-Rutkowska, Agnieszka; Michalik, Anna

    2016-10-01

    Today's technology plays a crucial role in the effective use of environmental information. This includes geographic information systems and infrastructures. The purpose of this research is to identify the way in which the Polish spatial data infrastructure (PSDI) supports policies and activities that may have an impact on the environment in relation to one group of users, namely urban planners, and their tasks concerning environmental management. The study is based on a survey conducted in July and August, 2014. Moreover, the authors' expert knowledge gained through urban development practice and the analysis of the environmental conservation regulations and spatial planning in Poland has been used to define the scope of environmental management in both spatial planning studies and spatial data sources. The research included assessment of data availability, infrastructure usability, and its impact on decision-making process. The results showed that the PSDI is valuable because it allows for the acquisition of data on environmental monitoring, agricultural and aquaculture facilities. It also has a positive impact on decision-making processes and improves numerous planners' activities concerning both the inclusion of environmental indicators in spatial plans and the support of nature conservation and environmental management in the process of working on future land use. However, even though the infrastructure solves certain problems with data accessibility, further improvements might be proposed. The importance of the SDI in environmental management is noticeable and could be considered from many standpoints: Data, communities engaged in policy or decision-making concerning environmental issues, and data providers.

  18. Generalized index for spatial data sets as a measure of complete spatial randomness

    NASA Astrophysics Data System (ADS)

    Hackett-Jones, Emily J.; Davies, Kale J.; Binder, Benjamin J.; Landman, Kerry A.

    2012-06-01

    Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations—the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.

  19. a Novel Approach to Veterinary Spatial Epidemiology: Dasymetric Refinement of the Swiss Dog Tumor Registry Data

    NASA Astrophysics Data System (ADS)

    Boo, G.; Fabrikant, S. I.; Leyk, S.

    2015-08-01

    In spatial epidemiology, disease incidence and demographic data are commonly summarized within larger regions such as administrative units because of privacy concerns. As a consequence, analyses using these aggregated data are subject to the Modifiable Areal Unit Problem (MAUP) as the geographical manifestation of ecological fallacy. In this study, we create small area disease estimates through dasymetric refinement, and investigate the effects on predictive epidemiological models. We perform a binary dasymetric refinement of municipality-aggregated dog tumor incidence counts in Switzerland for the year 2008 using residential land as a limiting ancillary variable. This refinement is expected to improve the quality of spatial data originally aggregated within arbitrary administrative units by deconstructing them into discontinuous subregions that better reflect the underlying population distribution. To shed light on effects of this refinement, we compare a predictive statistical model that uses unrefined administrative units with one that uses dasymetrically refined spatial units. Model diagnostics and spatial distributions of model residuals are assessed to evaluate the model performances in different regions. In particular, we explore changes in the spatial autocorrelation of the model residuals due to spatial refinement of the enumeration units in a selected mountainous region, where the rugged topography induces great shifts of the analytical units i.e., residential land. Such spatial data quality refinement results in a more realistic estimation of the population distribution within administrative units, and thus, in a more accurate modeling of dog tumor incidence patterns. Our results emphasize the benefits of implementing a dasymetric modeling framework in veterinary spatial epidemiology.

  20. Performance evaluation of spatial compounding in the presence of aberration and adaptive imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Guenther, Drake; Trahey, Gregg E.

    2003-05-01

    Spatial compounding has been used for years to reduce speckle in ultrasonic images and to resolve anatomical features hidden behind the grainy appearance of speckle. Adaptive imaging restores image contrast and resolution by compensating for beamforming errors caused by tissue-induced phase errors. Spatial compounding represents a form of incoherent imaging, whereas adaptive imaging attempts to maintain a coherent, diffraction-limited aperture in the presence of aberration. Using a Siemens Antares scanner, we acquired single channel RF data on a commercially available 1-D probe. Individual channel RF data was acquired on a cyst phantom in the presence of a near field electronic phase screen. Simulated data was also acquired for both a 1-D and a custom built 8x96, 1.75-D probe (Tetrad Corp.). The data was compounded using a receive spatial compounding algorithm; a widely used algorithm because it takes advantage of parallel beamforming to avoid reductions in frame rate. Phase correction was also performed by using a least mean squares algorithm to estimate the arrival time errors. We present simulation and experimental data comparing the performance of spatial compounding to phase correction in contrast and resolution tasks. We evaluate spatial compounding and phase correction, and combinations of the two methods, under varying aperture sizes, aperture overlaps, and aberrator strength to examine the optimum configuration and conditions in which spatial compounding will provide a similar or better result than adaptive imaging. We find that, in general, phase correction is hindered at high aberration strengths and spatial frequencies, whereas spatial compounding is helped by these aberrators.

  1. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti

    PubMed Central

    2013-01-01

    Background Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Methods Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Results Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”. Conclusions Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations. PMID:23587358

  2. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti.

    PubMed

    Curtis, Andrew; Blackburn, Jason K; Widmer, Jocelyn M; Morris, J Glenn

    2013-04-15

    Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these "hotspots". Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.

  3. Methods for Data-based Delineation of Spatial Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John E.

    In data analysis, it is often useful to delineate or segregate areas of interest from the general population of data in order to concentrate further analysis efforts on smaller areas. Three methods are presented here for automatically generating polygons around spatial data of interest. Each method addresses a distinct data type. These methods were developed for and implemented in the sample planning tool called Visual Sample Plan (VSP). Method A is used to delineate areas of elevated values in a rectangular grid of data (raster). The data used for this method are spatially related. Although VSP uses data from amore » kriging process for this method, it will work for any type of data that is spatially coherent and appears on a regular grid. Method B is used to surround areas of interest characterized by individual data points that are congregated within a certain distance of each other. Areas where data are “clumped” together spatially will be delineated. Method C is used to recreate the original boundary in a raster of data that separated data values from non-values. This is useful when a rectangular raster of data contains non-values (missing data) that indicate they were outside of some original boundary. If the original boundary is not delivered with the raster, this method will approximate the original boundary.« less

  4. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  5. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  6. Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.

    PubMed

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson

    2015-11-04

    Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted.

  7. a Preliminary Study of Web-Based Spatial Data Analysis Feasibility - One of Possible Solutions for Disaster Response and Management

    NASA Astrophysics Data System (ADS)

    Lim, C. C.; Chang, K.-C.

    2012-07-01

    As the massive tsunami that struck northeast Japan in 11 March 2011 after a magnitude 9.0 earthquake, it reveals that people are living in a critical environment. Although great improvement has been achieved in disaster prevention technologies, many natural disasters are still unpredictable. In addition to the prevention, rapid and effective responses to such disasters are also crucial. One of the key elements to success is the information dissemination of disaster, including both area and people living within that region. In the past decade, web-based spatial information system has become the major platform for both data sharing and displaying. What is coming next is the development of web-based spatial data analysis. A web-based service allows people to implement spatial analysis immediately as long as the internet connection among database and application servers is available. This useful and helpful spatial information is able to be accessed by all users around the world almost simultaneously. The main goal of this paper is to implement a spatial data analysis module based on service oriented architecture (SOA) concept. The main interest and focus of our study is based on the knowledge regularization processes of spatial data analysis to achieve the automated land cover change detection (LCCD) over internet. The proposed automated model is tested and verified by FORMOSAT-2 imageries taken in 2005 and in 2008. It will be published online for users around the world to maximize the add-on value and minimize the cost of the spatial data, moreover, to reveal the situations of disaster rapidly.

  8. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  9. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation

    PubMed Central

    Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042

  10. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation.

    PubMed

    Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.

  11. Terrain Categorization using LIDAR and Multi-Spectral Data

    DTIC Science & Technology

    2007-01-01

    the same spatial resolution cell will be distinguished. 3. PROCESSING The LIDAR data set used in this study was from a discrete-return...smoothing in the spatial dimension. While it was possible to distinguish different classes of materials using this technique, the spatial resolution was...alone and a combination of the two data-types. Results are compared to significant ground truth information. Keywords: LIDAR, multi- spectral

  12. Repeated measures from FIA data facilitates analysis across spatial scales of tree growth responses to nitrogen deposition from individual trees to whole ecoregions

    Treesearch

    Charles H. (Hobie) Perry; Kevin J. Horn; R. Quinn Thomas; Linda H. Pardo; Erica A.H. Smithwick; Doug Baldwin; Gregory B. Lawrence; Scott W. Bailey; Sabine Braun; Christopher M. Clark; Mark Fenn; Annika Nordin; Jennifer N. Phelan; Paul G. Schaberg; Sam St. Clair; Richard Warby; Shaun Watmough; Steven S. Perakis

    2015-01-01

    The abundance of temporally and spatially consistent Forest Inventory and Analysis data facilitates hierarchical/multilevel analysis to investigate factors affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA tree and soil inventories in conjunction with various spatial climate and soils data to estimate species-specific responses of...

  13. Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA

    Treesearch

    Robert E. Keane; Janice L. Garner; Kirsten M. Schmidt; Donald G. Long; James P. Menakis; Mark A. Finney

    1998-01-01

    Fuel and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Selway-Bitterroot Wilderness Area in Idaho and Montana. Satellite imagery and terrain modeling were used to create the three base vegetation spatial data layers of potential vegetation, cover type, and structural stage....

  14. GIS Data Collection for Pedestrian Facilities and Furniture Using Mapinr for Android

    NASA Astrophysics Data System (ADS)

    Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.

    2016-09-01

    Mobile GIS is introduced to reduce the time taken in completing the field data collection procedure. With the expansion of technology today, mobile GIS is not far behind. It can be integrated with the high-end innovation tools like smartphones. Spatial data capture which deemed to be the toughest stage of a GIS project is made simple with this method. Many studies had demonstrated the usage of mobile GIS in collecting spatial data and this paper discusses how it can be applied in capturing the GPS location of pedestrian furniture and facilities. Although some of the spatial data are available from local agencies, still a more detailed data is needed to create a better data model for this study. This study uses a free android application, MAPinr, which is available on the Google PlayStore to collect spatial data on site. It adopted the GNSS and cellular network positioning to locate the position of the required data. As the application allows the captured data to be exported to a GIS platform, the geometric error of the data was improved. In the end, an authenticated spatial dataset comprising pedestrian facilities and furniture in point and line form will be produced and later be used in a pedestrian network analysis study.

  15. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  16. Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.

    PubMed

    Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry

    2010-06-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.

  17. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data

    PubMed Central

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849

  18. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.

    PubMed

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

  19. Development of a GIService based on spatial data mining for location choice of convenience stores in Taipei City

    NASA Astrophysics Data System (ADS)

    Jung, Chinte; Sun, Chih-Hong

    2006-10-01

    Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.

  20. Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis

    PubMed Central

    Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry

    2014-01-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924

  1. Data Visualization in Information Retrieval and Data Mining (SIG VIS).

    ERIC Educational Resources Information Center

    Efthimiadis, Efthimis

    2000-01-01

    Presents abstracts that discuss using data visualization for information retrieval and data mining, including immersive information space and spatial metaphors; spatial data using multi-dimensional matrices with maps; TREC (Text Retrieval Conference) experiments; users' information needs in cartographic information retrieval; and users' relevance…

  2. [Assessment on ecological security spatial differences of west areas of Liaohe River based on GIS].

    PubMed

    Wang, Geng; Wu, Wei

    2005-09-01

    Ecological security assessment and early warning research have spatiality; non-linearity; randomicity, it is needed to deal with much spatial information. Spatial analysis and data management are advantages of GIS, it can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. The paper discusses the method of ecological security spatial differences of west areas of Liaohe River based on GIS and ecosystem non-health. First, studying on pressure-state-response (P-S-R) assessment indicators system, investigating in person and gathering information; Second, digitizing the river, applying fuzzy AHP to put weight, quantizing and calculating by fuzzy comparing; Last, establishing grid data-base; expounding spatial differences of ecological security by GIS Interpolate and Assembly.

  3. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.

  4. Improving Student Understanding of Spatial Ecology Statistics

    ERIC Educational Resources Information Center

    Hopkins, Robert, II; Alberts, Halley

    2015-01-01

    This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…

  5. Geographic Information Systems and Martian Data: Compatibility and Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  6. GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research

    NASA Astrophysics Data System (ADS)

    Bera, R.; Squividant, H.; Le Henaff, G.; Pichelin, P.; Ruiz, L.; Launay, J.; Vanhouteghem, J.; Aurousseau, P.; Cudennec, C.

    2015-05-01

    To-date, the commonest way to deal with geographical information and processes still appears to consume local resources, i.e. locally stored data processed on a local desktop or server. The maturity and subsequent growing use of OGC standards to exchange data on the World Wide Web, enhanced in Europe by the INSPIRE Directive, is bound to change the way people (and among them research scientists, especially in environmental sciences) make use of, and manage, spatial data. A clever use of OGC standards can help scientists to better store, share and use data, in particular for modelling. We propose a framework for online processing by making an intensive use of OGC standards. We illustrate it using the Spatial Data Infrastructure (SDI) GéoSAS which is the SDI set up for researchers' needs in our department. It is based on the existing open source, modular and interoperable Spatial Data Architecture geOrchestra.

  7. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  8. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  9. Fractals and Spatial Methods for Mining Remote Sensing Imagery

    NASA Technical Reports Server (NTRS)

    Lam, Nina; Emerson, Charles; Quattrochi, Dale

    2003-01-01

    The rapid increase in digital remote sensing and GIS data raises a critical problem -- how can such an enormous amount of data be handled and analyzed so that useful information can be derived quickly? Efficient handling and analysis of large spatial data sets is central to environmental research, particularly in global change studies that employ time series. Advances in large-scale environmental monitoring and modeling require not only high-quality data, but also reliable tools to analyze the various types of data. A major difficulty facing geographers and environmental scientists in environmental assessment and monitoring is that spatial analytical tools are not easily accessible. Although many spatial techniques have been described recently in the literature, they are typically presented in an analytical form and are difficult to transform to a numerical algorithm. Moreover, these spatial techniques are not necessarily designed for remote sensing and GIS applications, and research must be conducted to examine their applicability and effectiveness in different types of environmental applications. This poses a chicken-and-egg problem: on one hand we need more research to examine the usability of the newer techniques and tools, yet on the other hand, this type of research is difficult to conduct if the tools to be explored are not accessible. Another problem that is fundamental to environmental research are issues related to spatial scale. The scale issue is especially acute in the context of global change studies because of the need to integrate remote-sensing and other spatial data that are collected at different scales and resolutions. Extrapolation of results across broad spatial scales remains the most difficult problem in global environmental research. There is a need for basic characterization of the effects of scale on image data, and the techniques used to measure these effects must be developed and implemented to allow for a multiple scale assessment of the data before any useful process-oriented modeling involving scale-dependent data can be conducted. Through the support of research grants from NASA, we have developed a software module called ICAMS (Image Characterization And Modeling System) to address the need to develop innovative spatial techniques and make them available to the broader scientific communities. ICAMS provides new spatial techniques, such as fractal analysis, geostatistical functions, and multiscale analysis that are not easily available in commercial GIS/image processing software. By bundling newer spatial methods in a user-friendly software module, researchers can begin to test and experiment with the new spatial analysis methods and they can gauge scale effects using a variety of remote sensing imagery. In the following, we describe briefly the development of ICAMS and present application examples.

  10. Population at risk: using areal interpolation and Twitter messages to create population models for burglaries and robberies

    PubMed Central

    2018-01-01

    ABSTRACT Population at risk of crime varies due to the characteristics of a population as well as the crime generator and attractor places where crime is located. This establishes different crime opportunities for different crimes. However, there are very few efforts of modeling structures that derive spatiotemporal population models to allow accurate assessment of population exposure to crime. This study develops population models to depict the spatial distribution of people who have a heightened crime risk for burglaries and robberies. The data used in the study include: Census data as source data for the existing population, Twitter geo-located data, and locations of schools as ancillary data to redistribute the source data more accurately in the space, and finally gridded population and crime data to evaluate the derived population models. To create the models, a density-weighted areal interpolation technique was used that disaggregates the source data in smaller spatial units considering the spatial distribution of the ancillary data. The models were evaluated with validation data that assess the interpolation error and spatial statistics that examine their relationship with the crime types. Our approach derived population models of a finer resolution that can assist in more precise spatial crime analyses and also provide accurate information about crime rates to the public. PMID:29887766

  11. Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, E. J. M., E-mail: carranza@itc.nl; Woldai, T.; Chikambwe, E. M.

    A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity.more » Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster's rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.« less

  12. The Voronoi spatio-temporal data structure

    NASA Astrophysics Data System (ADS)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.

  13. Research on the spatial analysis method of seismic hazard for island

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  14. Spatial Risk Assessments Based on Vector-Borne Disease Epidemiologic Data: Importance of Scale for West Nile Virus Disease in Colorado

    PubMed Central

    Winters, Anna M.; Eisen, Rebecca J.; Delorey, Mark J.; Fischer, Marc; Nasci, Roger S.; Zielinski-Gutierrez, Emily; Moore, Chester G.; Pape, W. John; Eisen, Lars

    2010-01-01

    We used epidemiologic data for human West Nile virus (WNV) disease in Colorado from 2003 and 2007 to determine 1) the degree to which estimates of vector-borne disease occurrence is influenced by spatial scale of data aggregation (county versus census tract), and 2) the extent of concordance between spatial risk patterns based on case counts versus incidence. Statistical analyses showed that county, compared with census tract, accounted for approximately 50% of the overall variance in WNV disease incidence, and approximately 33% for the subset of cases classified as West Nile neuroinvasive disease. These findings indicate that sub-county scale presentation provides valuable risk information for stakeholders. There was high concordance between spatial patterns of WNV disease incidence and case counts for census tract (83%) but not for county (50%) or zip code (31%). We discuss how these findings impact on practices to develop spatial epidemiologic data for vector-borne diseases and present data to stakeholders. PMID:20439980

  15. Data on strategically located land and spatially integrated urban human settlements in South Africa.

    PubMed

    Musakwa, Walter

    2017-12-01

    In developing countries like South Africa processed geographic information systems (GIS) data on land suitability, is often not available for land use management. Data in this article is based on a published article "The strategically located land index support system for humans settlements land reform in South Africa" (Musakwa et al., 2017) [1]. This article utilities data from Musakwa et al. (2017) [1] and it goes on a step further by presenting the top 25th percentile of areas in the country that are strategically located and suited to develop spatially integrated human settlements. Furthermore the least 25th percentile of the country that are not strategically located and spatially integrated to establish human settlements are also presented. The article also presents the processed spatial datasets that where used to develop the strategically located land index as supplementary material. The data presented is meant to stir debate on spatially integrated human settlements in South Africa.

  16. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  17. Segmentation of remotely sensed data using parallel region growing

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Cox, S. C.

    1983-01-01

    The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.

  18. Ecogeographic Genetic Epidemiology

    PubMed Central

    Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.

