Sample records for spatial firing patterns

  1. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE PAGES

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...

    2017-06-18

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  2. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  3. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  4. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  5. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.

    PubMed

    Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas

    2013-07-15

    Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.

  7. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Treesearch

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  8. Twentieth-century fire patterns in the Selway-Bitterroot Wilderness Area, Idaho/Montana, and the Gila/Aldo Leopold Wilderness Complex, New Mexico

    Treesearch

    Matthew Rollins; Tom Swetnam; Penelope Morgan

    2000-01-01

    Twentieth century fire patterns were analyzed for two large, disparate wilderness areas in the Rocky Mountains. Spatial and temporal patterns of fires were represented as GIS-based digital fire atlases compiled from archival Forest Service data. We find that spatial and temporal fire patterns are related to landscape features and changes in land use. The rate and...

  9. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson

    2007-01-01

    The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...

  10. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging

    Treesearch

    Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins

    2013-01-01

    Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...

  12. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest

    Treesearch

    Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg

    2018-01-01

    We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...

  13. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  14. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  15. Spatial distribution of human-caused forest fires in Galicia (NW Spain)

    Treesearch

    M. L. Chas-Amil; J. Touza; P. Prestemon

    2010-01-01

    It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...

  16. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  17. Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA

    Treesearch

    Jose M. Iniguez; Thomas W. Swetnam; Christopher H. Baisa

    2009-01-01

    Spatial and temporal patterns of fire history are affected by factors such as topography, vegetation, and climate. It is unclear, however, how these factors influenced fire history patterns in small isolated forests, such as that found on Rincon Peak, a "sky island" mountain range in southern Arizona, USA. We reconstructed the fire history of Rincon Peak to...

  18. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  19. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  20. Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance

    PubMed Central

    Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

    2012-01-01

    Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

  1. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

  2. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    2003-01-01

    Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...

  3. Spatial patterns of large natural fires in Sierra Nevada wilderness areas

    USGS Publications Warehouse

    Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2007-01-01

    The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.

  4. Alternative characterization of forest fire regimes: incorporating spatial patterns

    Treesearch

    Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North

    2017-01-01

    ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...

  5. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  6. Spatial and temporal selectivity patterns of fires in Attika, Greece from 1984 to 2015 delineated from Landsat time series satellite images

    NASA Astrophysics Data System (ADS)

    Stamos, Zoi; Koutsias, Nikos

    2017-04-01

    The aim of this study is to assess spatial and temporalfire selectivity patterns in the region of Attica - Greece from 1984 to 2015. Our work is implemented in two distinct phases: the first consists of the accurate delineation of the fire perimeter using satellite remote sensing technology, and the second consists of the application of suitable GIS supported analyses to develop thematic layers that optimally summarised the spatial and temporal information of fire occurrence. Fire perimeters of wildland fires occurred within the time window 1984-2015 were delineated from freely available Landsat images from USGS and ESA sources.More than three thousands satellite images were processed in order to extract fire perimeters and create maps of fire frequency and fire return interval. In total one thousand and one hundred twenty fire perimeters were recorded during this thirty years' period. Fire perimeters within each year of fire occurrence were compared against the available to burn under complete random processes to identify selectivity patterns over (i) CORINE land use/land cover, (ii) fire frequency and (iii) time since last firemaps. For example, non- irrigated arable lands, complex cultivation patterns and discontinuous urban fabrics are negative related with fires, while coniferous forests, sclerophyllous vegetation and transitional woodlands seem to be preferable by the fires. Additionally, it seems that fires prefer their old burnings (two and three times burned) and also places with different patterns of time since last fire depending on the time needed by the type of vegetation to recover and thus to re-burn.

  7. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  8. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cross-scale analysis of fire regimes

    Treesearch

    Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

    2007-01-01

    Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...

  10. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  11. Normalized burn ratios link fire severity with patterns of avian occurrence

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  12. Classifying and comparing spatial models of fire dynamics

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan

    2007-01-01

    Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...

  13. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire

    Treesearch

    Peter R. Robichaud; S. M. Miller

    1999-01-01

    Prescribed fire is used as a site treatment after timber harvesting. These fires result in spatial patterns with some portions consuming all of the forest floor material (duff) and others consuming little. Prior to the burn, spatial sampling of duff thickness and duff water content can be used to generate geostatistical spatial simulations of these characteristics....

  14. A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology

    PubMed Central

    Dabaghian, Y.; Mémoli, F.; Frank, L.; Carlsson, G.

    2012-01-01

    An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity. PMID:22912564

  15. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems

    NASA Astrophysics Data System (ADS)

    Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex

    2010-02-01

    Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.

  16. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.

    PubMed

    Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-02-01

    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.

  17. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.

    PubMed

    Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil

    2018-06-18

    We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.

  18. Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa

    Treesearch

    V. H. Bonnet; Anna Schoettle; W. D. Shepperd

    2005-01-01

    Regeneration of ponderosa pine after fire depends on the patterns of seed availability and the environmental conditions that define safe sites for seedling establishment. A transect approach was applied in 2002 to determine the spatial distribution of regeneration from unburned to burned areas within the landscape impacted by the Jasper Fire of 2000 in the...

  19. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.

  20. Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brivio, P.A.; Ober, G.; Koffi, B.

    1995-12-31

    Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less

  1. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum.

    PubMed

    Kim, Steve M; Ganguli, Surya; Frank, Loren M

    2012-08-22

    Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.

  2. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  3. Grid and non-grid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes

    PubMed Central

    Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.

    2017-01-01

    Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867

  4. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  5. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  6. Examining the relationship between fire history and sudden oak death patterns: a case study in Sonoma County

    Treesearch

    Max A. Moritz; Dennis C. Odion

    2006-01-01

    Fire is often integral to forest ecology and can affect forest disease dynamics. Sudden oak death has spread across a large, fire-prone portion of California, killing large numbers of oaks and tanoaks and infecting most associated woody plants. Building on our earlier study of fire-disease dynamics, we examined spatial patterns of confirmed infections in relation to...

  7. Tree regeneration spatial patterns in ponderosa pine forests following stand-replacing fire: Influence of topography and neighbors

    Treesearch

    Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez

    2017-01-01

    Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...

  8. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  10. Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine ( Pinus palustris ) sandhill in northwest Florida, USA

    Treesearch

    Joseph J. O' Brien; E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Benjamin Hornsby; Andrew Hudak; Dexter Strother; Eric Rowell; Benjamin C. Bright

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about ecological fire effects. Although the correlation between fire frequency and plant biological diversity in frequently burned ...

  11. Advanced analysis of forest fire clustering

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.

  12. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  13. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  14. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  15. A computational method for optimizing fuel treatment locations

    Treesearch

    Mark A. Finney

    2006-01-01

    Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...

  16. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    PubMed

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  18. A neutral model of low-severity fire regimes

    Treesearch

    Don McKenzie; Amy E. Hessl

    2008-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire occurrence is a stochastic process, an understanding of baseline variability is necessary in order to identify constraints on surface fire regimes. With a suitable null, or neutral, model, characteristics of natural fire regimes estimated...

  19. Using neutral models to identify constraints on low-severity fire regimes.

    Treesearch

    Donald McKenzie; Amy E. Hessl; Lara-Karena B. Kellogg

    2006-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes...

  20. Fire in southern forest landscapes

    Treesearch

    John A. Stanturf; Dale D. Wade; Thomas A. Waldrop; Deborah K. Kennard; Gary L. Achtemeier

    2002-01-01

    Other than land clearing for urban development (Wear and others 1998), no disturbance is more common in southern forests than fire. The pervasive role of fire predates human activity in the South (Komarek 1964, 1974), and humans magnified that role. Repeating patterns of fire behavior lead to recognizable fire regimes, with temporal and spatial dimensions....

  1. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  2. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    PubMed

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    USGS Publications Warehouse

    Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

  4. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    PubMed

    Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-11-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.

  5. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    PubMed Central

    Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-01-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363

  6. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence

    PubMed Central

    Das Gupta, Sanatan; Mackenzie, M. Derek

    2016-01-01

    Fire in boreal ecosystems is known to affect CO2 efflux from forest soils, which is commonly termed soil respiration (Rs). However, there is limited information on how fire and recovery from this disturbance affects spatial variation in Rs. The main objective of this study was to quantify the spatial variability of Rs over the growing season in a boreal aspen (Populus tremuloides Michx.) fire chronosequence. The chronosequence included three stands in northern Alberta; a post fire stand (1 year old, PF), a stand at canopy closure (9 years old, CC), and a mature stand (72 years old, MA). Soil respiration, temperature and moisture were measured monthly from May to August using an intensive spatial sampling protocol (n = 42, minimum lag = 2 m). Key aboveground and belowground properties were measured one time at each sampling point. No spatial structure was detected in Rs of the PF stand during the peak growing season (June and July), whereas Rs was auto-correlated at a scale of < 6 m in the CC and MA stands. The PF stand had the lowest mean Rs (4.60 μmol C m-2 s-1) followed by the CC (5.41 μmol C m-2 s-1), and the MA (7.32 μmol C m-2 s-1) stand. Forest floor depth was the only aboveground factor that influenced the spatial pattern of Rs in all three stands and was strongest in the PF stand. Enzyme activity and fine root biomass, on the other hand, were the significant belowground factors driving the spatial pattern of Rs in the CC and MA stands. Persistent joint aboveground and belowground control on Rs in the CC and MA stands indicates a tight spatial coupling, which was not observed in the PF stand. Overall, the current study suggests that fire in the boreal aspen ecosystem alters the spatial structure of Rs and that fine scale heterogeneity develops quickly as stands reach the canopy closure phase (<10 years). PMID:27832089

  7. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence.

    PubMed

    Das Gupta, Sanatan; Mackenzie, M Derek

    2016-01-01

    Fire in boreal ecosystems is known to affect CO2 efflux from forest soils, which is commonly termed soil respiration (Rs). However, there is limited information on how fire and recovery from this disturbance affects spatial variation in Rs. The main objective of this study was to quantify the spatial variability of Rs over the growing season in a boreal aspen (Populus tremuloides Michx.) fire chronosequence. The chronosequence included three stands in northern Alberta; a post fire stand (1 year old, PF), a stand at canopy closure (9 years old, CC), and a mature stand (72 years old, MA). Soil respiration, temperature and moisture were measured monthly from May to August using an intensive spatial sampling protocol (n = 42, minimum lag = 2 m). Key aboveground and belowground properties were measured one time at each sampling point. No spatial structure was detected in Rs of the PF stand during the peak growing season (June and July), whereas Rs was auto-correlated at a scale of < 6 m in the CC and MA stands. The PF stand had the lowest mean Rs (4.60 μmol C m-2 s-1) followed by the CC (5.41 μmol C m-2 s-1), and the MA (7.32 μmol C m-2 s-1) stand. Forest floor depth was the only aboveground factor that influenced the spatial pattern of Rs in all three stands and was strongest in the PF stand. Enzyme activity and fine root biomass, on the other hand, were the significant belowground factors driving the spatial pattern of Rs in the CC and MA stands. Persistent joint aboveground and belowground control on Rs in the CC and MA stands indicates a tight spatial coupling, which was not observed in the PF stand. Overall, the current study suggests that fire in the boreal aspen ecosystem alters the spatial structure of Rs and that fine scale heterogeneity develops quickly as stands reach the canopy closure phase (<10 years).

  8. Tracking MODIS NDVI time series to estimate fuel accumulation

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan

    2015-01-01

    Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...

  9. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  10. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes

    Treesearch

    Maureen C. Kennedy; Donald McKenzie

    2010-01-01

    Fire-scarred trees provide a deep temporal record of historical fire activity, but identifying the mechanisms therein that controlled landscape fire patterns is not straightforward. We use a spatially correlated metric for fire co-occurrence between pairs of trees (the Sørensen distance variogram), with output from a neutral model for fire history, to infer the...

  11. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes

    USGS Publications Warehouse

    Allen, Craig D.

    2007-01-01

    Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear “pest” outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non-linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.

  12. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  14. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  15. Changing spatial patterns of stand-replacing fire in California conifer forests

    Treesearch

    Jens T. Stevens; Brandon M. Collins; Jay D. Miller; Malcolm P. North; Scott L. Stephens

    2017-01-01

    Stand-replacing fire has profound ecological impacts in conifer forests, yet there is continued uncertainty over how best to describe the scale of stand-replacing effects within individual fires, and how these effects are changing over time. In forests where regeneration following stand-replacing fire depends on seed dispersal from surviving trees, the size and shape...

  16. Wildland arson: a research assessment

    Treesearch

    Jeffrey P. Prestemon; David T. Butry

    2010-01-01

    Wildland arson makes up the majority of fire starts in some parts of the United States and is the second leading cause of fires on Eastern United States Federal forests. Individual arson fires can cause damages to resources and communities totaling over a hundred million dollars. Recent research has uncovered the temporal and spatial patterns of arson fires and their...

  17. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  18. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  19. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico

    Treesearch

    S. A. Drury; T. T. Veblen

    2008-01-01

    Patterns of fire occurrence within the Las Bayas Forestry Reserve, Mexico are analyzed in relation to variability in climate, topography, and human land-use. Significantly more fires with shorter fire return intervals occurred from 1900 to 1950 than from 1950 to 2001. However, the frequency of widespread fire years (25% filter) was unchanged over time, as widespread...

  20. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations and ignition probability grids (1000 x 1000 m) built from historical fire data (1995-2007). The simulation outputs were then examined to understand relationships between burn probability and specific vegetation types and ignition sources. Wildfire threats to specific values of human interest were quantified to map landscape patterns of wildfire risk. The simulation outputs also allowed us to differentiate between areas of the landscape that were progenitors of fires versus "victims" of large fires. The results provided spatially explicit data on wildfire likelihood and intensity that can be used in a variety of strategic and tactical planning forums to mitigate wildfire threats to human and other values in the Mediterranean Basin.

  1. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3.

    PubMed

    Lee, Inah; Park, Seong-Beom

    2013-01-01

    Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.

  2. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Treesearch

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  3. Chapter 3 - Large-scale patterns of forest fire occurrence in the conterminous United States, Alaska and Hawaii, 2016

    Treesearch

    Kevin M. Potter

    2018-01-01

    As a pervasive disturbance agent operating at many spatial and temporal scales, wildland fire is a key abiotic factor affecting forest health both positively and negatively. In some ecosystems, for example, wildland fires have been essential for regulating processes that maintain forest health (Lundquist and others 2011). Wildland fire is an important ecological...

  4. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  5. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  6. Historical and current forest and range landscapes in the interior Columbia River basin and portions of the Klamath and Great Basins. Part 1: Linking vegetation patterns and landscape vulnerability to potential insect and pathogen disturbances.

    Treesearch

    Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann

    1999-01-01

    Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...

  7. Use of artificial landscapes to isolate controls on burn probability

    Treesearch

    Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney

    2010-01-01

    Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...

  8. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes

    Treesearch

    Martin A. Spetich; Hong S. He

    2008-01-01

    A spatially explicit forest succession and disturbance model is used to delineate the extent and dispersion of oak decline under two fire regimes over a 150-year period. The objectives of this study are to delineate potential current and future oak decline areas using species composition and age structure data in combination with ecological land types, and to...

  9. Severe wind and fire regimes in northern forests: historical variability at the regional scale

    Treesearch

    Lisa A. Schulte; David J. Mladenoff

    2005-01-01

    Within the northern Great Lakes region, mesoscale (10s to 100s of km2) forest patterning is driven by disturbance dynamics. Using original Public Land Survey (PLS) records in northern Wisconsin, USA, we study spatial patterns of wind and fire disturbances during the pre-Euroamerican settlement period (ca. 1850). Our goals were: (1) to...

  10. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.

  11. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  12. Modelling effects on grid cells of sensory input during self‐motion

    PubMed Central

    Raudies, Florian; Hinman, James R.

    2016-01-01

    Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096

  13. Ponderosa pine in the Colorado Front Range: long historical fire and tree recruitment intervals and a case for landscape heterogeneity

    Treesearch

    M. R. Kaufmann; L. S. Huckaby; P. Gleason

    2000-01-01

    An unlogged forest landscape in the Colorado Front Range provides insight into historical characteristics of ponderosa pine/Douglas-fir landscapes where the past fire regime was mixed severity with mean fire intervals of 50 years or more. Natural fire and tree recruitment patterns resulted in considerable spatial and temporal heterogeneity, whereas nearby forest...

  14. Remote Sensing of Global Fire Patterns, Aerosol Optical Thickness, and Carbon Monoxide During April 1994

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.

    1997-01-01

    Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.

  15. Moving beyond traditional fire management practices to better minimize community vulnerability to wildfire in southern California

    NASA Astrophysics Data System (ADS)

    Syphard, A. D.; Keeley, J. E.; Brennan, T. J.

    2010-12-01

    Wildfires are an important natural process in southern California, but they also present a major hazard for human life and property. The region leads the nation in fire-related losses, and since 2001, wildfires have damaged or destroyed more than 10,000 homes. As human ignitions have increased along with urban development and population growth, fire frequency has also surged, and most home losses occur in large fires when ignitions coincide with Santa Ana windstorms. As the region accommodates more growth in the future, the wildfire threat promises to continue. We will thus explore how a broader, more comprehensive approach to fire management could improve upon traditional approaches for reducing community vulnerability. The traditional approach to mitigating fire risk, in addition to fire suppression, has been to reduce fuel through construction of fuel breaks. Despite increasing expenditure on these treatments, there has been little empirical study of their role in controlling large fires. We will present the results of a study in which we constructed and analyzed a spatial database of fuel breaks in southern California national forests. Our objective was to better understand characteristics of fuel breaks that affect the behavior of large fires and to map where fires and fuel breaks most commonly intersect. We found that fires stopped at fuel breaks 22-47% of the time, depending on the forest, and the reason fires stopped was invariably related to firefighter access and management activities. Fire weather and fuel break condition were also important. The study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities. While fuel breaks have played a role in controlling wildfires at the Wildland Urban Interface, we are evaluating alternative approaches for reducing community vulnerability, including land use planning. Recent research shows that the amount and spatial arrangement of human infrastructure, such as roads and housing developments, strongly influences wildfire patterns. Therefore, we hypothesize that the spatial arrangement and location of housing development is likely to affect the susceptibility of lives and property to fire. In other words, potential for urban loss may be greatest at specific housing densities, spatial patterns of development, and locations of development. If these risk factors can be identified, mapped, and modeled, it is possible that vulnerability to wildfire could be substantially minimized through careful planning for future development - especially because future development will likely increase the region’s fire risk. To address these possibilities, we are evaluating past housing loss in relation to land use planning, in conjunction with other variables that influence fire patterns. We are also exploring alternative future scenarios to identify optimum land use planning strategies for minimizing fire risk.

  16. Reserch on Spatial and Temporal Distribution of Color Steel Building Based on Multi-Source High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, S. W.; Ma, J. J.; Wang, J. M.

    2018-04-01

    As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.

  17. Location, timing and extent of wildfire vary by cause of ignition

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.

    2015-01-01

    The increasing extent of wildfires has prompted investigation into alternative fire management approaches to complement the traditional strategies of fire suppression and fuels manipulation. Wildfire prevention through ignition reduction is an approach with potential for success, but ignitions result from a variety of causes. If some ignition sources result in higher levels of area burned, then ignition prevention programmes could be optimised to target these distributions in space and time. We investigated the most common ignition causes in two southern California sub-regions, where humans are responsible for more than 95% of all fires, and asked whether these causes exhibited distinct spatial or intra-annual temporal patterns, or resulted in different extents of fire in 10-29-year periods, depending on sub-region. Different ignition causes had distinct spatial patterns and those that burned the most area tended to occur in autumn months. Both the number of fires and area burned varied according to cause of ignition, but the cause of the most numerous fires was not always the cause of the greatest area burned. In both sub-regions, power line ignitions were one of the top two causes of area burned: the other major causes were arson in one sub-region and power equipment in the other. Equipment use also caused the largest number of fires in both sub-regions. These results have important implications for understanding why, where and how ignitions are caused, and in turn, how to develop strategies to prioritise and focus fire prevention efforts. Fire extent has increased tremendously in southern California, and because most fires are caused by humans, ignition reduction offers a potentially powerful management strategy, especially if optimised to reflect the distinct spatial and temporal distributions in different ignition causes.

  18. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas‐fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  19. Assessment of post-fire forest structural diversity using neighborhood parameter in the Sierra Madre Oriental, Mexico

    Treesearch

    Diana Yemilet Avila Flores; Marco Aurelio González Tagle; Javier Jiménez Pérez; Oscar Aguirre Calderón; Eduardo Treviño Garza

    2013-01-01

    The objective of this research was to characterize the spatial structure patterns of a Pinus hartwegii forest in the Sierra Madre Oriental, affected by a fire in 1998. Sampling was stratified by fire severity. A total of three fire severity classes (low, medium and high) were defined. Three sample plots of 40m x 40m were established for each...

  20. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

    Treesearch

    C. Alina Cansler; Donald. McKenzie

    2014-01-01

    Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We...

  1. Temporal and spatial patterns in fire occurrence during the establishment of mixed-oak forests in eastern North America

    Treesearch

    Ryan W. McEwan; Todd F. Hutchinson; Robert P. Long; Robert D. Ford; Brian C. McCarthy

    2007-01-01

    What was the role of fire during the establishment of the current overstory (ca. 1870-1940) in mixed-oak forests of eastern North America? Nine sites representing a 240-km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Basal cross-sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire...

  2. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    USGS Publications Warehouse

    Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.

    2009-01-01

    The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.

  3. Fire patterns in the Amazonian biome

    NASA Astrophysics Data System (ADS)

    Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan

    2010-05-01

    This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).

  4. Wetland fire remote sensing research--The Greater Everglades example

    USGS Publications Warehouse

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  5. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  6. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA

    Treesearch

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Jay D. Miller; Haiganoush K. Preisler

    2017-01-01

    Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn...

  7. Temporal and spatial structure in a daily wildfire-start data set from the western United States (198696)

    USGS Publications Warehouse

    Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.

    2008-01-01

    The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.

  8. Spatial and temporal patterns of burned area over Brazilian Cerrado from 2005 to 2015 using remote sensing data

    NASA Astrophysics Data System (ADS)

    Libonati, Renata; DaCamara, Carlos; Setzer, Alberto

    2016-04-01

    Although Cerrado is a fire-dependent biome, current agriculture practices have significantly modified the native fire regime. Moreover, over the last decades, climate conditions, such as intensive droughts, have contributed to enhance the effects of anthropogenic activities, and consequently fire, over the region. For instance, during the 2010 extreme drought there was an increase of 100% in the number of fire pixels detected by just one polar orbiting satellite (information online at http://www.cptec.inpe.br/queimadas). A better characterization of spatial and temporal fire patterns over Cerrado is therefore crucial to uncover both climate and anthropogenic influences in this ecosystem. Additionally, information about the extent, location and time of burned areas (BA) over Cerrado is especially useful to a wide range of users, from government agencies, research groups and ecologists, to fire managers and NGOs. Instruments on-board satellites are the only available operational means to collect BA data at appropriated spatial and temporal scales and in a cost-effective way. Several global BA products derived from remote sensed information have been developed over the last years using a variety of techniques based on different spatial, spectral and temporal resolutions. Although presenting similar inter-annual variability, there are marked differences among the products both in magnitude and location of the area burnt. The development of regional algorithms which take into account local characteristics such as vegetation type, soil and climate is therefore an added value to the existing information. We present a monthly BA product (AQM) for Brazil based on information from MODIS 1km. The algorithm was specifically designed for ecosystems in Brazil and the procedure represents the first initiative of an automated method for BA monitoring using remote sensing information in the country. The product relies on an algorithm that takes advantage of the ability of MIR reflectances to discriminate BA. Validation over Cerrado biome indicates that the product is in accordance with BA maps from reference data, making the product suitable for applications in fire emission studies and ecosystem management. The AQM regional database covers the 11-year period 2005-2015 over Cerrado and allows analyzing the overall temporal and spatial distribution patterns of BA for the last decade. The highest monthly mean amount is observed in September, followed by October, and March presents the lowest amount. The most severe year is 2007, followed by 2005 and 2010; 2006 and 2009 are the years with less area burned, followed by 2008. The spatial pattern of BA shows that the north region of Cerrado presents the highest frequency of occurrence. The intra and inter-annual variability of BA over Cerrado are closely related to variability of precipitation but it is worth emphasizing that, despite the major role played by climate conditions, the human factor has also a prominent role on fire dynamics in this region and cannot be disregarded.

