Sample records for spatial fourier transform

  1. The Fourier transforms for the spatially homogeneous Boltzmann equation and Landau equation

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Liu, Fang

    2018-03-01

    In this paper, we study the Fourier transforms for two equations arising in the kinetic theory. The first equation is the spatially homogeneous Boltzmann equation. The Fourier transform of the spatially homogeneous Boltzmann equation has been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111-233, 1988) in the Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327-355, 2000) investigated the Fourier transform of the gain operator for the Boltzmann operator in the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483-492, 2007). We shall first establish the relation between the results in Alexandre et al. (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann operator in the cut-off case. Then we give the Fourier transform of the spatially homogeneous Boltzmann equation in the non cut-off case. It is shown that our results cover previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is the spatially homogeneous Landau equation, which can be obtained as a limit of the Boltzmann equation when grazing collisions prevail. Following the method in Kirsch and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.

  2. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  3. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  4. An optical Fourier transform coprocessor with direct phase determination.

    PubMed

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  5. Off-axis illumination direct-to-digital holography

    DOEpatents

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  6. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  7. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  8. Three-dimensional Fourier transform evaluation of sequences of spatially and temporally modulated speckle interferograms.

    PubMed

    Trillo, C; Doval, A F; López-Vázquez, J C

    2010-07-05

    Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.

  9. Application of Fourier analysis to multispectral/spatial recognition

    NASA Technical Reports Server (NTRS)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  10. Fourier removal of stripe artifacts in IRAS images

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1987-01-01

    By working in the Fourier plane, approximate removal of stripe artifacts in IRAS images can be effected. The image of interest is smoothed and subtracted from the original, giving the high-spatial-frequency part. This 'filtered' image is then clipped to remove point sources and then Fourier transformed. Subtracting the Fourier components contributing to the stripes in this image from the Fourier transform of the original and transforming back to the image plane yields substantial removal of the stripes.

  11. Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN

    2006-02-14

    Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.

  12. An Investigation into the Use of Spatially-Filtered Fourier Transforms to Classify Mammary Lesions.

    DTIC Science & Technology

    difference in Fourier space between lesioned breast tissue which would enable accurate computer classification of benign and malignant lesions. Low...separate benign and malignant breast tissue. However, no success was achieved when using two-dimensional Fourier transform and power spectrum analysis. (Author)

  13. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  14. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  15. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  16. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  17. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  18. A hybrid silicon membrane spatial light modulator for optical information processing

    NASA Technical Reports Server (NTRS)

    Pape, D. R.; Hornbeck, L. J.

    1984-01-01

    A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.

  19. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  20. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  1. Improved methods of performing coherent optical correlation

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.

  2. Fizeau Fourier transform imaging spectroscopy: missing data reconstruction.

    PubMed

    Thurman, Samuel T; Fienup, James R

    2008-04-28

    Fizeau Fourier transform imaging spectroscopy yields both spatial and spectral information about an object. Spectral information, however, is not obtained for a finite area of low spatial frequencies. A nonlinear reconstruction algorithm based on a gray-world approximation is presented. Reconstruction results from simulated data agree well with ideal Michelson interferometer-based spectral imagery. This result implies that segmented-aperture telescopes and multiple telescope arrays designed for conventional imaging can be used to gather useful spectral data through Fizeau FTIS without the need for additional hardware.

  3. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  4. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    PubMed

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  5. Spatial-heterodyne interferometry for transmission (SHIFT) measurements

    DOEpatents

    Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.

    2006-10-10

    Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.

  6. Is Fourier analysis performed by the visual system or by the visual investigator.

    PubMed

    Ochs, A L

    1979-01-01

    A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.

  7. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  8. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  9. Ultrafast and versatile spectroscopy by temporal Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.

    2014-06-01

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  10. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA.

    PubMed

    Scargle, Jeffrey D; Way, M J; Gazis, P R

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  11. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA

    PubMed Central

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519

  12. Structure in the 3D Galaxy Distribution: III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  13. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  14. Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-10-01

    We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

  15. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    NASA Astrophysics Data System (ADS)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  16. Detecting the spatial chirp signals by fractional Fourier lens with transformation materials

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, J.