    2009-01-01

    Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788

  19. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  20. The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG

    NASA Astrophysics Data System (ADS)

    Sun, S.; Liu, D.; Li, G.; Yu, W.

    2011-08-01

    The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.

  1. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases.

    PubMed

    Eisen, Lars; Eisen, Rebecca J

    2007-12-01

    Improved methods for collection and presentation of spatial epidemiologic data are needed for vectorborne diseases in the United States. Lack of reliable data for probable pathogen exposure site has emerged as a major obstacle to the development of predictive spatial risk models. Although plague case investigations can serve as a model for how to ideally generate needed information, this comprehensive approach is cost-prohibitive for more common and less severe diseases. New methods are urgently needed to determine probable pathogen exposure sites that will yield reliable results while taking into account economic and time constraints of the public health system and attending physicians. Recent data demonstrate the need for a change from use of the county spatial unit for presentation of incidence of vectorborne diseases to more precise ZIP code or census tract scales. Such fine-scale spatial risk patterns can be communicated to the public and medical community through Web-mapping approaches.

  2. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  4. Paradise: A Parallel Information System for EOSDIS

    NASA Technical Reports Server (NTRS)

    DeWitt, David

    1996-01-01

    The Paradise project was begun-in 1993 in order to explore the application of the parallel and object-oriented database system technology developed as a part of the Gamma, Exodus. and Shore projects to the design and development of a scaleable, geo-spatial database system for storing both massive spatial and satellite image data sets. Paradise is based on an object-relational data model. In addition to the standard attribute types such as integers, floats, strings and time, Paradise also provides a set of and multimedia data types, designed to facilitate the storage and querying of complex spatial and multimedia data sets. An individual tuple can contain any combination of this rich set of data types. For example, in the EOSDIS context, a tuple might mix terrain and map data for an area along with the latest satellite weather photo of the area. The use of a geo-spatial metaphor simplifies the task of fusing disparate forms of data from multiple data sources including text, image, map, and video data sets.

  5. Accuracy of stream habitat interpolations across spatial scales

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  6. Spatial wavefield gradient-based seismic wavefield separation

    NASA Astrophysics Data System (ADS)

    Van Renterghem, C.; Schmelzbach, C.; Sollberger, D.; Robertsson, J. OA

    2018-03-01

    Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.

  7. PRAIRIEMAP: A GIS database for prairie grassland management in western North America

    USGS Publications Warehouse

    ,

    2003-01-01

    The USGS Forest and Rangeland Ecosystem Science Center, Snake River Field Station (SRFS) maintains a database of spatial information, called PRAIRIEMAP, which is needed to address the management of prairie grasslands in western North America. We identify and collect spatial data for the region encompassing the historical extent of prairie grasslands (Figure 1). State and federal agencies, the primary entities responsible for management of prairie grasslands, need this information to develop proactive management strategies to prevent prairie-grassland wildlife species from being listed as Endangered Species, or to develop appropriate responses if listing does occur. Spatial data are an important component in documenting current habitat and other environmental conditions, which can be used to identify areas that have undergone significant changes in land cover and to identify underlying causes. Spatial data will also be a critical component guiding the decision processes for restoration of habitat in the Great Plains. As such, the PRAIRIEMAP database will facilitate analyses of large-scale and range-wide factors that may be causing declines in grassland habitat and populations of species that depend on it for their survival. Therefore, development of a reliable spatial database carries multiple benefits for land and wildlife management. The project consists of 3 phases: (1) identify relevant spatial data, (2) assemble, document, and archive spatial data on a computer server, and (3) develop and maintain the web site (http://prairiemap.wr.usgs.gov) for query and transfer of GIS data to managers and researchers.

  8. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  9. Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire

    NASA Astrophysics Data System (ADS)

    Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.

    2017-12-01

    Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.

  10. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  11. Integrating biological and social values when prioritizing places for biodiversity conservation.

    PubMed

    Whitehead, Amy L; Kujala, Heini; Ives, Christopher D; Gordon, Ascelin; Lentini, Pia E; Wintle, Brendan A; Nicholson, Emily; Raymond, Christopher M

    2014-08-01

    The consideration of information on social values in conjunction with biological data is critical for achieving both socially acceptable and scientifically defensible conservation planning outcomes. However, the influence of social values on spatial conservation priorities has received limited attention and is poorly understood. We present an approach that incorporates quantitative data on social values for conservation and social preferences for development into spatial conservation planning. We undertook a public participation GIS survey to spatially represent social values and development preferences and used species distribution models for 7 threatened fauna species to represent biological values. These spatially explicit data were simultaneously included in the conservation planning software Zonation to examine how conservation priorities changed with the inclusion of social data. Integrating spatially explicit information about social values and development preferences with biological data produced prioritizations that differed spatially from the solution based on only biological data. However, the integrated solutions protected a similar proportion of the species' distributions, indicating that Zonation effectively combined the biological and social data to produce socially feasible conservation solutions of approximately equivalent biological value. We were able to identify areas of the landscape where synergies and conflicts between different value sets are likely to occur. Identification of these synergies and conflicts will allow decision makers to target communication strategies to specific areas and ensure effective community engagement and positive conservation outcomes. © 2014 Society for Conservation Biology.

  12. Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions.

    PubMed

    Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B

    2018-08-01

    Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The statistical geoportal and the ``cartographic added value'' - creation of the spatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Fiedukowicz, Anna; Gasiorowski, Jedrzej; Kowalski, Paweł; Olszewski, Robert; Pillich-Kolipinska, Agata

    2012-11-01

    The wide access to source data, published by numerous websites, results in situation, when information acquisition is not a problem any more. The real problem is how to transform information in the useful knowledge. Cartographic method of research, dealing with spatial data, has been serving this purpose for many years. Nowadays, it allows conducting analyses at the high complexity level, thanks to the intense development in IT technologies, The vast majority of analytic methods utilizing the so-called data mining and data enrichment techniques, however, concerns non-spatial data. According to the Authors, utilizing those techniques in spatial data analysis (including analysis based on statistical data with spatial reference), would allow the evolution of the Spatial Information Infrastructure (SII) into the Spatial Knowledge Infrastructure (SKI). The SKI development would benefit from the existence of statistical geoportal. Its proposed functionality, consisting of data analysis as well as visualization, is outlined in the article. The examples of geostatistical analyses (ANOVA and the regression model considering the spatial neighborhood), possible to implement in such portal and allowing to produce the “cartographic added value”, are also presented here. Szeroki dostep do danych zródłowych publikowanych w licznych serwisach internetowych sprawia, iz współczesnie problemem jest nie pozyskanie informacji, lecz umiejetne przekształcenie jej w uzyteczna wiedze. Kartograficzna metoda badan, która od wielu lat słuzy temu celowi w odniesieniu do danych przestrzennych, zyskuje dzis nowe oblicze - pozwala na wykonywanie złozonych analiz dzieki wykorzystaniu intensywnego rozwoju technologii informatycznych. Znaczaca wiekszosc zastosowan metod analitycznych tzw. eksploracyjnej analizy danych (data mining) i ich "wzbogacania” (data enrichment) dotyczy jednakze danych nieprzestrzennych. Wykorzystanie tych metod do analizy danych o charakterze przestrzennym, w tym danych statystycznych, i zapewnienie dostepu do nich w formie dedykowanych usług przyczyniłoby sie, zdaniem Autorów, do przetworzenia infrastruktury informacji przestrzennej (Spatial InformationInfrastructure - SII) w infrastrukture wiedzy przestrzennej (Spatial Knowledge Infrastructure - SKI). Rozwojowi SKI mógłby słuzyc geoportal statystyczny, którego propozycje funkcjonalnosci, obejmujace zarówno analize jak i wizualizacje danych, zarysowano w artykule. Zaprezentowano tez przykłady analiz statystycznych (ANOVA, regresja z uwzglednieniem sasiedztwa przestrzennego), mozliwych do zaimplementowania w takim portalu, a które mogłyby sie przyczynic do wytworzenia "kartograficznej wartosci dodanej”.

  14. Standardized acquisition, storing and provision of 3D enabled spatial data

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Maier, S.; Peinsipp-Byma, E.

    2017-05-01

    In the area of working with spatial data, in addition to the classic, two-dimensional geometrical data (maps, aerial images, etc.), the needs for three-dimensional spatial data (city models, digital elevation models, etc.) is increasing. Due to this increased demand the acquiring, storing and provision of 3D enabled spatial data in Geographic Information Systems (GIS) is more and more important. Existing proprietary solutions quickly reaches their limits during data exchange and data delivery to other systems. They generate a large workload, which will be very costly. However, it is noticeable that these expenses and costs can generally be significantly reduced using standards. The aim of this research is therefore to develop a concept in the field of three-dimensional spatial data that runs on existing standards whenever possible. In this research, the military image analysts are the preferred user group of the system. To achieve the objective of the widest possible use of standards in spatial 3D data, existing standards, proprietary interfaces and standards under discussion have been analyzed. Since the here used GIS of the Fraunhofer IOSB is already using and supporting OGC (Open Geospatial Consortium) and NATO-STANAG (NATO-Standardization Agreement) standards for the most part of it, a special attention for possible use was laid on their standards. The most promising standard is the OGC standard 3DPS (3D Portrayal Service) with its occurrences W3DS (Web 3D Service) and WVS (Web View Service). A demo system was created, using a standardized workflow from the data acquiring, storing and provision and showing the benefit of our approach.

  15. INTEGRATION OF SPATIAL DATA: EVALUATION OF METHODS BASED ON DATA ISSUES AND ASSESSMENT QUESTIONS

    EPA Science Inventory

    EPA's Regional Vulnerability Assessment (ReVA) Program has focused initially on the synthesis of existing data. We have used the same set of spatial data and synthesized these data using a total of 11 existing and newly developed integration methods. These methods were evaluated ...

  16. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.

  17. The Variable Grid Method, an Approach for the Simultaneous Visualization and Assessment of Spatial Trends and Uncertainty

    NASA Astrophysics Data System (ADS)

    Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.

    2015-12-01

    The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.

  18. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  19. A geo-spatial data management system for potentially active volcanoes—GEOWARN project

    NASA Astrophysics Data System (ADS)

    Gogu, Radu C.; Dietrich, Volker J.; Jenny, Bernhard; Schwandner, Florian M.; Hurni, Lorenz

    2006-02-01

    Integrated studies of active volcanic systems for the purpose of long-term monitoring and forecast and short-term eruption prediction require large numbers of data-sets from various disciplines. A modern database concept has been developed for managing and analyzing multi-disciplinary volcanological data-sets. The GEOWARN project (choosing the "Kos-Yali-Nisyros-Tilos volcanic field, Greece" and the "Campi Flegrei, Italy" as test sites) is oriented toward potentially active volcanoes situated in regions of high geodynamic unrest. This article describes the volcanological database of the spatial and temporal data acquired within the GEOWARN project. As a first step, a spatial database embedded in a Geographic Information System (GIS) environment was created. Digital data of different spatial resolution, and time-series data collected at different intervals or periods, were unified in a common, four-dimensional representation of space and time. The database scheme comprises various information layers containing geographic data (e.g. seafloor and land digital elevation model, satellite imagery, anthropogenic structures, land-use), geophysical data (e.g. from active and passive seismicity, gravity, tomography, SAR interferometry, thermal imagery, differential GPS), geological data (e.g. lithology, structural geology, oceanography), and geochemical data (e.g. from hydrothermal fluid chemistry and diffuse degassing features). As a second step based on the presented database, spatial data analysis has been performed using custom-programmed interfaces that execute query scripts resulting in a graphical visualization of data. These query tools were designed and compiled following scenarios of known "behavior" patterns of dormant volcanoes and first candidate signs of potential unrest. The spatial database and query approach is intended to facilitate scientific research on volcanic processes and phenomena, and volcanic surveillance.

  20. a Data Field Method for Urban Remotely Sensed Imagery Classification Considering Spatial Correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Qin, K.; Zeng, C.; Zhang, E. B.; Yue, M. X.; Tong, X.

    2016-06-01

    Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary's C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM) for the classification of multi-features (e.g. the spectral feature and spatial correlation feature). In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  1. Integration and management of massive remote-sensing data based on GeoSOT subdivision model

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li

    2016-07-01

    Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.

  2. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.

  3. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Treesearch

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  4. The experiment of cooperative learning model type team assisted individualization (TAI) on three-dimensional space subject viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Manapa, I. Y. H.; Budiyono; Subanti, S.

    2018-03-01

    The aim of this research is to determine the effect of TAI or direct learning (DL) on student’s mathematics achievement viewed from spatial intelligence. This research was quasi experiment. The population was 10th grade senior high school students in Alor Regency on academic year of 2015/2016 chosen by stratified cluster random sampling. The data were collected through achievement and spatial intelligence test. The data were analyzed by two ways, ANOVA with unequal cell and scheffe test. This research showed that student’s mathematics achievement used in TAI had better results than DL models one. In spatial intelligence category, student’s mathematics achievement with high spatial intelligence has better result than the other spatial intelligence category and students with high spatial intelligence have better results than those with middle spatial intelligence category. At TAI, student’s mathematics achievement with high spatial intelligence has better result than those with the other spatial intelligence category and students with middle spatial intelligence have better results than students with low spatial intelligence. In DL model, student’s mathematics achievement with high and middle spatial intelligence has better result than those with low spatial intelligence, but students with high spatial intelligence and middle spatial intelligence have no significant difference. In each category of spatial intelligence and learning model, mathematics achievement has no significant difference.

  5. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning

    USGS Publications Warehouse

    Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.

    2017-01-01

    One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.

  6. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    NASA Astrophysics Data System (ADS)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  7. Some practicable applications of quadtree data structures/representation in astronomy

    NASA Technical Reports Server (NTRS)

    Pasztor, L.

    1992-01-01

    Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.

  8. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  9. Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization

    USGS Publications Warehouse

    D'Agostino, V.; Greene, E.A.; Passarella, G.; Vurro, M.

    1998-01-01

    Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.

  10. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  11. Exploring the Application of Volunteered Geographic Information to Catchment Management: a Survey Approach

    NASA Astrophysics Data System (ADS)

    Paudyal, D. R.; McDougall, K.; Apan, A.

    2012-07-01

    The participation and engagement of grass-root level community groups and citizens for natural resource management has a long history. With recent developments in ICT tools and spatial technology, these groups are seeking a new opportunity to manage natural resource data. There are lot of spatial information collected/generated by landcare groups, land holders and other community groups at the grass-root level through their volunteer initiatives. State government organisations are also interested in gaining access to this spatial data/information and engaging these groups to collect spatial information under their mapping programs. The aim of this paper is to explore the possible utilisation of volunteered geographic information (VGI) for catchment management activities. This research paper discusses the importance of spatial information and spatial data infrastructure (SDI) for catchment management and the emergence of VGI. A conceptual framework has been developed to illustrate how these emerging spatial information applications and various community volunteer activities can contribute to a more inclusive spatial data infrastructure (SDI) development at local level. A survey of 56 regional NRM bodies in Australia was utilised to explore the current community-driven volunteer initiatives for NRM activities and the potential of utilisation of VGI initiatives for NRM decision making process. This research paper concludes that VGI activities have great potential to contribute to SDI development at the community level to achieve better natural resource management (NRM) outcomes.

  12. Study on temporal variation and spatial distribution for rural poverty in China based on GIS

    NASA Astrophysics Data System (ADS)

    Feng, Xianfeng; Xu, Xiuli; Wang, Yingjie; Cui, Jing; Mo, Hongyuan; Liu, Ling; Yan, Hong; Zhang, Yan; Han, Jiafu

    2009-07-01

    Poverty is one of the most serious challenges all over the world, is an obstacle to hinder economics and agriculture in poverty area. Research on poverty alleviation in China is very useful and important. In this paper, we will explore the comprehensive poverty characteristics in China, analyze the current poverty status, spatial distribution and temporal variations about rural poverty in China, and to category the different poverty types and their spatial distribution. First, we achieved the gathering and processing the relevant data. These data contain investigation data, research reports, statistical yearbook, censuses, social-economic data, physical and anthrop geographical data, etc. After deeply analysis of these data, we will get the distribution of poverty areas by spatial-temporal data model according to different poverty given standard in different stages in China to see the poverty variation and the regional difference in County-level. Then, the current poverty status, spatial pattern about poverty area in villages-level will be lucubrated; the relationship among poverty, environment (including physical and anthrop geographical factors) and economic development, etc. will be expanded. We hope our research will enhance the people knowledge of poverty in China and contribute to the poverty alleviation in China.

  13. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys

    PubMed Central

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697

  14. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys.

    PubMed

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.

  15. Challenges in sharing of geospatial data by data custodians in South Africa

    NASA Astrophysics Data System (ADS)

    Kay, Sissiel E.

    2018-05-01

    As most development planning and rendering of public services happens at a place or in a space, geospatial data is required. This geospatial data is best managed through a spatial data infrastructure, which has as a key objective to share geospatial data. The collection and maintenance of geospatial data is expensive and time consuming and so the principle of "collect once - use many times" should apply. It is best to obtain the geospatial data from the authoritative source - the appointed data custodian. In South Africa the South African Spatial Data Infrastructure (SASDI) is the means to achieve the requirement for geospatial data sharing. This requires geospatial data sharing to take place between the data custodian and the user. All data custodians are expected to comply with the Spatial Data Infrastructure Act (SDI Act) in terms of geo-spatial data sharing. Currently data custodians are experiencing challenges with regard to the sharing of geospatial data. This research is based on the current ten data themes selected by the Committee for Spatial Information and the organisations identified as the data custodians for these ten data themes. The objectives are to determine whether the identified data custodians comply with the SDI Act with respect to geospatial data sharing, and if not what are the reasons for this. Through an international comparative assessment it then determines if the compliance with the SDI Act is not too onerous on the data custodians. The research concludes that there are challenges with geospatial data sharing in South Africa and that the data custodians only partially comply with the SDI Act in terms of geospatial data sharing. However, it is shown that the South African legislation is not too onerous on the data custodians.

  16. Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Micheals, A. F.; Nelson, N. B.

    1997-01-01

    The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.

  17. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  18. Towards an integrated approach to natural hazards risk assessment using GIS: with reference to bushfires.

    PubMed

    Chen, Keping; Blong, Russell; Jacobson, Carol

    2003-04-01

    This paper develops a GIS-based integrated approach to risk assessment in natural hazards, with reference to bushfires. The challenges for undertaking this approach have three components: data integration, risk assessment tasks, and risk decision-making. First, data integration in GIS is a fundamental step for subsequent risk assessment tasks and risk decision-making. A series of spatial data integration issues within GIS such as geographical scales and data models are addressed. Particularly, the integration of both physical environmental data and socioeconomic data is examined with an example linking remotely sensed data and areal census data in GIS. Second, specific risk assessment tasks, such as hazard behavior simulation and vulnerability assessment, should be undertaken in order to understand complex hazard risks and provide support for risk decision-making. For risk assessment tasks involving heterogeneous data sources, the selection of spatial analysis units is important. Third, risk decision-making concerns spatial preferences and/or patterns, and a multicriteria evaluation (MCE)-GIS typology for risk decision-making is presented that incorporates three perspectives: spatial data types, data models, and methods development. Both conventional MCE methods and artificial intelligence-based methods with GIS are identified to facilitate spatial risk decision-making in a rational and interpretable way. Finally, the paper concludes that the integrated approach can be used to assist risk management of natural hazards, in theory and in practice.