  9. Range and variation in landscape patch dynamics: Implications for ecosystem management

    Treesearch

    Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg

    2001-01-01

    Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...

  10. Understanding the Spatio-Temporal Pattern of Fire Disturbance in the Eastern Mongolia Using Modis Product

    NASA Astrophysics Data System (ADS)

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-04-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  11. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  12. Historical forest structure, composition, and spatial pattern in dry conifer forests of the western Blue Mountains, Oregon

    Treesearch

    Derek J. Churchill; Gunnar C. Carnwath; Andrew J. Larson; Sean A. Jeronimo

    2017-01-01

    In frequent-fire forests of the interior Western United States, historical (prefire suppression) conditions are often used as a reference to set management objectives, guide prescriptions, and monitor treatment effectiveness. We quantified the historical size, density, composition, and spatial patterns of dry mixed-conifer forests in the Blue Mountains of Oregon to...

  13. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  14. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.

    PubMed

    Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph

    2016-09-12

    Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

    NASA Astrophysics Data System (ADS)

    Monsalve-Mercado, Mauro M.; Leibold, Christian

    2017-07-01

    Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

  16. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  17. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantifying soil surface change in degraded drylands: shrub encroachment and effects of fire and vegetation removal in a desert grassland

    USGS Publications Warehouse

    Sankey, Joel B.; Ravi, Sujith; Wallace, Cynthia S.A.; Webb, Robert H.; Huxman, Travis E.

    2012-01-01

    Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies have indicated that in the early stages of shrub encroachment, when there is sufficient herbaceous connectivity, fires (prescribed or natural) might provide some reversibility to the shrub encroachment process by negatively affecting shrub demography and homogenizing soil resources across patches within weeks to months after burning. A comprehensive understanding of longer term changes in microtopography and spatial patterning of soil properties following fire in shrub-encroached grasslands is desirable. Here, we investigate the changes in microtopography with LiDAR (light detection and ranging), vegetation recovery, and spatial pattering of soil properties in replicated burned, clipped, and control areas in a shrub-grass transition zone in the northern Chihuahuan Desert four years after prescribed fire or clipping. Results indicate a greater homogeneity in soil, microtopography, and vegetation patterning on burned relative to clipped and control treatments. Findings provide further evidence that disturbance by prescribed fire may allow for reversal of the shrub encroachment process, if the event occurs in the early stages of the vegetation shift. Improved understanding of longer-term effects of fire and associated changes in soil patterning can inform the use and role of fire in the context of changing disturbance regimes and climate.

  19. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Nesmith, C.B.; Caprio, Anthony C.; Pfaff, Anne H.; McGinnis, Thomas W.; Keeley, Jon E.

    2011-01-01

    Current goals for prescription burning are focused on measures of fuel consumption and changes in forest density. These benchmarks, however, do not address the extent to which prescription burning meets perceived ecosystem needs of heterogeneity in burning, both for overstory trees and understory herbs and shrubs. There are still questions about how closely prescribed fires mimic these patterns compared to natural wildfires. This study compared burn patterns of prescribed fires and managed unplanned wildfires to understand how the differing burning regimes affect ecosystem properties. Measures of forest structure and fire severity were sampled in three recent prescribed fires and three wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Fine scale patterns of fire severity and heterogeneity were compared between fire types using ground-based measures of fire effects on fuels and overstory and understory vegetation. Prescribed fires and wildfires managed for resource objectives displayed similar patterns of overstory and understory fire severity, heterogeneity, and seedling and sapling survival. Variation among plots within the same fire was always greater than between fire types. Prescribed fires can provide burned landscapes that approximate natural fires in many ways. It is recognized that constraints placed on when wildfires managed for resource objectives are allowed to burn freely may bias the range of conditions that might have been experienced under more natural conditions. Therefore they may not exactly mimic natural wildfires. Overall, the similarity in fire effects that we observed between prescribed fires and managed wildfires indicate that despite the restrictions that are often placed on prescribed fires, they appear to be creating post-fire conditions that approximate natural fires when assessed on a fine spatial scale.

  20. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

    PubMed

    Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana

    2016-12-15

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland-urban interface during the Wallow Fire, Arizona, USA

    Treesearch

    Maureen C. Kennedy; Morris C. Johnson

    2014-01-01

    Fuel reduction treatments are implemented in the forest surrounding the wildland–urban interface (WUI) to provide defensible space and safe opportunity for the protection of homes during a wildfire. The 2011 Wallow Fire in Arizona USA burned through recently implemented fuel treatments in the wildland surrounding residential communities in the WUI, and those fuel...

  2. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    USGS Publications Warehouse

    Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.

    2009-01-01

    The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.

  3. Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska

    NASA Astrophysics Data System (ADS)

    Kasischke, Eric S.; Turetsky, Merritt R.

    2006-05-01

    We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.

  4. Fire Impacts on Mixed Pine-oak Forests Assessed with High Spatial Resolution Imagery, Imaging Spectroscopy, and LiDAR

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2016-12-01

    As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.

  5. Thinning and prescribed fire effects on snag abundance and spatial pattern in an eastern Cascade Range dry forest, Washington, USA

    Treesearch

    Paul F. Hessburg; Nicholas A. Povak; R. Brion. Salter

    2010-01-01

    Mechanical thinning and prescribed burning practices are commonly used to address tree stocking, spacing, composition, and canopy and surface fuel conditions in western US mixed conifer forests. We examined the effects of these fuel treatments alone and combined on snag abundance and spatial pattern across 12 10-ha treatment units in central Washington State. A snag...

  6. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    NASA Technical Reports Server (NTRS)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.

  7. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  8. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  9. Quantifying bushfire penetration into urban areas in Australia

    NASA Astrophysics Data System (ADS)

    Chen, Keping; McAneney, John

    2004-06-01

    The extent and trajectory of bushfire penetration at the bushland-urban interface are quantified using data from major historical fires in Australia. We find that the maximum distance at which homes are destroyed is typically less than 700 m. The probability of home destruction emerges as a simple linear and decreasing function of distance from the bushland-urban boundary but with a variable slope that presumably depends upon fire regime and human intervention. The collective data suggest that the probability of home destruction at the forest edge is around 60%. Spatial patterns of destroyed homes display significant neighbourhood clustering. Our results provide revealing spatial evidence for estimating fire risk to properties and suggest an ember-attack model.

  10. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.

    PubMed

    Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C

    2018-07-01

    Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re-considered for operational purposes in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparing fire spread algorithms using equivalence testing and neutral landscape models

    Treesearch

    Brian R. Miranda; Brian R. Sturtevant; Jian Yang; Eric J. Gustafson

    2009-01-01

    We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by...

  12. Protect Thy Neighbor: Investigating the Spatial Externalities of Community Wildfire Hazard Mitigation

    Treesearch

    David Butry; Geoffrey Donovan

    2008-01-01

    Climate change, increased wildland fuels, and residential development patterns in fire-prone areas all combine to make wildfire risk mitigation an important public policy issue. One approach to wildfire risk mitigation is to encourage homeowners to use fire-resistant building materials and to create defensible spaces around their homes. We develop a theoretical model...

  13. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  14. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.

    PubMed

    Park, Seong-Beom; Lee, Inah

    2016-08-01

    Place cells in the hippocampus fire at specific positions in space, and distal cues in the environment play critical roles in determining the spatial firing patterns of place cells. Many studies have shown that place fields are influenced by distal cues in foraging animals. However, it is largely unknown whether distal-cue-dependent changes in place fields appear in different ways in a memory task if distal cues bear direct significance to achieving goals. We investigated this possibility in this study. Rats were trained to choose different spatial positions in a radial arm in association with distal cue configurations formed by visual cue sets attached to movable curtains around the apparatus. The animals were initially trained to associate readily discernible distal cue configurations (0° vs. 80° angular separation between distal cue sets) with different food-well positions and then later experienced ambiguous cue configurations (14° and 66°) intermixed with the original cue configurations. Rats showed no difficulty in transferring the associated memory formed for the original cue configurations when similar cue configurations were presented. Place field positions remained at the same locations across different cue configurations, whereas stability and coherence of spatial firing patterns were significantly disrupted when ambiguous cue configurations were introduced. Furthermore, the spatial representation was extended backward and skewed more negatively at the population level when processing ambiguous cue configurations, compared with when processing the original cue configurations only. This effect was more salient for large cue-separation conditions than for small cue-separation conditions. No significant rate remapping was observed across distal cue configurations. These findings suggest that place cells in the hippocampus dynamically change their detailed firing characteristics in response to a modified cue environment and that some of the firing properties previously reported in a foraging task might carry more functional weight than others when tested in a distal-cue-dependent memory task. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  16. Pyro-eco-hydrologic feedbacks and catchment co-evolution in fire-prone forested uplands

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Inbar, Assaf; Lane, Patrick; Nyman, Petter

    2017-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in standing biomass, soil depth/quality, and fire regimes, even within areas with similar rainfall, geology and catenary position. These system properties have traditionally been investigated independently, however recent research in the areas of post fire hydrology and erosion, and new insights into forest structure, fuel moisture, and flammability, suggest the presence of critical co-evolutionary feedbacks between fire, soils and vegetation that may explain the observed system states. To test this hypothesis we started with a published ecohydrologic model, modifying and extending the algorithms to capture feedbacks between hyrology and fire, and between fire, vegetation and soil production and erosion. The model was parameterized and calibrated with new data from instrumented forested hillslopes across energy and rainfall gradients generated by selecting sites with a range of aspect (energy) and elevation (rainall). The calibrated model was able to reasonably replicate the observed patterns of standing biomass, water balance, fire interval, and soil depth. The catchment co-evolution/feedback modelling approach to understanding patterns of vegetation, soils and fire regimes provides a promising new paradigm for predicting the response of forested se Australian catchments to declining rainfall and increasing temperatures under climate change.

  17. Investigating the association between weather conditions, calendar events and socio-economic patterns with trends in fire incidence: an Australian case study

    NASA Astrophysics Data System (ADS)

    Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem

    2011-06-01

    Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.

  18. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  19. Biogeochemical patterns of intermittent streams over space and time as surface flows decrease

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2016-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry in southwest Idaho and hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production. Furthermore, we expected that biogeochemical patterns of streams would become increasingly spatially heterogeneous with drying. Finally, we expected that these patterns would vary in response to fire. To test these hypotheses, we collected water samples every 50 meters from two intermittent streams, one burned and one unburned, in April, May and June, 2016 to determine surface water biogeochemistry. Results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site where concentrations remained relatively constant. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. We also assessed changes in spatial correlation between the burned and unburned site: carbon concentrations were less spatially correlated at the unburned site than at the burned site. Scatterplot matrices of DIC values indicated that at a lag distance of 300 m in April and June, the unburned site had r-values of 0.7416 and 0.5975, respectively, while the burned site had r-values of 0.9468 and 0.8783, respectively. These initial findings support our hypotheses that carbon concentrations and spatial heterogeneity increased over time.

  20. From the stand-scale to the landscape-scale: predicting the spatial patterns of forest regeneration after disturbance.

    PubMed

    Shive, Kristen L; Preisler, Haiganoush K; Welch, Kevin R; Safford, Hugh D; Butz, Ramona J; O'Hara, Kevin L; Stephens, Scott L

    2018-05-29

    Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide dataset with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially-explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60m 2 area (the field plot scale) was highly dependent on 30-year average annual precipitation, burn severity and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new' fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such accurate forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Incorporating landscape fuel treatment modeling into the Forest Vegetation Simulator

    Treesearch

    Robert C. Seli; Alan A. Ager; Nicholas L. Crookston; Mark A. Finney; Berni Bahro; James K. Agee; Charles W. McHugh

    2008-01-01

    A simulation system was developed to explore how fuel treatments placed in random and optimal spatial patterns affect the growth and behavior of large fires when implemented at different rates over the course of five decades. The system consists of several command line programs linked together: (1) FVS with the Parallel Processor (PPE) and Fire and Fuels (FFE)...

  2. Differences in Human Versus Lightning Fires with Human Proximity at Two Spatial Scales in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; Varvak, A.; McGuire, A. D.

    2017-12-01

    The boreal forest contains significant amounts of carbon in its biomass and soils and is currently responding to a rapidly changing climate. This is leading to warmer temperatures, drier conditions and larger and more frequent wildfires in western North America. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and do not account for the complexity of human-fire interactions. In order to achieve a better understanding of the human influence on fires and how human fires differ from lightning fires, we analyzed both in regard to human proximity at two spatial scales (the Fairbanks subregion and Interior Alaska) using ArcGIS and quantitative analysis methods. We found that area burned is increasing across the region at 3% per year and is driven by increase in area burned by lightning while human-caused area burned has been decreasing recently especially in the WUI near Fairbanks. Human fires differed from lightning fires in several ways: they occurred significantly closer to settlements and highways, burned for a shorter duration, and were not as restricted to a brief seasonal window. The fire regime in the much more populated Fairbanks subregion has been altered by human activity: it experienced substantially more human fire ignitions along with a larger area burned though the human influence decreases with distance. This study provides important insights into spatial patterns of human influences on fires and provides useful information for fire modeling and fire management.

  3. Evaluation of wildfire patterns at the wildland-urban fringe across the continental U.S.

    NASA Astrophysics Data System (ADS)

    Kinoshita, A. M.; Hogue, T. S.

    2014-12-01

    Wildfires threaten ecosystems and urban development across the United States, posing significant implications for land management and natural processes such as watershed hydrology. This study investigates the spatial association between large wildfires and urbanization. Several geospatial dataset are combined to map wildfires (Monitoring Trends in Burn Severity for 1984 to 2012) and housing density (SILVIS Lab Spatial Analysis for Conservation and Sustainability decadal housing density for 1940 to 2030) relative to natural wildlands across the contiguous U.S. Several buffers (i.e. 25 km) are developed around wildlands (Protected Areas Database of the United States) to quantify the change and relationship in spatial fire and housing density patterns. Since 1984, wildfire behavior is cyclical and follows general climatology, where warmer years have more and larger fires. Ignition locations also follow transportation corridors and development which provide easy accessibility to wildlands. In California, both fire frequency and total acres burned exhibit increasing trends (statistically significant at 95%). The 1980s average wildfire frequency and total acres burned was 3100 fires and approximately 1200 km2, respectively. These numbers have increased to 2200 fires and over 1500 km2 in the 2010 to 2012 period alone. Initial observations also show that decennial population and area burned for four major Californian counties (Los Angeles, San Bernardino, San Diego, and Shasta) show strong correlation between the last decade of burned area, urban-fringe proximity, and urbanization trends. Improving our understanding of human induced wildfire regimes provides key information on urban fringe communities most vulnerable to the wildfire risks and can help inform regional development planning.

  4. Interplay between population firing stability and single neuron dynamics in hippocampal networks

    PubMed Central

    Slomowitz, Edden; Styr, Boaz; Vertkin, Irena; Milshtein-Parush, Hila; Nelken, Israel; Slutsky, Michael; Slutsky, Inna

    2015-01-01

    Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI: http://dx.doi.org/10.7554/eLife.04378.001 PMID:25556699

  5. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    PubMed

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  7. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  8. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    PubMed

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  9. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  10. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas. ©2009 Society for Conservation Biology.

  11. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  12. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-05-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  13. Spatial patterns and fire response of recent Amazonian droughts

    NASA Astrophysics Data System (ADS)

    Aragão, Luiz Eduardo O. C.; Malhi, Yadvinder; Roman-Cuesta, Rosa Maria; Saatchi, Sassan; Anderson, Liana O.; Shimabukuro, Yosio Edemir

    2007-04-01

    There has been an increasing awareness of the possibility of climate change causing increased drought frequency in Amazonia, with ensuing impacts on ecosystems and human populations. This debate has been brought into focus by the 1997/1998 and 2005 Amazonian droughts. We analysed the spatial extent of these droughts and fire response to the 2005 drought with TRMM and NOAA-12 data, respectively. Both droughts had distinct fingerprints. The 2005 drought was characterized by its intensification throughout the dry season in south-western Amazonia. During 2005 the annual cumulative number of hot pixels in Amazonia increased 33% in relation to the 1999-2005 mean. In the Brazilian state of Acre, at the epicentre of the 2005 drought, the area of leakage forest fires was more than five times greater than the area directly deforested. Fire leakage into flammable forests may be the major agent of biome transformation in the event of increasing drought frequency.

  14. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  15. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests

    Treesearch

    Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes

    2004-01-01

    With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...

  16. Spatial models to predict ash pH and Electrical Conductivity distribution after a grassland fire in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva

    2015-04-01

    Fire mineralizes the organic matter, increasing the pH level and the amount of dissolved ions (Pereira et al., 2014). The degree of mineralization depends among other factors on fire temperature, burned specie, moisture content, and contact time. The impact of wildland fires it is assessed using the fire severity, an index used in the absence of direct measures (e.g temperature), important to estimate the fire effects in the ecosystems. This impact is observed through the loss of soil organic matter, crown volume, twig diameter, ash colour, among others (Keeley et al., 2009). The effects of fire are highly variable, especially at short spatial scales (Pereira et al., in press), due the different fuel conditions (e.g. moisture, specie distribution, flammability, connectivity, arrangement, etc). This variability poses important challenges to identify the best spatial predictor and have the most accurate spatial visualization of the data. Considering this, the test of several interpolation methods it is assumed to be relevant to have the most reliable map. The aims of this work are I) study the ash pH and Electrical Conductivity (EC) after a grassland fire according to ash colour and II) test several interpolation methods in order to identify the best spatial predictor of pH and EC distribution. The study area is located near Vilnius at 54.42° N and 25.26°E and 154 ma.s.l. After the fire it was designed a plot with a 27 x 9 m space grid. Samples were taken every 3 meters for a total of 40 (Pereira et al., 2013). Ash color was classified according to Úbeda et al. (2009). Ash pH and EC laboratory analysis were carried out according to Pereira et al. (2014). Previous to data comparison and modelling, normality and homogeneity were assessed with the Shapiro-wilk and Levene test. pH data respected the normality and homogeneity, while EC only followed the Gaussian distribution and the homogeneity criteria after a logarithmic transformation. Data spatial correlation was calculated with the Global Moran's I Index. In order to identify the best interpolator, we tested several well known techniques as inverse distance to a power (IDP), with the power of 1, 2, 3, 4 and 5, local polynomial (LP) with the power of 1 (LP1), 2 (LP2) and 3 (LP3), spline with tension (SPT), completely regularized spline (CRS), multiquadratic (MTQ), inverse multiquadratic (IMTQ) thin plate spline (TPS) and ordinary kriging. The best interpolator was the one with the lowest Root mean square error (RMSE). The results shown that on average ash pH was 8.01 (±0.20) and EC (1408± 513.51µm cm3). The coefficient of correlation between both variables was 0.34, p<0.05. Black ash had a significantly higher pH (F=6.29, p<0.05) and EC (F=5.25, p<0.05) than dark grey ash. According to Moran's I index, pH data was significantly (p<0.05) dispersed, while EC had a random pattern. The best spatial predictor for pH was IDW1 (RMSE=0.210), and for EC IMTQ (RMSE=0.141). In both cases the least accurate technique was TPS. pH data did not showed a specific spatial pattern and some high values are very close to high values which shows a great local spatial variability, mainly observed in the northern part of the plot. In relation to EC, the high values were identified in the central part of the plot. In conclusion it was observed that ash pH and EC were different according to fire severity (ash color) and data distribution has a different spatial pattern, despite the significant correlation. pH and EC had different spatial impacts on soil properties in the immediate period after the fire. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Keeley, J.E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 18, 116-126. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28, 3681-3690. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development, 20(6), 589-608.

  17. Analysis of Alaskan burn severity patterns using remotely sensed data

    USGS Publications Warehouse

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  18. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior.

    PubMed

    Muessig, L; Hauser, J; Wills, T J; Cacucci, F

    2016-08-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.

  19. Strong Gradients in Forest Sensitivity to Climate Change Revealed by Dynamics of Forest Fire Cycles in the Post Little Ice Age Era

    NASA Astrophysics Data System (ADS)

    Drobyshev, Igor; Bergeron, Yves; Girardin, Martin P.; Gauthier, Sylvie; Ols, Clémentine; Ojal, John

    2017-10-01

    The length of the fire cycle is a critical factor affecting the vegetation cover in boreal and temperate regions. However, its responses to climate change remain poorly understood. We reanalyzed data from earlier studies of forest age structures at the landscape level, in order to map the evolution of regional fire cycles across Eastern North American boreal and temperate forests, following the termination of the Little Ice Age (LIA). We demonstrated a well-defined spatial pattern of post-LIA changes in the length of fire cycles toward lower fire activity during the 1800s and 1900s. The western section of Eastern North America (west of 77°W) experienced a decline in fire activity as early as the first half of the 1800s. By contrast, the eastern section showed these declines as late as the early 1900s. During a regionally fire-prone period of the 1910s-1920s, forests in the western section of Eastern boreal North America burned more than forests in the eastern section. The climate appeared to dominate over vegetation composition and human impacts in shaping the geographical pattern of the post-LIA change in fire activity. Changes in the atmospheric circulation patterns following the termination of the LIA, specifically changes in Arctic Oscillation and the strengthening of the Continental Polar Trough, were likely drivers of the regional fire dynamics.

  20. Spatially explicit quantification of heterogeneous fire effects over long time series: Patterns from two forest types in the northern U.S. Rockies

    Treesearch

    C. E. Naficy; T. T. Veblen; P. F. Hessburg

    2015-01-01

    Within the last decade, mixed-severity fire regimes (MSFRs) have gained increasing attention in both the scientific and management communities (Arno and others 2000, Baker and others 2007, Hessburg and others 2007, Perry and others 2011, Halofsky and others 2011, Stine and others 2014). The growing influence of the MSFR model derives from several factors including: (1...

  1. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    PubMed

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  2. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

    2005-01-01

    Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

  3. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  4. A single-cell spiking model for the origin of grid-cell patterns

    PubMed Central

    Kempter, Richard

    2017-01-01

    Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386

  5. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the remaining areas (centre and south), vegetation recovered very slowly and irregularly. Four years following the fire, vegetation density in these two scars was still markedly below pre-fire levels. Spatial patterns of recovery times were assessed in order to evaluate the influence of physical factors such as fire damage, pre-fire vegetation density and land-cover type, in post-fire behaviour of vegetation for each scar. Pre-fire land-cover type raised as a key factor that may partially explain the differences observed, with shrublands and mixed forests recovering faster than coniferous. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data, Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Viedma, O., Moreno, J.M. and Rieiro, I.: Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (central Spain), Environmental Conservation, 33, 212-222, 2006.

  6. Ecohydrology of an outbreak: Mountain pine beetle impacts trees in drier landscape positions first

    Treesearch

    Kendra E. Kaiser; Ryan E. Emanuel

    2013-01-01

    Vegetation pattern and landscape structure intersect to exert strong control over ecohydrological dynamics at the watershed scale. The hydrologic implications of vegetation disturbance (e.g. fire, disease) depend on the spatial pattern and form of environmental change. Here, we investigate this intersection at Tenderfoot Creek Experimental Forest (TCEF), Montana, with...

  7. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Treesearch

    Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu

    2017-01-01

    Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...