    2018-02-01

    Fractional Fourier transform (FrFT) is the general form of the Fourier transform and is an important tool in signal processing. As one typical application of FrFT, detecting the chirp rate (CR, or known as the rate of frequency change) of a chirp signal is important in many optical measurements. The optical FrFT that based on graded index lens fails to detect the high CR chirp because the short wave propagation distance of the impulse in the lens will weaken the paraxial approximation condition. With the help of transformation optics, the improved FrFT lens is proposed to adjust the high CR as well as the impulse location of the given input chirp signal. The designed transformation materials can implement the effect of space compression, making the input chirp signal is equivalent to have lower CR, therefore the system can satisfy the paraxial approximation better. As a result, this lens can improve the detection precision for the high CR. The numerical simulations verified the design. The proposed device may have both theoretical and practical values, and the design demonstrates the ability and flexibility of TO in spatial signal processing.

  17. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  18. Analytical properties of time-of-flight PET data.

    PubMed

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  19. Analytical properties of time-of-flight PET data

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  20. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  1. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Method and apparatus for wavefront sensing

    DOEpatents

    Bahk, Seung-Whan

    2016-08-23

    A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.

  3. Fourier Domain Sensing

    NASA Technical Reports Server (NTRS)

    Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)

    2013-01-01

    Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.

  4. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less

  5. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.

  6. Analytical Properties of Time-of-Flight PET Data

    PubMed Central

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2015-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the “bow-tie” property of the 2D Radon transform to the time of flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data. PMID:18460746

  7. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  8. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  9. Generalization and modularization of two-dimensional adaptive coordinate transformations for the Fourier modal method.

    PubMed

    Küchenmeister, Jens

    2014-04-21

    The Fourier modal method (FMM) has advanced greatly by using adaptive coordinates and adaptive spatial resolution. The convergence characteristics were shown to be improved significantly, a construction principle for suitable meshes was demonstrated and a guideline for the optimal choice of the coordinate transformation parameters was found. However, the construction guidelines published so far rely on a certain restriction that is overcome with the formulation presented in this paper. Moreover, a modularization principle is formulated that significantly eases the construction of coordinate transformations in unit cells with reappearing shapes and complex sub-structures.

  10. A Fast Fourier transform stochastic analysis of the contaminant transport problem

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    A three-dimensional stochastic analysis of the contaminant transport problem is developed in the spirit of Naff (1990). The new derivation is more general and simpler than previous analysis. The fast Fourier transformation is used extensively to obtain numerical estimates of the mean concentration and various spatial moments. Data from both the Borden and Cape Cod experiments are used to test the methodology. Results are comparable to results obtained by other methods, and to the experiments themselves.

  11. The Application of MP-FTS to Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Hattori, M.; Ohta, I. S.; Matsuo, H.; Shibata, Y.

    2000-12-01

    The application of the Martin-Puplett type Fourier transform spectrometer to aperture synthesis is considered. The configuration of the mirrors and beam splitters and the fundamental mathematical elements of the system are summarized. We show that the system can measure spectrally resolved spatial distribution of the Stokes parameters of sources as interfered signals. An original Martin-Puplett type Fourier transform spectrometer that can be applied to aperture synthesis in mm and sub-mm wave bands has been constructed. The preliminary results of our laboratory experiments are reported.

  12. Methods for performing fast discrete curvelet transforms of data

    DOEpatents

    Candes, Emmanuel; Donoho, David; Demanet, Laurent

    2010-11-23

    Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.

  13. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  14. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  15. Planar metasurface retroreflector

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2017-07-01

    Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation, provide a new optical design framework that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters.

  16. Discrete Fourier transforms of nonuniformly spaced data

    NASA Technical Reports Server (NTRS)

    Swan, P. R.

    1982-01-01

    Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.

  17. Observations on the effects of image processing functions on fingermark data in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Bramble, Simon K.; Fabrizi, Paola M.