  19. Mashup Scheme Design of Map Tiles Using Lightweight Open Source Webgis Platform

    NASA Astrophysics Data System (ADS)

    Hu, T.; Fan, J.; He, H.; Qin, L.; Li, G.

    2018-04-01

    To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.

  20. Building a North American Spatial Data Infrastructure

    USGS Publications Warehouse

    Coleman, D.J.; Nebert, D.D.

    1998-01-01

    This paper addresses the state of spatial data infrastructures within North America in late 1997. After providing some background underlying the philosophy and development of the SDI concept, the authors discuss effects of technology, institutions, and standardization that confront the cohesive implementation of a common infrastructure today. The paper concludes with a comparative framework and specific examples of elements and initiatives defining respective spatial data infrastructure initiatives in the United States and Canada.

  1. Development of advanced acreage estimation methods

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1980-01-01

    The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.

  2. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  3. Functional overestimation due to spatial smoothing of fMRI data.

    PubMed

    Liu, Peng; Calhoun, Vince; Chen, Zikuan

    2017-11-01

    Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A spatial scaling relationship for soil moisture in a semiarid landscape, using spatial scaling relationships for pedology

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.

    2013-12-01

    In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.

  5. NARSTO NE MODEL

    Atmospheric Science Data Center

    2018-04-09

    ... UV Ozone Detector Location:  Northeastern United States Spatial Coverage:  Data are provided from seven ... Related Data:  Spatial Coverage: Northeastern United States NARSTO Northeast SCAR-B Block:  ...

  6. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 2

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.

  7. Temporal mapping and analysis

    NASA Technical Reports Server (NTRS)

    O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)

    2011-01-01

    A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.

  8. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  9. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  10. A Spatial Data Infrastructure for Environmental Noise Data in Europe.

    PubMed

    Abramic, Andrej; Kotsev, Alexander; Cetl, Vlado; Kephalopoulos, Stylianos; Paviotti, Marco

    2017-07-06

    Access to high quality data is essential in order to better understand the environmental and health impact of noise in an increasingly urbanised world. This paper analyses how recent developments of spatial data infrastructures in Europe can significantly improve the utilization of data and streamline reporting on a pan-European scale. The Infrastructure for Spatial Information in the European Community (INSPIRE), and Environmental Noise Directive (END) described in this manuscript provide principles for data management that, once applied, would lead to a better understanding of the state of environmental noise. Furthermore, shared, harmonised and easily discoverable environmental spatial data, required by the INSPIRE, would also support the data collection needed for the assessment and development of strategic noise maps. Action plans designed by the EU Member States to reduce noise and mitigate related effects can be shared to the public through already established nodes of the European spatial data infrastructure. Finally, data flows regarding reporting on the state of environment and END implementation to the European level can benefit by applying a decentralised e-reporting service oriented infrastructure. This would allow reported data to be maintained, frequently updated and enable pooling of information from/to other relevant and interrelated domains such as air quality, transportation, human health, population, marine environment or biodiversity. We describe those processes and provide a use case in which noise data from two neighbouring European countries are mapped to common data specifications, defined by INSPIRE, thus ensuring interoperability and harmonisation.

  11. Operational Interoperable Web Coverage Service for Earth Observing Satellite Data: Issues and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Yang, W.; Min, M.; Bai, Y.; Lynnes, C.; Holloway, D.; Enloe, Y.; di, L.

    2008-12-01

    In the past few years, there have been growing interests, among major earth observing satellite (EOS) data providers, in serving data through the interoperable Web Coverage Service (WCS) interface protocol, developed by the Open Geospatial Consortium (OGC). The interface protocol defined in WCS specifications allows client software to make customized requests of multi-dimensional EOS data, including spatial and temporal subsetting, resampling and interpolation, and coordinate reference system (CRS) transformation. A WCS server describes an offered coverage, i.e., a data product, through a response to a client's DescribeCoverage request. The description includes the offered coverage's spatial/temporal extents and resolutions, supported CRSs, supported interpolation methods, and supported encoding formats. Based on such information, a client can request the entire or a subset of coverage in any spatial/temporal resolutions and in any one of the supported CRSs, formats, and interpolation methods. When implementing a WCS server, a data provider has different approaches to present its data holdings to clients. One of the most straightforward, and commonly used, approaches is to offer individual physical data files as separate coverages. Such implementation, however, will result in too many offered coverages for large data holdings and it also cannot fully present the relationship among different, but spatially and/or temporally associated, data files. It is desirable to disconnect offered coverages from physical data files so that the former is more coherent, especially in spatial and temporal domains. Therefore, some servers offer one single coverage for a set of spatially coregistered time series data files such as a daily global precipitation coverage linked to many global single- day precipitation files; others offer one single coverage for multiple temporally coregistered files together forming a large spatial extent. In either case, a server needs to assemble an output coverage real-time by combining potentially large number of physical files, which can be operationally difficult. The task becomes more challenging if an offered coverage involves spatially and temporally un-registered physical files. In this presentation, we will discuss issues and lessons learned in providing NASA's AIRS Level 2 atmospheric products, which are in satellite swath CRS and in 6-minute segment granule files, as virtual global coverages. We"ll discuss the WCS server's on- the-fly georectification, mosaicking, quality screening, performance, and scalability.

  12. Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures

    PubMed Central

    Zavodszky, Maria I.

    2017-01-01

    Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747

  13. Basin Assessment Spatial Planning Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainagemore » areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.« less

  14. Cluster detection methods applied to the Upper Cape Cod cancer data.

    PubMed

    Ozonoff, Al; Webster, Thomas; Vieira, Veronica; Weinberg, Janice; Ozonoff, David; Aschengrau, Ann

    2005-09-15

    A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM) method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.

  15. Spatial-temporal travel pattern mining using massive taxi trajectory data

    NASA Astrophysics Data System (ADS)

    Zheng, Linjiang; Xia, Dong; Zhao, Xin; Tan, Longyou; Li, Hang; Chen, Li; Liu, Weining

    2018-07-01

    Deep understanding of residents' travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial-temporal characterization of urban residents' travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial-temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial-temporal characterization of Chongqing residents' travel pattern.

  16. Octree-based indexing for 3D pointclouds within an Oracle Spatial DBMS

    NASA Astrophysics Data System (ADS)

    Schön, Bianca; Mosa, Abu Saleh Mohammad; Laefer, Debra F.; Bertolotto, Michela

    2013-02-01

    A large proportion of today's digital datasets have a spatial component. The effective storage and management of which poses particular challenges, especially with light detection and ranging (LiDAR), where datasets of even small geographic areas may contain several hundred million points. While in the last decade 2.5-dimensional data were prevalent, true 3-dimensional data are increasingly commonplace via LiDAR. They have gained particular popularity for urban applications including generation of city-scale maps, baseline data disaster management, and utility planning. Additionally, LiDAR is commonly used for flood plane identification, coastal-erosion tracking, and forest biomass mapping. Despite growing data availability, current spatial information systems do not provide suitable full support for the data's true 3D nature. Consequently, one system is needed to store the data and another for its processing, thereby necessitating format transformations. The work presented herein aims at a more cost-effective way for managing 3D LiDAR data that allows for storage and manipulation within a single system by enabling a new index within existing spatial database management technology. Implementation of an octree index for 3D LiDAR data atop Oracle Spatial 11g is presented, along with an evaluation showing up to an eight-fold improvement compared to the native Oracle R-tree index.

  17. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.

  18. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation.

    PubMed

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.

  19. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M

    2018-06-02

    Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Multisource Imaging of Seasonal Dynamics in Land Surface Phenology Using Harmonized Landsat and Sentinel-2 Data

    NASA Astrophysics Data System (ADS)

    Melaas, E. K.; Graesser, J.; Friedl, M. A.

    2017-12-01

    Land surface phenology, including the timing of phenophase transitions and the entire seasonal cycle of surface reflectance and vegetation indices, is important for a myriad of applications including monitoring the response of terrestrial ecosystems to climate variability and extreme events, and land cover mapping. While methods to monitor and map phenology from coarse spatial resolution instruments such as MODIS are now relatively mature, the spatial resolution of these instruments is inadequate where vegetation properties, land use, and land cover vary at spatial scales of tens of meters. To address this need, algorithms to map phenology at moderate spatial resolution (30 m) using data from Landsat have recently been developed. However, the 16-day repeat cycle of Landsat presents significant challenges in regions where changes are rapid or where cloud cover reduces the frequency of clear-sky views. The European Space Agency's Sentinel-2 satellites, which are designed to provide moderate spatial resolution data at 5-day revisit frequency near the equator and 3 day revisit frequency in the mid-latitudes, will alleviate this constraint in many parts of the world. Here, we use harmonized time series of data from Sentinel-2A and Landsat OLI (HLS) to quantify the timing of land surface phenology metrics across a sample of deciduous forest and grassland-dominated sites, and then compare these estimates with co-located in situ observations. The resulting phenology maps demonstrate the improved information related to landscape-scale features that can be estimated from HLS data relative to comparable metrics from coarse spatial resolution instruments. For example, our results based on HLS data reveal spatial patterns in phenological metrics related to topographic and land cover controls that are not resolved in MODIS data, and show good agreement with transition dates observed from in situ measurements. Our results also show systematic bias toward earlier timing of spring, which is caused by inadequate density of observations that will be mitigated once data from Sentinel-2B are available. Overall, our results highlight the potential for using moderate spatial resolution data from Landsat and Sentinel-2 for developing operational phenology algorithms and products in support of the science community.

  1. Geospatial Data Stream Processing in Python Using FOSS4G Components

    NASA Astrophysics Data System (ADS)

    McFerren, G.; van Zyl, T.

    2016-06-01

    One viewpoint of current and future IT systems holds that there is an increase in the scale and velocity at which data are acquired and analysed from heterogeneous, dynamic sources. In the earth observation and geoinformatics domains, this process is driven by the increase in number and types of devices that report location and the proliferation of assorted sensors, from satellite constellations to oceanic buoy arrays. Much of these data will be encountered as self-contained messages on data streams - continuous, infinite flows of data. Spatial analytics over data streams concerns the search for spatial and spatio-temporal relationships within and amongst data "on the move". In spatial databases, queries can assess a store of data to unpack spatial relationships; this is not the case on streams, where spatial relationships need to be established with the incomplete data available. Methods for spatially-based indexing, filtering, joining and transforming of streaming data need to be established and implemented in software components. This article describes the usage patterns and performance metrics of a number of well known FOSS4G Python software libraries within the data stream processing paradigm. In particular, we consider the RTree library for spatial indexing, the Shapely library for geometric processing and transformation and the PyProj library for projection and geodesic calculations over streams of geospatial data. We introduce a message oriented Python-based geospatial data streaming framework called Swordfish, which provides data stream processing primitives, functions, transports and a common data model for describing messages, based on the Open Geospatial Consortium Observations and Measurements (O&M) and Unidata Common Data Model (CDM) standards. We illustrate how the geospatial software components are integrated with the Swordfish framework. Furthermore, we describe the tight temporal constraints under which geospatial functionality can be invoked when processing high velocity, potentially infinite geospatial data streams. The article discusses the performance of these libraries under simulated streaming loads (size, complexity and volume of messages) and how they can be deployed and utilised with Swordfish under real load scenarios, illustrated by a set of Vessel Automatic Identification System (AIS) use cases. We conclude that the described software libraries are able to perform adequately under geospatial data stream processing scenarios - many real application use cases will be handled sufficiently by the software.

  2. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.

    PubMed

    Caraus, Iurie; Mazoure, Bogdan; Nadon, Robert; Makarenkov, Vladimir

    2017-10-15

    Considerable attention has been paid recently to improve data quality in high-throughput screening (HTS) and high-content screening (HCS) technologies widely used in drug development and chemical toxicity research. However, several environmentally- and procedurally-induced spatial biases in experimental HTS and HCS screens decrease measurement accuracy, leading to increased numbers of false positives and false negatives in hit selection. Although effective bias correction methods and software have been developed over the past decades, almost all of these tools have been designed to reduce the effect of additive bias only. Here, we address the case of multiplicative spatial bias. We introduce three new statistical methods meant to reduce multiplicative spatial bias in screening technologies. We assess the performance of the methods with synthetic and real data affected by multiplicative spatial bias, including comparisons with current bias correction methods. We also describe a wider data correction protocol that integrates methods for removing both assay and plate-specific spatial biases, which can be either additive or multiplicative. The methods for removing multiplicative spatial bias and the data correction protocol are effective in detecting and cleaning experimental data generated by screening technologies. As our protocol is of a general nature, it can be used by researchers analyzing current or next-generation high-throughput screens. The AssayCorrector program, implemented in R, is available on CRAN. makarenkov.vladimir@uqam.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Onondaga Lake Watershed – A Geographic Information System Project Phase I – Needs assessment and spatial data framework

    USGS Publications Warehouse

    Freehafer, Douglas A.; Pierson, Oliver

    2004-01-01

    In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.

  4. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  5. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    USGS Publications Warehouse

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  6. EPA Tribal Areas (4 of 4): Alaska Native Allotments

    EPA Pesticide Factsheets

    This dataset is a spatial representation of the Public Land Survey System (PLSS) in Alaska, generated from land survey records. The data represents a seamless spatial portrayal of native allotment land parcels, their legal descriptions, corner positioning and markings, and survey measurements. This data is intended for mapping purposes only and is not a substitute or replacement for the legal land survey records or other legal documents.Measurement and attribute data are collected from survey records using data entry screens into a relational database. The database design is based upon the FGDC Cadastral Content Data Standard. Corner positions are derived by geodetic calculations using measurement records. Closure and edgematching are applied to produce a seamless dataset. The resultant features do not preserve the original geometry of survey measurements, but the record measurements are reported as attributes. Additional boundary data are derived by spatial capture, protraction and GIS processing. The spatial features are stored and managed within the relational database, with active links to the represented measurement and attribute data.

  7. Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects

    ERIC Educational Resources Information Center

    Qian, Minghui; Hu, Ridong; Chen, Jianwei

    2016-01-01

    Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…

  8. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  9. Fractal analysis of time varying data

    DOEpatents

    Vo-Dinh, Tuan; Sadana, Ajit

    2002-01-01

    Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.

  10. EMAP and EMAGE: a framework for understanding spatially organized data.

    PubMed

    Baldock, Richard A; Bard, Jonathan B L; Burger, Albert; Burton, Nicolas; Christiansen, Jeff; Feng, Guanjie; Hill, Bill; Houghton, Derek; Kaufman, Matthew; Rao, Jianguo; Sharpe, James; Ross, Allyson; Stevenson, Peter; Venkataraman, Shanmugasundaram; Waterhouse, Andrew; Yang, Yiya; Davidson, Duncan R

    2003-01-01

    The Edinburgh MouseAtlas Project (EMAP) is a time-series of mouse-embryo volumetric models. The models provide a context-free spatial framework onto which structural interpretations and experimental data can be mapped. This enables collation, comparison, and query of complex spatial patterns with respect to each other and with respect to known or hypothesized structure. The atlas also includes a time-dependent anatomical ontology and mapping between the ontology and the spatial models in the form of delineated anatomical regions or tissues. The models provide a natural, graphical context for browsing and visualizing complex data. The Edinburgh Mouse Atlas Gene-Expression Database (EMAGE) is one of the first applications of the EMAP framework and provides a spatially mapped gene-expression database with associated tools for data mapping, submission, and query. In this article, we describe the underlying principles of the Atlas and the gene-expression database, and provide a practical introduction to the use of the EMAP and EMAGE tools, including use of new techniques for whole body gene-expression data capture and mapping.

  11. Maximizing Accessibility to Spatially Referenced Digital Data.

    ERIC Educational Resources Information Center

    Hunt, Li; Joselyn, Mark

    1995-01-01

    Discusses some widely available spatially referenced datasets, including raster and vector datasets. Strategies for improving accessibility include: acquisition of data in a software-dependent format; reorganization of data into logical geographic units; acquisition of intelligent retrieval software; improving computer hardware; and intelligent…

  12. SPATIAL PREDICTION USING COMBINED SOURCES OF DATA

    EPA Science Inventory

    For improved environmental decision-making, it is important to develop new models for spatial prediction that accurately characterize important spatial and temporal patterns of air pollution. As the U .S. Environmental Protection Agency begins to use spatial prediction in the reg...

  13. Enabling heterogenous multi-scale database for emergency service functions through geoinformation technologies

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, V.; Venugopala Rao, K.; Srinivasa Rao, S.; Ram Mohan Rao, K.; Chandra, P. Satya; Vidhyasagar, J.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Geographical Information Science (GIS) is now graduated from traditional desktop system to Internet system. Internet GIS is emerging as one of the most promising technologies for addressing Emergency Management. Web services with different privileges are playing an important role in dissemination of the emergency services to the decision makers. Spatial database is one of the most important components in the successful implementation of Emergency Management. It contains spatial data in the form of raster, vector, linked with non-spatial information. Comprehensive data is required to handle emergency situation in different phases. These database elements comprise core data, hazard specific data, corresponding attribute data, and live data coming from the remote locations. Core data sets are minimum required data including base, thematic, infrastructure layers to handle disasters. Disaster specific information is required to handle a particular disaster situation like flood, cyclone, forest fire, earth quake, land slide, drought. In addition to this Emergency Management require many types of data with spatial and temporal attributes that should be made available to the key players in the right format at right time. The vector database needs to be complemented with required resolution satellite imagery for visualisation and analysis in disaster management. Therefore, the database is interconnected and comprehensive to meet the requirement of an Emergency Management. This kind of integrated, comprehensive and structured database with appropriate information is required to obtain right information at right time for the right people. However, building spatial database for Emergency Management is a challenging task because of the key issues such as availability of data, sharing policies, compatible geospatial standards, data interoperability etc. Therefore, to facilitate using, sharing, and integrating the spatial data, there is a need to define standards to build emergency database systems. These include aspects such as i) data integration procedures namely standard coding scheme, schema, meta data format, spatial format ii) database organisation mechanism covering data management, catalogues, data models iii) database dissemination through a suitable environment, as a standard service for effective service dissemination. National Database for Emergency Management (NDEM) is such a comprehensive database for addressing disasters in India at the national level. This paper explains standards for integrating, organising the multi-scale and multi-source data with effective emergency response using customized user interfaces for NDEM. It presents standard procedure for building comprehensive emergency information systems for enabling emergency specific functions through geospatial technologies.