  8. Simulation of Long-Term Landscape-Level Fuel Treatment Effects on Large Wildfires

    Treesearch

    Mark A. Finney; Rob C. Seli; Charles W. McHugh; Alan A. Ager; Berni Bahro; James K. Agee

    2006-01-01

    A simulation system was developed to explore how fuel treatments placed in random and optimal spatial patterns affect the growth and behavior of large fires when implemented at different rates over the course of five decades. The system consists of a forest/fuel dynamics simulation module (FVS), logic for deriving fuel model dynamics from FVS output, a spatial fuel...

  9. Selection of fire-created snags at two spatial scales by cavity-nesting birds

    Treesearch

    Victoria A. Saab; Ree Brannon; Jonathan Dudley; Larry Donohoo; Dave Vanderzanden; Vicky Johnson; Henry Lachowski

    2002-01-01

    We examined the use of snag stands by seven species of cavity-nesting birds from 1994-1998. Selection of snags was studied in logged and unlogged burned forests at two spatial scales: microhabitat (local vegetation characteristics) and landscape (composition and patterning of surrounding vegetation types). We modeled nest occurrence at the landscape scale by using...

  10. Characterization of fire regime in Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.

    2012-12-01

    In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.

  11. Contribution of human, climate and biophysical drivers to the spatial distribution of wildfires in a French Mediterranean area: where do wildfires start and spread?

    NASA Astrophysics Data System (ADS)

    Ruffault, Julien; Mouillot, Florent; Moebius, Flavia

    2013-04-01

    Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of the SDI and its contribution does no vary according to the size of considered fire events. These results suggest that changes in fuel characteristics and human settlements/ activities, rather than weather conditions are the most likely to modify the future distribution of fires in this Mediterranean area. These conclusions provide useful information on the scenarios that could arise from the interaction of changes in climate and land cover for the Mediterranean area in the near future.

  12. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  13. Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258

  14. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  15. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance

    Treesearch

    David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang

    2015-01-01

    Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...

  17. Plant community patterns in unburned and burned blackbrush (Coleogyne ramosissima) shrublands in the Mojave Desert

    USGS Publications Warehouse

    Brooks, Matthew L.; Matchett, John R.

    2003-01-01

    The blackbrush vegetation type is dominated by Coleogyne ramossisima, which is thought to preclude the coexistence of many other plant species. Fire can remove blackbrush cover and possibly increase plant species richness and evenness. Fire also may increase the frequency and cover of alien annual grasses, thereby intensifying landscape flammability. We tested these predictions in unburned and burned (6-14 years postfire) blackbrush at 3 sites spanning the range of this vegetation type in the Mojave Desert. Species richness in unburned blackbrush was similar to published values for other vegetation types in western North America, but richness varied significantly among the 3 sites and 4 spatial scales (1, 10, 100, and 1000 m2). Richness values declined in order from annual forbs, woody perennials, herbaceous perennials, annual grasses, cacti, to perennial grasses. Fire reduced Coleogyne cover, thus boosting species evenness. In contrast, species richness decreased after burning, although the results varied among spatial scales. Total cover was unaffected by fire because cover of woody perennials decreased, while cover of annual forbs, annual grasses, herbaceous perennials, and perennial grasses increased. Native species richness and cover decreased, whereas alien richness and cover increased after burning, especially where the alien forb Erodium cicutarium was present. Fire had no effect on frequency and variable effects on cover of alien annual grasses. These results indicate that in blackbrush species richness can vary among sites and local spatial scales, and effects of fire can vary among plant life-forms and between natives and aliens.

  18. What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?

    PubMed

    Opris, Ioan; Chang, Stephano; Noga, Brian R

    2017-01-01

    The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.

  19. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  20. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a successful merged fire detection product.

  1. Application of wildfire simulation methods to assess wildfire exposure in a Mediterranean fire-prone area (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.

    2012-12-01

    Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009; Finney et al. 2009; Salis et al. 2012 accepted). In this work, we employed wildfire simulation methods to quantify wildfire exposure to human and ecological values for the island of Sardinia, Italy. The work was focused on the risk and exposure posed by large fires (e.g. 100 - 10,000 ha), and considers historical weather, ignition patterns and fuels. We simulated 100,000 fires using burn periods that replicated the historical size distribution on the Island, and an ignition probability grid derived from historic ignition data. We then examine spatial variation in three exposure components (burn probability, flame length, fire size) among important human and ecological values. The results allowed us to contract exposure among and within the various features examined, and highlighted the importance of human factors in shaping wildfire exposure in Sardinia. The work represents the first application of burn probability modeling in the Mediterranean region, and sets the stage for expanded work in the region to quantify risk from large fires

  2. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  3. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  4. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  5. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    PubMed

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change

    PubMed Central

    Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.

    2015-01-01

    Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956

  7. Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yao, J.; Zhang, X.

    2016-06-01

    Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.

  8. Quaternary Charcoal Records from Western North and South America: Linkages to Fire, Climate, and Vegetation Change

    NASA Astrophysics Data System (ADS)

    Whitlock, C.; Marlon, J.; Bartlein, P.

    2006-12-01

    Particulate charcoal preserved in lake sediments has become an important tool for examining the long-term role of fire as an ecosystem process. The record of microscopic charcoal (100 micron diameter or less) offers information on regional burning patterns, whereas macroscopic particles travel less far and are used to infer local fire history. Reconstruction of past fire activity is based on observations of modern charcoal production, transport, and deposition; modeling; and information on current fire regimes. Approaches and statistics used to interpret charcoal records generally focus on (1) quantifying charcoal content in contiguous samples, (2) determining an appropriate age model, (3) converting raw data to charcoal accumulation rates, and (4) extracting fire signal from noise. Detection of signal in charcoal time series is based on knowledge of recent fires provided by dendrochronological and documentary data. Additional paleofire information is obtained from stratigraphic changes in charcoal composition, pollen assemblages adapted to fire, and other paleoenvironmental proxy. Fire-history studies from western North and South America provide examples of Holocene fire-history reconstructions at spatial scales ranging from watershed to regional. Individual sites show dramatic shifts from crown to surface fire regimes associated with major changes in vegetation. Networks of records reveal regional variations in fire activity and vegetation that are attributed to insolation- driven shifts in atmospheric circulation and changes in short-term climate variability. A global database of paleofire records under development offers an opportunity to consider continental-scale fire patterns and their broad consequences for vegetation dynamics, biogeochemical cycling, and atmospheric chemistry.

  9. Evaluating the intensity of fire at the Acheulian site of Gesher Benot Ya'aqov-Spatial and thermoluminescence analyses.

    PubMed

    Alperson-Afil, Nira; Richter, Daniel; Goren-Inbar, Naama

    2017-01-01

    This manuscript presents an attempt to evaluate the intensity of fire through spatial patterning and thermoluminescence methodology. Previous studies of Layer II-6 Level 2 at the Acheulian site of Gesher Benot Ya'aqov suggested that hominins differentiated their activities across space, including multiple activities around a hearth reconstructed on the basis of the distribution of burned flint artifacts. A transect of ~4 m was extended from the center of the reconstructed hearth of Level 2 to its periphery in order to examine the intensity of fire. Burned and unburned flint microartifacts were sampled along this transect. The results of earlier and current thermoluminescence (TL) analysis demonstrate a general agreement with the macroscopic determination of burning, indicating that the possibility of misinterpretation based on macroscopic observations is negligible. The TL signal from flint microartifacts close to the hearth's center shows unambiguous signs of strong heating, whereas with increasing distance from the hearth the TL signal can be interpreted as a result of decreasing temperatures and/or shorter durations of exposure to fire in addition to a decreasing number of flints showing fire damage. Our study shows that TL analysis can identify some variation in fire intensity, which allows a more precise classification of burned flint microartifacts with respect to their heating history.

  10. Understanding and Combating the Fire-Enhancing Impact of Non-Native Annuals in Desert Scrub through the Tools of Population and Landscape Ecology

    DTIC Science & Technology

    2015-05-01

    annuals are able to spread into the areas between the shrubs by employing population strategies that sharply contrast with those of native species. This...greatly increases the fuel load in the matrix, which has historically produced a natural firebreak between shrubs . Our particular aims were to: (1... shrubs with respect to key interactions and the development of spatial pattern that may influence fire risk. It also provides insights into the

  11. Warning signals for eruptive events in spreading fires.

    PubMed

    Fox, Jerome M; Whitesides, George M

    2015-02-24

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

  12. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA.

    PubMed

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-11-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Seasonality of semi-arid and savanna-type ecosystems in an Earth system model

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.

    2016-12-01

    Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.

  14. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance.

    PubMed

    Turner, David P; Ritts, William D; Kennedy, Robert E; Gray, Andrew N; Yang, Zhiqiang

    2015-12-01

    Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon. Thirteen percent of total forest area in the West Cascades ecoregion was disturbed during the reference interval (1991-2010). The disturbance regime was dominated by harvesting (59 % of all area disturbed), with lower levels of fire (23 %), and pest/pathogen mortality (18 %). Ecoregion total Net Ecosystem Production was positive (a carbon sink) in all years, with greater carbon uptake in relatively cool years. Localized carbon source areas were associated with recent harvests and fire. Net Ecosystem Exchange (including direct fire emissions) showed greater interannual variation and became negative (a source) in the highest fire years. Net Ecosystem Carbon Balance (i.e. change in carbon stocks) was more positive on public that private forestland, because of a lower disturbance rate, and more positive in the decade of the 1990s than in the warmer and drier 2000s because of lower net ecosystem production and higher direct fire emissions in the 2000s. Despite recurrent disturbances, the West Cascades ecoregion has maintained a positive carbon balance in recent decades. The high degree of spatial and temporal resolution in these simulations permits improved attribution of regional carbon sources and sinks.

  15. Co-variability of smoke and fire in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mishra, Amit Kumar; Lehahn, Yoav; Rudich, Yinon; Koren, Ilan

    2015-05-01

    The Amazon basin is a hot spot of anthropogenically-driven biomass burning, accounting for approximately 15% of total global fire emissions. It is essential to accurately measure these fires for robust regional and global modeling of key environmental processes. Here we have explored the link between spatio-temporal variability patterns in the Amazon basin's fires and the resulting smoke loading using 11 years (2002-2012) of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations. Focusing on the peak burning season (July-October), our analysis shows strong inter-annual correlation between aerosol optical depth (AOD) and two MODIS fire products: fire radiative power (FRP) and fire pixel counts (FC). Among these two fire products, the FC better indicates the amount of smoke in the basin, as represented in remotely sensed AOD data. This fire product is significantly correlated both with regional AOD retrievals from MODIS and with point AOD measurements from the AERONET stations, pointing to spatial homogenization of the smoke over the basin on a seasonal time scale. However, MODIS AODs are found better than AERONET AODs observation for linking between smoke and fire. Furthermore, MODIS AOD measurements are strongly correlated with number of fires ∼10-20 to the east, most likely due to westward advection of smoke by the wind. These results can be rationalized by the regional topography and the wind regimes. Our analysis can improve data assimilation of satellite and ground-based observations into regional and global model studies, thus improving the assessment of the environmental and climatic impacts of frequency and distribution variability of the Amazon basin's fires. We also provide the optimal spatial and temporal scales for ground-based observations, which could be used for such applications.

  16. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.

    PubMed

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-05-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.

  17. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

    PubMed Central

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-01-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206

  18. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Lijun; Wei Haiyan; Wang Lingqing

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq})more » higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  19. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, L.J.; Wei, H.Y.; Wang, L.Q.

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than themore » threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  20. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  1. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  2. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific.

    PubMed

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.

  3. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific

    PubMed Central

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires. PMID:25691965

  4. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.

  5. Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs

    NASA Astrophysics Data System (ADS)

    Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.

    2012-04-01

    This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre-conditioning climatic information. Nevertheless, the best results are attained when both synoptic and climatic predictors are used simultaneously as predictors, in particular for the two western clusters, where correlation coefficient values are higher than 0.7. Finally, we have used WTC composite maps to characterize the typical synoptic configurations that favor high values of BA. These patterns correspond to dry and warm fluxes, associated with anticyclonic regimes, which foster fire ignition (Pereira et al., 2005). Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. COST733, 2011: "COST 733 Wiki - Harmonisation and Applications of Weather Type Classifications for European regions or COST733 spatial domains for Europe". Available at http://geo21.geo.uni-augsburg.de/cost733wiki/Cost733_Wiki_Main [accessed 1 September 2011].

  6. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  7. Warning signals for eruptive events in spreading fires

    PubMed Central

    Fox, Jerome M.; Whitesides, George M.

    2015-01-01

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–fire coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests). PMID:25675491

  8. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA.

    PubMed

    Ager, Alan A; Buonopane, Michelle; Reger, Allison; Finney, Mark A

    2013-06-01

    We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small fires from anthropogenic ignitions. Wildfire simulation modeling was used to characterize potential wildfire behavior in terms of annual burn probability and flame length. Spatial data on selected social and ecological features were obtained from Forest Service GIS databases and elsewhere. The potential wildfire behavior was then summarized for each spatial location of each resource. The analysis suggested strong spatial variation in both burn probability and conditional flame length for many of the features examined, including biodiversity, urban interfaces, and infrastructure. We propose that the spatial patterns in modeled wildfire behavior could be used to improve existing prioritization of fuel management and wildfire preparedness activities within the Pacific Northwest region. © 2012 Society for Risk Analysis.

  9. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  10. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    PubMed

    Avitabile, Sarah C; Nimmo, Dale G; Bennett, Andrew F; Clarke, Michael F

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  11. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales

    PubMed Central

    Avitabile, Sarah C.; Nimmo, Dale G.; Bennett, Andrew F.; Clarke, Michael F.

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales. PMID:26571383

  12. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  13. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing

    USGS Publications Warehouse

    Fuhlendorf, S.D.; Harrell, W.C.; Engle, David M.; Hamilton, R.G.; Davis, C.A.; Leslie, David M.

    2006-01-01

    In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity. ?? 2006 by the Ecological Society of America.

  14. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  15. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America.

    PubMed

    Kitzberger, Thomas; Brown, Peter M; Heyerdahl, Emily K; Swetnam, Thomas W; Veblen, Thomas T

    2007-01-09

    Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies reconstructed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subcontinental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those regions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades.

  16. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  17. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    PubMed

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 × 10 m, 30 × 30 m, 50 × 50 m, 100 × 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate that native vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote sensing tools such as LiDAR to monitor post-fire vegetation recovery over large areas in situ. © 2017 by the Ecological Society of America.

  18. Evaluating the intensity of fire at the Acheulian site of Gesher Benot Ya'aqov—Spatial and thermoluminescence analyses

    PubMed Central

    Richter, Daniel; Goren-Inbar, Naama

    2017-01-01

    This manuscript presents an attempt to evaluate the intensity of fire through spatial patterning and thermoluminescence methodology. Previous studies of Layer II-6 Level 2 at the Acheulian site of Gesher Benot Ya‘aqov suggested that hominins differentiated their activities across space, including multiple activities around a hearth reconstructed on the basis of the distribution of burned flint artifacts. A transect of ~4 m was extended from the center of the reconstructed hearth of Level 2 to its periphery in order to examine the intensity of fire. Burned and unburned flint microartifacts were sampled along this transect. The results of earlier and current thermoluminescence (TL) analysis demonstrate a general agreement with the macroscopic determination of burning, indicating that the possibility of misinterpretation based on macroscopic observations is negligible. The TL signal from flint microartifacts close to the hearth’s center shows unambiguous signs of strong heating, whereas with increasing distance from the hearth the TL signal can be interpreted as a result of decreasing temperatures and/or shorter durations of exposure to fire in addition to a decreasing number of flints showing fire damage. Our study shows that TL analysis can identify some variation in fire intensity, which allows a more precise classification of burned flint microartifacts with respect to their heating history. PMID:29145432

  19. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    NASA Astrophysics Data System (ADS)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related seedbank or resprouting density. Image classification did not identify any new blowout features except where fires were not the primary cause. Results suggest that fires are not presently contributing to the destabilisation of coastal dunes in south-west WA.

  20. Warning signals for eruptive events in spreading fires

    DOE PAGES

    Fox, Jerome M.; Whitesides, George M.

    2015-02-09

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  1. Warning signals for eruptive events in spreading fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Jerome M.; Whitesides, George M.

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  2. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle.

    PubMed

    Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian

    2018-05-28

    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI-tract (called Interstitial cells of Cajal, ICC) that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI-tract remains unknown. We developed a high resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI-tract. Copyright © 2018 the authors.

  3. Spatially-Explicit Holocene Drought Reconstructions in Amazonian Forests

    NASA Astrophysics Data System (ADS)

    McMichael, C.; Bush, M. B.

    2014-12-01

    Climate models predict increasing drought in Amazonian forests over the next century, and the synergy of drought and fire may lead to forest dieback. El Niño Southern Oscillation (ENSO) and the Atlantic Multi-decadal Oscillation (AMO) are two primary drivers of Amazonian drought, and each process has a spatially distinct manifestation in the Basin. Paleoecological reconstructions can contextualize the forest response to past drought periods. Stalagmite and lake sediment records have documented that the early- to mid-Holocene, i.e. 10,000 - 5000 calibrated years before present (cal yr BP), was among the driest periods of the last 100,000 years in western Amazonia. Climatic conditions became wetter and more similar to the modern climate over the last 4000 cal yr BP, and fires rarely occurred in the absence of human activity. Yet there are currently no drought and fire reconstructions that examine the spatially explicit patterns of drought during the Holocene. Here, we present regional drought histories from southwestern and northeastern sections Amazonia for the last 10,000 years that document the drought-fire dynamics resulting from both climatic processes. Our reconstructions were based on a compilation of dated soil charcoal fragments (N= 291) collected from within Amazonia sensu stricto, which were analyzed by region using summed probability analysis. The compiled soil charcoal dates contained limited evidence of fire over the last 10,000 years in some regions. Fire frequency rose markedly across the Basin, however, during the last 2000 years, indicating an increased human presence. Fire probabilities, and thus droughts, had similar increasing trajectories between southwestern and northeastern Amazonia from 1500-1100 cal yr BP, which decoupled from 1100-740 cal yr BP, and then regained synchronicity from 740-500 cal yr BP. Fire probability declined markedly after 500 yr cal BP, coincident with European arrival to the Americas. Native populations were decimated, and fire probabilities returned to similar levels before the rise 2000 years ago. These results suggested that the synergy of humans plus drought have played a large role in historical fire regimes in Amazonian forests for the last 2000 years.

  4. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st decade of January, by averaging over all years in the record. We analyzed both: 1) Time variation of NDVI from 1998 to 2005 of pixels for the fire affected and fire unaffected areas. 2) Post-fire NDVI spatial patterns on each image date were compared to the pre-fire pattern to determine the extent to which the pre-fire pattern was re-established, and the rate of this recovery. Results show the ability of vegetation to recovery after a single fire. Nevertheless, such ability can be strongly reduced by successive fires. The recursive fire occurrence can significantly diminish the green biomass especially when disturbances occur at short intervals of time.

  5. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.

  6. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province

    NASA Astrophysics Data System (ADS)

    Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono

    2017-01-01

    The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.

  7. Predicting plant species diversity in a longleaf pine landscape

    Treesearch

    L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West

    2004-01-01

    In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...

  8. Visualization of heterogeneous forest structures following treatment in the southern Rocky Mountains

    Treesearch

    Wade T. Tinkham; Yvette Dickinson; Chad M. Hoffman; Mike A. Battaglia; Seth Ex; Jeffrey Underhill

    2017-01-01

    Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of varying size, and...

  9. Mapping fire effects on ash and soil properties. Current knowledge and future perspectives.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Strielko, Irina

    2014-05-01

    Fire has heterogeneous impacts on ash and soil properties, depending on severity, topography of the burned area, type of soil and vegetation affected, and meteorological conditions during and post-fire. The heterogeneous impacts of fire and the complex topography of wildland environments impose the challenge of understand fire effects at diverse scales in space and time. Mapping is fundamental to identify the impacts of fire on ash and soil properties because allow us to recognize the degree of the fire impact, vulnerable areas, soil protection and distribution of ash and soil nutrients, important to landscape recuperation. Several methodologies have been used to map fire impacts on ash soil properties. Burn severity maps are very useful to understand the immediate and long-term impacts of fire on the ecosystems (Wagtendonk et al., 2004; Kokaly et al., 2007). These studies normally are carried out with remote sensing techniques and study large burned areas. On a large scale it is very important to detect the most vulnerable areas (e.g. with risk of runoff increase, flooding, erosion, sedimentation and debris flow) and propose -if necessary- immediate rehabilitation measures. Post-fire rehabilitation measures can be extremely costly. Thus the identification of the most affected areas will reduce the erosion risks and soil degradation (Miller and Yool, 2002; Robichaud et al., 2007; Robichaud, 2009), as the consequent economical, social and ecological impacts. Recently, the United States Department of Agriculture created a field guide to map post-fire burn severity, based on remote sensing and Geographical Information Systems (GIS) technologies. The map produced should reflect the effects of fire on soil properties, and identify areas where fire was more severe (Parsons et al. 2010). Remote sensing studies have made attempts to estimate soil and ash properties after the fire, as hydrophobicity (Lewis et al., 2008), water infiltration (Finnley and Glenn, 2010), forest floor consumption (Lewis et al., 2011), ash cover (Robichaud et al., 2007) and other aspects related with soil as the vegetation factors that affect post-fire erosion risk (Fox et al., 2008). Field studies had also indented to estimate and map the impacts of fire in soil properties. Contrary to remote sensing studies, the mapping of fire effects on ash and soil properties in the field is specially carried out at small scale (e.g. slope or plot). The small scale resolution studies are important because identify small patterns that are normally ignored by remote sensing studies, but fundamental to understand the post-fire evolution of the burned areas. One of the important aspects of the small scale studies of fire effect on ash and soil properties is the great spatial variability, showing that the impact of fire is extremely heterogeneous in space and time (Outeiro et al., 2008; Pereira et al. in press). The small scale mapping of fire effects on soil properties normally is carried out using Geostatistical methods or using deterministic interpolation methods (Robichaud and Miller, 1999; Pereira et al., 2013). Several reports were published on the spatial distribution and mapping of ash and duff thickness (Robichaud and Miller, 1999; Pereira et al., 2013; Pereira et al. in press), fire severity (Pereira et al., 2014), ash chemical characteristics as total nitrogen (Pereira et al., 2010a), and ash extractable elements (Pereira et al., 2010b). Also, previous works mapped fire effects on soil temperature (Gimeno-Garcia et al., 2004), soil hydrophobicity (Woods et al., 2007), total nitrogen (Hirobe et al., 2003), phosphorous (Rodriguez et al., 2009) and major cations (Outeiro et al., 2008). It is important to integrate remote sensing and field based works of fire effects on ash and soil properties in order to have a better validation of the models predicted. The aim of this work is present the current knowledge about mapping fire effects in ash and soil properties at diverse scales and the future perspectives. References Finley, C.D., Glenn, N.F. (2010) Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrussh-steppe: II. Hyperspectral analysis. Journal of Arid Environments, 74: 660-666. Fox, D.A., Maselli, F., Carrega, P. (2008) Using SPOT images and field sampling to map burn severity and vegetation factors affecting post-fire erosion risk. Catena, 75: 326-335. Gimeno-Garcia. E., Andreu., V., Rubio, J.L. (2004) Spatial patterns of soil temperatures during experiemntal fires. Geoderma, 118: 17-34. Hirobe, M., Tokushi, N., Wachrinrat, C., Takeda, H. (2003) Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil, 249: 309-318. Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V. (2007) Characterization of post fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of the Environment, 106: 305-325. Lewis, S.A., Hudak, A.T., Ottmar, R.D., Robichaud, P.R., Lentile, L.B., Hood, S.M., Cronan, J.B., Morgan, P. (2012) Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska. International Journal of Wildland Fire, 20: 255-271. Lewis, S.A., Robichaud, P.R., Frazier, B.E., Wu, J.Q., Laes, D.Y.M. (2008) Using hyperspectral imagery to predict post-wildfire soil repellency. Geomorphology, 98, 192-205. Miller, J.D., Yool, S. (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of the Environment, 82: 481-496. Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., Clark, J.T. (2010) Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. Pereira, P. Úbeda X., Martin D A (2010b) Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analysis, EGU General Assembly 2010, Geophysical Research Abstracts, 12,EGU 2010 - 30 Vienna. ISSN: 1607-7962. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4: 153-165. Pereira, P., Úbeda, X., Baltrenaite, E. (2010a) Mapping Total Nitrogen in ash after a Wildfire, a microplot analysis, Ekologija, 56 (3-4), 144-152. Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A., Martin, D.A., Mierauskas, P., Arcenegui, V., Zavala, L. (2014) Do fire severity effects change with the time?, What ash tell us, Flamma, 5: 23-27. Robichaud, P.R. (2009) Post-fire stabilization and rehabilitation. In: Cerda, A., Robichaud, P. (eds) Fire Effects on Soils and Restoration Strategies, Science Publishers, 299-320. Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, R.F., Zamudio, J.Z. (2007) Post-fire burn severity mapping with hyperspectral image unmixing. Remote Sensing of the Environment, 108: 467-480. Robichaud, P.R., Miller, S.M. (1999) Spatial interpolation and simulation of post-burn duff thickness after prescribed fire. International Journal of Wildland Fire, 9: 137-143. Rodriguez, A., Duran, J., Fernandez-Palacios, J.M., Gallardo, A. (2009) Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. Forest Ecology and Management, 257: 739-746. Wagtendonk, J.W., Root, R.R., Key, C.H. (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of the Environment, 92: 397-408. Woods, S.W., Birkas, A., Ahl, R. (2007) Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology, 86: 465-479.