    1995-09-01

    One of the image processing functions used for the enhancement of laten fingermark images is the Fourier transform. This paper describes some effects of spatial resolution, zero-filling and windowing on fingermark data in the Fourier domain. It is shown that with an understanding of the fingermark structure it is possible to determine the approximate prosition of the frequency data in the Fourier domain corresponding to the fingermark image detail. The effect of attenuation of frequency data on a zero-filled image is shown to be different to the same attenuation on a non-zero-filled image. The effects of windowing spatial data on the frequency data are also highlighted and compared with the same data after the application of a Hanning window.

  18. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    PubMed

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  19. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  20. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    PubMed

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  2. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  3. Generation of hollow Gaussian beams by spatial filtering

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ashfaq Ahmad, Muhammad; Liu, Shutian

    2007-08-01

    We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.

  4. Generation of hollow Gaussian beams by spatial filtering.

    PubMed

    Liu, Zhengjun; Zhao, Haifa; Liu, Jianlong; Lin, Jie; Ahmad, Muhammad Ashfaq; Liu, Shutian

    2007-08-01

    We demonstrate that hollow Gaussian beams can be obtained from Fourier transform of the differentials of a Gaussian beam, and thus they can be generated by spatial filtering in the Fourier domain with spatial filters that consist of binomial combinations of even-order Hermite polynomials. A typical 4f optical system and a Michelson interferometer type system are proposed to implement the proposed scheme. Numerical results have proved the validity and effectiveness of this method. Furthermore, other polynomial Gaussian beams can also be generated by using this scheme. This approach is simple and may find significant applications in generating the dark hollow beams for nanophotonic technology.

  5. Light diffusion in N-layered turbid media: steady-state domain.

    PubMed

    Liemert, André; Kienle, Alwin

    2010-01-01

    We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.

  6. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.

    2018-07-01

    We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind dispersion measure search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero false alarm rate. The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multibeam observations made by telescopes equipped with phased array feeds.

  7. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.

    2018-04-01

    We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind DM search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero False Alarm Rate (FAR). The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multi-beam observations made by telescopes equipped with phased array feeds.

  8. Fourier Plane Image Combination by Feathering

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.

    2017-09-01

    Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.

  9. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  10. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding [Henderson, NV

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  11. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  12. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  13. Beyond MOS and Fibers: Wide-FoV Imaging Fourier Transform Spectroscopy - an Instrumentation Proposal for the Present and Future Mexican Telescopes

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.

    2016-10-01

    In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.

  14. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  15. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    NASA Astrophysics Data System (ADS)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  16. Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.

    DTIC Science & Technology

    1983-05-31

    Documents includes data on: Architectures; Coherence Properties of Pulsed Laser Diodes; Acousto - optic device data; Dynamic Range Issues; Image correlation; Synthetic aperture radar; 2-D Fourier transform; and Moments.

  17. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  18. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  19. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.

  20. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    PubMed

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  1. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  2. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  3. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  4. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  5. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  6. A class of Fourier integrals based on the electric potential of an elongated dipole.

    PubMed

    Skianis, Georgios Aim

    2014-01-01

    In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.

  7. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  8. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  9. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.

  10. Techniques of noninvasive optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Abookasis, David; Gokhler, Mark

    2006-01-01

    Recently invented methods of optical tomographic imaging through scattering and absorbing media are presented. In one method, the three-dimensional structure of an object hidden between two biological tissues is recovered from many noisy speckle pictures obtained on the output of a multi-channeled optical imaging system. Objects are recovered from many speckled images observed by a digital camera through two stereoscopic microlens arrays. Each microlens in each array generates a speckle image of the object buried between the layers. In the computer each image is Fourier transformed jointly with an image of the speckled point-like source captured under the same conditions. A set of the squared magnitudes of the Fourier-transformed pictures is accumulated to form a single average picture. This final picture is again Fourier transformed, resulting in the three-dimensional reconstruction of the hidden object. In the other method, the effect of spatial longitudinal coherence is used for imaging through an absorbing layer with different thickness, or different index of refraction, along the layer. The technique is based on synthesis of multiple peak spatial degree of coherence. This degree of coherence enables us to scan simultaneously different sample points on different altitudes, and thus decreases the acquisition time. The same multi peak degree of coherence is also used for imaging through the absorbing layer. Our entire experiments are performed with a quasi-monochromatic light source. Therefore problems of dispersion and inhomogeneous absorption are avoided.