  14. Histomolecular interpretation of pleomorphic adenomas of the salivary gland by matrix-assisted laser desorption ionization imaging and spatial segmentation.

    PubMed

    Ernst, Günther; Guntinas-Lichius, Orlando; Hauberg-Lotte, Lena; Trede, Dennis; Becker, Michael; Alexandrov, Theodore; von Eggeling, Ferdinand

    2015-07-01

    Despite efforts in localization of key proteins using immunohistochemistry, the complex proteomic composition of pleomorphic adenomas has not yet been characterized. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging) allows label-free and spatially resolved detection of hundreds of proteins directly from tissue sections and of histomorphological regions by finding colocalized molecular signals. Spatial segmentation of MALDI imaging data is an algorithmic method for finding regions of similar proteomic composition as functionally similar regions. We investigated 2 pleomorphic adenomas by applying spatial segmentation to the MALDI imaging data of tissue sections. The spatial segmentation subdivided the tissue in a good accordance with the tissue histology. Numerous molecular signals colocalized with histologically defined tissue regions were found. Our study highlights the cellular transdifferentiation within the pleomorphic adenoma. It could be shown that spatial segmentation of MALDI imaging data is a promising approach in the emerging field of digital histological analysis and characterization of tumors. © 2014 Wiley Periodicals, Inc.

  15. RiceAtlas, a spatial database of global rice calendars and production.

    PubMed

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  16. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province

    NASA Astrophysics Data System (ADS)

    Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono

    2017-01-01

    The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.

  17. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    NASA Astrophysics Data System (ADS)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  18. Missing in space: an evaluation of imputation methods for missing data in spatial analysis of risk factors for type II diabetes.

    PubMed

    Baker, Jannah; White, Nicole; Mengersen, Kerrie

    2014-11-20

    Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.

  19. Research on mixed network architecture collaborative application model

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  20. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    NASA Astrophysics Data System (ADS)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-07-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  1. Spatial Data Quality Control Procedure applied to the Okavango Basin Information System

    NASA Astrophysics Data System (ADS)

    Butchart-Kuhlmann, Daniel

    2014-05-01

    Spatial data is a powerful form of information, capable of providing information of great interest and tremendous use to a variety of users. However, much like other data representing the 'real world', precision and accuracy must be high for the results of data analysis to be deemed reliable and thus applicable to real world projects and undertakings. The spatial data quality control (QC) procedure presented here was developed as the topic of a Master's thesis, in the sphere of and using data from the Okavango Basin Information System (OBIS), itself a part of The Future Okavango (TFO) project. The aim of the QC procedure was to form the basis of a method through which to determine the quality of spatial data relevant for application to hydrological, solute, and erosion transport modelling using the Jena Adaptable Modelling System (JAMS). As such, the quality of all data present in OBIS classified under the topics of elevation, geoscientific information, or inland waters, was evaluated. Since the initial data quality has been evaluated, efforts are underway to correct the errors found, thus improving the quality of the dataset.

  2. Magnifying Democracy and Sovereignty In Indonesian Maritime Governance Through Open Marine Spatial Data Practice

    NASA Astrophysics Data System (ADS)

    Yudono, Adipandang

    2018-05-01

    This research has attempted to discover a new approach in magnifying democracy and sovereignty in the Indonesian maritime governance through open marine spatial data practices between governments and citizens. The research has been done in order to fill in the gap of bridging marine spatial data or information at all government levels and between citizen and government. The research predominantly used qualitative methods with specifically approach was discourse analysis using legal document analysis and in-depth interview to elites, and local digital mapping communities. The coherence and synergy of maritime development can be achieved through dialogue between the elites and the public. A solution to bridge political communication between the elite and the public is sharing or open marine spatial data and information.

  3. Bayesian spatial transformation models with applications in neuroimaging data

    PubMed Central

    Miranda, Michelle F.; Zhu, Hongtu; Ibrahim, Joseph G.

    2013-01-01

    Summary The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. PMID:24128143

  4. DEFINITION OF MULTIVARIATE GEOCHEMICAL ASSOCIATIONS WITH POLYMETALLIC MINERAL OCCURRENCES USING A SPATIALLY DEPENDENT CLUSTERING TECHNIQUE AND RASTERIZED STREAM SEDIMENT DATA - AN ALASKAN EXAMPLE.

    USGS Publications Warehouse

    Jenson, Susan K.; Trautwein, C.M.

    1984-01-01

    The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.

  5. Need for Improved Methods to Collect and Present Spatial Epidemiologic Data for Vectorborne Diseases

    PubMed Central

    Eisen, Rebecca J.

    2007-01-01

    Improved methods for collection and presentation of spatial epidemiologic data are needed for vectorborne diseases in the United States. Lack of reliable data for probable pathogen exposure site has emerged as a major obstacle to the development of predictive spatial risk models. Although plague case investigations can serve as a model for how to ideally generate needed information, this comprehensive approach is cost-prohibitive for more common and less severe diseases. New methods are urgently needed to determine probable pathogen exposure sites that will yield reliable results while taking into account economic and time constraints of the public health system and attending physicians. Recent data demonstrate the need for a change from use of the county spatial unit for presentation of incidence of vectorborne diseases to more precise ZIP code or census tract scales. Such fine-scale spatial risk patterns can be communicated to the public and medical community through Web-mapping approaches. PMID:18258029

  6. A discussion for integrating INSPIRE with volunteered geographic information (VGI) and the vision for a global spatial-based platform

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan

    2017-09-01

    INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.

  7. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  8. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  9. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

    PubMed Central

    Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-01-01

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152

  10. Approach to data exchange: the spatial data transfer standard

    USGS Publications Warehouse

    Rossmeissl, Hedy J.; Rugg, Robert D.

    1992-01-01

    Significant developments have taken place in the disciplines of cartography and geography in recent years with the advent of computer hardware and software that manipulate and process digital cartographic and geographic data more efficiently. The availability of inexpensive and powerful hardware and software systems offers the capability of displaying and analyzing spatial data to a growing number of users. As a result, developing and using existing digital cartographic databases are becoming very popular. However, the absence of uniform standards for the transfer of digital spatial data is hindering the exchange of data and increasing costs. Several agencies of the U.S. government and the academic community have been working hard over the last few years to develop a spatial data transfer standard that includes definitions of standard terminology, a spatial data transfer specification, recommendations on reporting digital cartographic data quality, and standard topographic and hydrographic entity terms and definitions. This proposed standard was published in the January 1988 issue of The American Cartographer. Efforts to test and promote this standard were coordinated by the U.S. Geological Survey. A Technical Review Board was appointed with representatives from the U.S. government, the private sector, and the academic community to complete the standard for submittal to the National Institute of Standards and Technology for approval as a Federal Information Processing Standard. The proposed standard was submitted in February 1992 for final approval.

  11. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  12. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    PubMed

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  13. Analysis of the cadastral data published in the Polish Spatial Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Izdebski, Waldemar

    2017-12-01

    The cadastral data, including land parcels, are the basic reference data for presenting various objects collected in spatial databases. Easy access to up-to-date records is a very important matter for the individuals and institutions using spatial data infrastructure. The primary objective of the study was to check the current accessibility of cadastral data as well as to verify how current and complete they are. The author started researching this topic in 2007, i.e. from the moment the Team for National Spatial Data Infrastructure developed documentation concerning the standard of publishing cadastral data with the use of the WMS. Since ten years, the author was monitoring the status of cadastral data publishing in various districts as well as participated in data publishing in many districts. In 2017, when only half of the districts published WMS services from cadastral data, the questions arise: why is it so and how to change this unfavourable status? As a result of the tests performed, it was found that the status of publishing cadastral data is still far from perfect. The quality of the offered web services varies and, unfortunately, many services offer poor performance; moreover, there are plenty services that do not operate at all.

  14. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  15. The Impact of Varying Statutory Arrangements on Spatial Data Sharing and Access in Regional NRM Bodies

    NASA Astrophysics Data System (ADS)

    Paudyal, D. R.; McDougall, K.; Apan, A.

    2014-12-01

    Spatial information plays an important role in many social, environmental and economic decisions and increasingly acknowledged as a national resource essential for wider societal and environmental benefits. Natural Resource Management is one area where spatial information can be used for improved planning and decision making processes. In Australia, state government organisations are the custodians of spatial information necessary for natural resource management and regional NRM bodies are responsible to regional delivery of NRM activities. The access and sharing of spatial information between government agencies and regional NRM bodies is therefore as an important issue for improving natural resource management outcomes. The aim of this paper is to evaluate the current status of spatial information access, sharing and use with varying statutory arrangements and its impacts on spatial data infrastructure (SDI) development in catchment management sector in Australia. Further, it critically examined whether any trends and significant variations exist due to different institutional arrangements (statutory versus non-statutory) or not. A survey method was used to collect primary data from 56 regional natural resource management (NRM) bodies responsible for catchment management in Australia. Descriptive statistics method was used to show the similarities and differences between statutory and non-statutory arrangements. The key factors which influence sharing and access to spatial information are also explored. The results show the current statutory and administrative arrangements and regional focus for natural resource management is reasonable from a spatial information management perspective and provides an opportunity for building SDI at the catchment scale. However, effective institutional arrangements should align catchment SDI development activities with sub-national and national SDI development activities to address catchment management issues. We found minor differences in spatial information access, use and sharing due to varying institutional environment (statutory versus non-statutory). The non-statutory group appears to be more flexible and selfsufficient whilst statutory regional NRM bodies may lack flexibility in their spatial information management practices. We found spatial information access, use and sharing has significant impacts on spatial data infrastructure development in catchment management sector in Australia.

  16. Underestimating the effects of spatial heterogeneity due to individual movement and spatial scale: infectious disease as an example

    USGS Publications Warehouse

    Cross, Paul C.; Caillaud, Damien; Heisey, Dennis M.

    2013-01-01

    Many ecological and epidemiological studies occur in systems with mobile individuals and heterogeneous landscapes. Using a simulation model, we show that the accuracy of inferring an underlying biological process from observational data depends on movement and spatial scale of the analysis. As an example, we focused on estimating the relationship between host density and pathogen transmission. Observational data can result in highly biased inference about the underlying process when individuals move among sampling areas. Even without sampling error, the effect of host density on disease transmission is underestimated by approximately 50 % when one in ten hosts move among sampling areas per lifetime. Aggregating data across larger regions causes minimal bias when host movement is low, and results in less biased inference when movement rates are high. However, increasing data aggregation reduces the observed spatial variation, which would lead to the misperception that a spatially targeted control effort may not be very effective. In addition, averaging over the local heterogeneity will result in underestimating the importance of spatial covariates. Minimizing the bias due to movement is not just about choosing the best spatial scale for analysis, but also about reducing the error associated with using the sampling location as a proxy for an individual’s spatial history. This error associated with the exposure covariate can be reduced by choosing sampling regions with less movement, including longitudinal information of individuals’ movements, or reducing the window of exposure by using repeated sampling or younger individuals.

  17. Data management with a landslide inventory of the Franconian Alb (Germany) using a spatial database and GIS tools

    NASA Astrophysics Data System (ADS)

    Bemm, Stefan; Sandmeier, Christine; Wilde, Martina; Jaeger, Daniel; Schwindt, Daniel; Terhorst, Birgit

    2014-05-01

    The area of the Swabian-Franconian cuesta landscape (Southern Germany) is highly prone to landslides. This was apparent in the late spring of 2013, when numerous landslides occurred as a consequence of heavy and long-lasting rainfalls. The specific climatic situation caused numerous damages with serious impact on settlements and infrastructure. Knowledge on spatial distribution of landslides, processes and characteristics are important to evaluate the potential risk that can occur from mass movements in those areas. In the frame of two projects about 400 landslides were mapped and detailed data sets were compiled during years 2011 to 2014 at the Franconian Alb. The studies are related to the project "Slope stability and hazard zones in the northern Bavarian cuesta" (DFG, German Research Foundation) as well as to the LfU (The Bavarian Environment Agency) within the project "Georisks and climate change - hazard indication map Jura". The central goal of the present study is to create a spatial database for landslides. The database should contain all fundamental parameters to characterize the mass movements and should provide the potential for secure data storage and data management, as well as statistical evaluations. The spatial database was created with PostgreSQL, an object-relational database management system and PostGIS, a spatial database extender for PostgreSQL, which provides the possibility to store spatial and geographic objects and to connect to several GIS applications, like GRASS GIS, SAGA GIS, QGIS and GDAL, a geospatial library (Obe et al. 2011). Database access for querying, importing, and exporting spatial and non-spatial data is ensured by using GUI or non-GUI connections. The database allows the use of procedural languages for writing advanced functions in the R, Python or Perl programming languages. It is possible to work directly with the (spatial) data entirety of the database in R. The inventory of the database includes (amongst others), informations on location, landslide types and causes, geomorphological positions, geometries, hazards and damages, as well as assessments related to the activity of landslides. Furthermore, there are stored spatial objects, which represent the components of a landslide, in particular the scarps and the accumulation areas. Besides, waterways, map sheets, contour lines, detailed infrastructure data, digital elevation models, aspect and slope data are included. Examples of spatial queries to the database are intersections of raster and vector data for calculating values for slope gradients or aspects of landslide areas and for creating multiple, overlaying sections for the comparison of slopes, as well as distances to the infrastructure or to the next receiving drainage. Furthermore, getting informations on landslide magnitudes, distribution and clustering, as well as potential correlations concerning geomorphological or geological conditions. The data management concept in this study can be implemented for any academic, public or private use, because it is independent from any obligatory licenses. The created spatial database offers a platform for interdisciplinary research and socio-economic questions, as well as for landslide susceptibility and hazard indication mapping. Obe, R.O., Hsu, L.S. 2011. PostGIS in action. - pp 492, Manning Publications, Stamford

  18. Restoring the spatial resolution of refocus images on 4D light field

    NASA Astrophysics Data System (ADS)

    Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok

    2010-01-01

    This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.

  19. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.

  20. Geographic Information for Analysis of Highway Runoff-Quality Data on a National or Regional Scale in the Conterminous United States

    USGS Publications Warehouse

    Smieszek, Tomas W.; Granato, Gregory E.

    2000-01-01

    Spatial data are important for interpretation of water-quality information on a regional or national scale. Geographic information systems (GIS) facilitate interpretation and integration of spatial data. The geographic information and data compiled for the conterminous United States during the National Highway Runoff Water-Quality Data and Methodology Synthesis project is described in this document, which also includes information on the structure, file types, and the geographic information in the data files. This 'geodata' directory contains two subdirectories, labeled 'gisdata' and 'gisimage.' The 'gisdata' directory contains ArcInfo coverages, ArcInfo export files, shapefiles (used in ArcView), Spatial Data Transfer Standard Topological Vector Profile format files, and meta files in subdirectories organized by file type. The 'gisimage' directory contains the GIS data in common image-file formats. The spatial geodata includes two rain-zone region maps and a map of national ecosystems originally published by the U.S. Environmental Protection Agency; regional estimates of mean annual streamflow, and water hardness published by the Federal Highway Administration; and mean monthly temperature, mean annual precipitation, and mean monthly snowfall modified from data published by the National Climatic Data Center and made available to the public by the Oregon Climate Service at Oregon State University. These GIS files were compiled for qualitative spatial analysis of available data on a national and(or) regional scale and therefore should be considered as qualitative representations, not precise geographic location information.

  1. a Bottom-Up Geosptial Data Update Mechanism for Spatial Data Infrastructure Updating

    NASA Astrophysics Data System (ADS)

    Tian, W.; Zhu, X.; Liu, Y.

    2012-08-01

    Currently, the top-down spatial data update mechanism has made a big progress and it is wildly applied in many SDI (spatial data infrastructure). However, this mechanism still has some issues. For example, the update schedule is limited by the professional department's project, usually which is too long for the end-user; the data form collection to public cost too much time and energy for professional department; the details of geospatial information does not provide sufficient attribute, etc. Thus, how to deal with the problems has become the effective shortcut. Emerging Internet technology, 3S technique and geographic information knowledge which is popular in the public promote the booming development of geoscience in volunteered geospatial information. Volunteered geospatial information is the current "hotspot", which attracts many researchers to study its data quality and credibility, accuracy, sustainability, social benefit, application and so on. In addition to this, a few scholars also pay attention to the value of VGI to support the SDI updating. And on that basis, this paper presents a bottom-up update mechanism form VGI to SDI, which includes the processes of match homonymous elements between VGI and SDI vector data , change data detection, SDI spatial database update and new data product publication to end-users. Then, the proposed updating cycle is deeply discussed about the feasibility of which can detect the changed elements in time and shorten the update period, provide more accurate geometry and attribute data for spatial data infrastructure and support update propagation.

  2. On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables.

    DOT National Transportation Integrated Search

    2015-12-01

    We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhats Generalized Heterogeneous Data Model (GHDM) with a spat...

  3. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less

  5. Landsat analysis of tropical forest succession employing a terrain model

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  6. The research and development of water resources management information system based on ArcGIS

    NASA Astrophysics Data System (ADS)

    Cui, Weiqun; Gao, Xiaoli; Li, Yuzhi; Cui, Zhencai

    According to that there are large amount of data, complexity of data type and format in the water resources management, we built the water resources calculation model and established the water resources management information system based on the advanced ArcGIS and Visual Studio.NET development platform. The system can integrate the spatial data and attribute data organically, and manage them uniformly. It can analyze spatial data, inquire by map and data bidirectionally, provide various charts and report forms automatically, link multimedia information, manage database etc. . So it can provide spatial and static synthetical information services for study, management and decision of water resources, regional geology and eco-environment etc..

  7. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa.gov/search/), the Orbital Data Explorers (http://ode.rsl.wustl.edu/), and the Planetary Image Locator Tool (PILOT, https://pilot.wr.usgs.gov/); the latter offers ties to the Integrated Software for Imagers and Spectrometers (ISIS), the premier planetary cartographic software package from USGS's Astrogeology Science Team.

  8. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.

  9. Coarse climate change projections for species living in a fine-scaled world.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-01-01

    Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.