  10. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    PubMed

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  11. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex.

    PubMed

    Kim, Jangjin; Delcasso, Sébastien; Lee, Inah

    2011-11-23

    Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that Object A, but not Object B, was rewarded in Place 1, but not in Place 2 (vice versa for Object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (1) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (2) spiking activities in both regions were more phase locked to theta rhythms, and (3) CA1-medial PFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event.

  12. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex

    PubMed Central

    Kim, Jangjin; Delcasso, Sébastien; Lee, Inah

    2011-01-01

    Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that object A, but not object B, was rewarded in place 1, but not in place 2 (vice versa for object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (i) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (ii) spiking activities in both regions were more phase-locked to theta rhythms, (iii) CA1-mPFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event. PMID:22114269

  13. Mapping burned areas and burn severity patterns across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

    2010-05-01

    The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.

  14. Postfire encroachment of Fabiana imbricata is real? Assessing changes of shrubland occupation during 40 years in NW Patagonia steppe

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Oddi, Facundo; Ghermandi, Luciana

    2014-05-01

    Landscapes are dynamic in space and time, being spatio-temporal processes of particular interest for landscape ecology. In particular, grasslands can change their structure through the expansion of shrubs in the landscape matrix. Shrub encroachment affect biodiversity as well as forage availability that is the key component of the productive use of rangelands. However, despite its recognition as a global problem, knowledge on the rates, dynamics and encroachment patterns is even scarce. For example, although it is generally accepted that fire control shrub encroachment, certain shrubby species could be favored by the occurrence of fire. In northwestern Patagonian steppe, Fabiana imbricata form large monospecific shrublands that are part of the landscape mosaic and its dynamics of regeneration is strongly related to fire. This long-lived shrub (≡ 150 years) is a typical seeder that is killed by fire and recruits seedlings almost exclusively in post-fire, establishing even-age patches. Our objective was to determine whether F. imbricata shrublands have expanded during the last 40 years in a landscape fire prone. The study area corresponds to San Ramon ranch (22,000 ha) located in northwestern Patagonia steppe, Argentina (latitude -41° 04'; longitude -70° 51'). Two distribution maps of the species were made that corresponds to the study area in 1968 and 2011. The 1968 map was elaborated from the digitalization of aerial photographs (1:45000) while the 2011 map was produced with very high resolution satellite images, current aerial photographs and GPS field data. Both maps were loaded into a GIS environment, in which landscape metrics at patch and class level were determined and then compared. From remote sensing and dendroecological techniques, we know that the study area was almost entirely affected by fires during the study period. Therefore, the comparison of both maps allows us to know post-fire changes in the shrublands spatial configuration at the landscape scale and to infer the fire effect on these changes. Our results show that during the studied period F. imbricata shrublands has expanded over the grassland. Nowadays, the species occupies 20% more area than in 1968 and this area, is divided into a smaller number of patches that are closer to each other. The observed change in the shrublands spatial pattern is evidence of a post-fire shrub encroachment. These results contribute to the understanding of the role of fire in vegetation dynamics in fire prone ecosystems

  15. An analysis of wildfire frequency and burned area relationships with human pressure and climate gradients in the context of fire regime

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Understanding fire regime is a crucial step towards achieving a better knowledge of the wildfire phenomenon. This study proposes a method for the analysis of fire regime based on multidimensional scatterplots (MDS). MDS are a visual approach that allows direct comparison among several variables and fire regime features so that we are able to unravel spatial patterns and relationships within the region of analysis. Our analysis is conducted in Spain, one of the most fire-affected areas within the Mediterranean region. Specifically, the Spanish territory has been split into three regions - Northwest, Hinterland and Mediterranean - considered as representative fire regime zones according to MAGRAMA (Spanish Ministry of Agriculture, Environment and Food). The main goal is to identify key relationships between fire frequency and burnt area, two of the most common fire regime features, with socioeconomic activity and climate. In this way we will be able to better characterize fire activity within each fire region. Fire data along the period 1974-2010 was retrieved from the General Statistics Forest Fires database (EGIF). Specifically, fire frequency and burnt area size was examined for each region and fire season (summer and winter). Socioeconomic activity was defined in terms of human pressure on wildlands, i.e. the presence and intensity of anthropogenic activity near wildland or forest areas. Human pressure was built from GIS spatial information about land use (wildland-agriculture and wildland-urban interface) and demographic potential. Climate variables (average maximum temperature and annual precipitation) were extracted from MOTEDAS (Monthly Temperature Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset of Spain) datasets and later reclassified into ten categories. All these data were resampled to fit the 10x10 Km grid used as spatial reference for fire data. Climate and socioeconomic variables were then explored by means of MDS to find the extent to which fire frequency and burnt areas are controlled by either environmental, human, or both factors. Results reveal a noticeable link between fire frequency and human activity, especially in the Northwest area during winter. On the other hand, in the Hinterland and Mediterranean regions, human and climate factors 'work' together in terms of their relationship with fire activity, being the concurrence of high human pressure and favourable climate conditions the main driver. In turn, burned area shows a similar behaviour except in the Hinterland region, were fire-affected area depends mostly on climate factors. Overall, we can conclude that the visual analysis of multidimensional scatterplots has proved to be a powerful tool that facilitates characterization and investigation of fire regimes.

  16. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  17. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  18. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  19. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  20. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  1. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015)

    NASA Astrophysics Data System (ADS)

    van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.

    2017-09-01

    Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr-1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and will be used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations.

  2. Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).

    PubMed

    Nunes, A N; Lourenço, L; Meira, A C Castro

    2016-12-15

    Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. North American forest disturbance mapped from a decadal Landsat record

    Treesearch

    Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson

    2008-01-01

    Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...

  4. Utilizing inventory information to calibrate a landscape simulation model

    Treesearch

    Steven R. Shifley; Frank R., III Thompson; David R. Larsen; David J. Mladenoff; Eric J. Gustafson

    2000-01-01

    LANDIS is a spatially explicit model that uses mapped landscape conditions as a starting point and projects the patterns in forest vegetation that will result from alternative harvest practices, alternative fire regimes, and wind events. LANDIS was originally developed for Lake States forests, but it is capable of handling the input, output, bookkeeping, and mapping...

  5. Allocating fuel breaks to optimally protect structures in the wildland-urban interface

    Treesearch

    Avi Bar-Massada; Volker C. Radeloff; Susan I. Stewart

    2011-01-01

    Wildland fire is a major concern in the wildland-urban interface (WUI), where human structures intermingle with wildland vegetation. Reducing wildfire risk in the WUI is more complicated than in wildland areas, owing to interactions between spatial patterns of housing and wildland fuels. Fuel treatments are commonly applied in wildlands surrounding WUI communities....

  6. Cordilleran forest scaling dynamics and disturbance regimes quantified by aerial LiDAR

    Treesearch

    Tyson L. Swetnam

    2013-01-01

    Semi-arid forests are in a period of rapid transition as a result of unprecedented landscape scale fires, insect outbreaks, drought, and anthropogenic land use practices. Understanding how historically episodic disturbances led to coherent forest structural and spatial patterns that promoted resilience and resistance is a critical part of addressing change. Here my...

  7. Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

    Treesearch

    Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth

    2009-01-01

    We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables.

  8. Do male and female black-backed woodpeckers respond differently to gaps in habitat?

    Treesearch

    Jennifer Pierson; Fred W. Allendorf; Vicki Saab; Pierre Drapeau; Michael K. Schwartz

    2010-01-01

    We used population- and individual-based genetic approaches to assess barriers to movement in black-backed woodpeckers (Picoides arcticus), a fire-specialist that mainly occupies the boreal forest in North America. We tested if male and female woodpeckers exhibited the same movement patterns using both spatially implicit and explicit genetic analyses to define...

  9. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.

  10. Fire drives transcontinental variation in tree birch defense against browsing by snowshoe hares

    Treesearch

    John P. Bryant; Thomas P. Clausen; Robert K. Swihart; Simon M. Landhäusser; Michael T. Stevens; Christopher D. B. Hawkins; Suzanne Carrière; Andrei P. Kirilenko; Alasdair M. Veitch; Richard A. Popko; David T. Cleland; Joseph H. Williams; Walter J. Jakubas; Michael R. Carlson; Karin Lehmkuhl Bodony; Merben Cebrian; Thomas F. Paragi; Peter M. Picone; Jeffery E. Moore; Edmond C. Packee; Thomas Malone

    2009-01-01

    Fire has been the dominant disturbance in boreal America since the Pleistocene, resulting in a spatial mosaic in which the most fire occurs in the continental northwest. Spatial variation in snowshoe hare (Lepus americanus) density reflects the fire mosaic. Because fire initiates secondary forest succession, a fire mosaic creates...

  11. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897

  12. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests.

    PubMed

    Fontaine, Joseph B; Kennedy, Patricia L

    2012-07-01

    Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.

  13. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

    Treesearch

    Russell A. Parsons; William E. Mell; Peter McCauley

    2011-01-01

    Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...

  14. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  15. Weak climatic control of stand-scale fire history during the late holocene.

    PubMed

    Gavin, Daniel G; Hu, Feng Sheng; Lertzman, Kenneth; Corbett, Peter

    2006-07-01

    Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.

  16. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.

  17. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation. ?? 2007 by the Ecological Society of America.

  18. Anthropogenic and Climatic Influence on Vegetation Fires in Peatland of Insular Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liew, S.; Miettinen, J.; Salinas Cortijo, S. V.

    2011-12-01

    Fire is traditionally used as a tool in land clearing by farmers and shifting cultivators in Southeast Asia. However, the small scale clearing of land is increasingly being replaced by modern large-scale conversion of forests into plantations/agricultural land, usually also by fires. Fires get out of control in periods of extreme drought, especially during the El Nino periods, resulting in severe episodes of transboundary air pollution in the form of smoke haze. We use the MODIS active fires product (hotspots) to establish correlations between the temporal and spatial patterns of vegetation fires with climatic variables, land cover change and soil type (peat or non-peat) in the western part of Insular Southeast Asia for a decade from 2001 to 2010. Fire occurrence exhibits a negative correlation with rainfall, and is more severe overall during the El-Nino periods. However, not all regions are equally affected by El-Nino. In Southern Sumatra and Southern Borneo the correlation with El-Nino is high. However, fires in some regions such as the peatland in Riau, Jambi and Sarawak do not appear to be influenced by El-Nino. These regions are also experiencing rapid conversion of forest to large scale plantations.

  19. Resistance to invasion and resilience to fire in desert shrublands of North America

    USGS Publications Warehouse

    Brooks, Matthew L.; Chambers, Jeanne C.

    2011-01-01

    Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.

  20. Applying fire spread simulators in New Zealand and Australia: Results from an international seminar

    Treesearch

    Tonja Opperman; Jim Gould; Mark Finney; Cordy Tymstra

    2006-01-01

    There is currently no spatial wildfire spread and growth simulation model used commonly across New Zealand or Australia. Fire management decision-making would be enhanced through the use of spatial fire simulators. Various groups from around the world met in January 2006 to evaluate the applicability of different spatial fire spread applications for common use in both...

  1. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular, we need to develop larger-scale and longer-term research to identify the underlying mechanisms that produce the patterns of bird responses to fire in sagebrush ecosystems.

  2. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  3. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  4. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.

    PubMed

    Kulakowski, Dominik; Veblen, Thomas T

    2007-03-01

    Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.

  5. Spatial probability models of fire in the desert grasslands of the southwestern USA

    USDA-ARS?s Scientific Manuscript database

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  6. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    NASA Astrophysics Data System (ADS)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  7. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel

    NASA Astrophysics Data System (ADS)

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  8. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.

    PubMed

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  9. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  10. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  11. Stream structure at low flow: biogeochemical patterns in intermittent streams over space and time

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2017-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry during a dry (2016) and a wet (2017) water year in southwest Idaho. We hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production, and that the heterogeneity of constituents within each stream would increase. We expected these patterns to differ in a high water year compared to a low water year due to algae scour. Finally, we expected that the spatial heterogeneity of biogeochemistry would decrease with time following fire. To test these hypotheses, in 2016 we collected surface water samples at 50 meter intervals from two intermittent headwater streams over 2,500 meter reaches in April, May, and June. One stream is burned and one remains unburned. In 2017, we collected surface water at the 50, 25 and 10 meter intervals from each stream once during low flow. 2016 results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. Between wet and dry water years, we observed a decrease in the spatial heterogeneity as measured by the standard deviation (SD) in conductivity at 50 meter intervals; the burned stream had a SD of 23.08 in 2016 and 11.40 in 2017 whereas the unburned stream had similar SDs. We conclude that the burned stream experienced more inter and intra-annual surface water change in chemistry patterns than did the unburned stream.

  12. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  13. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  14. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna.

    PubMed

    Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh

    2017-02-01

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.

  15. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.

    2004-01-01

    Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.

  16. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    USGS Publications Warehouse

    Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei

    2016-01-01

    ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.

  17. Combining ground-based measurements and MODIS-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Dar A. Roberts; Philip J. Riggan

    2017-01-01

    Multi-temporal satellite imagery can provide valuable information on the patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, we test the relationship between annual biomass estimated using shrub growth rings...

  18. Simulation of long-term landscape-level fuel treatment effects on large wildfires

    Treesearch

    Mark A. Finney; Rob C. Seli; Charles W. McHugh; Alan A. Ager; Bernhard Bahro; James K. Agee

    2008-01-01

    A simulation system was developed to explore how fuel treatments placed in topologically random and optimal spatial patterns affect the growth and behaviour of large fires when implemented at different rates over the course of five decades. The system consisted of a forest and fuel dynamics simulation module (Forest Vegetation Simulator, FVS), logic for deriving fuel...

  19. A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1

    NASA Astrophysics Data System (ADS)

    Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.

    2018-03-01

    This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.

  20. Post-fire land treatments and wind erosion -- lessons from the Milford Flat Fire, UT, USA

    USGS Publications Warehouse

    Miller, Mark E.; Bowker, Matthew A.; Reynolds, Richard L.; Goldstein, Harland L.

    2012-01-01

    We monitored sediment flux at 25 plots located at the northern end of the 2007 Milford Flat Fire (Lake Bonneville Basin, west-central Utah) to examine the effectiveness of post-fire rehabilitation treatments in mitigating risks of wind erosion during the first 3 years post fire. Maximum values were recorded during Mar–Jul 2009 when horizontal sediment fluxes measured with BSNE samplers ranged from 16.3 to 1251.0 g m−2 d−1 in unburned plots (n = 8; data represent averages of three sampler heights per plot), 35.2–555.3 g m−2 d−1 in burned plots that were not treated (n = 5), and 21.0–44,010.7 g m−2 d−1 in burned plots that received one or more rehabilitation treatments that disturbed the soil surface (n = 12). Fluxes during this period exhibited extreme spatial variability and were contingent on upwind landscape characteristics and surficial soil properties, with maximum fluxes recorded in settings downwind of treated areas with long treatment length and unstable fine sand. Nonlinear patterns of wind erosion attributable to soil and fetch effects highlight the profound importance of landscape setting and soil properties as spatial factors to be considered in evaluating risks of alternative post-fire rehabilitation strategies. By Mar–Jul 2010, average flux for all plots declined by 73.6% relative to the comparable 2009 period primarily due to the establishment and growth of exotic annual plants rather than seeded perennial plants. Results suggest that treatments in sensitive erosion-prone settings generally exacerbated rather than mitigated wind erosion during the first 3 years post fire, although long-term effects remain uncertain.

  1. SPITFIRE within the MPI Earth system model: Model development and evaluation

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Thonicke, Kirsten; Kloster, Silvia

    2014-09-01

    Quantification of the role of fire within the Earth system requires an adequate representation of fire as a climate-controlled process within an Earth system model. To be able to address questions on the interaction between fire and the Earth system, we implemented the mechanistic fire model SPITFIRE, in JSBACH, the land surface model of the MPI Earth system model. Here, we document the model implementation as well as model modifications. We evaluate our model results by comparing the simulation to the GFED version 3 satellite-based data set. In addition, we assess the sensitivity of the model to the meteorological forcing and to the spatial variability of a number of fire relevant model parameters. A first comparison of model results with burned area observations showed a strong correlation of the residuals with wind speed. Further analysis revealed that the response of the fire spread to wind speed was too strong for the application on global scale. Therefore, we developed an improved parametrization to account for this effect. The evaluation of the improved model shows that the model is able to capture the global gradients and the seasonality of burned area. Some areas of model-data mismatch can be explained by differences in vegetation cover compared to observations. We achieve benchmarking scores comparable to other state-of-the-art fire models. The global total burned area is sensitive to the meteorological forcing. Adjustment of parameters leads to similar model results for both forcing data sets with respect to spatial and seasonal patterns. This article was corrected on 29 SEP 2014. See the end of the full text for details.

  2. Future southcentral US wildfire probability due to climate change

    USGS Publications Warehouse

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  3. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  4. Fire regime characterization in Mediterranean ecosystems of Southern Italy

    NASA Astrophysics Data System (ADS)

    Lanorte, A.; Lasaponara, R.

    2009-04-01

    This paper addresses the wildfire regime in Mediterranean ecosystems of Southern Italy. Fire regimes refer to average fire conditions (including fire size, fire density, fire frequency, fire seasonality, fire intensity, fire severity, fire thresholds, etc.) occurring over a long period of time. Information on spatial pattern of forest fire locations is a key point in the study of the dynamics of fire disturbance, and allows us to improve the knowledge of past and current role of fire. Historical evidence clearly shows what did happen and this can fruitfully help to understand what is happening and what could happen in the next future. Mapping fire regimes is very challenging, because fire ocurrence features are the expression of the interactions between climate, fire, vegetation, topography, social factors. The main objective of this work is to provide a comprehensive characterization of the fire regime in Italy based on a recently updated national wildfire database. Fire data were obtained from the Italian National Forestry Service. This national database is comprised of information contained in individual fire reports completed for every fire that occurs on public lands in the Italian peninsula. Complete data were only available for 1996-2006 at the time we accessed the database, which determined the years we analysed. The primary fire history variables that we reported were number of fires, area burned, burning time and duration, and fire size (average size of individual fires) The wildfire records (wildfire area, location, time, vegetation) were analysed with other environmental (fuel availability and type), topographic features, and meteorological/climatological data. Results of our analysis could help better understand the different factors on the wildfire regime in Mediterranean ecosystems of Southern Italy.

  5. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires covering an area of at least 1,000 ha were identified. The land-cover / land-use of these large fires sites were then evaluated using the CORINE land-cover data set, and the sites dominated primarily by natural vegetation were identified. Once these candidate sites were identified, a subset was selected across a range of locations and site characteristics for post-fire recovery analysis. To evaluate the post-fire recovery sequence in these locations, time-series of NDVI, EVI, and LAI were derived using 250 meter resolution MODIS data (MOD13Q). The vegetation index values were then compared to pre-fire values to determine recovery relative to the pre-fire vegetative state. The variability in rates of recovery are then considered with respect to moisture availability, vegetation type, and local site conditions to evaluate if any patterns of recovery can be determined.

  6. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.

    PubMed

    Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo

    2018-06-18

    Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.

  7. Quantifying the multi-scale response of avifauna to prescribed fire experiments in the southwest United States.

    PubMed

    Dickson, Brett G; Noon, Barry R; Flather, Curtis H; Jentsch, Stephanie; Block, William M

    2009-04-01

    Landscape-scale disturbance events, including ecological restoration and fuel reduction activities, can modify habitat and affect relationships between species and their environment. To reduce the risk of uncharacteristic stand-replacing fires in the southwestern United States, land managers are implementing restoration and fuels treatments (e.g., mechanical thinning, prescribed fire) in progressively larger stands of dry, lower elevation ponderosa pine (Pinus ponderosa) forest. We used a Before-After/Control-Impact experimental design to quantify the multi-scale response of avifauna to large (approximately 250-400 ha) prescribed fire treatments on four sites in Arizona and New Mexico dominated by ponderosa pine. Using distance sampling and an information-theoretic approach, we estimated changes in density for 14 bird species detected before (May-June 2002-2003) and after (May-June 2004-2005) prescribed fire treatments. We observed few site-level differences in pre- and posttreatment density, and no species responded strongly to treatment on all four sites. Point-level spatial models of individual species response to treatment, habitat variables, and fire severity revealed ecological relationships that were more easily interpreted. At this scale, pretreatment forest structure and patch characteristics were important predictors of posttreatment differences in bird species density. Five species (Pygmy Nuthatch [Sitta pygmaea], Western Bluebird [Sialia mexicana], Steller's Jay [Cyanocitta stelleri], American Robin [Turdus migratorius], and Hairy Woodpecker [Picoides villosus]) exhibited a strong treatment response, and two of these species (American Robin and Hairy Woodpecker) could be associated with meaningful fire severity response functions. The avifaunal response patterns that we observed were not always consistent with those reported by more common studies of wildland fire events. Our results suggest that, in the short-term, the distribution and abundance of common members of the breeding bird community in Southwestern ponderosa pine forests appear to be tolerant of low- to moderate-intensity prescribed fire treatments at multiple spatial scales and across multiple geographic locations.

  8. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  9. Grand challenges in developing a predictive understanding of global fire dynamics

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Wiggins, E. B.; Andela, N.; Morton, D. C.; Veraverbeke, S.; van der Werf, G.

    2017-12-01

    High quality satellite observations of burned area and fire thermal anomalies over the past two decades have transformed our understanding of climate, ecosystem, and human controls on the spatial and temporal distribution of landscape fires. The satellite observations provide evidence for a rapid and widespread loss of fire from grassland and savanna ecosystems worldwide. Continued expansion of industrial agriculture suggests that observed declines in global burned area are likely to continue in future decades, with profound consequences for ecosystem function and the habitat of many endangered species. Satellite time series also highlight the importance of El Niño-Southern Oscillation and other climate modes as drivers of interannual variability. In many regions, lead times between climate indices and fire activity are considerable, enabling the development of early warning prediction systems for fire season severity. With the recent availability of high-resolution observations from Suomi NPP, Landsat 8, and Sentinel 2, the field of global fire ecology is poised to make even more significant breakthroughs over the next decade. With these new observations, it may be possible to reduce uncertainties in the spatial pattern of burned area by several fold. It is difficult to overstate the importance of these new data constraints for improving our understanding of fire impacts on human health and radiative forcing of climate change. A key research challenge in this context is to understand how the loss of global burned area will affect magnitude of the terrestrial carbon sink and trends in atmospheric composition. Advances in prognostic fire modeling will require new approaches linking agriculture with landscape fire dynamics. A critical need in this context is the development of predictive models of road networks and other drivers of land fragmentation, and a closer integration of fragmentation information with algorithms predicting fire spread. Concurrently, a better representation of the influence of livestock on fuels and fire management is essential for modeling long-term trends. In northern ecosystems, climate-driven changes in lightning ignition may accelerate the northward migration of boreal forests into arctic tundra, increasing the vulnerability of permafrost carbon.