  11. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  12. Implementation of quantum and classical discrete fractional Fourier transforms.

    PubMed

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  13. Implementation of quantum and classical discrete fractional Fourier transforms

    PubMed Central

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  14. A fully 3D approach for metal artifact reduction in computed tomography.

    PubMed

    Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M

    2012-11-01

    In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.

  15. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  16. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  17. Use of Fouler Transforms to define landscape scales of analysis for disturbances: A case study of thinned and unthinned forest stands

    Treesearch

    J. E. Lundquist; R. A. Sommerfeld

    2002-01-01

    Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...

  18. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    PubMed

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  19. 3D-FFT for Signature Detection in LWIR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier spacemore » can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.« less

  20. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    PubMed Central

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-01-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384

  1. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-02-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

  2. Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array.

    PubMed

    Okamoto, Takuma; Sakaguchi, Atsushi

    2017-03-01

    Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.

  3. Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.

    2001-01-01

    A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.

  4. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  5. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  6. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  7. High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT technique

    NASA Astrophysics Data System (ADS)

    Zhao, Guangdong; Chen, Bo; Chen, Longwei; Liu, Jianxin; Ren, Zhengyong

    2018-03-01

    The 3D Fourier forward modeling of 3D density sources is capable of providing 3D gravity anomalies coincided with the meshed density distribution within the whole source region. This paper firstly derives a set of analytical expressions through employing 3D Fourier transforms for calculating the gravity anomalies of a 3D density source approximated by right rectangular prisms. To reduce the errors due to aliasing and imposed periodicity as well as edge effects in the Fourier domain modeling, we develop the 3D Gauss-FFT technique to the 3D gravity anomalies forward modeling. The capability and adaptability of this scheme are tested by simple synthetic models. The results show that the accuracy of the Fourier forward methods using the Gauss-FFT with 4 Gaussian-nodes (or more) is comparable to that of the spatial modeling. In addition, the "ghost" source effects in the 3D Fourier forward gravity field due to imposed periodicity of the standard FFT algorithm are remarkably depressed by the application of the 3D Gauss-FFT algorithm. More importantly, the execution times of the 4 nodes Gauss-FFT modeling are reduced by two orders of magnitude compared with the spatial forward method. It demonstrates that the improved Fourier method is an efficient and accurate forward modeling tool for the gravity field.

  8. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  9. Midwave Infrared Imaging Fourier Transform Spectrometry of Combustion Plumes

    DTIC Science & Technology

    2009-09-01

    nonuniformity by spatially-smoothing the image cube. The algorithm was applied to a LWIR hyperspectral image of simultaneous release of CHF3 (trifluo...99 43. A series of LWIR thermal images of the explosive detonation release of MeS...Abbreviation Page IEDs Improvised Explosive Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LWIR longwave infrared

  10. Quickbird Satellite in-orbit Modulation Transfer Function (MTF) Measurement Using Edge, Pulse and Impulse Methods for Summer 2003

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath

    2005-01-01

    The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.

  11. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    DTIC Science & Technology

    2014-10-16

    Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency

  12. A Sagnac Fourier spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2017-03-09

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  13. A Sagnac Fourier spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzner, Matthias; Diels, Jean -Claude

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  14. Solid perception mechanism by a shading pattern: spatial frequency components in a corrugated wave pattern.

    PubMed

    Nameda, N

    1988-01-01

    Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.

  15. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    PubMed

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.

  16. Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Bradley G.; Schofield, Ian; Tompkins, Gregory; Davis, Gary R.

    2003-02-01

    Astronomical spectroscopy at submillimeter wavelengths holds much promise for fields as diverse as the study of planetary atmospheres, molecular clouds and extragalactic sources. Fourier transform spectrometers (FTS) represent an important class of spectrometers well suited to observations that require broad spectral coverage at intermediate spectral resolution. In this paper we present the design and performance of a novel FTS, which has been developed for use at the James Clerk Maxwell Telescope (JCMT). The design uses two broadband intensity beamsplitters in a Mach-Zehnder configuration, which provide access to all four interferometer ports while maintaining a high and uniform efficiency over a broad spectral range. Since the interferometer processes both polarizations it is twice as efficient as the Martin-Puplett interferometer (MPI). As with the MPI, the spatial separation of the two input ports allows a reference blackbody to be viewed at all times in one port, while continually viewing the astronomical source in the other. Furthermore, by minimizing the size of the optical beam at the beamsplitter, the design is well suited to imaging Fourier transform spectroscopy (IFTS) as evidenced by its selection for the SPIRE instrument on Herschel.