  10. Genomes as geography: using GIS technology to build interactive genome feature maps

    PubMed Central

    Dolan, Mary E; Holden, Constance C; Beard, M Kate; Bult, Carol J

    2006-01-01

    Background Many commonly used genome browsers display sequence annotations and related attributes as horizontal data tracks that can be toggled on and off according to user preferences. Most genome browsers use only simple keyword searches and limit the display of detailed annotations to one chromosomal region of the genome at a time. We have employed concepts, methodologies, and tools that were developed for the display of geographic data to develop a Genome Spatial Information System (GenoSIS) for displaying genomes spatially, and interacting with genome annotations and related attribute data. In contrast to the paradigm of horizontally stacked data tracks used by most genome browsers, GenoSIS uses the concept of registered spatial layers composed of spatial objects for integrated display of diverse data. In addition to basic keyword searches, GenoSIS supports complex queries, including spatial queries, and dynamically generates genome maps. Our adaptation of the geographic information system (GIS) model in a genome context supports spatial representation of genome features at multiple scales with a versatile and expressive query capability beyond that supported by existing genome browsers. Results We implemented an interactive genome sequence feature map for the mouse genome in GenoSIS, an application that uses ArcGIS, a commercially available GIS software system. The genome features and their attributes are represented as spatial objects and data layers that can be toggled on and off according to user preferences or displayed selectively in response to user queries. GenoSIS supports the generation of custom genome maps in response to complex queries about genome features based on both their attributes and locations. Our example application of GenoSIS to the mouse genome demonstrates the powerful visualization and query capability of mature GIS technology applied in a novel domain. Conclusion Mapping tools developed specifically for geographic data can be exploited to display, explore and interact with genome data. The approach we describe here is organism independent and is equally useful for linear and circular chromosomes. One of the unique capabilities of GenoSIS compared to existing genome browsers is the capacity to generate genome feature maps dynamically in response to complex attribute and spatial queries. PMID:16984652

  11. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  12. Towards the Development of a More Accurate Monitoring Procedure for Invertebrate Populations, in the Presence of an Unknown Spatial Pattern of Population Distribution in the Field

    PubMed Central

    Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.

    2018-01-01

    Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513

  13. a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.

    2017-10-01

    Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

  14. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    NASA Astrophysics Data System (ADS)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models with unstated, but implicit assumptions. As we interpret modeling results, we must communicate the spatial and temporal scale for which the model was developed and at which the data is valid. When there is little to no data to enable appropriate validation and calibration, the results must be interpreted with appropriate skepticism.

  15. Evaluation of AMOEBA: a spectral-spatial classification method

    USGS Publications Warehouse

    Jenson, Susan K.; Loveland, Thomas R.; Bryant, J.

    1982-01-01

    Muitispectral remotely sensed images have been treated as arbitrary multivariate spectral data for purposes of clustering and classifying. However, the spatial properties of image data can also be exploited. AMOEBA is a clustering and classification method that is based on a spatially derived model for image data. In an evaluation test, Landsat data were classified with both AMOEBA and a widely used spectral classifier. The test showed that irrigated crop types can be classified as accurately with the AMOEBA method as with the generally used spectral method ISOCLS; the AMOEBA method, however, requires less computer time.

  16. What is the spatial sampling of MISR?

    Atmospheric Science Data Center

    2014-12-08

    ... spatial resolution of the sensors without exceeding the data transfer quotas, MISR can be operated in two different data acquisition modes: ... data at the full resolution, but only for limited periods of time and therefore for limited regions, typically about 300 km in length (along ...

  17. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Q; Xie, S

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutionsmore » for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.« less

  19. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  20. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  1. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  2. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  3. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  4. The photo-colorimetric space as a medium for the representation of spatial data

    NASA Technical Reports Server (NTRS)

    Kraiss, K. Friedrich; Widdel, Heino

    1989-01-01

    Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.

  5. Fractal Characterization of Multitemporal Scaled Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Lam, Nina Siu-Ngan; Qiu, Hong-lie

    1998-01-01

    Scale is an "innate" concept in geographic information systems. It is recognized as something that is intrinsic to the ingestion, storage, manipulation, analysis, modeling, and output of space and time data within a GIS purview, yet the relative meaning and ramifications of scaling spatial and temporal data from this perspective remain enigmatic. As GISs become more sophisticated as a product of more robust software and more powerful computer systems, there is an urgent need to examine the issue of scale, and its relationship to the whole body of spatiotemporal data, as imparted in GISS. Scale is fundamental to the characterization of geo-spatial data as represented in GISS, but we have relatively little insight on the effects of, or how to measure the effects of, scale in representing multiscaled data; i.e., data that are acquired in different formats (e.g., map, digital) and exist in varying spatial, temporal, and in the case of remote sensing data, radiometric, configurations. This is particularly true in the emerging era of Integrated GISs (IGIS), wherein spatial data in a variety of formats (e.g., raster, vector) are combined with multiscaled remote sensing data, capable of performing highly sophisticated space-time data analyses and modeling. Moreover, the complexities associated with the integration of multiscaled data sets in a multitude of formats are exacerbated by the confusion of what the term "scale" is from a multidisciplinary perspective; i.e., "scale" takes on significantly different meanings depending upon one's disciplinary background and spatial perspective which can lead to substantive confusion in the input, manipulation, analyses, and output of IGISs (Quattrochi, 1993). Hence, we must begin to look at the universality of scale and begin to develop the theory, methods, and techniques necessary to advance knowledge on the "Science of Scale" across a wide number of spatial disciplines that use GISs.

  6. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  7. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    PubMed

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  8. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  9. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  10. Access and Use of FIA Data Through FIA Spatial Data Services

    Treesearch

    Elizabeth LaPoint

    2005-01-01

    Forest Inventory and Analysis (FIA) Spatial Data Services (SDS) was established in May 2002 to facilitate outside access to FIA data and allow use of georeferenced plot data while protecting the confidentiality of plot locations. Modification of the Food Security Act of 1985 legislated the protection of information on plot location and ownership. Penalties were put in...

  11. Bayesian spatial transformation models with applications in neuroimaging data.

    PubMed

    Miranda, Michelle F; Zhu, Hongtu; Ibrahim, Joseph G

    2013-12-01

    The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. © 2013, The International Biometric Society.

  12. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  13. The grain of spatially referenced economic cost and biodiversity benefit data and the effectiveness of a cost targeting strategy.

    PubMed

    Sutton, N J; Armsworth, P R

    2014-12-01

    Facing tight resource constraints, conservation organizations must allocate funds available for habitat protection as effectively as possible. Often, they combine spatially referenced economic and biodiversity data to prioritize land for protection. We tested how sensitive these prioritizations could be to differences in the spatial grain of these data by demonstrating how the conclusion of a classic debate in conservation planning between cost and benefit targeting was altered based on the available information. As a case study, we determined parcel-level acquisition costs and biodiversity benefits of land transactions recently undertaken by a nonprofit conservation organization that seeks to protect forests in the eastern United States. Then, we used hypothetical conservation plans to simulate the types of ex ante priorities that an organization could use to prioritize areas for protection. We found the apparent effectiveness of cost and benefit targeting depended on the spatial grain of the data used when prioritizing parcels based on local species richness. However, when accounting for complementarity, benefit targeting consistently was more efficient than a cost targeting strategy regardless of the spatial grain of the data involved. More pertinently for other studies, we found that combining data collected over different spatial grains inflated the apparent effectiveness of a cost targeting strategy and led to overestimation of the efficiency gain offered by adopting a more integrative return-on-investment approach. © 2014 Society for Conservation Biology.

  14. A conceptual holding model for veterinary applications.

    PubMed

    Ferrè, Nicola; Kuhn, Werner; Rumor, Massimo; Marangon, Stefano

    2014-05-01

    Spatial references are required when geographical information systems (GIS) are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals) is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a \\"schema\\" that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application \\"schema\\" of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC--INSPIRE). The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application \\"schema\\" that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  15. Comparison of Adjacency and Distance-Based Approaches for Spatial Analysis of Multimodal Traffic Crash Data

    NASA Astrophysics Data System (ADS)

    Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.

    2017-09-01

    Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.

  16. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties

    NASA Astrophysics Data System (ADS)

    Friberg, Mariel D.; Kahn, Ralph A.; Holmes, Heather A.; Chang, Howard H.; Sarnat, Stefanie Ebelt; Tolbert, Paige E.; Russell, Armistead G.; Mulholland, James A.

    2017-06-01

    Spatiotemporal characterization of ambient air pollutant concentrations is increasingly relying on the combination of observations and air quality models to provide well-constrained, spatially and temporally complete pollutant concentration fields. Air quality models, in particular, are attractive, as they characterize the emissions, meteorological, and physiochemical process linkages explicitly while providing continuous spatial structure. However, such modeling is computationally intensive and has biases. The limitations of spatially sparse and temporally incomplete observations can be overcome by blending the data with estimates from a physically and chemically coherent model, driven by emissions and meteorological inputs. We recently developed a data fusion method that blends ambient ground observations and chemical-transport-modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and associated correlations. In this study, we assess the ability of the data fusion method to produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas (Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. Three sets of comparisons are performed: (1) the CTM concentrations are evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations are compared with the monitor data, (3) a comprehensive cross-validation analysis against observed data evaluates the quality of the data fusion model simulations across multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant concentrations and uncertainties are not only consistent with observations, emissions, and meteorology, but substantially improve CTM-derived results for nearly all pollutants and all cities, with the exception of NO2 for Birmingham. The greatest improvements occur for O3 and PM2.5. Squared spatiotemporal correlation coefficients range between simulations and observations determined using cross-validation across all cities for air pollutants of secondary and mixed origins are R2 = 0.88-0.93 (O3), 0.81-0.89 (SO4), 0.67-0.83 (PM2.5), 0.52-0.72 (NO3), 0.43-0.80 (NH4), 0.32-0.51 (OC), and 0.14-0.71 (PM10). Results for relatively homogeneous pollutants of secondary origin, tend to be better than those for more spatially heterogeneous (larger spatial gradients) pollutants of primary origin (NOx, CO, SO2 and EC). Generally, background concentrations and spatial concentration gradients reflect interurban airshed complexity and the effects of regional transport, whereas daily spatial pattern variability shows intra-urban consistency in the fused data. With sufficiently high CTM spatial resolution, traffic-related pollutants exhibit gradual concentration gradients that peak toward the urban centers. Ambient pollutant concentration uncertainty estimates for the fused data are both more accurate and smaller than those for either the observations or the model simulations alone.

  17. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  18. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models

    Treesearch

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen

    2012-01-01

    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  19. Spatial analysis of NDVI readings with difference sampling density

    USDA-ARS?s Scientific Manuscript database

    Advanced remote sensing technologies provide research an innovative way of collecting spatial data for use in precision agriculture. Sensor information and spatial analysis together allow for a complete understanding of the spatial complexity of a field and its crop. The objective of the study was...

  20. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  1. A SOIL SPATIAL DATA FRAMEWORK FOR ENVIRONMENTAL MODELING IN THE CONTIGUOUS US

    EPA Science Inventory

    A suite of soil and related data-layers have been developed for environmental assessments of the effects of tropospheric ozone exposure and nitrogen deposition on forests, and global change (soil C pools and landuse impacts, water balance modeling). These spatial data depict s...

  2. The Stratification Analysis of Sediment Data for Lake Michigan

    EPA Science Inventory

    This research paper describes the development of spatial statistical tools that are applied to investigate the spatial trends of sediment data sets for nutrients and carbon in Lake Michigan. All of the sediment data utilized in the present study was collected over a two year per...

  3. TOOLS FOR PRESENTING SPATIAL AND TEMPORAL PATTERNS OF ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    The EPA Health Effects Research Laboratory has developed this data presentation tool for use with a variety of types of data which may contain spatial and temporal patterns of interest. he technology links mainframe computing power to the new generation of "desktop publishing" ha...

  4. Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies.

    PubMed

    Lee, Duncan; Sarran, Christophe

    2015-11-01

    The health impact of long-term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution-health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the known covariates, which is caused by unmeasured confounding. A second challenge is how to adjust the functional form of the model to account for the spatial misalignment between the pollution and disease data, which causes within-area variation in the pollution data. These challenges have largely been ignored in existing long-term spatial air pollution and health studies, so here we propose a novel Bayesian hierarchical model that addresses both challenges and provide software to allow others to apply our model to their own data. The effectiveness of the proposed model is compared by simulation against a number of state-of-the-art alternatives proposed in the literature and is then used to estimate the impact of nitrogen dioxide and particulate matter concentrations on respiratory hospital admissions in a new epidemiological study in England in 2010 at the local authority level. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.

  5. A spectral method for spatial downscaling | Science Inventory ...

    EPA Pesticide Factsheets

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch

  6. Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data

    USGS Publications Warehouse

    Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl

    2018-01-01

    Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.

  7. Advancing the integration of spatial data to map human and natural drivers on coral reefs

    PubMed Central

    Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.

    2018-01-01

    A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613

  8. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    PubMed

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  9. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection

    PubMed Central

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks. PMID:26496370

  10. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  11. PHYLOGEOrec: A QGIS plugin for spatial phylogeographic reconstruction from phylogenetic tree and geographical information data

    NASA Astrophysics Data System (ADS)

    Nashrulloh, Maulana Malik; Kurniawan, Nia; Rahardi, Brian

    2017-11-01

    The increasing availability of genetic sequence data associated with explicit geographic and environment (including biotic and abiotic components) information offers new opportunities to study the processes that shape biodiversity and its patterns. Developing phylogeography reconstruction, by integrating phylogenetic and biogeographic knowledge, provides richer and deeper visualization and information on diversification events than ever before. Geographical information systems such as QGIS provide an environment for spatial modeling, analysis, and dissemination by which phylogenetic models can be explicitly linked with their associated spatial data, and subsequently, they will be integrated with other related georeferenced datasets describing the biotic and abiotic environment. We are introducing PHYLOGEOrec, a QGIS plugin for building spatial phylogeographic reconstructions constructed from phylogenetic tree and geographical information data based on QGIS2threejs. By using PHYLOGEOrec, researchers can integrate existing phylogeny and geographical information data, resulting in three-dimensional geographic visualizations of phylogenetic trees in the Keyhole Markup Language (KML) format. Such formats can be overlaid on a map using QGIS and finally, spatially viewed in QGIS by means of a QGIS2threejs engine for further analysis. KML can also be viewed in reputable geobrowsers with KML-support (i.e., Google Earth).

  12. Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization

    NASA Astrophysics Data System (ADS)

    Liu, Chuanming; Yao, Huajian

    2017-03-01

    Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.

  13. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    ERIC Educational Resources Information Center

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  14. Building the Forest Inventory and Analysis Tree-Ring Data set

    Treesearch

    Robert J. DeRose; John D. Shaw; James N. Long

    2017-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program measures forestland conditions at great extent with relatively high spatial resolution, including the collection of tree-ring data. We describe the development of an unprecedented spatial tree-ring data set for the IW-FIA that enhances the baseline plot data by incorporating ring-width increment measured...

  15. International outreach for promoting open geoscience content in Finnish university libraries - libraries as the advocates of citizen science awareness on emerging open geospatial data repositories in Finnish society

    NASA Astrophysics Data System (ADS)

    Rousi, A. M.; Branch, B. D.; Kong, N.; Fosmire, M.

    2013-12-01

    In their Finnish National Spatial Strategy 2010-2015 the Finland's Ministry of Agriculture and Forestry delineated e.g. that spatial data skills should support citizens everyday activities and facilitate decision-making and participation of citizens. Studies also predict that open data, particularly open spatial data, would create, when fully realizing their potential, a 15% increase into the turnovers of Finnish private sector companies. Finnish libraries have a long tradition of serving at the heart of Finnish information society. However, with the emerging possibilities of educating their users on open spatial data a very few initiatives have been made. The National Survey of Finland opened its data in 2012. Finnish technology university libraries, such as Aalto University Library, are open environments for all citizens, and seem suitable of being the first thriving entities in educating citizens on open geospatial data. There are however many obstacles to overcome, such as lack of knowledge about policies, lack of understanding of geospatial data services and insufficient know-how of GIS software among the personnel. This framework examines the benefits derived from an international collaboration between Purdue University Libraries and Aalto University Library to create local strategies in implementing open spatial data education initiatives in Aalto University Library's context. The results of this international collaboration are explicated for the benefit of the field as a whole.

  16. The design and implementation of GML data management information system based on PostgreSQL

    NASA Astrophysics Data System (ADS)

    Zhang, Aiguo; Wu, Qunyong; Xu, Qifeng

    2008-10-01

    GML expresses geographic information in text, and it provides an extensible and standard way of spatial information encoding. At the present time, the management of GML data is in terms of document. By this way, the inquiry and update of GML data is inefficient, and it demands high memory when the document is comparatively large. In this respect, the paper put forward a data management of GML based on PostgreSQL. It designs four kinds of inquiries, which are inquiry of metadata, inquiry of geometry based on property, inquiry of property based on spatial information, and inquiry of spatial data based on location. At the same time, it designs and implements the visualization of the inquired WKT data.

  17. Embracing the Open-Source Movement for the Management of Spatial Data: A Case Study of African Trypanosomiasis in Kenya

    PubMed Central

    Langley, Shaun A.; Messina, Joseph P.

    2011-01-01

    The past decade has seen an explosion in the availability of spatial data not only for researchers, but the public alike. As the quantity of data increases, the ability to effectively navigate and understand the data becomes more challenging. Here we detail a conceptual model for a spatially explicit database management system that addresses the issues raised with the growing data management problem. We demonstrate utility with a case study in disease ecology: to develop a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations and varying technical expertise necessitate a modular open-source software solution. Finally, we address three recurring problems with data management: scalability, reliability, and security. PMID:21686072

  18. Embracing the Open-Source Movement for the Management of Spatial Data: A Case Study of African Trypanosomiasis in Kenya.

    PubMed

    Langley, Shaun A; Messina, Joseph P

    2011-01-01

    The past decade has seen an explosion in the availability of spatial data not only for researchers, but the public alike. As the quantity of data increases, the ability to effectively navigate and understand the data becomes more challenging. Here we detail a conceptual model for a spatially explicit database management system that addresses the issues raised with the growing data management problem. We demonstrate utility with a case study in disease ecology: to develop a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations and varying technical expertise necessitate a modular open-source software solution. Finally, we address three recurring problems with data management: scalability, reliability, and security.

  19. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  20. I. SPATIAL SKILLS, THEIR DEVELOPMENT, AND THEIR LINKS TO MATHEMATICS.

    PubMed

    Verdine, Brian N; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; Newcombe, Nora S

    2017-03-01

    Understanding the development of spatial skills is important for promoting school readiness and improving overall success in STEM (science, technology, engineering, and mathematics) fields (e.g., Wai, Lubinski, Benbow, & Steiger, 2010). Children use their spatial skills to understand the world, including visualizing how objects fit together, and can practice them via spatial assembly activities (e.g., puzzles or blocks). These skills are incorporated into measures of overall intelligence and have been linked to success in subjects like mathematics (Mix & Cheng, 2012) and science (Pallrand & Seeber, 1984; Pribyl & Bodner, 1987). This monograph sought to answer four questions about early spatial skill development: 1) Can we reliably measure spatial skills in 3- and 4-year-olds?; 2) Do spatial skills measured at 3 predict spatial skills at age 5?; 3) Do preschool spatial skills predict mathematics skills at age 5?; and 4) What factors contribute to individual differences in preschool spatial skills (e.g., SES, gender, fine-motor skills, vocabulary, and executive function)? Longitudinal data generated from a new spatial skill test for 3-year-old children, called the TOSA (Test of Spatial Assembly), show that it is a reliable and valid measure of early spatial skills that provides strong prediction to spatial skills measured with established tests at age 5. New data using this measure finds links between early spatial skill and mathematics, language, and executive function skills. Analyses suggest that preschool spatial experiences may play a central role in children's mathematical skills around the time of school entry. Executive function skills provide an additional unique contribution to predicting mathematical performance. In addition, individual differences, specifically socioeconomic status, are related to spatial and mathematical skill. We conclude by exploring ways of providing rich early spatial experiences to children. © 2017 The Society for Research in Child Development, Inc.