  10. Time fluctuation analysis of forest fire sequences

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.

  11. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a series of strong impacts on other components of fire regimes in semi-arid ecosystems that will, in turn, affect their ecology, structure, and function. This dissertation contributes to the field of land use and land change science by proposing a novel spatial coincidence analysis framework for analyzing how the interand intra-annual extents of inundation and fire are correlated with both annual patterns of vegetation productivity and multi-date changes in vegetation productivity. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  12. Spatial characteristics of fire severity in relation to fire growth in a Rocky Mountain subalpine forest

    Treesearch

    Calvin A. Farris; Ellis Q. Margolis; John A. Kupfer

    2008-01-01

    We compared the spatial characteristics of fire severity patches within individual fire “runs” (contiguous polygons burned during a given day) resulting from a 72,000 ha fire in centralIdaho in 1994. Our hypothesis was that patch characteristics of four fire severity classes (high, moderate, low, and unburned), as captured by five landscape metrics, would...

  13. A Comparative Analysis on the Temporal and Spatial Distribution of Fire Characteristics in the Amazon and Equatorial Southern Africa Using Observations from Space

    NASA Astrophysics Data System (ADS)

    Tang, Wenfu; Arellano, Avelino. F.; Raman, Aishwarya

    2015-04-01

    Tropical forest fires significantly impact atmospheric composition and regional and global climate. In particular, fires in Equatorial Southern Africa (ESA) and Amazon comprise the two largest contributors to fire emissions of chemically and radiatively-active atmospheric constituents (such as CO, BC, CO2) across the globe. Here, we investigate the spatiotemporal trends in fire characteristics between these regions using combustion signatures observed from space. Our main goals are: 1) To identify key relationships between the trends in co-emitted constituents across these regions, and, 2) To explore linkages of the observed trends in fire characteristics with the main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. We take advantage of the similarity in latitude and land area between these regions in understanding some of these drivers. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2004 to 2014. We use multi-spectral retrievals of CO from Measurements Of Pollution In The Troposphere (MOPITT), tropospheric column retrievals of NO2 from Ozone Monitoring Instrument (OMI), and aerosol optical depth retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding covariations in co-emitted constituents to provide a more comprehensive look at fire characteristics and behavior, which are yet to be fully understood. Our initial results show that the annual average of CO for ESA (~115 ppbv) is greater than that of Amazon (110 ppbv). This pattern is also seen in NO2 (ESA : ~215 pptv ; Amazon : ~155 pptv). The standard deviation of CO is higher in Amazon (50 ppbv) when compared to ESA (35 ppbv) whereas NO2 shows similar standard deviation in Amazon and ESA (70-90 pptv). We also find changes in the timing patterns of the large fire events across these regions. Since this has important implications to changes in fire behavior (smoldering and flaming phase), we also investigated retrievals of fire radiative power (FRP) from MODIS and information on land cover change and deforestation. We find FRP patterns consistent with our results. Finally, we will explore other measurements available during this period (aircraft field campaigns and in-situ observations) and compare with current fire emission models, such as the Global Fire Emission Database (GFED) to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models for the Amazon and ESA.

  14. Integration of vegetation community spatial data into a prescribed fire planning process at Shenandoah National Park, Virginia (USA)

    USGS Publications Warehouse

    Young, John A.; Mahan, Carolyn G.; Forder, Melissa

    2017-01-01

    Many eastern forest communities depend on fire for regeneration or are enhanced by fire as a restoration practice. However, the use of prescribed fire in the mesic forested environments and the densely populated regions of the eastern United States has been limited. The objective of our research was to develop a science-based approach to prioritizing the use of prescribed fire in appropriate forest types in the eastern United States based on a set of desired management outcomes. Through a process of expert elicitation and data analysis, we assessed and integrated recent vegetation community mapping results along with other available spatial data layers into a spatial prioritization tool for prescribed fire planning at Shenandoah National Park (Virginia, USA). The integration of vegetation spatial data allowed for development of per-pixel priority rankings and exclusion areas enabling precise targeting of fire management activities on the ground, as well as a park-wide ranking of fire planning compartments. We demonstrate the use and evaluation of this approach through implementation and monitoring of a prescribed burn and show that progress is being made toward desired conditions. Integration of spatial data into the fire planning process has served as a collaborative tool for the implementation of prescribed fire projects, which assures projects will be planned in the most appropriate areas to meet objectives that are supported by current science.

  15. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China.

    PubMed

    Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.

  16. Mega-fire Recovery in Dry Conifer Forests of the Interior West

    NASA Astrophysics Data System (ADS)

    Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.

    2015-12-01

    Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.

  17. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  18. Multiple diseases impact survival of pine species planted in red spine stands harvested in spatially variable retention patterns

    Treesearch

    M.E. Ostry; M.J. Moore; C.C. Kern; R.C. Venette; B.J. Palik

    2012-01-01

    Increasing the diversity of species and structure of red pine (Pinus resinosa) is often a management goal in stands simplified by practices such as fire suppression and plantation management in many areas of the Great Lakes Region. One approach to diversification is to convert predominantly even-aged, pure red pine stands to multi-cohort, mixed-...

  19. Nutrient cycling in the Sierra Nevada: the roles of fire and water at Little Valley, Nevada

    Treesearch

    Dale W. Johnson

    2004-01-01

    Spatial and temporal patterns of water flux, ion flux, and ion concentration were examined in a semiarid, snowmelt-dominated forest on the eastern slope of the Carson Range in Little Valley, Nevada (Johnson and others 2001). Variations in data collected from 1995 to 1999 were used to examine the potential effects of snowpack amount and duration on ion concentrations...

  20. Simulating historical variability in the amount of old forests in the Oregon Coast Range.

    Treesearch

    M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock

    2000-01-01

    We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...

  1. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    PubMed

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native plants growing beneath shrubs are "igniters" of dead Larrea branches. Once burning, flames produced by dead branches engulf the entire shrub, resulting in locally intense fires without historical precedent in this system. We suggest that fire models and conservation-focused management could be improved by incorporating the distinct flammability characteristics and spatial distributions of spreaders, igniters, and keystone shrubs. © 2016 by the Ecological Society of America.

  2. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  3. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  4. Assessing the spatial representability of charcoal and PAH-based paleofire records with integrated GIS, modelling, and empirical approaches

    NASA Astrophysics Data System (ADS)

    Vachula, R. S.; Huang, Y.; Russell, J. M.

    2017-12-01

    Lake sediment-based fire reconstructions offer paleoenvironmental context in which to assess modern fires and predict future burning. However, despite the ubiquity, many uncertainties remain regarding the taphonomy of paleofire proxies and the spatial scales for which they record variations in fire history. Here we present down-core proxy analyses of polycyclic aromatic hydrocarbons (PAHs) and three size-fractions of charcoal (63-150, >150 and >250 μm) from Swamp Lake, California, an annually laminated lacustrine archive. Using a statewide historical GIS dataset of area burned, we assess the spatial scales for which these proxies are reliable recorders of fire history. We find that the coherence of observed and proxy-recorded fire history inherently depends upon spatial scale. Contrary to conventional thinking that charcoal mainly records local fires, our results indicate that macroscopic charcoal (>150 μm) may record spatially broader (<25 km) changes in fire history, and as such, the coarsest charcoal particles (>250 μm) may be a more conservative proxy for local burning. We find that sub-macroscopic charcoal particles (63-150 μm) reliably record regional (up to 150 km) changes in fire history. These results indicate that charcoal-based fire reconstructions may represent spatially broader fire history than previously thought, which has major implications for our understanding of spatiotemporal paleofire variations. Our analyses of PAHs show that dispersal mobility is heterogeneous between compounds, but that PAH fluxes are reliable proxies of fire history within 25-50 km, which suggests PAHs may be a better spatially constrained paleofire proxy than sedimentary charcoal. Further, using a linear discriminant analysis model informed by modern emissions analyses, we show that PAH assemblages preserved in lake sediments can differentiate vegetation type burned, and are thus promising paleoecological biomarkers warranting further research and implementation. In sum, our analyses offer new insight into the spatial dimensions of paleofire proxies and constitute a methodology that can be applied to other locations and proxies to better inform site-specific reconstructions.

  5. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  6. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Treesearch

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  7. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests.

    PubMed

    Ager, Alan A; Day, Michelle A; Vogler, Kevin

    2016-07-01

    We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan

    2015-07-01

    Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides.

  9. Mapping fires and American Red Cross aid using demographic indicators of vulnerability.

    PubMed

    Lue, Evan; Wilson, John P

    2017-04-01

    Social vulnerability indicators can assist with informing disaster relief preparation. Certain demographic segments of a population may suffer disproportionately during disaster events, and a geographical understanding of them can help to determine where to place strategically logistical assets and to target disaster-awareness outreach endeavours. Records of house fire events and American Red Cross aid provision over a five-year period were mapped for the County of Los Angeles, California, United States, to examine the congruence between actual events and expectations of risk based on vulnerability theory. The geographical context provided by the data was compared with spatially-explicit indicators of vulnerability, such as age, race, and wealth. Fire events were found to occur more frequently in more vulnerable areas, and Red Cross aid was found to have an even stronger relationship to those places. The findings suggest that these indicators speak beyond vulnerability and relate to patterns of fire risk. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  10. Changes in the NDVI of Boreal Forests over the period 1984 to 2003 measured using time series of Landsat TM/ETM+ surface reflectance and the GIMMS AVHRR NDVI record.

    NASA Astrophysics Data System (ADS)

    McMillan, A. M.; Rocha, A. V.; Goulden, M. L.

    2006-12-01

    There is a prevailing opinion that the boreal landscape is undergoing change as a result of warming temperatures leading to earlier springs, greater forest fire frequency and possibly CO2 fertilization. One widely- used line of evidence is the GIMMS AVHRR NDVI record. Several studies suggest increasing rates of photosynthesis in boreal forests from 1982 to 1991 (based on NDVI increases) while others suggest declining photosynthesis from 1996 to 2003. We suspect that a portion of these changes are due to the successional stage of the forests. We compiled a time-series of atmospherically-corrected Landsat TM/ETM+ images spanning the period 1984 to 2003 over the BOREAS Northern Study Area and compared spatial and temporal patterns of NDVI between the two records. The Landsat time series is higher resolution and, together with the Canadian Fire Service Large Fire Database, provides stand-age information. We then (1) analyzed the agreement between the Landsat and GIMMS AVHRR time series; (2) determined how the stage of forest succession affected NDVI; (3) assessed how the calculation method of annual averages of NDVI affects decadal-scale trends. The agreement between the Landsat and the AVHRR was reasonable although the depression of NDVI associated with the aerosols from the Pinatubo volcano was greater in the GIMMS time series. Pixels containing high proportions of stands burned within a decade of the observation period showed very high gains in NDVI while the more mature stands were constant. While NDVI appears to exhibit a large sensitivity to the presence of snow, the choice of a May to September averaging period for NDVI over a June to August averaging period did not affect the interannual patterns in NDVI at this location because the snow pack was seldom present in either of these periods. Knowledge of the spatial and temporal patterns of wild fire will prove useful in interpreting trends of remotely-sensed proxies of photosynthesis.

  11. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities.

    PubMed

    Lilleskov, Erik A; Bruns, Thomas D; Horton, Thomas R; Taylor, D; Grogan, Paul

    2004-08-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied various measures of spatial pattern to characterize distributions at EMF community and species levels: Mantel tests, Mantel correlograms, variance/mean and standardized variograms. Mantel tests indicated that in four of eight sites community similarity decreased with distance, whereas Mantel correlograms also found spatial autocorrelation in those four plus two additional sites. In all but one of these sites elevated similarity was evident only at relatively small spatial scales (< 2.6 m), whereas one exhibited a larger scale pattern ( approximately 25 m). Evenness of biomass distribution among cores varied widely among taxa. Standardized variograms indicated that most of the dominant taxa showed patchiness at a scale of less than 3 m, with a range from 0 to < or =17 m. These results have implications for both sampling scale and intensity to achieve maximum efficiency of community sampling. In the systems we examined, cores should be at least 3 m apart to achieve the greatest sampling efficiency for stand-level community analysis. In some cases even this spacing may result in reduced sampling efficiency arising from patterns of spatial autocorrelation. Interpretation of the causes and significance of these patterns requires information on the genetic identity of individuals in the communities.

  12. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.

    PubMed

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan

    2017-01-01

    Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.

  13. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST

    PubMed Central

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan

    2017-01-01

    Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773

  14. Topographic Patterns of Mortality and Succession in the Alpine Treeline Ecotone Suggest Hydrologic Controls on Post-Fire Tree Establishment

    NASA Astrophysics Data System (ADS)

    McCaffrey, D. R.; Hopkinson, C.

    2017-12-01

    Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize that moisture limitation is selectively acting on warm slope aspects to inhibit tree establishment, post-fire. Support for this hypothesis is provided by comparing hydrometeorological variable importance in a random forest model of land cover change in the watershed.

  15. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  16. Spatio-temporal clustering of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  17. Post-fire bedload sediment delivery across spatial scales in the interior western United States

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2014-01-01

    Post-fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post-fire erosion rates has been at small scales (100m2 or less), and post-fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post-fire bedload sediment delivery...

  18. Recent changes in annual area burned in interior Alaska: The impact of fire management

    USGS Publications Warehouse

    Calef, M.P.; Varvak, Anna; McGuire, A. David; Chapin, F. S.; Reinhold, K. B.

    2015-01-01

    The Alaskan boreal forest is characterized by frequent extensive wildfires whose spatial extent has been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific decadal oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. In this paper a geographic information system (GIS) is used in combination with statistical analyses to reevaluate the changes in area burned through time in Alaska considering both the influence of the PDO and fire management. The authors found that the area burned has increased since the PDO switch and that fire management drastically decreased the area burned in highly suppressed zones. However, the temporal analysis of this study shows that the area burned is increasing more rapidly in suppressed zones than in the unsuppressed zone since the late 1980s. These results indicate that fire policies as well as regional climate patterns are important as large-scale controls on fires over time and across the Alaskan boreal forest.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less

  20. FIRE_CI2_ETL_RADAR

    Atmospheric Science Data Center

    2015-11-25

    FIRE_CI2_ETL_RADAR Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  Radar Spatial Coverage:  (37.06, -95.34) Spatial ... Order Data Guide Documents:  ETL_RADAR Guide Readme Files:  Readme ETL_RADAR (PS) ...

  1. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    NASA Astrophysics Data System (ADS)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa or differences in landscape management. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned-area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite-derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emission estimates.

  2. Does the entorhinal cortex use the Fourier transform?

    PubMed Central

    Orchard, Jeff; Yang, Hao; Ji, Xiang

    2013-01-01

    Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all. PMID:24376415

  3. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  4. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    PubMed

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  5. A global assessment of wildfire risks to human and environmental water security

    NASA Astrophysics Data System (ADS)

    Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.

    2017-04-01

    Extreme wildfire events extensively affect hydrosystem stability and generate an important threat to the reliability of the water supply for human and natural communities. While actively studied at the watershed scale, the development of a global vision of wildfire risk to water security has only been undertaken recently, pointing at potential water security concerns in an era of global changes. In order to address this concern, we propose a global-scale analysis of the wildfire risk to surface water supplies based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. Based on the literature, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. Each indicator was assigned a DPSIR category. Then, we collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the wildfire-water risk (WWR). For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, for analysis. Overall, our results show a distinct pattern of medium-to-high risk levels in areas where sizeable wildfire activity, water resources, and water consumption are concomitant, which mainly encompasses temperate and sub-tropical zones. A closer look at hydrobelts reveals differences in the factors driving the risk, with fire activity being the primary factor of risk in the circumboreal forest, and freshwater resource density being prevalent in tropical areas. We also identified major urban areas across the world whose source waters should be protected from extreme fire events, particularly when they are dependent on mountainous headwaters. This study offers new insights towards a better understanding of global water security issues that can inform and help guide international water governance.

  6. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  7. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  8. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos

    PubMed Central

    Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini

    2017-01-01

    Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125

  9. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  10. Contrasting patterns of connectivity among endemic and widespread fire coral species ( Millepora spp.) in the tropical Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    de Souza, Júlia N.; Nunes, Flávia L. D.; Zilberberg, Carla; Sanchez, Juan A.; Migotto, Alvaro E.; Hoeksema, Bert W.; Serrano, Xaymara M.; Baker, Andrew C.; Lindner, Alberto

    2017-09-01

    Fire corals are the only branching corals in the South Atlantic and provide an important ecological role as habitat-builders in the region. With three endemic species ( Millepora brazilensis, M. nitida and M. laboreli) and one amphi-Atlantic species ( M. alcicornis), fire coral diversity in the Brazilian Province rivals that of the Caribbean Province. Phylogenetic relationships and patterns of population genetic structure and diversity were investigated in all four fire coral species occurring in the Brazilian Province to understand patterns of speciation and biogeography in the genus. A total of 273 colonies from the four species were collected from 17 locations spanning their geographic ranges. Sequences from the 16S ribosomal DNA (rDNA) were used to evaluate phylogenetic relationships. Patterns in genetic diversity and connectivity were inferred by measures of molecular diversity, analyses of molecular variance, pairwise differentiation, and by spatial analyses of molecular variance. Morphometrics of the endemic species M. braziliensis and M. nitida were evaluated by discriminant function analysis; macro-morphological characters were not sufficient to distinguish the two species. Genetic analyses showed that, although they are closely related, each species forms a well-supported clade. Furthermore, the endemic species characterized a distinct biogeographic barrier: M. braziliensis is restricted to the north of the São Francisco River, whereas M. nitida occurs only to the south. Millepora laboreli is restricted to a single location and has low genetic diversity. In contrast, the amphi-Atlantic species M. alcicornis shows high genetic connectivity within the Brazilian Province, and within the Caribbean Province (including Bermuda), despite low levels of gene flow between these populations and across the tropical Atlantic. These patterns reflect the importance of the Amazon-Orinoco Plume and the Mid-Atlantic Barrier as biogeographic barriers, and suggest that, while M. alcicornis is capable of long-distance dispersal, the three endemics have restricted ranges and more limited dispersal capabilities.

  11. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.

  12. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

  13. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China

    PubMed Central

    Liu, Zhihua; Yang, Jian; He, Hong S.

    2013-01-01

    The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247

  14. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  15. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  16. Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners

    PubMed Central

    Porto, Miguel; Correia, Otília; Beja, Pedro

    2014-01-01

    Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners. PMID:24465833

  17. Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    PubMed Central

    Kubie, John L.; Fenton, André A.

    2012-01-01

    The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948

  18. Spatio-temporal evolution of forest fires in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the southern areas spread hot-spot are spatially randomly distributed and temporally more concentrated in the frame 2000 - 2004. To conclude, this study let us to identify a multitude of clustering space-time features of forest fires in Portugal, which can be useful for a better planning of educational activities and prevention campaigns as well as for a better allocation of monitoring systems and firefighting. References: Tonini M., Pereira M. G., Parente J. (2016) - Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazard, doi:10.1007/s11069-016-2637-x Lu B., Harris P., Charlton M., Brunsdon C. (2014) - The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, Vol. 17: 85-101 Rowlingson B., Diggle P., Bivand M.R. (2012) - Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, Vol. 19: 627-655 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.

  19. Precipitation-fire linkages in Indonesia (1997-2015)

    NASA Astrophysics Data System (ADS)

    Fanin, Thierry; van der Werf, Guido R.

    2017-09-01

    Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between nighttime and total active fires did not change, the 1997 season was thus about twice as severe as the one in 2015. Although large, the difference is smaller than found in fire emission estimates from the Global Fire Emissions Database (GFED). Besides different rainfall amounts and patterns, the two-fold difference between 1997 and 2015 may be attributed to a weaker El Niño and neutral Indian Ocean Dipole (IOD) conditions in the later year. The fraction of fires burning in peatlands was higher in 2015 compared to 1997 (61 and 45 %, respectively). Finally, we found that the non-linearity between rainfall and fire in Indonesia stems from longer periods without rain in extremely dry years.

  20. Analysis of weather condition influencing fire regime in Italy

    NASA Astrophysics Data System (ADS)

    Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella

    2014-05-01

    Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.

  1. Spatial optimization of operationally relevant large fire confine and point protection strategies: Model development and test cases

    Treesearch

    Yu Wei; Matthew P. Thompson; Jessica R. Haas; Gregory K. Dillon; Christopher D. O’Connor

    2018-01-01

    This study introduces a large fire containment strategy that builds upon recent advances in spatial fire planning, notably the concept of potential wildland fire operation delineations (PODs). Multiple PODs can be clustered together to form a “box” that is referred as the “response POD” (or rPOD). Fire lines would be built along the boundary of an rPOD to contain a...

  2. Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations?

    PubMed

    Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei

    2018-01-01

    According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.

  3. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  4. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2,500 Ha among the different savanna ecosystem types. Highest frequencies and largest burned areas occur in the less accessible well-drained savannas of the southern part of the region. The analysis also reveals a close relationship between land tenure and fire regimes, with highest frequencies in Indigenous Reserves, followed by private land ranches and National Parks, indicating that most fires are human induced. By 2000 more than 500k hectares of natural savannas were transformed to sown pastures (Brachiaria spp.), and some 100k hectares were planted with oil palm and irrigated rice. Such changes have taken place in more accessible areas and slightly better soils. In areas subject to land use change and intensification a significant reduction in fire frequency can be observed. Because such land use changes have been occurring in savanna types with better soils and higher aerial biomass values, the average effect on reduction of C-emissions is some 30 to 50% larger than the effect on fire area reduction. Our results indicate a reduction of fire frequencies greater than 80% in areas where savannas were replaced by introduced Brachiaria pastures. However the reduction in C emissions from fire reduction in these pastures is exceeded by the parallel emissions from the increase in the cattle stocking rates with a net effect of an additional emission of 0.5 Gt.CO2 equivalents. We make preliminary projections of future emission trends based on the land use change model, and we discuss the likely effects of future sources and sinks of C expected from the increase of irrigated rice crops and from projected oil palm and timber plantations.

  5. A Numerical Study of Atmospheric Perturbations Induced by Heat From a Wildland Fire: Sensitivity to Vertical Canopy Structure and Heat Source Strength

    NASA Astrophysics Data System (ADS)

    Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi

    2018-03-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.

  6. Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data

    Treesearch

    K. Barrett; E.S. Kasischke; A.D. McGuire; M.R. Turetsky; E.S. Kane

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to...