  17. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  18. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  19. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

    NASA Technical Reports Server (NTRS)

    Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

    1993-01-01

    Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

  20. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  1. The Fourier analysis of biological transients.

    PubMed

    Harris, C M

    1998-08-31

    With modern computing technology the digital implementation of the Fourier transform is widely available, mostly in the form of the fast Fourier transform (FFT). Although the FFT has become almost synonymous with the Fourier transform, it is a fast numerical technique for computing the discrete Fourier transform (DFT) of a finite sequence of sampled data. The DFT is not directly equivalent to the continuous Fourier transform of the underlying biological signal, which becomes important when analyzing biological transients. Although this distinction is well known by some, for many it leads to confusion in how to interpret the FFT of biological data, and in how to precondition data so as to yield a more accurate Fourier transform using the FFT. We review here the fundamentals of Fourier analysis with emphasis on the analysis of transient signals. As an example of a transient, we consider the human saccade to illustrate the pitfalls and advantages of various Fourier analyses.

  2. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  3. Digital holographic 3D imaging spectrometry (a review)

    NASA Astrophysics Data System (ADS)

    Yoshimori, Kyu

    2017-09-01

    This paper reviews recent progress in the digital holographic 3D imaging spectrometry. The principle of this method is a marriage of incoherent holography and Fourier transform spectroscopy. Review includes principle, procedure of signal processing and experimental results to obtain a multispectral set of 3D images for spatially incoherent, polychromatic objects.

  4. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  5. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  6. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    NASA Astrophysics Data System (ADS)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  7. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  8. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  9. The Filtered Abel Transform and Its Application in Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang

    2003-01-01

    Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.

  10. Accounting for the Spatial Observation Window in the 2-D Fourier Transform Analysis of Shear Wave Attenuation.

    PubMed

    Rouze, Ned C; Deng, Yufeng; Palmeri, Mark L; Nightingale, Kathryn R

    2017-10-01

    Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the 2-D Fourier transform (2DFT) of the shear wave signal and measuring the phase velocity c(ω) and attenuation α(ω) from the peak location and full width at half-maximum (FWHM) of the 2DFT signal at discrete frequencies. However, when the shear wave is observed over a finite spatial range, the 2DFT signal is a convolution of the true signal and the observation window, and measurements using the FWHM can yield biased results. In this study, we describe a method to account for the size of the spatial observation window using a model of the 2DFT signal and a non-linear, least-squares fitting procedure to determine c(ω) and α(ω). Results from the analysis of finite-element simulation data agree with c(ω) and α(ω) calculated from the material parameters used in the simulation. Results obtained in a viscoelastic phantom indicate that the measured attenuation is independent of the observation window and agree with measurements of c(ω) and α(ω) obtained using the previously described progressive phase and exponential decay analysis. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  12. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  13. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2014-03-01

    Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.

  14. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  15. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  16. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  17. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  18. Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory

    2014-10-01

    The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.

  19. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    PubMed

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made our training and testing data set (~12 GB) open-source for the broad research community.

  20. The τq-Fourier transform: Covariance and uniqueness

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-05-01

    We propose an alternative definition for a Tsallis entropy composition-inspired Fourier transform, which we call “τq-Fourier transform”. We comment about the underlying “covariance” on the set of algebraic fields that motivates its introduction. We see that the definition of the τq-Fourier transform is automatically invertible in the proper context. Based on recent results in Fourier analysis, it turns that the τq-Fourier transform is essentially unique under the assumption of the exchange of the point-wise product of functions with their convolution.

  1. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry.

    PubMed

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-10-03

    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  2. Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-11-01

    The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed

  3. Propagation characteristics of optical fiber structures with arbitrary shape and index variation

    NASA Technical Reports Server (NTRS)

    Manshadi, F.