  1. SPHARA--a generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: application to EEG.

    PubMed

    Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens

    2015-01-01

    Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.

  2. Predictive spatial modeling of narcotic crop growth patterns

    USGS Publications Warehouse

    Waltz, Frederick A.; Moore, D.G.

    1986-01-01

    Spatial models for predicting the geographic distribution of marijuana crops have been developed and are being evaluated for use in law enforcement programs. The models are based on growing condition preferences and on psychological inferences regarding grower behavior. Experiences of local law officials were used to derive the initial model, which was updated and improved as data from crop finds were archived and statistically analyzed. The predictive models are changed as crop locations are moved in response to the pressures of law enforcement. The models use spatial data in a raster geographic information system. The spatial data are derived from the U.S. Geological Survey's US GeoData, standard 7.5-minute topographic quadrangle maps, interpretations of aerial photographs, and thematic maps. Updating of cultural patterns, canopy closure, and other dynamic features is conducted through interpretation of aerial photographs registered to the 7.5-minute quadrangle base. The model is used to numerically weight various data layers that have been processed using spread functions, edge definition, and categorization. The building of the spatial data base, model development, model application, product generation, and use are collectively referred to as the Area Reduction Program (ARP). The goal of ARP is to provide law enforcement officials with tactical maps that show the most likely locations for narcotic crops.

  3. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping

    PubMed Central

    2011-01-01

    Background Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. Results In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Conclusions Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset. PMID:21978359

  4. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.

    PubMed

    Hampton, Kristen H; Serre, Marc L; Gesink, Dionne C; Pilcher, Christopher D; Miller, William C

    2011-10-06

    Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.

  5. geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.

    PubMed

    Kidd, David M; Liu, Xianhua

    2008-01-01

    Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.

  6. A novel principal component analysis for spatially misaligned multivariate air pollution data.

    PubMed

    Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A

    2017-01-01

    We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.

  7. SYNTHESIS OF SPATIAL DATA FOR DECISION-MAKING

    EPA Science Inventory

    EPA'S Regional Vulnerability Assessment Program (ReVA) has developed a web-based statistical tool that synthesizes available spatial data into indices of condition, vulnerability (risk, considering cumulative effects), and feasibility of management options. The Environmental Deci...

  8. Development of Critical Spatial Thinking through GIS Learning

    ERIC Educational Resources Information Center

    Kim, Minsung; Bednarz, Robert

    2013-01-01

    This study developed an interview-based critical spatial thinking oral test and used the test to investigate the effects of Geographic Information System (GIS) learning on three components of critical spatial thinking: evaluating data reliability, exercising spatial reasoning, and assessing problem-solving validity. Thirty-two students at a large…

  9. The Future Role of GIS Education in Creating Critical Spatial Thinkers

    ERIC Educational Resources Information Center

    Bearman, Nick; Jones, Nick; André, Isabel; Cachinho, Herculano Alberto; DeMers, Michael

    2016-01-01

    Teaching of critical spatial thinking in higher education empowers graduates to effectively engage with spatial data. Geographic information systems (GIS) and science are taught to undergraduates across many disciplines; we evaluate how this contributes to critical spatial thinking. The discipline of GIS covers the whole process of spatial…

  10. REACTT: an algorithm for solving spatial equilibrium problems.

    Treesearch

    D.J. Brooks; J. Kincaid

    1987-01-01

    The problem of determining equilibrium prices and quantities in spatially separated markets is reviewed. Algorithms that compute spatial equilibria are discussed. A computer program using the reactive programming algorithm for solving spatial equilibrium problems that involve multiple commodities is presented, along with detailed documentation. A sample data set,...

  11. Enriching Spatial Data Infrastructure (sdi) by User Generated Contents for Transportation

    NASA Astrophysics Data System (ADS)

    Shakeri, M.; Alimohammadi, A.; Sadeghi-Niaraki, A.; Alesheikh, A. A.

    2013-09-01

    Spatial data is one of the most critical elements underpinning decision making for many disciplines. Accessing and sharing spatial data have always been a great struggle for researchers. Spatial data infrastructure (SDI) plays a key role in spatial data sharing by building a suitable platform for collaboration and cooperation among the different data producer organizations. In recent years, SDI vision has been moved toward a user-centric platform which has led to development of a new and enriched generation of SDI (third generation). This vision is to provide an environment where users can cooperate to handle spatial data in an effective and satisfactory way. User-centric SDI concentrates on users, their requirements and preferences while in the past, SDI initiatives were mainly concentrated on technological issues such as the data harmonization, standardized metadata models, standardized web services for data discovery, visualization and download. On the other hand, new technologies such as the GPS-equipped smart phones, navigation devices and Web 2.0 technologies have enabled citizens to actively participate in production and sharing of the spatial information. This has led to emergence of the new phenomenon called the Volunteered Geographic Information (VGI). VGI describes any type of content that has a geographic element which has been voluntarily collected. However, its distinctive element is the geographic information that can be collected and produced by citizens with different formal expertise and knowledge of the spatial or geographical concepts. Therefore, ordinary citizens can cooperate in providing massive sources of information that cannot be ignored. These can be considered as the valuable spatial information sources in SDI. These sources can be used for completing, improving and updating of the existing databases. Spatial information and technologies are an important part of the transportation systems. Planning, design and operation of the transportation systems requires the exchange of large volumes of spatial data and often close cooperation among the various organizations. However, there is no technical and organizational process to get a suitable data infrastructure to address diverse needs of the transportation. Hence, development of a common standards and a simple data exchange mechanism is strongly needed in the field of transportation for decision support. Since one of the main purposes of transportation projects is to improve the quality of services provided to users, it is necessary to involve the users themselves in the decision making processes. This should be done through a public participation and involvement in all stages of the transportation projects. In other words, using public knowledge and information as another source of information is very important to make better and more efficient decisions. Public participation in transportation projects can also help organizations to enhance their public supports; because the lack of public support can lead to failure of technically valid projects. However, due to complexity of the transportation tasks, lack of appropriate environment and methods for facilitation of the public participation, collection and analysis of the public information and opinions, public participation in this field has not been well considered so far. This paper reviews the previous researches based on the enriched SDI development and its movement toward the VGI by focusing on the public participation in transportation projects. To this end, methods and models that have been used in previous researches are studied and classified initially. Then, methods of the previous researchers on VGI and transportation are conceptualized in SDI. Finally, the suggested method for transportation projects is presented. Results indicate success of the new generation of SDI in integration with public participation for transportation projects.

  12. Into the environment of mosquito-borne disease: A spatial analysis of vector distribution using traditional and remotely sensed methods

    NASA Astrophysics Data System (ADS)

    Brown, Heidi E.

    Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.

  13. CHARACTERISTIC LENGTH SCALE OF INPUT DATA IN DISTRIBUTED MODELS: IMPLICATIONS FOR MODELING GRID SIZE. (R824784)

    EPA Science Inventory

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...

  14. Bayesian analysis of spatially-dependent functional responses with spatially-dependent multi-dimensional functional predictors

    USDA-ARS?s Scientific Manuscript database

    Recent advances in technology have led to the collection of high-dimensional data not previously encountered in many scientific environments. As a result, scientists are often faced with the challenging task of including these high-dimensional data into statistical models. For example, data from sen...

  15. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain.

    PubMed

    Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A

    2011-11-29

    Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.

  16. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  17. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    PubMed Central

    2011-01-01

    Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392

  18. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.

  19. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  20. Measuring high-density built environment for public health research: Uncertainty with respect to data, indicator design and spatial scale.

    PubMed

    Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu

    2018-05-07

    Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.

  1. Ground and satellite based assessment of meteorological droughts: The Coello river basin case study

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, A. F.; Olaya-Marín, E. J.; Barrios, M. I.

    2017-10-01

    The spatial distribution of droughts is a key factor for designing water management policies at basin scale in arid and semi-arid regions. Ground hydro-meteorological data in neo-tropical areas are scarce; therefore, the merging of ground and satellite datasets is a promissory approach for improving our understanding of water distribution. This paper compares three monthly rainfall interpolation methods for drought evaluation. The ordinary kriging technique based on ground data, and cokriging with elevation as auxiliary variable were compared against cokriging using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Twenty rain gauge stations and the 3B42V7 version of the TMPA research dataset were considered. Comparisons were made over the Coello river basin (Colombia) at 3″ spatial resolution covering a period of eight years (1998-2005). The best spatial rainfall estimation was found for cokriging using ground data and elevation. The spatial support of TMPA dataset is very coarse for a merged interpolation with ground data, this spatial scales discrepancy highlight the need to consider scaling rules in the interpolation process.

  2. Automating an integrated spatial data-mining model for landfill site selection

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul

    2017-10-01

    An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.

  3. Investigation and Evaluation of the open source ETL tools GeoKettle and Talend Open Studio in terms of their ability to process spatial data

    NASA Astrophysics Data System (ADS)

    Kuhnert, Kristin; Quedenau, Jörn

    2016-04-01

    Integration and harmonization of large spatial data sets is not only since the introduction of the spatial data infrastructure INSPIRE a big issue. The process of extracting and combining spatial data from heterogeneous source formats, transforming that data to obtain the required quality for particular purposes and loading it into a data store, are common tasks. The procedure of Extraction, Transformation and Loading of data is called ETL process. Geographic Information Systems (GIS) can take over many of these tasks but often they are not suitable for processing large datasets. ETL tools can make the implementation and execution of ETL processes convenient and efficient. One reason for choosing ETL tools for data integration is that they ease maintenance because of a clear (graphical) presentation of the transformation steps. Developers and administrators are provided with tools for identification of errors, analyzing processing performance and managing the execution of ETL processes. Another benefit of ETL tools is that for most tasks no or only little scripting skills are required so that also researchers without programming background can easily work with it. Investigations on ETL tools for business approaches are available for a long time. However, little work has been published on the capabilities of those tools to handle spatial data. In this work, we review and compare the open source ETL tools GeoKettle and Talend Open Studio in terms of processing spatial data sets of different formats. For evaluation, ETL processes are performed with both software packages based on air quality data measured during the BÄRLIN2014 Campaign initiated by the Institute for Advanced Sustainability Studies (IASS). The aim of the BÄRLIN2014 Campaign is to better understand the sources and distribution of particulate matter in Berlin. The air quality data are available in heterogeneous formats because they were measured with different instruments. For further data analysis, the instrument data has been complemented by other georeferenced data provided by the local environmental authorities. This includes both vector and raster data on e.g. land use categories or building heights, extracted from flat files and OGC-compliant web services. The requirements on the ETL tools are now for instance the extraction of different input datasets like Web Feature Services or vector datasets and the loading of those into databases. The tools also have to manage transformations on spatial datasets like to work with spatial functions (e.g. intersection, union) or change spatial reference systems. Preliminary results suggest that many complex transformation tasks could be accomplished with the existing set of components from both software tools, while there are still many gaps in the range of available features. Both ETL tools differ in functionality and in the way of implementation of various steps. For some tasks no predefined components are available at all, which could partly be compensated by the use of the respective API (freely configurable components in Java or JavaScript).

  4. U.S. Geological Survey spatial data access

    USGS Publications Warehouse

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new map services available from the USGS, many simultaneously published on the Environmental Systems Research Institute Geography Network. These three information systems use new software tools and expanded hardware to meet the requirements of the users. The systems are designed to handle the required workload and are relatively easy to enhance and maintain. The software tools give users a high level of functionality and help the system conform to industry standards. The hardware and software architecture is designed to handle the large amounts of spatial data and Internet traffic required by the information systems. Last, customer support was needed to answer questions, monitor e-mail, and report customer problems.

  5. Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

    Treesearch

    Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway

    2008-01-01

    Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...

  6. Application of the automated spatial surveillance program to birth defects surveillance data.

    PubMed

    Gardner, Bennett R; Strickland, Matthew J; Correa, Adolfo

    2007-07-01

    Although many birth defects surveillance programs incorporate georeferenced records into their databases, practical methods for routine spatial surveillance are lacking. We present a macroprogram written for the software package R designed for routine exploratory spatial analysis of birth defects data, the Automated Spatial Surveillance Program (ASSP), and present an application of this program using spina bifida prevalence data for metropolitan Atlanta. Birth defects surveillance data were collected by the Metropolitan Atlanta Congenital Defects Program. We generated ASSP maps for two groups of years that correspond roughly to the periods before (1994-1998) and after (1999-2002) folic acid fortification of flour. ASSP maps display census tract-specific spina bifida prevalence, smoothed prevalence contours, and locations of statistically elevated prevalence. We used these maps to identify areas of elevated prevalence for spina bifida. We identified a large area of potential concern in the years following fortification of grains and cereals with folic acid. This area overlapped census tracts containing large numbers of Hispanic residents. The potential utility of ASSP for spatial disease monitoring was demonstrated by the identification of areas of high prevalence of spina bifida and may warrant further study and monitoring. We intend to further develop ASSP so that it becomes practical for routine spatial monitoring of birth defects. (c) 2007 Wiley-Liss, Inc.

  7. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  8. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  9. Planting the SEED: Towards a Spatial Economic Ecological Database for a shared understanding of the Dutch Wadden area

    NASA Astrophysics Data System (ADS)

    Daams, Michiel N.; Sijtsma, Frans J.

    2013-09-01

    In this paper we address the characteristics of a publicly accessible Spatial Economic Ecological Database (SEED) and its ability to support a shared understanding among planners and experts of the economy and ecology of the Dutch Wadden area. Theoretical building blocks for a Wadden SEED are discussed. Our SEED contains a comprehensive set of stakeholder validated spatially explicit data on key economic and ecological indicators. These data extend over various spatial scales. Spatial issues relevant to the specification of a Wadden-SEED and its data needs are explored in this paper and illustrated using empirical data for the Dutch Wadden area. The purpose of the SEED is to integrate basic economic and ecologic information in order to support the resolution of specific (policy) questions and to facilitate connections between project level and strategic level in the spatial planning process. Although modest in its ambitions, we will argue that a Wadden SEED can serve as a valuable element in the much debated science-policy interface. A Wadden SEED is valuable since it is a consensus-based common knowledge base on the economy and ecology of an area rife with ecological-economic conflict, including conflict in which scientific information is often challenged and disputed.

  10. Benefits of using Open Geo-spatial Data for valorization of Cultural Heritage: GeoPan app

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Previtali, Mattia; Barazzetti, Luigi; Brumana, Raffaella

    2017-04-01

    Experts evaluate the spatial data to be one of the categories of Public Sector Information (PSI), of which the exchange is particularly important. On the other side an initiative with a great vision such as Digital Agenda for Europe, emphasizes on intelligent processing of information as essential factor for tackling the challenges of the contemporary society. In such context, the Open Data are considered to be crucial in addressing, environmental pressures, energy efficiency issues, land use and climate change, pollution and traffic management. Furthermore, Open Data are thought to have an important impact on more informed decision making and policy creation for multiple domains that could be addressed even through "apps" of our smart devices. Activities performed in ENERGIC OD project - "European NEtwork for Redistributing Geospatial Information to user Communities - Open Data" have led to some first conclusions on the use and re-use of geo-spatial Open Data by means of Virtual Hubs - an innovative method for brokering of geo-spatial information. This paper illustrates some main benefits of using Open Geo-spatial Data for valorisation of Cultural Heritage through a case of an innovative app called "GeoPan Atl@s". GeoPan, inserted in a dynamic policy context described, aims to provide all information valuable for a sustainable territorial development in a common platform, in particular the material that regards history and changes of the cultural landscapes in Lombardy region. Furthermore, this innovative app is used as a test-bed to facilitate and encourage a more active exchange and exploitation of open geo-spatial information for purposes of valorisation of cultural heritage and landscapes. The aim of this practice is also to achieve a more active participation of experts, VGI communities and citizens and a higher awareness of the multiple use-possibilities of historic and contemporary geo-spatial information for smarter decision making.

  11. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  12. A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.

    PubMed

    Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig

    2017-01-01

    The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.

  13. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  14. Big Data Geo-Analytical Tool Development for Spatial Analysis Uncertainty Visualization and Quantification Needs

    NASA Astrophysics Data System (ADS)

    Rose, K.; Bauer, J. R.; Baker, D. V.

    2015-12-01

    As big data computing capabilities are increasingly paired with spatial analytical tools and approaches, there is a need to ensure uncertainty associated with the datasets used in these analyses is adequately incorporated and portrayed in results. Often the products of spatial analyses, big data and otherwise, are developed using discontinuous, sparse, and often point-driven data to represent continuous phenomena. Results from these analyses are generally presented without clear explanations of the uncertainty associated with the interpolated values. The Variable Grid Method (VGM) offers users with a flexible approach designed for application to a variety of analyses where users there is a need to study, evaluate, and analyze spatial trends and patterns while maintaining connection to and communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analysis through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom 'Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations. The presentation includes examples of the approach being applied to a range of subsurface, geospatial studies (e.g. induced seismicity risk).

  15. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  16. Theory and Practice in Determining the Long-Term Spatial Productivity of Drylands: A California Blue Oak Case Study

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Therrell, M. D.; Emanuel, R. E.

    2007-12-01

    Herbivory, fire, and climatic events such as El Niño-Southern Oscillation (ENSO) and La Niña have been shown to have proximal and evolutionary effects on the dynamics of Dryland fauna, flora, and soils. However, spatially-explicit historical impacts of these climatic events on Dryland ecosystems is not known. Consequently, this paper has the purpose of presenting the theory and practical application for estimating the historical spatial impacts of these climatic events. We hypothesize that if remotely-sensed vegetation indices (VI) are correlated to historical tree ring data and also to functional ecosystem processes, specifically gross primary productivity (GPP) and net ecosystem production (NEP) as measured by eddy covariance flux towers, then VIs can be used to spatially and temporally distribute GPP and NEP within the species- or community-specific land cover extent over the length of the tree ring record of selected Dryland ecosystems. Secondly, the Shuttle Radar Topography Mission (SRTM) digital terrain model (DTM) data has been used to estimate tree height and in conjuction with plant allometric equations: biomass and standing carbon in various forest ecosystems. Tree height data in relation to tree ring age data and fire history can be used to reconstruct the spatial distribution of savanna demographic age structure, predict standing carbon and thus provide a complementary and independent dataset for comparison to DTMs from Multiangle Imaging Spectroradiometer (MISR), Interferometric Synthetic Aperture Radar (IFSAR), and Moderate Resolution Imaging Spectroradiometer (MODIS) derived GPP spatial maps. We developed a database consisting of a dendrochronology record, SRTM data, globa fre history data, Long term Data Record Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (LTDR AVHRR NDVI, 1981 - 2003), contemporary gridded climate data, National Land Cover Data (NLCD), and short term eddy covariance flux tower data for the California Blue Oak woodland ecosystem to estimate both regional aboveground productivity and past disturbance history relative climate, particularly droughts, for the last 500 years.