  7. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    PubMed

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    USGS Publications Warehouse

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  9. The potential of satellite data to study individual wildfire events

    NASA Astrophysics Data System (ADS)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    Large wildfires have important social, economic and environmental impacts. In order to minimize their impacts, understand their main drivers and study their dynamics, different approaches have been used. The reconstruction of individual wildfire events is usually done by collection of field data, interviews and by implementing fire spread simulations. All these methods have clear limitations in terms of spatial and temporal coverage, accuracy, subjectivity of the collected information and lack of objective independent validation information. In this sense, remote sensing is a promising tool with the potential to provide relevant information for stakeholders and the research community, by complementing or filling gaps in existing information and providing independent accurate quantitative information. In this work we show the potential of satellite data to provide relevant information regarding the dynamics of individual large wildfire events, filling an important gap in wildfire research. We show how MODIS active-fire data, acquired up to four times per day, and satellite-derived burnt perimeters can be combined to extract relevant information wildfire events by describing the methods involved and presenting results for four regions of the world: Portugal, Greece, SE Australia and California. The information that can be retrieved encompasses the start and end date of a wildfire event and its ignition area. We perform an evaluation of the information retrieved by comparing the satellite-derived parameters with national databases, highlighting the strengths and weaknesses of both and showing how the former can complement the latter leading to more complete and accurate datasets. We also show how the spatio-temporal distribution of wildfire spread dynamics can be reconstructed using satellite-derived active-fires and how relevant descriptors can be extracted. Applying graph theory to satellite active-fire data, we define the major fire spread paths that yield information about the major spatial corridors through which fires spread, and their relative importance in the full fire event. These major fire paths are then used to extract relevant descriptors, such as the distribution of fire spread direction, rate of spread and fire intensity (i.e. energy emitted). The reconstruction of the fire spread is shown for some case studies for Portugal and is also compared with fire progressions obtained by air-borne sensors for SE Australia. The approach shows solid results, providing a valuable tool for the reconstruction of individual fire events, understand their complex spread patterns and their main drivers of fire propagation. The major fire pathsand the spatio-temporal distribution of active fires are being currently combined with fire spread simulations within the scope oftheFIRE-MODSATproject, to provideuseful information to support and improve fire suppression strategies.

  10. Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses

    NASA Astrophysics Data System (ADS)

    Harris, Jeremy D.; Ermentrout, Bard

    2018-04-01

    Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.

  11. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  12. A critique of the historical-fire-regime concept in conservation.

    PubMed

    Freeman, Johanna; Kobziar, Leda; Rose, Elizabeth White; Cropper, Wendell

    2017-10-01

    Prescribed fire is widely accepted as a conservation tool because fire is essential to the maintenance of native biodiversity in many terrestrial communities. Approaches to this land-management technique vary greatly among continents, and sharing knowledge internationally can inform application of prescribed fire worldwide. In North America, decisions about how and when to apply prescribed fire are typically based on the historical-fire-regime concept (HFRC), which holds that replicating the pattern of fires ignited by lightning or preindustrial humans best promotes native species in fire-prone regions. The HFRC rests on 3 assumptions: it is possible to infer historical fire regimes accurately; fire-suppressed communities are ecologically degraded; and reinstating historical fire regimes is the best course of action despite the global shift toward novel abiotic and biotic conditions. We examined the underpinnings of these assumptions by conducting a literature review on the use of historical fire regimes to inform the application of prescribed fire. We found that the practice of inferring historical fire regimes for entire regions or ecosystems often entails substantial uncertainty and can yield equivocal results; ecological outcomes of fire suppression are complex and may not equate to degradation, depending on the ecosystem and context; and habitat fragmentation, invasive species, and other modern factors can interact with fire to produce novel and in some cases negative ecological outcomes. It is therefore unlikely that all 3 assumptions will be fully upheld for any landscape in which prescribed fire is being applied. Although the HFRC is a valuable starting point, it should not be viewed as the sole basis for developing prescribed fire programs. Rather, fire prescriptions should also account for other specific, measurable ecological parameters on a case-by-case basis. To best achieve conservation goals, researchers should seek to understand contemporary fire-biota interactions across trophic levels, functional groups, spatial and temporal scales, and management contexts. © 2017 Society for Conservation Biology.

  13. Comparison of GFED3, QFED2 and FEER1 Biomass Burning Emissions Datasets in a Global Model

    NASA Technical Reports Server (NTRS)

    Pan, Xiaohua; Ichoku, Charles; Bian, Huisheng; Chin, Mian; Ellison, Luke; da Silva, Arlindo; Darmenov, Anton

    2015-01-01

    Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world.

  14. Fire dynamics during the 20th century simulated by the Community Land Model

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, S.; Lawrence, P. J.; Feddema, J. J.; Oleson, K. W.; Lawrence, D. M.

    2010-01-01

    Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite based estimates in terms of magnitude, spatial extent as well as interannual and seasonal variability. Longterm trends during the 20th century were compared with historical estimates. Overall we found the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtain substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997-2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000-2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we simulated a slight downward trend in global fire emissions, which is explained by reduced fuels as a consequence of wood harvesting and partly by increasing fire suppression. The model predicted an upward trend in the last three decades of the 20th century caused by climate variations and large burning events associated with ENSO induced drought conditions.

  15. Fire dynamics during the 20th century simulated by the Community Land Model

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, S.; Lawrence, P. J.; Feddema, J. J.; Oleson, K. W.; Lawrence, D. M.

    2010-06-01

    Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite-based estimates in terms of magnitude and spatial extent as well as interannual and seasonal variability. Long-term trends during the 20th century were compared with historical estimates. Overall we found the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtained substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997-2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite-based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000-2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we predicted a slight downward trend in global fire emissions caused by reduced fuels as a consequence of wood harvesting and also by increases in fire suppression. The model predicted an upward trend during the last three decades of the 20th century as a result of climate variations and large burning events associated with ENSO-induced drought conditions.

  16. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  17. Determining Relative Contributions of Vegetation and Topography to Burn Severity from LANDSAT Imagery

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  18. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach

    Treesearch

    Cassandra Johnson Gaither; N.C. Poudyal; S. Goodrick; J.M. Bowker; S. Malone; J. Gan

    2011-01-01

    The southeastern U.S. is one of the more wildland fire prone areas of the country and also contains some of the poorest or most socially vulnerable rural communities. Our project addresses wildland fire risk in this part of the U.S and its intersection with social vulnerability. We examine spatial association between high wildland fire prone areas which also rank high...

  19. Effects of a fire response trait on diversification in replicated radiations.

    PubMed

    Litsios, Glenn; Wüest, Rafael O; Kostikova, Anna; Forest, Félix; Lexer, Christian; Linder, H Peter; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas

    2014-02-01

    Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia. We show that climatic preferences evolve more rapidly in reseeder lineages than in resprouters and that the optima of these climatic preferences differ between the two strategies. We find that South Africa is more climatically heterogeneous than Australia, independent of the spatial scale we consider. We propose that rapid shifts between states of the fire response trait promote speciation by separating species ecologically, but this only happens when the landscape is sufficiently heterogeneous. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Assessing the effects of fire disturbances on ecosystems: A scientific agenda for research and management

    USGS Publications Warehouse

    Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.

    1999-01-01

    A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.

  1. Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Coen, J.; Oliva, P.

    2013-12-01

    Availability of spatially refined satellite active fire detection data is gradually increasing. For example, the new 375 m Visible Infrared Imaging Radiometer Suite (VIIRS) data show improved active fire detection performance for both small and large size fires. The VIIRS data have proved superior to MODIS for mapping of wildfires events spanning several days to weeks of either continued or intermittent activity, delivering 12-h active fire data of improved spatial fidelity. The VIIRS active fire data are complemented by other satellite active fire data sets of similar or higher spatial resolution, including the new 30 m Landsat-8. Additional assets should include the upcoming 20 m Sentinel-2 Landsat-class satellite program by the European Space Agency to be launched in 2014-15. These improved active fire data sets are fostering new applications that rely on higher resolution input fire data. In this study, we describe the characteristics of the new VIIRS and Landsat-8 data and demonstrate one such new application of satellite active fire data in support of fire behavior modeling. We present results for a wildfire observed in June 2012 in New Mexico using an innovative approach to improving the simulation of large, long-duration wildfires, either for retrospective studies or forecasting in a number of geophysical applications. The approach uses (1) the Coupled Atmosphere-Wildland Fire Environment (CAWFE) Model, a numerical weather prediction model two-way coupled with a module representing the rate of spread of a wildfire's flaming front, its rate of consumption of different wildland fuels, and the feedback of this heat release upon the atmosphere - i.e. 'how a fire creates its own weather', combined with (2) spatially refined 375 m VIIRS active fire data, which is used for initialization of a wildfire already in progress in the model and evaluation of its simulated progression at the time of the next pass. Results show that initializing a fire that is 'in progress' with VIIRS data and a weather simulation based on more recent atmospheric analyses can overcome several issues and improve the simulation of late-developing fires and of later periods (particularly those with growth periods separated by lulls) in a long-lived fire.

  2. Changes in spatial point patterns of pioneer woody plants across a large tropical landslide

    NASA Astrophysics Data System (ADS)

    Velázquez, Eduardo; De la Cruz, Marcelino; Gómez-Sal, Antonio

    2014-11-01

    We assessed whether the relative importance of positive and negative interactions in early successional communities varied across a large landslide on Casita Volcano (Nicaragua). We tested several hypotheses concerning the signatures of these processes in the spatial patterns of woody pioneer plants, as well as those of mortality and recruitment events, in several zones of the landslide differing in substrate stability and fertility, over a period of two years (2001 and 2002). We identified all woody individuals with a diameter >1 cm and mapped them in 28 plots measuring 10 × 10-m. On these maps, we performed a spatial point pattern analysis using univariate and bivariate pair-correlation functions; g (r) and g12 (r), and pairwise differences of univariate and bivariate functions. Spatial signatures of positive and negative interactions among woody plants were more prevalent in the most and least stressful zones of the landslide, respectively. Natural and human-induced disturbances such as the occurrence of fire, removal of newly colonizing plants through erosion and clearcutting of pioneer trees were also identified as potentially important pattern-creating processes. These results are in agreement with the stress-gradient hypothesis, which states that the relative importance of facilitation and competition varies inversely across gradients of abiotic stress. Our findings also indicate that the assembly of early successional plant communities in large heterogeneous landslides might be driven by a much larger array of processes than previously thought.

  3. Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests

    USGS Publications Warehouse

    Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.; Omni, Phillip N.; Joyce, Linda A.

    2003-01-01

    We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.

  4. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fang; Bond-Lamberty, Benjamin; Levis, Samuel

    Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done bymore » quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.« less

  5. Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Smith, D. J.

    2016-12-01

    We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.

  6. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  8. A mixed integer program to model spatial wildfire behavior and suppression placement decisions

    Treesearch

    Erin J. Belval; Yu Wei; Michael Bevers

    2015-01-01

    Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...

  9. Guidance on spatial wildland fire analysis: models, tools, and techniques

    Treesearch

    Richard D. Stratton

    2006-01-01

    There is an increasing need for spatial wildland fire analysis in support of incident management, fuel treatment planning, wildland-urban assessment, and land management plan development. However, little guidance has been provided to the field in the form of training, support, or research examples. This paper provides guidance to fire managers, planners, specialists,...

  10. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  11. Rapid Response Tools and Datasets for Post-fire Erosion Modeling: Lessons Learned from the Rock House and High Park Fires

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; Elliot, William E.; MacDonald, Lee H.

    2013-04-01

    Once the danger posed by an active wildfire has passed, land managers must rapidly assess the threat from post-fire runoff and erosion due to the loss of surface cover and fire-induced changes in soil properties. Increased runoff and sediment delivery are of great concern to both the pubic and resource managers. Post-fire assessments and proposals to mitigate these threats are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. These teams are under very tight deadlines, so they often begin their analysis while the fire is still burning and typically must complete their plans within a couple of weeks. Many modeling tools and datasets have been developed over the years to assist BAER teams, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and require the preparation of spatially-explicit data layers such as digital elevation models, soils, and land cover. The difficulty of acquiring and utilizing these data layers in spatially-explicit models increases with increasing fire size. Spatially-explicit post-fire erosion modeling was attempted for a small watershed in the 1270 km2 Rock House fire in Texas, but the erosion modeling work could not be completed in time. The biggest limitation was the time required to extract the spatially explicit soils data needed to run the preferred post-fire erosion model (GeoWEPP with Disturbed WEPP parameters). The solution is to have the spatial soil, land cover, and DEM data layers prepared ahead of time, and to have a clear methodology for the BAER teams to incorporate these layers in spatially-explicit modeling interfaces like GeoWEPP. After a fire occurs the data layers can quickly be clipped to the fire perimeter. The soil and land cover parameters can then be adjusted according to the burn severity map, which is one of the first products generated for the BAER teams. Under a previous project for the U.S. Environmental Protection Agency this preparatory work was done for much of Colorado, and in June 2012 the High Park wildfire in north central Colorado burned over 340 km2. The data layers for the entire burn area were quickly assembled and the spatially explicit runoff and erosion modeling was completed in less than three days. The resulting predictions were then used by the BAER team to quantify downstream risks and delineate priority areas for different post-fire treatments. These two contrasting case studies demonstrate the feasibility and the value of preparing datasets and modeling tools ahead of time. In recognition of this, the U.S. National Aeronautic and Space Administration has agreed to fund a pilot project to demonstrate the utility of acquiring and preparing the necessary data layers for fire-prone wildlands across the western U.S. A similar modeling and data acquisition approach could be followed

  12. Application of a MODIS Soil Moisture-Evapotranspiration (MOD-SMET) Model to Evaluate Landscape and Hydrologic Recovery after the High Park Fire in Colorado, USA

    NASA Astrophysics Data System (ADS)

    Blount, W. K.; Hogue, T. S.; Franz, K.; Knipper, K. R.

    2017-12-01

    Accurate estimation of evapotranspiration (ET) is critical for the management of water resources, especially in water-stressed regions. ET accounts for approximately 60% of terrestrial precipitation globally and approaches 100% of annual rainfall in arid ecosystems, where transpiration becomes the dominant term. ET is difficult to measure due to its spatiotemporal variation, which requires adequate data coverage. While new remote sensing-based ET products are available at a 1 km spatial resolution, including the Operational Simplified Surface Energy Balance model (SSEBop) and the MODIS Global Evapotranspiration Project (MOD16), these products are available at monthly and 8-day temporal resolutions, respectively. To better understand the changing dynamics of hydrologic fluxes and the partitioning of water after land cover disturbances and to identify statically significant trends, more frequent observations are necessary. Utilizing the recently developed MODIS Soil Moisture-Evapotranspiration (MOD-SMET) model, daily temporal resolution is achieved. This presentation outlines the methodology of the MOD-SMET model and compares SSEBop, MOD16, and MOD-SMET ET estimates over the High Park Fire burn scar in Colorado, USA. MOD-SMET estimates are used to identify changes in fluxes and partitioning of the water cycle after a wildfire and during recovery in the High Park Fire near Fort Collins, Colorado. Initial results indicate greenness and ET from all three models decrease post-fire, with higher statistical confidence in high burn areas and spatial patterns that closely align with burn severity. MOD-SMET improves the ability to resolve statistically significant changes in ET following wildfires and better understand changes in the post-fire water budget. Utilizing this knowledge, water resource managers can better plan for, and mitigate, the short- and long-term impacts of wildfire on regional water supplies.

  13. Factors related to building loss due to wildfires in the conterminous United States.

    PubMed

    Alexandre, Patricia M; Stewart, Susan I; Keuler, Nicholas S; Clayton, Murray K; Mockrin, Miranda H; Bar-Massada, Avi; Syphard, Alexandra D; Radeloff, Volker C

    2016-10-01

    Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland-urban interface (WUI). Yet, when wildfires occur, typically only a small proportion of the buildings within the fire perimeter are lost, and the question is what determines which buildings burn. Our goal was to examine which factors are related to building loss when a wildfire occurs throughout the United States. We were particularly interested in the relative roles of vegetation, topography, and the spatial arrangement of buildings, and how their respective roles vary among ecoregions. We analyzed all fires that occurred within the conterminous United States from 2000 to 2010 and digitized which buildings were lost and which survived according to Google Earth historical imagery. We modeled the occurrence as well as the percentage of buildings lost within clusters using logistic and linear regression. Overall, variables related to topography and the spatial arrangement of buildings were more frequently present in the best 20 regression models than vegetation-related variables. In other words, specific locations in the landscape have a higher fire risk, and certain development patterns can exacerbate that risk. Fire policies and prevention efforts focused on vegetation management are important, but insufficient to solve current wildfire problems. Furthermore, the factors associated with building loss varied considerably among ecoregions suggesting that fire policy applied uniformly across the United States will not work equally well in all regions and that efforts to adapt communities to wildfires must be regionally tailored. © 2016 by the Ecological Society of America.

  14. Habitat monitoring and conservation prioritisation of protected areas in Western Ghats, Kerala, India.

    PubMed

    Athira, K; Reddy, C Sudhakar; Saranya, K R L; Joseph, Shijo; Jaishanker, R

    2017-06-01

    Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975-1985-1995-2005-2013), landscape level changes in fragmentation and forest fires (2005-2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985-1995, Periyar tiger reserve had lost 24.19 km 2 core 3 forest area followed by Peppara (18.54 km 2 ), Parambikulam (17.93 km 2 ), Chimmony (17.71 km 2 ), Peechi-Vazhani (12.31 km 2 ) and Neyyar (11.67 km 2 ). An area of 71.33 km 2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.

  15. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China.

    PubMed

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-02-23

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.

  16. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China

    PubMed Central

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-01-01

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476

  17. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  18. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  19. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  20. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  1. Fire structures pine serotiny at different scales.

    PubMed

    Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G

    2013-12-01

    Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.

  2. Fine-scale spatial climate variation and drought mediate the likelihood of reburning.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Holsinger, Lisa M; Baggett, Larry Scott

    2018-03-01

    In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes), thereby reducing the likelihood of uncharacteristically large fires in regions with active fire regimes. However, the strength and longevity of this self-limiting phenomenon is not well understood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of its strength and longevity for five fire-prone study areas in western North America and investigate how each measure varies along a spatial climatic gradient and according to temporal (i.e., annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United States to 33 yr in the cold, northern study areas in located in northwestern Montana and the boreal forest of Canada. We also found that spatial climatic variation has a strong influence on wildland fire's self-limiting capacity. Specifically, the self-limiting effect within each study area was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last, our findings show that annual climatic variation influences wildland fire's self-limiting effect: drought conditions weakened the strength and longevity of the self-limiting effect in all study areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wildland fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire sizes and effects. However, our findings show that the strength and longevity of the self-limiting effect varies considerably according to spatial and temporal climatic variation, providing land and fire managers relevant information for effective planning and management of fire and highlighting that fire itself is an important factor contributing to fire-free intervals. © 2017 by the Ecological Society of America.

  3. Identifying the controls of wildfire activity in Namibia using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Mayr, Manuel; Le Roux, Johan; Samimi, Cyrus

    2015-04-01

    Despite large areas of Namibia being unaffected by fires due to aridity, substantial burning in the northern and north-eastern parts of the country is observed every year. Within the fire-affected regions, a strong spatial and inter-annual variability characterizes the dry-season fire situation. In order to understand these patterns, it appears critical to identify the causative factors behind fire occurrence and to examine their interactions in detail. Furthermore, most studies dealing with causative factor examination focus either on the local or the regional scale. However, these scales seem to be inappropriate from a management perspective, as fire-related strategic action plans are most often set up nationwide. Here, we will present an examination of the fire regimes of Namibia based on a dataset conducted by Le Roux (2011). A decade-spanning fire record (1994-2003) derived from NOAA's Advanced Very High Resolution Radiometer (AVHRR) imagery was used to generate four fire regime metrics (Burned Area, Fire Season Length, Month of Peak Fire Season, and Fire Return Period) and quantitative information on vegetation and phenology derived from Normalized Difference Vegetation Index (NDVI) time series. Further variables contained by this dataset are related to climate, biodiversity, and human activities. Le Roux (2011) analyzed the correlations between the fire metrics mentioned above and the predictor variables. We hypothesize that linear correlations (as estimated by correlation coefficients) simplify the interactions between response and predictor variables. For instance, moderate population densities could induce the highest number of fires, whereas the complete absence of humans lacks one major source of ignition. Around highly populated areas, in contrary, fuels are usually reduced and space is more fragmented - thus, the initiation and spread of a potential fire could as well be inhibited. From a total of over 40 explanatory variables, we will initially use data mining techniques to select a conceivable set of variables by their explanatory value and to remove redundancy. We will then apply two multivariate statistical methods suitable to a large variety of data types and frequently used for (non-linear) causative factor identification: Non-metric Multidimensional Scaling (NMDS) and Regression Trees. The assumed value of these analyses is i) to determine the most important predictor variables of fire activity in Namibia, ii) to decipher their complex interactions in driving fire variability in Namibia, and iii) to compare the performance of two state-of-the-art statistical methods. References: Le Roux, J. (2011): The effect of land use practices on the spatial and temporal characteristics of savanna fires in Namibia. Doctoral thesis at the University of Erlangen-Nuremberg/Germany - 155 pages.

  4. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    PubMed

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  5. Historical reconstructions of California wildfires vary by data source

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.

    2016-01-01

    Historical data are essential for understanding how fire activity responds to different drivers. It is important that the source of data is commensurate with the spatial and temporal scale of the question addressed, but fire history databases are derived from different sources with different restrictions. In California, a frequently used fire history dataset is the State of California Fire and Resource Assessment Program (FRAP) fire history database, which circumscribes fire perimeters at a relatively fine scale. It includes large fires on both state and federal lands but only covers fires that were mapped or had other spatially explicit data. A different database is the state and federal governments’ annual reports of all fires. They are more complete than the FRAP database but are only spatially explicit to the level of county (California Department of Forestry and Fire Protection – Cal Fire) or forest (United States Forest Service – USFS). We found substantial differences between the FRAP database and the annual summaries, with the largest and most consistent discrepancy being in fire frequency. The FRAP database missed the majority of fires and is thus a poor indicator of fire frequency or indicators of ignition sources. The FRAP database is also deficient in area burned, especially before 1950. Even in contemporary records, the huge number of smaller fires not included in the FRAP database account for substantial cumulative differences in area burned. Wildfires in California account for nearly half of the western United States fire suppression budget. Therefore, the conclusions about data discrepancies and the implications for fire research are of broad importance.

  6. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  7. Predicting fire activity in the US over the next 50 years using new IPCC climate projections

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2012-12-01

    Fire is an integral part of the Earth system with both direct and indirect effects on terrestrial ecosystems, the atmosphere, and human societies (Bowman et al. 2009). Climate conditions regulate fire activities through a variety of ways, e.g., influencing the conditions for ignition and fire spread, changing vegetation growth and decay and thus the accumulation of fuels for combustion (Arora and Boer 2005). Our recent study disclosed the burned area (BA) in US is strongly correlated with potential evaporation (PE), a measurement of climatic dryness derived from National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) climate data (Morton et al. 2012). The correlation varies spatially and temporally. With regard to fire of peak fire seasons, Northwestern US, Great Plains and Alaska have the strongest BA/PE relationship. Using the recently released the Global Fire Emissions Database (GFED) Version 3 (van der Werf et al. 2010), we showed increasing BA in the last decade in most of NCA regions. Longer time series of Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al. 2007) data showed the increasing trends occurred in all NCA regions from 1984 to 2010. This relationship between BA and PE provides us the basis to predict the future fire activities in the projected climate conditions. In this study, we build spatially explicit predictors using the historic PE/BA relationship. PE from 2011 to 2060 is calculated from the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and the historic PE/BA relationship is then used to estimate BA. This study examines the spatial pattern and temporal dynamics of the future US fires driven by new climate predictions for the next 50 years. Reference: Arora, V.K., & Boer, G.J. (2005). Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research-Biogeosciences, 110 Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., & Pyne, S.J. (2009). Fire in the Earth System. Science, 324, 481-484 Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., & Howard, S. (2007). A project for monitoring trends in burn severity. Fire Ecology Special Issue, 3 Morton, D.C., Collatz, G.J., Wang, D., Randerson, J.T., Giglio, L., & Chen, Y. (2012). Satellite-based assessment of climate controls on US burned area. Biogeosciences Discussion, 9, 7853-7892 van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., & van Leeuwen, T.T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735

  8. A decision support system for managing forest fire casualties.

    PubMed

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.