    1990-01-01

    The application of the scalar wave-fast Fourier transform (SW-FFT) technique to the computation of the propagation characteristics of some complex optical fiber structures is presented. The SW-FFT technique is based on the numerical solution of the scalar wave equation by a forward-marching fast Fourier transform method. This solution yields the spatial configuration of the fields as well as its modal characteristics in and around the guiding structure. The following are treated by the SW-FFT method: analysis of coupled optical fibers and computation of their odd and even modes and coupling length; the solution of tapered optical waveguides (transitions) and the study of the effect of the slope of the taper on mode conversion; and the analysis of branching optical fibers and demonstration of their mode-filtering and/or power-dividing properties.

  4. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot andmore » also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.« less

  5. Development of an Imaging Fourier Transform Spectrometer

    DTIC Science & Technology

    1986-05-01

    during multiple tests or concurrently applying many identical instrument systems to a single test. These difficult, expensive, and time-consuming...processes would introduce AEDC-TR-86-17 uncertainties due to nonstationary sources and instrument instability associated with multiple firings or... multiple instruments. For even moderate spatial, spectral, and temporal resolution, none of the previously mentioned approaches is reasonable. The

  6. Hypercomplex Fourier transforms of color images.

    PubMed

    Ell, Todd A; Sangwine, Stephen J

    2007-01-01

    Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.

  7. Simultaneous storage of medical images in the spatial and frequency domain: a comparative study.

    PubMed

    Nayak, Jagadish; Bhat, P Subbanna; Acharya U, Rajendra; Uc, Niranjan

    2004-06-05

    Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example. It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.

  8. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  9. PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

    DTIC Science & Technology

    2016-12-22

    23 6 Band-averaged radiance image with checkerboard is shown in the upper left. The 2-D Fourier transform of the image is...red is 1) that is multiplied by the Fourier transform of the original image. The inverse Fourier transform is then taken to get the final image with...Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IFTS Imaging Fourier Transform Spectrometer

  10. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    PubMed

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  11. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  12. A method of power analysis based on piecewise discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Xin, Miaomiao; Zhang, Yanchi; Xie, Da

    2018-04-01

    The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.

  13. SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Bernier, A.-P.; Rousseau-Nepton, L.; Alarie, A.; Robert, C.; Joncas, G.; Thibault, S.; Grandmont, F.

    2010-07-01

    We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  14. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    ERIC Educational Resources Information Center

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  15. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  16. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  17. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  18. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  19. Infrared maritime target detection using the high order statistic filtering in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Zhou, Anran; Xie, Weixin; Pei, Jihong

    2018-06-01

    Accurate detection of maritime targets in infrared imagery under various sea clutter conditions is always a challenging task. The fractional Fourier transform (FRFT) is the extension of the Fourier transform in the fractional order, and has richer spatial-frequency information. By combining it with the high order statistic filtering, a new ship detection method is proposed. First, the proper range of angle parameter is determined to make it easier for the ship components and background to be separated. Second, a new high order statistic curve (HOSC) at each fractional frequency point is designed. It is proved that maximal peak interval in HOSC reflects the target information, while the points outside the interval reflect the background. And the value of HOSC relative to the ship is much bigger than that to the sea clutter. Then, search the curve's maximal target peak interval and extract the interval by bandpass filtering in fractional Fourier domain. The value outside the peak interval of HOSC decreases rapidly to 0, so the background is effectively suppressed. Finally, the detection result is obtained by the double threshold segmenting and the target region selection method. The results show the proposed method is excellent for maritime targets detection with high clutters.

  20. Characterizing the canopy gap structure of a disturbed forest using Fourier transform

    Treesearch

    R. A. Sommerfeld; J. E. Lundquist; J. Smith

    2000-01-01

    Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...