  17. Importance of the spatial data and the sensor web in the ubiquitous computing area

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.

    2014-08-01

    Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.

  18. Web Service for Positional Quality Assessment: the Wps Tier

    NASA Astrophysics Data System (ADS)

    Xavier, E. M. A.; Ariza-López, F. J.; Ureña-Cámara, M. A.

    2015-08-01

    In the field of spatial data every day we have more and more information available, but we still have little or very little information about the quality of spatial data. We consider that the automation of the spatial data quality assessment is a true need for the geomatic sector, and that automation is possible by means of web processing services (WPS), and the application of specific assessment procedures. In this paper we propose and develop a WPS tier centered on the automation of the positional quality assessment. An experiment using the NSSDA positional accuracy method is presented. The experiment involves the uploading by the client of two datasets (reference and evaluation data). The processing is to determine homologous pairs of points (by distance) and calculate the value of positional accuracy under the NSSDA standard. The process generates a small report that is sent to the client. From our experiment, we reached some conclusions on the advantages and disadvantages of WPSs when applied to the automation of spatial data accuracy assessments.

  19. Revealing Spatial Variation and Correlation of Urban Travels from Big Trajectory Data

    NASA Astrophysics Data System (ADS)

    Li, X.; Tu, W.; Shen, S.; Yue, Y.; Luo, N.; Li, Q.

    2017-09-01

    With the development of information and communication technology, spatial-temporal data that contain rich human mobility information are growing rapidly. However, the consistency of multi-mode human travel behind multi-source spatial-temporal data is not clear. To this aim, we utilized a week of taxies' and buses' GPS trajectory data and smart card data in Shenzhen, China to extract city-wide travel information of taxi, bus and metro and tested the correlation of multi-mode travel characteristics. Both the global correlation and local correlation of typical travel indicator were examined. The results show that: (1) Significant differences exist in of urban multi-mode travels. The correlation between bus travels and taxi travels, metro travel and taxi travels are globally low but locally high. (2) There are spatial differences of the correlation relationship between bus, metro and taxi travel. These findings help us understanding urban travels deeply therefore facilitate both the transport policy making and human-space interaction research.

  20. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  1. Balancing geo-privacy and spatial patterns in epidemiological studies.

    PubMed

    Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien

    2017-11-08

    To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.

  2. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    PubMed

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  3. Hybrid modeling of spatial continuity for application to numerical inverse problems

    USGS Publications Warehouse

    Friedel, Michael J.; Iwashita, Fabio

    2013-01-01

    A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.

  4. Landscape Characterization Integrating Expert and Local Spatial Knowledge of Land and Forest Resources

    NASA Astrophysics Data System (ADS)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  5. The Iranian National Geodata Revision Strategy and Realization Based on Geodatabase

    NASA Astrophysics Data System (ADS)

    Haeri, M.; Fasihi, A.; Ayazi, S. M.

    2012-07-01

    In recent years, using of spatial database for storing and managing spatial data has become a hot topic in the field of GIS. Accordingly National Cartographic Center of Iran (NCC) produces - from time to time - some spatial data which is usually included in some databases. One of the NCC major projects was designing National Topographic Database (NTDB). NCC decided to create National Topographic Database of the entire country-based on 1:25000 coverage maps. The standard of NTDB was published in 1994 and its database was created at the same time. In NTDB geometric data was stored in MicroStation design format (DGN) which each feature has a link to its attribute data (stored in Microsoft Access file). Also NTDB file was produced in a sheet-wise mode and then stored in a file-based style. Besides map compilation, revision of existing maps has already been started. Key problems of NCC are revision strategy, NTDB file-based style storage and operator challenges (NCC operators are almost preferred to edit and revise geometry data in CAD environments). A GeoDatabase solution for national Geodata, based on NTDB map files and operators' revision preferences, is introduced and released herein. The proposed solution extends the traditional methods to have a seamless spatial database which it can be revised in CAD and GIS environment, simultaneously. The proposed system is the common data framework to create a central data repository for spatial data storage and management.

  6. Visualizing petroleum systems with a combination of GIS and multimedia technologies: An example from the West Siberia Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D.B.; Grace, J.D.

    1996-12-31

    Petroleum system studies provide an ideal application for the combination of Geographic Information System (GIS) and multimedia technologies. GIS technology is used to build and maintain the spatial and tabular data within the study region. Spatial data may comprise the zones of active source rocks and potential reservoir facies. Similarly, tabular data include the attendant source rock parameters (e.g. pyroloysis results, organic carbon content) and field-level exploration and production histories for the basin. Once the spatial and tabular data base has been constructed, GIS technology is useful in finding favorable exploration trends, such as zones of high organic content, maturemore » source rocks in positions adjacent to sealed, high porosity reservoir facies. Multimedia technology provides powerful visualization tools for petroleum system studies. The components of petroleum system development, most importantly generation, migration and trap development typically span periods of tens to hundreds of millions of years. The ability to animate spatial data over time provides an insightful alternative for studying the development of processes which are only captured in {open_quotes}snapshots{close_quotes} by static maps. New multimedia-authoring software provides this temporal dimension. The ability to record this data on CD-ROMs and allow user- interactivity further leverages the combination of spatial data bases, tabular data bases and time-based animations. The example used for this study was the Bazhenov-Neocomian petroleum system of West Siberia.« less

  7. Visualizing petroleum systems with a combination of GIS and multimedia technologies: An example from the West Siberia Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D.B.; Grace, J.D.

    1996-01-01

    Petroleum system studies provide an ideal application for the combination of Geographic Information System (GIS) and multimedia technologies. GIS technology is used to build and maintain the spatial and tabular data within the study region. Spatial data may comprise the zones of active source rocks and potential reservoir facies. Similarly, tabular data include the attendant source rock parameters (e.g. pyroloysis results, organic carbon content) and field-level exploration and production histories for the basin. Once the spatial and tabular data base has been constructed, GIS technology is useful in finding favorable exploration trends, such as zones of high organic content, maturemore » source rocks in positions adjacent to sealed, high porosity reservoir facies. Multimedia technology provides powerful visualization tools for petroleum system studies. The components of petroleum system development, most importantly generation, migration and trap development typically span periods of tens to hundreds of millions of years. The ability to animate spatial data over time provides an insightful alternative for studying the development of processes which are only captured in [open quotes]snapshots[close quotes] by static maps. New multimedia-authoring software provides this temporal dimension. The ability to record this data on CD-ROMs and allow user- interactivity further leverages the combination of spatial data bases, tabular data bases and time-based animations. The example used for this study was the Bazhenov-Neocomian petroleum system of West Siberia.« less

  8. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    USGS Publications Warehouse

    Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  9. Conversion of environmental data to a digital-spatial database, Puget Sound area, Washington

    USGS Publications Warehouse

    Uhrich, M.A.; McGrath, T.S.

    1997-01-01

    Data and maps from the Puget Sound Environmental Atlas, compiled for the U.S. Environmental Protection Agency, the Puget Sound Water Quality Authority, and the U.S. Army Corps of Engineers, have been converted into a digital-spatial database using a geographic information system. Environmental data for the Puget Sound area,collected from sources other than the Puget SoundEnvironmental Atlas by different Federal, State, andlocal agencies, also have been converted into thisdigital-spatial database. Background on the geographic-information-system planning process, the design and implementation of the geographic information-system database, and the reasons for conversion to this digital-spatial database are included in this report. The Puget Sound Environmental Atlas data layers include information about seabird nesting areas, eelgrass and kelp habitat, marine mammal and fish areas, and shellfish resources and bed certification. Data layers, from sources other than the Puget Sound Environmental Atlas, include the Puget Sound shoreline, the water-body system, shellfish growing areas, recreational shellfish beaches, sewage-treatment outfalls, upland hydrography,watershed and political boundaries, and geographicnames. The sources of data, descriptions of the datalayers, and the steps and errors of processing associated with conversion to a digital-spatial database used in development of the Puget Sound Geographic Information System also are included in this report. The appendixes contain data dictionaries for each of the resource layers and error values for the conversion of Puget SoundEnvironmental Atlas data.

  10. A Classroom Exercise in Spatial Analysis Using an Imaginary Data Set.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    One skill that elementary students need to acquire is the ability to analyze spatially distributed data. In this activity students are asked to complete the following tasks: (1) plot a set of data (related to "mud-sharks"--an imaginary fish) on a map of the state of Alabama, (2) identify trends in the data, (3) make graphs using the data…

  11. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    USGS Publications Warehouse

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  12. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Reed, B.

    2005-01-01

    Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.

  13. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Treesearch

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  14. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  15. Quantification of Spatial Heterogeneity in Old Growth Forst of Korean Pine

    Treesearch

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    Spatial hetergeneity is a very important issue in studying functions and processes of ecological systems at various scales. Semivariogram analysis is an effective technique to summarize spatial data, and quantification of sptail heterogeneity. In this paper, we propose some principles to use semivariograms to characterize and compare spatial heterogeneity of...

  16. The spatial distribution of cropland carbon transfer in Jilin province during 2014

    NASA Astrophysics Data System (ADS)

    Cai, Xintong; Meng, Jian; Li, Qiuhui; Gao, Shuang; Zhu, Xianjin

    2018-01-01

    Cropland carbon transfer (CCT, gC yr-1) is an important component in the carbon budget of terrestrial ecosystems. Analyzing the value of CCT and its spatial variation would provide a data basis for assessing the regional carbon balance. Based on the data from Jilin statistical yearbook 2015, we investigated the spatial variation of CCT in Jilin province during 2014. Results suggest that the CCT of Jilin province was 30.83 TgC, which exhibited a decreasing trend from the centre to the border but the west side was higher than the east. The magnitude of carbon transfer per area (MCT), which showed a similar spatial distribution with CCT, was the dominating component of CCT spatial distribution. The spatial distribution of MCT was jointly affected by that of the ratio of planting area to regional area (RPR) and carbon transfer per planting area (CTP), where RPR and CTP contributed 65.55% and 34.5% of MCT spatial distribution, respectively. Therefore, CCT in Jilin province spatially varied, which made it highly needed to consider the difference in CCT among regions when we assessing the regional carbon budget.

  17. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  18. Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.

    2014-12-01

    Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.

  19. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    NASA Astrophysics Data System (ADS)

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  20. Exploring Potential of Crowdsourced Geographic Information in Studies of Active Travel and Health: Strava Data and Cycling Behaviour

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2017-09-01

    In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.

  1. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.

    PubMed

    Shi, Yuhu; Zeng, Weiming; Wang, Nizhuan

    2017-09-01

    With the rapid development of big data, the functional magnetic resonance imaging (fMRI) data analysis of multi-subject is becoming more and more important. As a kind of blind source separation technique, group independent component analysis (GICA) has been widely applied for the multi-subject fMRI data analysis. However, spatial concatenated GICA is rarely used compared with temporal concatenated GICA due to its disadvantages. In this paper, in order to overcome these issues and to consider that the ability of GICA for fMRI data analysis can be improved by adding a priori information, we propose a novel spatial concatenation based GICA with reference (SCGICAR) method to take advantage of the priori information extracted from the group subjects, and then the multi-objective optimization strategy is used to implement this method. Finally, the post-processing means of principal component analysis and anti-reconstruction are used to obtain group spatial component and individual temporal component in the group, respectively. The experimental results show that the proposed SCGICAR method has a better performance on both single-subject and multi-subject fMRI data analysis compared with classical methods. It not only can detect more accurate spatial and temporal component for each subject of the group, but also can obtain a better group component on both temporal and spatial domains. These results demonstrate that the proposed SCGICAR method has its own advantages in comparison with classical methods, and it can better reflect the commonness of subjects in the group. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  3. Lessons for the Global Spatial Data Infrastructure : international case study analysis

    DOT National Transportation Integrated Search

    2002-01-01

    This report presents a RAND analysis of international collaboration for the Global Spatial Data Infrastructure (GSDI). Ten in-depth international and regional collaboration case studies were conducted to assess lessons learned for GSDI development an...

  4. Algorithm Visualization System for Teaching Spatial Data Algorithms

    ERIC Educational Resources Information Center

    Nikander, Jussi; Helminen, Juha; Korhonen, Ari

    2010-01-01

    TRAKLA2 is a web-based learning environment for data structures and algorithms. The system delivers automatically assessed algorithm simulation exercises that are solved using a graphical user interface. In this work, we introduce a novel learning environment for spatial data algorithms, SDA-TRAKLA2, which has been implemented on top of the…

  5. Wildlife monitoring across multiple spatial scales using grid-based sampling

    Treesearch

    Kevin S. McKelvey; Samuel A. Cushman; Michael K. Schwartz; Leonard F. Ruggiero

    2009-01-01

    Recently, noninvasive genetic sampling has become the most effective way to reliably sample occurrence of many species. In addition, genetic data provide a rich data source enabling the monitoring of population status. The combination of genetically based animal data collected at known spatial coordinates with vegetation, topography, and other available covariates...

  6. A BAYES LIKELIHOOD INFORMATION THEORETIC APPROACH FOR THE EXOGENOUS AGGREGATION OF REGIONAL GROUND WATER QUALITY DATA

    EPA Science Inventory

    This work addresses a potentially serious problem in analysis or synthesis of spatially explicit data on ground water quality from wells, known to geographers as the modifiable areal unit problem (MAUP). It results from the fact that in regional aggregation of spatial data, inves...

  7. A generic method for improving the spatial interoperability of medical and ecological databases.

    PubMed

    Ghenassia, A; Beuscart, J B; Ficheur, G; Occelli, F; Babykina, E; Chazard, E; Genin, M

    2017-10-03

    The availability of big data in healthcare and the intensive development of data reuse and georeferencing have opened up perspectives for health spatial analysis. However, fine-scale spatial studies of ecological and medical databases are limited by the change of support problem and thus a lack of spatial unit interoperability. The use of spatial disaggregation methods to solve this problem introduces errors into the spatial estimations. Here, we present a generic, two-step method for merging medical and ecological databases that avoids the use of spatial disaggregation methods, while maximizing the spatial resolution. Firstly, a mapping table is created after one or more transition matrices have been defined. The latter link the spatial units of the original databases to the spatial units of the final database. Secondly, the mapping table is validated by (1) comparing the covariates contained in the two original databases, and (2) checking the spatial validity with a spatial continuity criterion and a spatial resolution index. We used our novel method to merge a medical database (the French national diagnosis-related group database, containing 5644 spatial units) with an ecological database (produced by the French National Institute of Statistics and Economic Studies, and containing with 36,594 spatial units). The mapping table yielded 5632 final spatial units. The mapping table's validity was evaluated by comparing the number of births in the medical database and the ecological databases in each final spatial unit. The median [interquartile range] relative difference was 2.3% [0; 5.7]. The spatial continuity criterion was low (2.4%), and the spatial resolution index was greater than for most French administrative areas. Our innovative approach improves interoperability between medical and ecological databases and facilitates fine-scale spatial analyses. We have shown that disaggregation models and large aggregation techniques are not necessarily the best ways to tackle the change of support problem.

  8. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  9. The influence of multispectral scanner spatial resolution on forest feature classification

    NASA Technical Reports Server (NTRS)

    Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.

    1977-01-01

    Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.

  10. Dataset on outdoor behavior-system and spatial-pattern in the third place in cold area-based on the perspective of new energy structure.

    PubMed

    Ren, Kai; Wang, Yuan; Liu, Tingxi; Wang, Guanli

    2017-02-01

    The data presented in this paper are related to the research article entitled "Exploration of Outdoor Behavior System and Spatial Pattern in the Third Place in Cold Area- based on the perspective of new energy structure" (Ren, 2016) [1]. The dataset was from a field sub-time extended investigation to residents of Power Home Community in Inner Mongolia of China that belongs to cold region of ID area according to Chinese design code for buildings. This filed data provided descriptive statistics about environment-behavior symbiosis system, environment loading, behavior system, spatial demanding and spatial pattern for all kinds of residents (Older, younger, children). The field data set is made publicly available to enable critical or extended analyzes.

  11. Radiometric and Spatial Characterization of High-Spatial Resolution Sensors

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Zanoni, Vicki (Technical Monitor)

    2002-01-01

    The development and improvement of commercial hyperspatial sensors in recent years has increased the breadth of information that can be retrieved from spaceborne and airborne imagery. NASA, through it's Scientific Data Purchases, has successfully provided such data sets to its user community. A key element to the usefulness of these data are an understanding of the radiometric and spatial response quality of the imagery. This proposal seeks funding to examine the absolute radiometric calibration of the Ikonos sensor operated by Space Imaging and the recently-launched Quickbird sensor from DigitalGlobe. In addition, we propose to evaluate the spatial response of the two sensors. The proposed methods rely on well-understood, ground-based targets that have been used by the University of Arizona for more than a decade.

  12. Remote sensing, geographical information systems, and spatial modeling for analyzing public transit services

    NASA Astrophysics Data System (ADS)

    Wu, Changshan

    Public transit service is a promising transportation mode because of its potential to address urban sustainability. Current ridership of public transit, however, is very low in most urban regions, particularly those in the United States. This woeful transit ridership can be attributed to many factors, among which poor service quality is key. Given this, there is a need for transit planning and analysis to improve service quality. Traditionally, spatially aggregate data are utilized in transit analysis and planning. Examples include data associated with the census, zip codes, states, etc. Few studies, however, address the influences of spatially aggregate data on transit planning results. In this research, previous studies in transit planning that use spatially aggregate data are reviewed. Next, problems associated with the utilization of aggregate data, the so-called modifiable areal unit problem (MAUP), are detailed and the need for fine resolution data to support public transit planning is argued. Fine resolution data is generated using intelligent interpolation techniques with the help of remote sensing imagery. In particular, impervious surface fraction, an important socio-economic indicator, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, Ohio in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil are selected to model heterogeneous urban land cover. Impervious surface fraction is estimated by analyzing low and high albedo endmembers. With the derived impervious surface fraction, three spatial interpolation methods, spatial regression, dasymetric mapping, and cokriging, are developed to interpolate detailed population density. Results suggest that cokriging applied to impervious surface is a better alternative for estimating fine resolution population density. With the derived fine resolution data, a multiple route maximal covering/shortest path (MRMCSP) model is proposed to address the tradeoff between public transit service quality and access coverage in an established bus-based transit system. Results show that it is possible to improve current transit service quality by eliminating redundant or underutilized service stops. This research illustrates that fine resolution data can be efficiently generated to support urban planning, management and analysis. Further, this detailed data may necessitate the development of new spatial optimization models for use in analysis.