  9. Tree island pattern formation in the Florida Everglades

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  10. Spatial bottom-up controls on fire likelihood vary across western North America

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller

    2012-01-01

    The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial...

  11. Spatially explicit forecasts of large wildland fire probability and suppression costs for California

    Treesearch

    Haiganoush Preisler; Anthony L. Westerling; Krista M. Gebert; Francisco Munoz-Arriola; Thomas P. Holmes

    2011-01-01

    In the last decade, increases in fire activity and suppression expenditures have caused budgetary problems for federal land management agencies. Spatial forecasts of upcoming fire activity and costs have the potential to help reduce expenditures, and increase the efficiency of suppression efforts, by enabling them to focus resources where they have the greatest effect...

  12. Development and mapping of fuel characteristics and associated fire potentials for South America

    Treesearch

    M. Lucrecia Pettinari; Roger D. Ottmar; Susan J. Prichard; Anne G. Andreu; Emilio Chuvieco

    2014-01-01

    The characteristics and spatial distribution of fuels are critical for assessing fire hazard, fuel consumption, greenhouse gas emissions and other fire effects. However, fuel maps are difficult to generate and update, because many regions of the world lack fuel descriptions or adequate mapped vegetation attributes to assign these fuelbeds spatially across the landscape...

  13. Predicting fire impact from plant traits?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Ottink, Roos; Zylstra, Philip; Cornelissen, Hans; Fernandes, Paulo

    2017-04-01

    Fire can considerably increase the landscape's vulnerability to flooding and erosion, which is in part caused by fire-induced soil heating, vegetation removal and resulting hydrological changes. While the magnitude of these fire effects and ecosystem responses is frequently studied, there is still little attention for the fundamental mechanisms that drive these changes. One example is on the effect of plants: while it is known that plants can alter the fire environment, there is a major knowledge gap regarding the fundamental mechanisms by which vegetation mediates fire impact on soil and hydrology. Essential to identifying these mechanisms is consideration of the effects of vegetation on flammability and fire behaviour, which are studied both in ecology and traditional fire science. Here we discuss the challenges of integrating these very distinct fields and the potential benefits of this integration for improved understanding of fire effects on soil and hydrology. We furthermore present results of a study in which we assessed the spatial drivers controlling the proportion of live and dead fuel in a natural park in northern Portugal, and evaluated the impacts on the spatial variability of fire behaviour and potential soil heating using BehavePlus modeling. Better understanding of the role of (spatial variability in) plant traits on fire impact can facilitate the development of risk maps to ultimately help predict and mitigate fire risk and impact across landscapes.

  14. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    PubMed Central

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  15. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. Copyright © 2015 the authors 0270-6474/15/351591-15$15.00/0.

  16. Reactivation of Rate Remapping in CA3.

    PubMed

    Schwindel, C Daniela; Navratilova, Zaneta; Ali, Karim; Tatsuno, Masami; McNaughton, Bruce L

    2016-09-07

    The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful for distinguishing these memories, the hippocampus must be able, not only to express, but also to retrieve both spatial and nonspatial information about events. Whether it can retrieve nonspatial information has been challenged recently. We exposed rats to two different experiences (running in different directions) in the same locations and showed that even the nonspatial components of hippocampal cell firing are reactivated spontaneously during sleep, supporting the conclusion that both types of information about a recent experience can be retrieved. Copyright © 2016 the authors 0270-6474/16/369342-09$15.00/0.

  17. Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions.

    PubMed

    Chiatante, D; Tognetti, R; Scippa, G S; Congiu, T; Baesso, B; Terzaghi, M; Montagnoli, A

    2015-07-01

    To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.

  18. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  19. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.

    2012-12-01

    Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  20. Examining the strength and possible causes of the relationship between fire history and Sudden Oak Death.

    PubMed

    Moritz, Max A; Odion, Dennis C

    2005-06-01

    Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.

  1. Catchment-scale Validation of a Physically-based, Post-fire Runoff and Erosion Model

    NASA Astrophysics Data System (ADS)

    Quinn, D.; Brooks, E. S.; Robichaud, P. R.; Dobre, M.; Brown, R. E.; Wagenbrenner, J.

    2017-12-01

    The cascading consequences of fire-induced ecological changes have profound impacts on both natural and managed forest ecosystems. Forest managers tasked with implementing post-fire mitigation strategies need robust tools to evaluate the effectiveness of their decisions, particularly those affecting hydrological recovery. Various hillslope-scale interfaces of the physically-based Water Erosion Prediction Project (WEPP) model have been successfully validated for this purpose using fire-effected plot experiments, however these interfaces are explicitly designed to simulate single hillslopes. Spatially-distributed, catchment-scale WEPP interfaces have been developed over the past decade, however none have been validated for post-fire simulations, posing a barrier to adoption for forest managers. In this validation study, we compare WEPP simulations with pre- and post-fire hydrological records for three forested catchments (W. Willow, N. Thomas, and S. Thomas) that burned in the 2011 Wallow Fire in Northeastern Arizona, USA. Simulations were conducted using two approaches; the first using automatically created inputs from an online, spatial, post-fire WEPP interface, and the second using manually created inputs which incorporate the spatial variability of fire effects observed in the field. Both approaches were compared to five years of observed post-fire sediment and flow data to assess goodness of fit.

  2. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.

  4. Restoration of the fire-grazing interaction in Artemisia filifolia shrubland

    USGS Publications Warehouse

    Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.

    2012-01-01

    Patterns of landscape heterogeneity are crucial to the maintenance of biodiversity in shrublands and grasslands, yet management practices in these ecosystems typically seek to homogenize landscapes. Furthermore, there is limited understanding of how the interaction of ecological processes, such as fire and grazing, affects patterns of heterogeneity at different spatial scales. We conducted research in Artemisia filifolia (Asteraceae) shrublands located in the southern Great Plains of North America to determine the effect of restoring the fire-grazing interaction on vegetation structure. Data were collected for 3years in replicated pastures grazed by cattle Bos taurus where the fire-grazing interaction had been restored (fire and grazing=treatment pastures) and in pastures that were grazed but remained unburned (grazing only, no fire=control pastures). The effect of the fire-grazing interaction on heterogeneity (variance) of vegetation structure was assessed at scales from 12??5m 2 to 609ha. Most measurements of vegetation structure within treatment pastures differed from control pastures for 1-3years after being burned but were thereafter similar to the values found in unburned control pastures. Treatment pastures were characterized by a lower amount of total heterogeneity and a lower amount of heterogeneity through time. Heterogeneity of vegetation structure tended to decrease as the scale of measurement increased in both treatment and control pastures. There was deviation from this trend, however, in the treatment pastures that exhibited much higher heterogeneity at the patch scale (mean patch size=202ha) of measurement, the scale at which patch fires were conducted. Synthesis and applications.Vegetation structure in A. filifolia shrublands of our study was readily altered by the fire-grazing interaction but also demonstrated substantial resilience to these effects. The fire-grazing interaction also changed the total amount of heterogeneity characterizing this system, the scale at which heterogeneity in this system was expressed and the amount of heterogeneity expressed through time. Land managers seeking to impose a shifting mosaic of heterogeneity on this vegetation type can do so by restoring the fire-grazing interaction with potential conservation benefits similar to what has been achieved in other ecosystems where historic cycles of disturbance and rest have been restored. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  5. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year.

    PubMed

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-10-01

    Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number.In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta).We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape.

  6. The use of distributed temperature sensing technology for monitoring wildland fire intensity and distribution.

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Cram, D.; Hatch, C. E.; Tyler, S. W.

    2014-12-01

    Distributed temperature sensing (DTS) technology offers a viable alternative for accurately measuring wildland fire intensity and distribution in real time applications. We conducted an experiment to test the use of DTS as an alternative technology to monitor prescribed fire temperatures in real time and across a broad spatial scale. The custom fiber-optic cable consisted of three fiber optic lines buffered by polyamide, copper, and polyvinyl chloride, respectively, each armored in a stainless steel tube backfilled with Nitrogen gas. The 150 m long cable was deployed in three different 20 by 26 m experimental plots of short-grass rangeland in central New Mexico. Cable was arranged to maximize coverage of the experimental plots and allow cross-comparison between two main parallel straight-line sections approximately 8 m apart. A DTS system recorded fire temperatures every three seconds and integrated every one meter. A series of five thermocouples attached to a datalogger were placed at selected locations along the cable and also recorded temperature data every three seconds on each fiber. Results indicate that in general there is good agreement between thermocouple-measured and DTS-measured temperatures. A close match in temperature between DTS and thermocouples was particularly observed during the rising limb but not so much during the decline. The metal armoring of the fiber-optic cable remained hot longer than the thermocouples after the flames had passed. The relatively short-duration, high-intensity, prescribed burn fire in each plot resulted in temperatures reaching up to 450 degrees Celsius. In addition, DTS data allow for illustration of the irregular nature of flame speed and travel path across the rangeland grasses, a phenomenon that was impossible to quantify without the use of this tool. This study adds to the understanding of using DTS as a new alternative tool for better characterizing wildland fire intensity, distribution and travel patterns, and establishes the baseline for expanding these test plot results to larger spatial scales.

  7. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  8. Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants.

    PubMed

    Hu, L; Balusu, R R; Zhang, W-Q; Ajayi, O S; Lu, Y-Y; Zeng, R-S; Fadamiro, H Y; Chen, L

    2017-12-10

    Some fire ants of the genus Solenopsis have become invasive species in the southern United States displacing native species by competition. Although the displacement pattern seems clear, the mechanisms underlying competitive advantage remain unclear. The ability of ant workers to produce relatively larger amount of alarm pheromone may correspond to relative greater fitness among sympatric fire ant species. Here we report on quantitative intra-specific (i.e. inter-caste) and inter-specific differences of alarm pheromone component, 2-ethyl-3,6-dimethylpyrazine (2E36DMP), for several fire ant species. The alarm pheromone component was extracted by soaking ants in hexane for 48 h and subsequently quantified by gas chromatography-mass spectrometry at single ion monitoring mode. Solenopsis invicta workers had more 2E36DMP than male or female alates by relative weight; individual workers, however, contained significantly less pyrazine. We thus believe that alarm pheromones may serve additional roles in alates. Workers of Solenopsis richteri, S. invicta, and hybrid (S. richteri × S. invicta) had significantly more 2E36DMP than a native fire ant species, Solenopsis geminata. The hybrid fire ant had significantly less 2E36DMP than the two parent species, S. richteri and S. invicta. It seems likely that higher alarm pheromone content may have favored invasion success of exotic fire ants over native species. We discuss the potential role of inter-specific variation in pyrazine content for the relationship between the observed shifts in the spatial distributions of the three exotic fire ant species in southern United States and the displacement of native fire ant species.

  9. Memory trace replay: the shaping of memory consolidation by neuromodulation

    PubMed Central

    Atherton, Laura A.; Dupret, David; Mellor, Jack R.

    2015-01-01

    The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed. PMID:26275935

  10. Global vegetation-fire pattern under different land use and climate conditions

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from wildfires, agricultural and woodfuel burning will be quantified and drivers identified. Future projections of climate and land use change are applied to the model to investigate joint effects on future changes in fire, deforestation and vegetation dynamics in the Amazon basin.

  11. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  12. Complex neural codes in rat prelimbic cortex are stable across days on a spatial decision task

    PubMed Central

    Powell, Nathaniel J.; Redish, A. David

    2014-01-01

    The rodent prelimbic cortex has been shown to play an important role in cognitive processing, and has been implicated in encoding many different parameters relevant to solving decision-making tasks. However, it is not known how the prelimbic cortex represents all these disparate variables, and if they are simultaneously represented when the task requires it. In order to investigate this question, we trained rats to run the Multiple-T Left Right Alternate (MT-LRA) task and recorded multi-unit ensembles from their prelimbic regions. Significant populations of cells in the prelimbic cortex represented the strategy controlling reward receipt on a given lap, whether the animal chose to go right or left on a given lap, and whether the animal made a correct decision or an error on a given lap. These populations overlapped in the cells recorded, with several cells demonstrating differential firing to all three variables. The spatial and strategic firing patterns of individual prelimbic cells were highly conserved across several days of running this task, indicating that each cell encoded the same information across days. PMID:24795579

  13. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.

  14. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  15. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Treesearch

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  16. Ecological effects of the Hayman Fire - Part 8: Effects on species of concern

    Treesearch

    Natasha B. Kotliar; Sara Simonson; Geneva Chong; Dave Theobald

    2003-01-01

    Conclusions about the effects of fire on species of concern will depend on the temporal and spatial scales of analysis. Populations of some species may decline in abundance immediately postfire due to alteration or destruction of habitat, but over larger spatial and temporal scales, fire contributes to a shifting mosaic of habitat conditions across the landscape....

  17. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  18. Mapping Fuel Loads and Dynamics in Rangelands Using Multi-Sensor Data in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Li, Z.; Shi, H.; Vogelmann, J. E.; Hawbaker, T. J.; Reeves, M. C.

    2016-12-01

    Fuel conditions in rangelands are influenced by disturbances such as wildfires, and is also strongly controlled by weather and climate. These factors impact the availability of fuel loads, which is the key component to stimulate burned area and severity. In this paper, we developed an approach for mapping live fuel loads (biomass density) and their dynamics using field collection, Landsat 8, and MODIS data sets at a spatial resolution of 30 m from the growing season. Using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) modelling process, we generated monthly shrub and grassland greenness levels for 2015. The spatial resolution of Landsat and the temporal resolution of MODIS complimented each other to allow us to produce monthly products. Understanding the dynamics of these greenness patterns helps the fire management community to recognize areas that have high likelihood of burning in the future, thus enabling them to anticipate and plan accordingly. We obtained field biomass information from selected shrub and grass sites located throughout the Great Basin. This information was used to calibrate fire models and generate remotely-sensed data sets. We then used Landsat 8 NDVI dates representing the phenological profile, regression tree models, and product validation. The calculated fuel loads were further examined and validated using high resolution images (World View 2/3), field measurements, and Google Earth. Once we have the requisite image data converted to biomass, we anticipate fire conditions and behavior using various models developed by the fire community. One key element is to use information from this study to improve and inform the Rangeland Vegetation Simulator. Finally, we analyzed the correlations of fire occurrence (frequency) and burn severity with live fuel loads and climate conditions. Our results show modeled fuel loads and their dynamics in rangelands capture the spatiotemporal heterogeneity of non-forest live fuel types and the variations in both wildfire disturbances and climate/weather conditions. This suggests the developed approach to map fuel loads is robust and can improve the existing LANDFIRE fuel data in rangelands. It can also be used to monitor the changes in fuel conditions in response to management activities and climate change.

  19. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  1. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  2. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    NASA Astrophysics Data System (ADS)

    Li, F.; Bond-Lamberty, B.; Levis, S.

    2014-03-01

    Fire is the primary form of terrestrial ecosystem disturbance on a global scale. It affects the net carbon balance of terrestrial ecosystems by emitting carbon directly and immediately into the atmosphere from biomass burning (the fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (the fire indirect effect). Here, we provide the first quantitative assessment of the impact of fire on the net carbon balance of global terrestrial ecosystems during the 20th century, and investigate the roles of fire's direct and indirect effects. This is done by quantifying the difference between the 20th century fire-on and fire-off simulations with the NCAR Community Land Model CLM4.5 (prescribed vegetation cover and uncoupled from the atmospheric model) as a model platform. Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C yr-1 averaged across the 20th century, as a result of the fire direct effect (1.9 Pg C yr-1) partly offset by the indirect effect (-0.9 Pg C yr-1). Post-fire regions generally experience decreased carbon gains, which is significant over tropical savannas and some North American and East Asian forests. This decrease is due to the direct effect usually exceeding the indirect effect, while they have similar spatial patterns and opposite sign. The effect of fire on the net carbon balance significantly declines until ∼1970 with a trend of 8 Tg C yr-1 due to an increasing indirect effect, and increases subsequently with a trend of 18 Tg C yr-1 due to an increasing direct effect. These results help constrain the global-scale dynamics of fire and the terrestrial carbon cycle.

  3. A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.

    PubMed

    Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej

    2017-04-27

    The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.

  4. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    NASA Technical Reports Server (NTRS)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  5. Long-term stabilization of place cell remapping produced by a fearful experience

    PubMed Central

    Wang, Melissa E.; Wann, Ellen G.; Yuan, Robin K.; Ramos Álvarez, Manuel M.; Stead, Squire M.; Muzzio, Isabel A.

    2012-01-01

    Fear is an emotional response to danger that is highly conserved throughout evolution because it is critical for survival. Accordingly, episodic memory for fearful locations is widely studied using contextual fear conditioning, a hippocampus-dependent task (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The hippocampus has been implicated in episodic emotional memory and is thought to integrate emotional stimuli within a spatial framework. Physiological evidence supporting the role of the hippocampus in contextual fear indicates that pyramidal cells in this region, which fire in specific locations as an animal moves through an environment, shift their preferred firing locations shortly after the presentation of an aversive stimulus (Moita et al., 2004). However, the long-term physiological mechanisms through which emotional memories are encoded by the hippocampus are unknown. Here we show that during and directly after a fearful experience, new hippocampal representations are established and persist in the long term. We recorded from the same place cells in mouse hippocampal area CA1 over several days during predator odor contextual fear conditioning and found that a subset of cells changed their preferred firing locations in response to the fearful stimulus. Furthermore, the newly formed representations of the fearful context stabilized in the long term. Our results demonstrate that place cells respond to the presence of an aversive stimulus, modify their firing patterns during emotional learning, and stabilize a long-term spatial representation in response to a fearful encounter. The persistent nature of these representations may contribute to the enduring quality of emotional memories. PMID:23136419

  6. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  7. Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis

    NASA Technical Reports Server (NTRS)

    Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.

    2007-01-01

    This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.

  8. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    PubMed

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  9. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Resource homogenization in degraded arid landscapes induced by fire - erosion interactions

    NASA Astrophysics Data System (ADS)

    Ravi, S.; D'Odorico, P.; Wang, L.; Collins, S. L.; White, C. S.; Okin, G. S.

    2007-12-01

    Hydrological and aeolian processes are major drivers in the dynamics of arid landscapes in that they redistribute soil resources with important implications on the composition and spatial patterns of dryland vegetation. These processes are thought to play a major role in the conversion of disturbed desert grasslands into shrublands, with possible impacts on regional climate and desertification. At its early stages the grassland-to-shrubland transition can be still reversible and fires have been shown to contribute to the reversibility of the system. Even though fires are know to interact both with wind and water erosion, an understanding of these interactions and of their effect on aridland degradation is still missing. Here we use field manipulation experiments in a grass-shrub transition zone in the Chihuahuan desert to show how the interaction of fires with erosion processes may affect the distribution of soil resources with consequent effects on the pace of land degradation processes. Using microtopography measurements and isotopic analyses, we provide experimental evidence for the occurrence of post-fire enhancement of soil erosion, and relate this effect to the weakening of interparticle bonding forces associated with the emergence of fire-induced soil hydrophobicity. We also show how this effect favors the reversibility of the early stages of shrub-to-grass transition through the redistribution of soil resources from the fertile shrub-dominated areas (or "fertility islands") to the bare soil interspaces.

  11. The abrupt development of adult-like grid cell firing in the medial entorhinal cortex

    PubMed Central

    Wills, Thomas J.; Barry, Caswell; Cacucci, Francesca

    2012-01-01

    Understanding the development of the neural circuits subserving specific cognitive functions such as navigation remains a central problem in neuroscience. Here, we characterize the development of grid cells in the medial entorhinal cortex, which, by nature of their regularly spaced firing fields, are thought to provide a distance metric to the hippocampal neural representation of space. Grid cells emerge at the time of weaning in the rat, at around 3 weeks of age. We investigated whether grid cells in young rats are functionally equivalent to those observed in the adult as soon as they appear, or if instead they follow a gradual developmental trajectory. We find that, from the very youngest ages at which reproducible grid firing is observed (postnatal day 19): grid cells display adult-like firing fields that tessellate to form a coherent map of the local environment; that this map is universal, maintaining its internal structure across different environments; and that grid cells in young rats, as in adults, also encode a representation of direction and speed. To further investigate the developmental processes leading up to the appearance of grid cells, we present data from individual medial entorhinal cortex cells recorded across more than 1 day, spanning the period before and after the grid firing pattern emerged. We find that increasing spatial stability of firing was correlated with increasing gridness. PMID:22557949

  12. Relationships among charcoal particles from modern lacustrine sediments and remotely sensed fire events

    NASA Astrophysics Data System (ADS)

    López-Pérez, M.; Correa-Metrio, A.

    2013-05-01

    Analysis of charcoal particles from lacustrine sediments is a useful tool to understand fire regimes through time, and their relationships with climate and vegetation. However, the extent of the relationship between charcoal particles and their origin in terms of the spatial and temporal extent of the fire events is poorly known in the tropics. Modern sediments were collected from lakes in the Yucatan Peninsula and Central Mexico, 51 and 22 lakes respectively, to analyze their charcoal concentration and its relationships with modern fire events. Number of modern fire events was derived from the public source Fire Information for Resource Management System (FIRMS) for concentric spatial rings that ranged from 1 to 30 km of radius. The association between charcoal and fires was evaluated through the construction of linear models to explain charcoal concentration as a function of the number of fires recorded. Additionally, charcoal particles were stratified according to size to determine the association between fire distance and charcoal size classes. The relationship between total charcoal concentration and fire events was stronger for central Mexico than for the Yucatan Peninsula, which is probably the result of differences in vegetation cover. The highest determination coefficients were obtained for charcoal particle sizes ranging between 0.2 and 0.8 mm2, and for fire event distances of between 0 and 15 km from the lake. Overall, the analyses presented here offer useful tools to quantitatively and spatially reconstruct past regional fire dynamics in Central Mexico and the Yucatan Peninsula.

  13. Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon

    Treesearch

    Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner

    2009-01-01

    The Mediterranean climate region on the west coast of the United States is characterized by wet winters and dry summers, and by high fire activity. The importance of synoptic-scale circulation patterns (ENSO, PDO, PNA) on fire-climate interactions is evident in contemporary fire data sets and in pre-Euroamerican tree-ring-based fire records. We investigated how...

  14. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-08-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.

  15. A spatial stochastic programming model for timber and core area management under risk of fires

    Treesearch

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  16. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Treesearch

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  17. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    NASA Astrophysics Data System (ADS)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  18. Prolonged Effect of Severe Wildfires on Mercury and Other Volatiles in Forest Soils of the Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Cannon, W. F.; Woodruff, L. G.

    2003-12-01

    Soils in Isle Royale National Park, Michigan and Voyageurs National Park, Minnesota show spatial patterns of depletion of total Hg, organic C, Se, total S, P, and Pb within areas of severe, stand-replacing wildfires that burned in 1936, approximately 65 years prior to our current study. The fires burned during a regional drought, were of high severity, and likely consumed a high percentage of organic forest-floor material (O-horizon). A "fire factor" is defined by positive correlations among Hg, C, Se, S, P, and Pb. A factor score for this six-element grouping derived from factor analysis was assigned to each sample. The scores show a high spatial correlation with the footprint of the 1936 fires in both parks, particularly for A-horizon soils. Because many of these elements are volatile, and are highly correlated with soil organic matter, observed depletions likely represent instantaneous atmospheric release during combustion of O-horizon soils coupled with decades-long reduction of organic matter on the forest floor and near-surface soils. Nearly complete combustion of the modern O-horizon would release roughly 1 mg Hg/m2 from the forest floor. Decades-long disturbance resulting from destruction of mature forests and gradual regrowth following fire also play an important role in Hg cycling. Destruction of a mature forest results in decreased deposition of Hg from litterfall as well as throughfall, which contributes Hg by wash-off of dry deposited Hg from foliar surfaces. Hg in forest soils may follow a fire-dependent cycle in which sudden Hg loss during fire is followed by a period of continued Hg loss as evasion exceeds sequestration in the early stand-replacement stage, finally to resume gradual buildup in later stages of forest regrowth. In the Lake Superior region this cycle exceeds 65 years in duration and is of the same magnitude as the fire return interval for this region. Forests that are controlled by fire-induced cycles of stand replacement may also be in continuous cycles of Hg sequestration and emission. Fire history appears to be a major determinant in the amount of Hg stored in forest soils. Fire almost certainly releases Hg to the atmosphere as forest floor material is burned and thus contributes to atmospheric Hg loads. Fire also appears to cleanse burned areas of Hg both by the atmospheric release during combustion and longer-term release during post-fire forest reorganization. Fire cleansing appears to persist for decades after severe fires and may ameliorate Hg contamination of aquatic food webs by decreasing the soil Hg load of burned watersheds.