  1. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  2. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  3. Massively parallel X-ray holography

    NASA Astrophysics Data System (ADS)

    Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-09-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

  4. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  5. Cosine beamforming

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Wapenaar, Kees

    2014-05-01

    In various application areas, e.g., seismology, astronomy and geodesy, arrays of sensors are used to characterize incoming wavefields due to distant sources. Beamforming is a general term for phased-adjusted summations over the different array elements, for untangling the directionality and elevation angle of the incoming waves. For characterizing noise sources, beamforming is conventionally applied with a temporal Fourier and a 2D spatial Fourier transform, possibly with additional weights. These transforms become aliased for higher frequencies and sparser array-element distributions. As a partial remedy, we derive a kernel for beamforming crosscorrelated data and call it cosine beamforming (CBF). By applying beamforming not directly to the data, but to crosscorrelated data, the sampling is effectively increased. We show that CBF, due to this better sampling, suffers less from aliasing and yields higher resolution than conventional beamforming. As a flip-side of the coin, the CBF output shows more smearing for spherical waves than conventional beamforming.

  6. [The investigation and simulation of a novel spatially modulated micro-Fourier transform spectrometer].

    PubMed

    Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun

    2009-04-01

    Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.

  7. Predicted Deepwater Bathymetry from Satellite Altimetry: Non-Fourier Transform Alternatives

    NASA Astrophysics Data System (ADS)

    Salazar, M.; Elmore, P. A.

    2017-12-01

    Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb's phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of the step and saw-tooth functions and resulted in lower RMS error with fewer coefficients. This investigation, thus, examined the feasibility of utilizing sparser base functions such as the Mexican Hat Wavelet, which is local in space, to first calculate the gravitational potential, and then relate it to sea-floor topography.

  8. Monolithic focused reference beam X-ray holography

    PubMed Central

    Geilhufe, J.; Pfau, B.; Schneider, M.; Büttner, F.; Günther, C. M.; Werner, S.; Schaffert, S.; Guehrs, E.; Frömmel, S.; Kläui, M.; Eisebitt, S.

    2014-01-01

    Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux facilities like high harmonic generation sources. The application of monolithic focused reference beams improves the efficiency of high-resolution X-ray Fourier transform holography beyond all present approaches and paves the path towards sub-10 nm single-shot X-ray imaging. PMID:24394675

  9. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm 2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for usemore » as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  10. Definition of a metrology servo-system for a solar imaging fourier transform spectrometer working in the far UV (IFTSUV)

    NASA Astrophysics Data System (ADS)

    Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.

    2017-11-01

    The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).

  11. Single-exposure color digital holography

    NASA Astrophysics Data System (ADS)

    Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping

    2010-11-01

    In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.

  12. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  13. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    PubMed

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  14. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  15. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  16. Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    PubMed Central

    Nayak, Jagadish; Bhat, P Subbanna; Acharya U, Rajendra; UC, Niranjan

    2004-01-01

    Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient. PMID:15180899

  17. Zeroth-order phase-contrast technique.

    PubMed

    Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves

    2007-11-01

    What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

  18. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  19. Development of Imaging Fourier-Transform Spectroscopy for the Characterization of Turbulent Jet Flames

    DTIC Science & Technology

    2014-09-18

    Spatially resolved infrared spectra of jet exhaust from an F109 turbofan engine...Appendix E contains a conference proceeding in its entirety [32]. This proceeding summarizes analysis of a turbofan engine exhaust via the Hyper-Cam and...demonstrated in a separate experiment. Recently, exhaust from an F109 turbofan engine was imaged with the IFTS[32]. Examination of the time-averaged

  20. Femtosecond optical packet generation by a direct space-to-time pulse shaper.

    PubMed

    Leaird, D E; Weiner, A M

    1999-06-15

    We demonstrate femtosecond operation of a direct space-to-time pulse shaper in which there is direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. We use this apparatus to generate trains of 20 pulses as an ultrafast optical data packet over an approximately 40-ps temporal window.

  1. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  2. Symmetric Phase-Only Filtering in Particle-Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wemet, Mark P.