  13. A smarter way to search, share and utilize open-spatial online data for energy R&D - Custom machine learning and GIS tools in U.S. DOE's virtual data library & laboratory, EDX

    NASA Astrophysics Data System (ADS)

    Rose, K.; Bauer, J.; Baker, D.; Barkhurst, A.; Bean, A.; DiGiulio, J.; Jones, K.; Jones, T.; Justman, D.; Miller, R., III; Romeo, L.; Sabbatino, M.; Tong, A.

    2017-12-01

    As spatial datasets are increasingly accessible through open, online systems, the opportunity to use these resources to address a range of Earth system questions grows. Simultaneously, there is a need for better infrastructure and tools to find and utilize these resources. We will present examples of advanced online computing capabilities, hosted in the U.S. DOE's Energy Data eXchange (EDX), that address these needs for earth-energy research and development. In one study the computing team developed a custom, machine learning, big data computing tool designed to parse the web and return priority datasets to appropriate servers to develop an open-source global oil and gas infrastructure database. The results of this spatial smart search approach were validated against expert-driven, manual search results which required a team of seven spatial scientists three months to produce. The custom machine learning tool parsed online, open systems, including zip files, ftp sites and other web-hosted resources, in a matter of days. The resulting resources were integrated into a geodatabase now hosted for open access via EDX. Beyond identifying and accessing authoritative, open spatial data resources, there is also a need for more efficient tools to ingest, perform, and visualize multi-variate, spatial data analyses. Within the EDX framework, there is a growing suite of processing, analytical and visualization capabilities that allow multi-user teams to work more efficiently in private, virtual workspaces. An example of these capabilities are a set of 5 custom spatio-temporal models and data tools that form NETL's Offshore Risk Modeling suite that can be used to quantify oil spill risks and impacts. Coupling the data and advanced functions from EDX with these advanced spatio-temporal models has culminated with an integrated web-based decision-support tool. This platform has capabilities to identify and combine data across scales and disciplines, evaluate potential environmental, social, and economic impacts, highlight knowledge or technology gaps, and reduce uncertainty for a range of `what if' scenarios relevant to oil spill prevention efforts. These examples illustrate EDX's growing capabilities for advanced spatial data search and analysis to support geo-data science needs.

  14. Reducing Multisensor Satellite Monthly Mean Aerosol Optical Depth Uncertainty: 1. Objective Assessment of Current AERONET Locations

    NASA Technical Reports Server (NTRS)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2016-01-01

    Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.

  15. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  16. Integrative Spatial Data Analytics for Public Health Studies of New York State

    PubMed Central

    Chen, Xin; Wang, Fusheng

    2016-01-01

    Increased accessibility of health data made available by the government provides unique opportunity for spatial analytics with much higher resolution to discover patterns of diseases, and their correlation with spatial impact indicators. This paper demonstrated our vision of integrative spatial analytics for public health by linking the New York Cancer Mapping Dataset with datasets containing potential spatial impact indicators. We performed spatial based discovery of disease patterns and variations across New York State, and identify potential correlations between diseases and demographic, socio-economic and environmental indicators. Our methods were validated by three correlation studies: the correlation between stomach cancer and Asian race, the correlation between breast cancer and high education population, and the correlation between lung cancer and air toxics. Our work will allow public health researchers, government officials or other practitioners to adequately identify, analyze, and monitor health problems at the community or neighborhood level for New York State. PMID:28269834

  17. Reconciling spatial and temporal soil moisture effects on afternoon rainfall

    PubMed Central

    Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-01-01

    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589

  18. A computational model of spatial visualization capacity.

    PubMed

    Lyon, Don R; Gunzelmann, Glenn; Gluck, Kevin A

    2008-09-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to perform it. In this model, developed within the Adaptive Control of Thought-Rational (ACT-R) architecture, visualization capacity is limited by three mechanisms. Two of these (associative interference and decay) are longstanding characteristics of ACT-R's declarative memory. A third (spatial interference) is a new mechanism motivated by spatial proximity effects in our data. We tested the model in two experiments, one with parameter-value fitting, and a replication without further fitting. Correspondence between model and data was close in both experiments, suggesting that the model may be useful for understanding why visualizing new, complex spatial material is so difficult.

  19. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  20. Spatial effects on hybrid electric vehicle adoption

    DOE PAGES

    Liu, Xiaoli; Roberts, Matthew C.; Sioshansi, Ramteen

    2017-03-08

    This paper examines spatial effects on hybrid-electric vehicle (HEV) adoption. This is in contrast to most existing analyses, which concentrate on analyzing socioeconomic factors and demographics. This paper uses a general spatial model to estimate the strength of ‘neighbor effects’ on HEV adoption—namely that each consumer’s HEV-adoption decision can be influenced by the HEV-adoption decisions of geographic neighbors. We use detailed census tract-level demographic data from the 2010 United States Census and the 2012 American Community Survey and vehicle registration data collected by the Ohio Bureau of Motor Vehicles. We find that HEV adoption exhibits significant spatial effects. We furthermore » conduct a time-series analysis and show that historical HEV adoption has a spatial effect on future adoption. Lastly, these results suggest that HEVs may appear in more dense clusters than models that do not consider spatial effects predict.« less

  1. Learning Low-Rank Decomposition for Pan-Sharpening With Spatial-Spectral Offsets.

    PubMed

    Yang, Shuyuan; Zhang, Kai; Wang, Min

    2017-08-25

    Finding accurate injection components is the key issue in pan-sharpening methods. In this paper, a low-rank pan-sharpening (LRP) model is developed from a new perspective of offset learning. Two offsets are defined to represent the spatial and spectral differences between low-resolution multispectral and high-resolution multispectral (HRMS) images, respectively. In order to reduce spatial and spectral distortions, spatial equalization and spectral proportion constraints are designed and cast on the offsets, to develop a spatial and spectral constrained stable low-rank decomposition algorithm via augmented Lagrange multiplier. By fine modeling and heuristic learning, our method can simultaneously reduce spatial and spectral distortions in the fused HRMS images. Moreover, our method can efficiently deal with noises and outliers in source images, for exploring low-rank and sparse characteristics of data. Extensive experiments are taken on several image data sets, and the results demonstrate the efficiency of the proposed LRP.

  2. a Representation-Driven Ontology for Spatial Data Quality Elements, with Orthoimagery as Running Example

    NASA Astrophysics Data System (ADS)

    Hangouët, J.-F.

    2015-08-01

    The many facets of what is encompassed by such an expression as "quality of spatial data" can be considered as a specific domain of reality worthy of formal description, i.e. of ontological abstraction. Various ontologies for data quality elements have already been proposed in literature. Today, the system of quality elements is most generally used and discussed according to the configuration exposed in the "data dictionary for data quality" of international standard ISO 19157. Our communication proposes an alternative view. This is founded on a perspective which focuses on the specificity of spatial data as a product: the representation perspective, where data in the computer are meant to show things of the geographic world and to be interpreted as such. The resulting ontology introduces new elements, the usefulness of which will be illustrated by orthoimagery examples.

  3. Explaining variation in tropical plant community composition: influence of environmental and spatial data quality.

    PubMed

    Jones, Mirkka M; Tuomisto, Hanna; Borcard, Daniel; Legendre, Pierre; Clark, David B; Olivas, Paulo C

    2008-03-01

    The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100-2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.

  4. Spatial analysis of county-based gonorrhoea incidence in mainland China, from 2004 to 2009.

    PubMed

    Yin, Fei; Feng, Zijian; Li, Xiaosong

    2012-07-01

    Gonorrhoea is one of the most common sexually transmissible infections in mainland China. Effective spatial monitoring of gonorrhoea incidence is important for successful implementation of control and prevention programs. The county-level gonorrhoea incidence rates for all of mainland China was monitored through examining spatial patterns. County-level data on gonorrhoea cases between 2004 and 2009 were obtained from the China Information System for Disease Control and Prevention. Bayesian smoothing and exploratory spatial data analysis (ESDA) methods were used to characterise the spatial distribution pattern of gonorrhoea cases. During the 6-year study period, the average annual gonorrhoea incidence was 12.41 cases per 100000 people. Using empirical Bayes smoothed rates, the local Moran test identified one significant single-centre cluster and two significant multi-centre clusters of high gonorrhoea risk (all P-values <0.01). Bayesian smoothing and ESDA methods can assist public health officials in using gonorrhoea surveillance data to identify high risk areas. Allocating more resources to such areas could effectively reduce gonorrhoea incidence.

  5. SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data.

    PubMed

    Moraga, Paula

    2017-11-01

    During last years, public health surveillance has been facilitated by the existence of several packages implementing statistical methods for the analysis of spatial and spatio-temporal disease data. However, these methods are still inaccesible for many researchers lacking the adequate programming skills to effectively use the required software. In this paper we present SpatialEpiApp, a Shiny web application that integrate two of the most common approaches in health surveillance: disease mapping and detection of clusters. SpatialEpiApp is easy to use and does not require any programming knowledge. Given information about the cases, population and optionally covariates for each of the areas and dates of study, the application allows to fit Bayesian models to obtain disease risk estimates and their uncertainty by using R-INLA, and to detect disease clusters by using SaTScan. The application allows user interaction and the creation of interactive data visualizations and reports showing the analyses performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  7. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    NASA Astrophysics Data System (ADS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  8. Combined Landsat-8 and Sentinel-2 Burned Area Mapping

    NASA Astrophysics Data System (ADS)

    Huang, H.; Roy, D. P.; Zhang, H.; Boschetti, L.; Yan, L.; Li, Z.

    2017-12-01

    Fire products derived from coarse spatial resolution satellite data have become an important source of information for the multiple user communities involved in fire science and applications. The advent of the MODIS on NASA's Terra and Aqua satellites enabled systematic production of 500m global burned area maps. There is, however, an unequivocal demand for systematically generated higher spatial resolution burned area products, in particular to examine the role of small-fires for various applications. Moderate spatial resolution contemporaneous satellite data from Landsat-8 and the Sentinel-2A and -2B sensors provide the opportunity for detailed spatial mapping of burned areas. Combined, these polar-orbiting systems provide 10m to 30m multi-spectral global coverage more than once every three days. This NASA funded research presents results to prototype a combined Landsat-8 Sentinel-2 burned area product. The Landsat-8 and Sentinel-2 pre-processing, the time-series burned area mapping algorithm, and preliminary results and validation using high spatial resolution commercial satellite data over Africa are presented.

  9. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  10. Multiple-source spatial data fusion and integration research in the region unified planning management information system

    NASA Astrophysics Data System (ADS)

    Liu, Zhijun; Zhang, Liangpei; Liu, Zhenmin; Jiao, Hongbo; Chen, Liqun

    2008-12-01

    In order to manage the internal resources of Gulf of Tonkin and integrate multiple-source spatial data, the establishment of region unified plan management system is needed. The data fusion and the integrated research should be carried on because there are some difficulties in the course of the system's establishment. For example, kinds of planning and the project data format are different, and data criterion is not unified. Besides, the time state property is strong, and spatial reference is inconsistent, etc. In this article the ARCGIS ENGINE is introduced as the developing platform, key technologies are researched, such as multiple-source data transformation and fusion, remote sensing data and DEM fusion and integrated, plan and project data integration, and so on. Practice shows that the system improves the working efficiency of Guangxi Gulf of Tonkin Economic Zone Management Committee significantly and promotes planning construction work of the economic zone remarkably.

  11. Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Il

    This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.

  12. Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis

    PubMed Central

    Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping

    2012-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377

  13. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  14. Understanding the spatial complexity of surface hoar from slope to range scale

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.

    2015-12-01

    Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.

  15. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    NASA Astrophysics Data System (ADS)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)

  16. Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.

    2010-12-01

    Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.

  17. SPHARA - A Generalized Spatial Fourier Analysis for Multi-Sensor Systems with Non-Uniformly Arranged Sensors: Application to EEG

    PubMed Central

    Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens

    2015-01-01

    Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications. PMID:25885290

  18. Spatial Data Transfer Standard (SDTS), part 3 : ISO 8211 encoding

    DOT National Transportation Integrated Search

    1997-11-20

    The ISO 8211 encoding provides a representation of a Spatial Data Transfer Standard (SDTS) file set in a standardized method enabling the file set to be exported to or imported from different media by general purpose ISO 8211 software.

  19. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1987-01-01

    A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.

  20. Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments

    NASA Astrophysics Data System (ADS)

    Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol

    2018-01-01

    Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.

  1. Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    NASA Technical Reports Server (NTRS)

    Davis, Bruce E.; Elliot, Gregory

    1989-01-01

    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

  2. Generalized estimators of avian abundance from count survey data

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.

  3. The Uncertainties on the GIS Based Land Suitability Assessment for Urban and Rural Planning

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhan, Q.; Zhan, M.

    2017-09-01

    The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems (GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the "Nature Breaks" method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment. The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and promotes the scientific level of the later planning and decision-making.

  4. Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Hu, Yong

    2017-12-01

    In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.

  5. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

    Treesearch

    Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone

    2016-01-01

    Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...

  6. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOEpatents

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  7. A Dynamic Integration Method for Borderland Database using OSM data

    NASA Astrophysics Data System (ADS)

    Zhou, X.-G.; Jiang, Y.; Zhou, K.-X.; Zeng, L.

    2013-11-01

    Spatial data is the fundamental of borderland analysis of the geography, natural resources, demography, politics, economy, and culture. As the spatial region used in borderland researching usually covers several neighboring countries' borderland regions, the data is difficult to achieve by one research institution or government. VGI has been proven to be a very successful means of acquiring timely and detailed global spatial data at very low cost. Therefore VGI will be one reasonable source of borderland spatial data. OpenStreetMap (OSM) has been known as the most successful VGI resource. But OSM data model is far different from the traditional authoritative geographic information. Thus the OSM data needs to be converted to the scientist customized data model. With the real world changing fast, the converted data needs to be updated. Therefore, a dynamic integration method for borderland data is presented in this paper. In this method, a machine study mechanism is used to convert the OSM data model to the user data model; a method used to select the changed objects in the researching area over a given period from OSM whole world daily diff file is presented, the change-only information file with designed form is produced automatically. Based on the rules and algorithms mentioned above, we enabled the automatic (or semiautomatic) integration and updating of the borderland database by programming. The developed system was intensively tested.

  8. Efficiency of the spectral-spatial classification of hyperspectral imaging data

    NASA Astrophysics Data System (ADS)

    Borzov, S. M.; Potaturkin, O. I.

    2017-01-01

    The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.

  9. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  10. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    NASA Astrophysics Data System (ADS)

    Doskocz, Adam

    2016-01-01

    All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI), including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  11. The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.

    PubMed

    Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M

    2014-02-01

    Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.

  12. Using the Spatial Persistence of Soil Moisture Patterns to Estimate Catchment Soil Moisture in Semi-arid Areas

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.

    2006-12-01

    In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically stable with time. In the second part of this presentation we will explore aspects of the calibration using data from the SASMAS site using the multiscale spatial resolution data (100m to 10km) provided by permanently installed reflectometry instruments, and how this single site measurement technique may complement satellite data.

  13. A spatial data handling system for retrieval of images by unrestricted regions of user interest

    NASA Technical Reports Server (NTRS)

    Dorfman, Erik; Cromp, Robert F.

    1992-01-01

    The Intelligent Data Management (IDM) project at NASA/Goddard Space Flight Center has prototyped an Intelligent Information Fusion System (IIFS), which automatically ingests metadata from remote sensor observations into a large catalog which is directly queryable by end-users. The greatest challenge in the implementation of this catalog was supporting spatially-driven searches, where the user has a possible complex region of interest and wishes to recover those images that overlap all or simply a part of that region. A spatial data management system is described, which is capable of storing and retrieving records of image data regardless of their source. This system was designed and implemented as part of the IIFS catalog. A new data structure, called a hypercylinder, is central to the design. The hypercylinder is specifically tailored for data distributed over the surface of a sphere, such as satellite observations of the Earth or space. Operations on the hypercylinder are regulated by two expert systems. The first governs the ingest of new metadata records, and maintains the efficiency of the data structure as it grows. The second translates, plans, and executes users' spatial queries, performing incremental optimization as partial query results are returned.

  14. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    USGS Publications Warehouse

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  15. Concept of a spatial data infrastructure for web-mapping, processing and service provision for geo-hazards

    NASA Astrophysics Data System (ADS)

    Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara

    2017-04-01

    Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned for the possibility of rapid mapping. The server tier consists of java based web and GIS server. Sub and main services are part of the service tier. Sub services are for example map services, feature editing services, geometry services, geoprocessing services and metadata services. For (meta)data provision and to support data interoperability, web standards of the OGC and the rest-interface is used. Four central main services are designed and developed: (1) a mapping service (including image segmentation and classification approaches), (2) a monitoring service to monitor changes over time, (3) a validation service to analyze landslide delineations from different sources and (4) an infrastructure service to identify affected landslides. The main services use and combine parts of the sub services. Furthermore, a series of client applications based on new technology standards making use of the data and services offered by the spatial data infrastructure. Next steps include the design to extend the current spatial data infrastructure to other areas and geo-hazard types to develop a spatial data infrastructure that can assist targeted mapping and monitoring of geo-hazards on a global context.

  16. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  17. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  18. mapview - Interactive viewing of spatial data in R

    NASA Astrophysics Data System (ADS)

    Appelhans, Tim; Detsch, Florian; Reudenbach, Cristoph; Woellauer, Stefan

    2016-04-01

    In this talk we would like to introduce mapview, an R package designed to aid researchers during their work-flow of spatial data analysis. The package was initially developed within the framework of the DFG funded research group "KiLi - Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes" but has quickly developed into a general purpose spatial data viewer. mapview provides some powerful tools for interactive visualization of standard spatial data in R. It has support for all Spatial*(DataFrame) objects as well as all Raster* objects. It is designed so that one function call - mapview(x) - is all you need to view the data interactively. Adding layers to existing views is very easy and we have taken great care in providing suitable defaults for features such as background maps or coloring but things can be customized flexibly (and permanently) to suit different needs. Even though mapview is for most parts based on the leaflet package, it is far more than just a convenience wrapper around leaflet functionality. mapview provides additional features for handling big data sets (up to several million points) as well as some specialized functionality to view and compare rasters of any size with arbitrary coordinate reference systems. Given that mapview is merely a bridge between R and the underlying leaflet.js javascript library, mapview can be used to produce web-maps by simply providing the path to a designated folder. This talk will be a live demonstration of some of the key features of mapview.

  19. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

    USGS Publications Warehouse

    Dorazio, Robert; Karanth, K. Ullas

    2017-01-01

    MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.

  20. Accounting for spatial correlation errors in the assimilation of GRACE into hydrological models through localization

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.

    2017-10-01

    Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.

Top