  19. Complex systems approach to fire dynamics and climate change impacts

    NASA Astrophysics Data System (ADS)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire sizes are also well fitted by a power law. A possible interpretation is that the spatial structure of fire in savannas is strongly constrained by the spatial structure of their environment. Instead of resulting from ecosystem self-organization as in the model, in this case the scale invariance in fire events would be just a reflection of scale invariance in the environment in which the ecosystem lives. These results suggest at least three major types of fire dynamics: endogenous scaling, percolating, and exogenous scaling, in addition to intermediate options. The world's biomes can be classified based on the type of dynamics that is most likely to apply in each of them, and forecasts can be carried out with the tools developed for each of these types.

  20. Relationships between firing pattern, fuel consumption, and turbulence and energy exchange during prescribed fires

    Treesearch

    Kenneth L. ​Clark; Michael Gallagher; Warren E. Heilman; Nicholas Skowronski; Eric Mueller; Albert. Simeoni

    2017-01-01

    Fuel loading and consumption during prescribed fires are well-characterized for many pine-dominated forests, but relationships between firing practices, consumption of specific fuel components, and above-canopy turbulence and energy exchange have received less attention (Ottmar et al. 2016, Clements et al. 2016). However, quantitative information on how firing patterns...

  1. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  2. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  3. Soil heating during wildfires and prescribed burns: a global evaluation based on existing and new data

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David

    2017-04-01

    Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.

  4. Reducing Community Vulnerability to Wildland Fires in Southern California

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.

    2010-12-01

    In the US fires are not treated like other hazards such as earthquakes but rather as preventable through landscape fuel treatments and aggressive fire suppression. In southern California extreme fire weather has made it impossible to control all fires and thus loss of homes and lives is a constant threat to communities. There is growing evidence that indicate we are not likely to ever eliminate fires on these landscapes. Thus, it is time to reframe the fire problem and think of fires like we do with other natural hazards such as earthquakes. We do not attempt to stop earthquakes, rather the primary emphasis is on altering human infrastructure in ways that minimize community vulnerability. In other words we need to change our approach from risk elimination to risk management. This approach means we accept that we cannot eliminate fires but rather learn to live with fire by communities becoming more fire adapted. We potentially can make great strides in reducing community vulnerability by finding those factors with high impacts and are sensitive to changes in management. Presently, decision makers have relatively little guidance about which of these is likely to have the greatest impact. Future reductions in fire risk to communities requires we address both wildland and urban elements that contribute to destructive losses. Damage risk or D is determined by: D = f (I, S, E, G, H) where I = the probability of a fire starting in the landscape S = the probability of the fire reaching a size sufficient to reach the urban environment E = probability of it encroaching into the urban environment G = probability of fire propagating within the built environment H = probability of a fire, once within the built environment, resulting in the destruction of a building. In southern California, reducing I through more strategic fire prevention has potential for reducing fire risk. There are many ignition sources that could be reduced, such as replacing power line ignitions with underground lines, strategically employing arson patrols during Santa Ana wind events, enforcing regulations on power equipment use in wildland areas, k-rail barriers along roads to reduce fire spread into wildland areas etc. S, or the probability of fire reaching urban environments has historically been the primary focus of state and federal fire management activities. There is a need for greater focus on understanding the most strategic application of wildland fuel treatments. E, the probability of fire encroaching into the urban environment, has largely been addressed in the past by attention to wildland-urban interface (WUI) fuel treatments. The one factor that has perhaps the greatest potential for impacting E are patterns of urban growth, both in strategic placement and spatial patterning within communities, and this is an area where alternative future growth scenarios could have huge impacts on fire outcomes. G, the chance of fire propagating within the urban environment is a function of urban fuels, which include both home construction and landscaping. This area has the potential for effecting large changes in fire losses dependent upon future regulations on plantings in the urban environment.

  5. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.

  6. Managing Fire Risk During Drought: The Influence of Certification and El Nino on Fire-Driven Forest Conversion for Oil Palm in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-01-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero forestation.

  7. Fire dynamics during the 20th century simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloster, Silvia; Mahowald, Natalie; Randerson, Jim

    2011-01-01

    Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite-based estimates in terms of magnitude and spatial extent as well as interannual and seasonal variability. Long-term trends during the 20th century were compared with historical estimates. Overall we foundmore » the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtained substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997 2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite-based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000 2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we predicted a slight downward trend in global fire emissions caused by reduced fuels as a consequence of wood harvesting and also by increases in fire suppression. The model predicted an upward trend during the last three decades of the 20th century as a result of climate variations and large burning events associated with ENSO-induced drought conditions.« less

  8. A method for mapping fire hazard and risk across multiple scales and its application in fire management

    Treesearch

    Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds

    2010-01-01

    This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...

  9. Scale Dependence of Oak Woodland Historical Fire Intervals: Contrasting the Barrens of Tennessee and Cross Timbers of Oklahoma, USA

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Joseph M. Marschall; Daniel C. Dey

    2016-01-01

    Characterization of scale dependence of fire intervals could inform interpretations of fire history and improve fire prescriptions that aim to mimic historical fire regime conditions. We quantified the temporal variability in fire regimes and described the spatial dependence of fire intervals through the analysis of multi-century fire scar records (8 study sites, 332...

  10. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics

    NASA Astrophysics Data System (ADS)

    Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.

    2007-09-01

    Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.

  11. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  12. A preliminary study of wildland fire pattern indicator reliability following an experimental fire

    Treesearch

    Albert Simeoni; Zachary C. Owens; Erik W. Christiansen; Abid Kemal; Michael Gallagher; Kenneth L. Clark; Nicholas Skowronski; Eric V. Mueller; Jan C. Thomas; Simon Santamaria; Rory M. Hadden

    2017-01-01

    An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document...

  13. SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.

    2010-12-01

    We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.

  14. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Treesearch

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  15. Near real-time wildfire mapping using spatially-refined satellite data: The rim fire case study

    Treesearch

    Patricia Oliva; Wilfrid Schroeder

    2015-01-01

    Fire incident teams depend on accurate fire diagnostics and predictive data to guide daily positioning and tactics of fire crews. Currently, the U.S. Department of Agriculture - Forest Service National Infrared Operations (NIROPs) nighttime airborne data provides daily information about the fire front and total fire affected area of priority fires to the incident teams...

  16. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.

  17. A multi-scale conceptual model of fire and disease interactions in North American forests

    NASA Astrophysics Data System (ADS)

    Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.

    2013-12-01

    One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.

  18. Diplochory in Ulex parviflorus Pourr

    NASA Astrophysics Data System (ADS)

    López-Vila, J. R.; García-Fayos, P.

    2005-09-01

    Ulex parviflorus (Fabaceae) is a fire-prone shrub of the western Mediterranean Basin that disperses their seeds both by the explosion of the legumes and the action of ants. Over 3 years we studied seed dispersal in a population from eastern Spain. We analysed the temporal and spatial patterns of primary seed dispersal and their consequences for the foraging behaviour of ants. We also studied the effect of seed manipulation by ants on germination success. Primary seed dispersal correlated positively with air temperature. The curve of seed abundance as a function of distance of the plant displayed one peak under the plant and another peak at 130 cm. Ants of the species Messor barbarus were observed collecting seeds and they were attracted by the elaiosome. However, the spatial pattern of the seeds in the soil did not shape the foraging activity of the ants. Ants brought the seeds to their nest stores, removed the elaiosome and threw away the seeds in the refuse piles. By removing the elaiosome ants increased the germination rate in relation to intact seeds. Results showed that diplochory operates on seeds of U. parviflorus allowing the species to exploit heterogeneous establishment conditions. Primary dispersal places seeds near the mother plant but at the expense of delayed germination. These seeds should be incorporated into the soil seed bank and then activated by forest-fires or canopy disturbance. Secondary seed dispersal by ants activates seed germination and allows the plant to establish immediately after seed dispersal.

  19. Spatiotemporal canards in neural field equations

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.

    2017-04-01

    Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.

  20. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    USGS Publications Warehouse

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  1. Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study

    PubMed Central

    ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.

    2012-01-01

    Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773

  2. Using HFire for spatial modeling of fire in shrublands

    Treesearch

    Seth H. Peterson; Marco E. Morais; Jean M. Carlson; Philip E. Dennison; Dar A. Roberts; Max A. Moritz; David R. Weise

    2009-01-01

    An efficient raster fire-spread model named HFire is introduced. HFire can simulate single-fire events or long-term fire regimes, using the same fire-spread algorithm. This paper describes the HFire algorithm, benchmarks the model using a standard set of tests developed for FARSITE, and compares historical and predicted fire spread perimeters for three southern...

  3. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  4. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  5. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus.

    PubMed

    Foffani, Guglielmo; Uzcategui, Yoryani G; Gal, Beatriz; Menendez de la Prida, Liset

    2007-09-20

    Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.

  6. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    USGS Publications Warehouse

    Barrett, K.; McGuire, A. David; Hoy, E.E.; Kasischke, E.S.

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep‐burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity.This new approach was used to identify black spruce stands that experienced intermediate‐ to high‐severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (∼4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co‐dominated by deciduous forest stands by 20%. Such disturbance‐driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  7. Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.

    2016-12-01

    The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.

  8. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity.

    PubMed

    Barrett, K; McGuire, A D; Hoy, E E; Kasischke, E S

    2011-10-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.

  9. Analysis of causal factors of fire regimes in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Palumbo, I.; Lehsten, V.; Balzter, H.

    2009-04-01

    Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by bioclimatic and demographic factors in African ecosystems.

  10. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Treesearch

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  11. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California

    Treesearch

    Brett R. Goforth; Robert C. Graham; Kenneth R. Hubbert; C. William Zanner; Richard A. Minnich

    2005-01-01

    After a century of fire suppression, dense forests in California have fueled high-severity fires. We surveyed mixed conifer forest with 995–1178 trees ha-1 (stems > 10 cm diameter at breast height), and nearby pine–oak woodland having 175–230 trees ha-1, 51 days after a severe burn, to contrast the spatial extent and...

  12. Trace gas emissions to the atmosphere by biomass burning in the west African savannas. Final report, 1 October 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frouin, R.J.; Iacobellis, S.F.; Razafimpanilo, H.

    1994-08-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer (AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of North African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linearmore » method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.« less

  13. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  14. Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA

    Treesearch

    Robert E. Keane; Janice L. Garner; Kirsten M. Schmidt; Donald G. Long; James P. Menakis; Mark A. Finney

    1998-01-01

    Fuel and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Selway-Bitterroot Wilderness Area in Idaho and Montana. Satellite imagery and terrain modeling were used to create the three base vegetation spatial data layers of potential vegetation, cover type, and structural stage....

  15. Method of locating underground mines fires

    DOEpatents

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  16. A new North American fire scar network for reconstructing historical pyrogeography, 1600-1900 AD

    Treesearch

    Donald A. Falk; Thomas Swetnam; Thomas Kitzberger; Elaine Sutherland; Peter Brown; Erica Bigio; Matthew Hall

    2013-01-01

    The Fire and Climate Synthesis (FACS) project is a collaboration of about 50 fire ecologists to compile and synthesize fire and climate data for western North America. We have compiled nearly 900 multi-century fire-scar based fire histories from the western United States, Canada, and Mexico. The resulting tree-ring based fire history is the largest and most spatially...

  17. A landscape-scale wildland fire study using coupled weather-wildland fire model and airborne remote sensing

    Treesearch

    J.L. Coen; Philip Riggan

    2011-01-01

    We examine the Esperanza fire, a Santa Ana-driven wildland fire that occurred in complex terrain in spatially heterogeneous chaparral fuels, using airborne remote sensing imagery from the FireMapper thermal-imaging radiometer and a coupled weather-wildland fire model. The radiometer data maps fire intensity and is used to evaluate the error in the extent of the...

  18. Controls on carbon consumption during Alaskan wildland fires

    Treesearch

    Eric S. Kasischke; Elizabeth E. Hoy

    2012-01-01

    A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium-spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006-2008. Total carbon consumed during the large fire...

  19. Assessing the outstanding 2003 fire events in Portugal with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo; Jerez, Sonia; Camara, Carlos; Montávez, Juan Pedro

    2013-04-01

    The heatwave that struck western Iberia in the early days of August 2003 was characterized by record high values of both maximum (47.3°C) and minimum (30.6°c) temperatures in Portugal, associated with extremely low humidity levels and relatively intense wind speed (Trigo et al., 2006). These conditions triggered the most devastating sequence of large fires ever registered in Portugal. The estimated total burnt area was about 450.000 ha, including 280.000 ha of forest (Pereira et al., 2011). The outstanding total burnt area value corresponds to roughly 5% of the Portuguese territory, and represents approximately twice the previous maximum observed in 1998 (~220.000 ha), and about four times the long-term average observed between 1980 and 2004. Here we characterise this unusual episode using meteorological fields obtained from both observations and a regional climate model. In this work we use the longest (49-years) high-resolution regional climate simulation available driven by reanalysis data spanning from 1959 to 2007 and covering the entire Iberian Peninsula. This long run was obtained using the MM5 model with a spatial resolution of 10 km. Using this high spatial and temporal resolution we have computed the Canadian Fire Weather Index (FWI) System to produce hourly values of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behaviour (van Wagner, 1987). We show the temporal evolution of high resolution patterns for several fire related variables during the most important days for triggering new fires (the first week of August 2003). Besides the absolute value of Tmax, Tmin, wind (speed and direction), relative humidity and FWI we also evaluate the corresponding anomalies of these fields, obtained after removing the long-term smoothed daily climatology. Pereira M.G., Malamude B.D., Trigo R.M., Alves P.I. (2011) "The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database". Natural Hazards and Earth System Sciences. 11, 3343-3358, doi:10.5194/nhess-11-3343-2011 Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado M.T., DaCamara C.C., Santo F.E. (2006) "The exceptional fire season of summer 2003 in Portugal". International Journal of Climatology, 26 (13): 1741-1757 NOV 15 2006. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.

  20. Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.

    PubMed

    Manaswini, G; Sudhakar Reddy, C

    2015-10-01

    Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.

  1. Pyrodiversity promotes avian diversity over the decade following forest fire.

    PubMed

    Tingley, Morgan W; Ruiz-Gutiérrez, Viviana; Wilkerson, Robert L; Howell, Christine A; Siegel, Rodney B

    2016-10-12

    An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes. © 2016 The Author(s).

  2. Pyrodiversity promotes avian diversity over the decade following forest fire

    PubMed Central

    Ruiz-Gutiérrez, Viviana; Wilkerson, Robert L.; Howell, Christine A.; Siegel, Rodney B.

    2016-01-01

    An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity—defined as the standard deviation of fire severity—increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called ‘mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes. PMID:27708152

  3. Burst firing and modulation of functional connectivity in cat striate cortex.

    PubMed

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of

  4. Application of a Mesoscale Atmospheric Coupled Fire Model BRAMS-FIRE to Alentejo Woodland Fire and Comparison of Performance with the Fire Model WRF-Sfire.

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Menezes, I. C.; Stockler, R.; Mello, R.; Ribeiro, N. A.; Corte-Real, J. A. M.; Surový, P.

    2014-12-01

    Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread woodland fire model. The BRAMS-FIRE is a new system developed by the "Centro de Previsão de Tempo e Estudos Climáticos" (CPTEC/INPE, Brazil) and the "Instituto de Ciências Agrárias e Ambientais Mediterrâneas" (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-FIRE and WRF-SFIRE. One grid was placed in the plain land near Beja and the other one in the hills of Ossa to evaluate different types of fire propagation and calibrate BRAMS-FIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of woodland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro woodland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system. References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Cargèse, France, May 13-18, 2013.

  5. A high-resolution modelling approach on spatial wildfire distribution in the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Malowerschnig, Bodo; Sass, Oliver

    2013-04-01

    Global warming will cause increasing danger of wildfires in Austria, which can have long-lasting consequences on woodland ecosystems. The protective effect of forest can be severely diminished, leading to natural hazards like avalanches and rockfall. However, data on wildfire frequency and distribution have been sparse and incomplete for Austria. Long-lasting postfire degradation under adverse preconditions (steep slopes, limestone) was a common phenomenon in parts of the Tyrolean Alps several decades ago and should become relevant again under a changing fire frequency. The FIRIA project compiles historical wildfire data, information on fuel loads, fire weather indices (FWI) and vegetation recovery patterns. The governing climatic, topographic and socio-economic factors of forest fire distribution were assessed to trigger a distribution model of currently fire-prone areas in Tyrol. By collecting data from different sources like old newspapers archives and fire-fighter databases, we were able to build up a fire database of wildfire occurrences containing more than 1400 forest fires since the 15th century in Tyrol. For the period from 1993 to 2011, the database is widely complete and covers 482 fires. Using a non-parametrical statistical method it was possible to select the best suited fire weather index (FWI) for the prediction. The testing of 19 FWI's shows that it is necessary to use two discriminative indices to differentiate between summer and winter season. Together with compiled topographic, socio-economic, infrastructure and forest maps, the dataset was the base for a multifactorial analysis, performed by comparing the maximum entropy approach (Maxent) with an ensemble classifier (Random Forests). Both approaches have their background in the spatial habitat distribution and are easy to adapt to the requirements of a wildfire ignition model. The aim of this modelling approach was to determine areas which are particularly prone to wildfire. Due to the pronounced relief curvature we based our model on 100 x 100 m cells to identify individual slopes and their topography. The first provisional result is a map of fire probability under current climate conditions (fire hot-spots). Our modelling approach indicates the fire weather index as the main driver, which is followed closely by socioeconomic (population density) and infrastructure factors (roads density, aerial railways, building density). The leverage of the forest community or its management is rather low; the same applies to topographic influences like aspect or sea level. The derived fire hot-spots are either placed close to the valley ground or around touristic infrastructure, with an overall preference for inner alpine areas and south-facing slopes. In the next step, the impact of climate change on the distribution and frequency of fires will be assessed by calculating a climate change model adapted to the 1x1km INCA dataset and based on different regional climate change models. Finally, a selection of fire-hot-spots from the previous modelling steps will be used for enhanced 3D-modelling approaches of natural hazards after wildfire-driven deforestation.

  6. A synoptic climatology for forest fires in the NE US and future implications for GCM simulations

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu

    1994-01-01

    We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...

  7. Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Houston, J.

    2012-01-01

    The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.

  8. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Treesearch

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  9. Crown fuel spatial variability and predictability of fire spread

    Treesearch

    Russell A. Parsons; Jeremy Sauer; Rodman R. Linn

    2010-01-01

    Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...

  10. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Treesearch

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  11. Variability of wildland fire emissions across the contiguous United States

    Treesearch

    YongQiang Liu

    2004-01-01

    This study analyzes spatial and temporal variability of emissions from wildland fires across the contiguous US. The emissions are estimates based on a recently constructed dataset of historical fire records collected by multiple US governlnental agencies. Both wildfire and prescribed fires have the highest emissions over the Pacific coastal states. Prescribed fire...

  12. Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity

    PubMed Central

    Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E

    2007-01-01

    The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000

  13. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    PubMed Central

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  14. Performance of a protected wireless sensor network in a fire. Analysis of fire spread and data transmission.

    PubMed

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).

  15. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.

  16. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

    PubMed Central

    Maass, Wolfgang

    2008-01-01

    Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for cortical networks of neurons but has no analogue in currently existing artificial computing systems. In addition our model demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without endangering the stability of the network dynamics. PMID:18846203

  17. Wildfires and post-fire erosion risk in a coastal area under severe anthropic pressure associated with the touristic fluxes

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Arca, Bachisio; Pellizzaro, Grazia; Valeriano Pintus, Gian; Ferrara, Roberto; Duce, Pierpaolo

    2017-04-01

    In the last decades a rapid and intense development of the tourism industry led to an increasing of anthropic pressure on several coastal areas of Sardinia. This fact not only modified the coastal aesthetics, but has also generated an increase of risk for the environment. This phenomenon affected also the ancient structure of the landscape with a negative impact mainly caused by the following factors: land abandonment, wildfire occurrence, post-fire erosion, urbanization. These regional changes can be analyzed in detail by considering the geo-diachronic dynamics. The main objectives of this work were i) to perform a diachronic analysis of land use and land cover dynamics, ii) to analyse the recent dynamics of wildfires, and iii) to predict the soil erosion risk in relation to land use change occurred between the 1950s and the 2000s. The study was realized in a coastal area located in North-East Sardinia where the geo-historical processes were summarized and organized in a geographic information system that has been employed to examine the landscape variations at three different time steps: 1954, 1977 and 2000. In addition, different scenarios of wildfire propagation were simulated by FlamMap in order to estimate the spatial pattern of fire danger factors in the study area. Afterwards, maps of post-fire soil erosion were produced to identify the temporal and spatial variations of the erosion risk. The results show how the changes in land use and the significant and rapid increase of the residential areas affect the risk of both wildfires and post-fire soil erosion. The study reveals the capabilities of this type of approach and can be used by management agencies and policy makers e in sustainable landscape management planning. This approach can be extended to other regions of the Mediterranean basin characterized by complex interactions among landscape and anthropic factors affecting the environmental risk.

  18. Sensitivity analysis of a FMC model for improving forecasting forest fires: Comparison with real fires in Spain

    NASA Astrophysics Data System (ADS)

    San Jose, Roberto; Perez, Juan Luis; Gonzalez-Barras, Rosa M.; Pecci, Julia; Palacios, Marino

    2014-05-01

    Forest fires continue to be a very dangerous and extreme violent episode jeopardizing the human lives and owns. Spain is plagued by forest and brush fires every summer, when extremely dry weather sets in along with high temperatures. The use of fire behavior models requires the availability of high resolution environmental and fuel data; in absence of realistic data, errors on the simulated fire spread con be compounded to produce o decrease of the spatial and temporal accuracy of predicted data. In this work we have carried out a sensitivity analysis of different components of the fire model and particularly the fuel moisture content (FMC) such as microphysics and solar radiation model. Three different real fire models have been used: Murcia (September, 7, 2010 19h09 and 9 hours duration), Gabiel (March, 7, 2007, 22h15 and 38 hours duration) and Culla (Marzo, 7, 2007, 23h36 and 37 hours duration). We use the 100 m European Corine Land Cover map. We use the WRF-Fire model developed by NCAR (USA). The WRF mode is run using the GFS global data and over the Iberian Peninsula with 15 km spatial resolution. We apply the nesting approach over the fires areas (located in the South East of the Iberian Peninsula) with 3 km, 1 km and 200 m spatial resolution. The Fire module included into WRF is run with 20 m spatial resolution and the landuse is interpolated from the Corine 100 m land use map. The results show that the Thompson et al. microphysics scheme and the RRTM solar radiation scheme are those with the best combination using a specific counting score to classify the goodness of the results compare with the real burned area. Those pixels not burned by the simulations but burned by the observational data sets are penalized double compare with the vice versa process. The NDVI obtained by satellite on the day of starting the fire is included in the simulations and a substantial improving in the final score is obtained.

  19. The Net Climate Impact of Coal-Fired Power Plant Emissions

    NASA Technical Reports Server (NTRS)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.

  20. The net climate impact of coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Shindell, D.; Faluvegi, G.

    2010-04-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.

Top