    2008-01-01

    Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the particles across a subregion results in a displacement of the correlation peak from the center of the correlation plane. The velocity is then computed from the displacement of the correlation peak and the time between the recording of the two images. The process as described thus far is performed for all the subregions. The resulting set of velocities in grid cells amounts to a velocity vector map of the flow field recorded on the image plane. In traditional PIV processing, surface flare light and bright background light give rise to a large, broad correlation peak, at the center of the correlation plane, that can overwhelm the true particle- displacement correlation peak. This has made it necessary to resort to tedious image-masking and background-subtraction procedures to recover the relatively small amplitude particle-displacement correlation peak. SPOF is a variant of phase-only filtering (POF), which, in turn, is a variant of matched spatial filtering (MSF). In MSF, one projects a first image (denoted the input image) onto a second image (denoted the filter) as part of a computation to determine how much and what part of the filter is present in the input image. MSF is equivalent to cross-correlation. In POF, the frequency-domain content of the MSF filter is modified to produce a unitamplitude (phase-only) object. POF is implemented by normalizing the Fourier transform of the filter by its magnitude. The advantage of POFs is that they yield correlation peaks that are sharper and have higher signal-to-noise ratios than those obtained through traditional MSF. In the SPOF, these benefits of POF can be extended to PIV data processing. The SPOF yields even better performance than the POF approach, which is uniquely applicable to PIV type image data. In SPOF as now applied to PIV data processing, a subregion of the first image is treated as the input image and the corresponding subregion of the second image is treated as the filter. The Fourier transforms from both the firs and second- image subregions are normalized by the square roots of their respective magnitudes. This scheme yields optimal performance because the amounts of normalization applied to the spatial-frequency contents of the input and filter scenes are just enough to enhance their high-spatial-frequency contents while reducing their spurious low-spatial-frequency content. As a result, in SPOF PIV processing, particle-displacement correlation peaks can readily be detected above spurious background peaks, without need for masking or background subtraction.

  3. Coherence Conversion for Optimized Resolution in Optical Measurements - Example of Femtosecond Time Resolution Using the Transverse Coherence of 100-Picosecond X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-01-01

    A way is proposed to obtain a femtosecond time resolution over a picosecond range in x-ray spectroscopic measurements where the light source and the detector are much slower than that. It is based on the invariance of the modulus of the Fourier transform to object translations. The method geometrically correlates time in the sample with x-ray amplitudes over a spatial coordinate, and then takes the optical Fourier transform through far-field diffraction. Thus, explicitly time-invariant intensities that encode the time evolution of the sample can be measured with a slow detector. This corresponds to a phase-space transformation that converts the transversemore » coherence to become effective in the longitudinal direction. Because synchrotron-radiation sources have highly anisotropic coherence properties with about $10^5$ longitudinal electromagnetic-field modes at 1 eV bandwidth, but only tens to hundreds transverse modes, coherence conversion can drastically improve the time resolution. Reconstruction of the femtosecond time evolution in the sample from the Fourier intensities is subject to a phase ambiguity that is well-known in crystallography. However, a way is presented to resolve it that is not available in that discipline. Finally, data from a demonstration experiment are presented. The same concept can be used to obtain attosecond time resolution with an x-ray free-electron laser.« less

  4. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  5. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  6. Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai

    2016-03-01

    Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

  7. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    ERIC Educational Resources Information Center

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  8. Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)

  9. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  10. The application and improvement of Fourier transform spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  11. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  12. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  13. Detecting Spatial Patterns in Biological Array Experiments

    PubMed Central

    ROOT, DAVID E.; KELLEY, BRIAN P.; STOCKWELL, BRENT R.

    2005-01-01

    Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to ensure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes systematic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply techniques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially random background. They demonstrate that these techniques are effective in identifying common spatially systematic errors in high-throughput 384-well microplate assay data. In addition, the authors employ a statistical test to allow for automatic detection of such errors. Software tools for using this approach are provided. PMID:14567791

  14. Fast Implicit Methods For Elliptic Moving Interface Problems

    DTIC Science & Technology

    2015-12-11

    analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D

  15. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  16. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  17. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration.

    PubMed

    Leaird, D E; Weiner, A M

    2004-07-01

    We demonstrate femtosecond operation of an integrated-optic direct space-to-time pulse shaper for which there is a direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. The apparatus is used to generate trains of more than 30 pulses as an ultrafast optical data packet over approximately an 80-ps temporal window.

  18. Photomorphic analysis techniques: An interim spatial analysis using satellite remote sensor imagery and historical data

    NASA Technical Reports Server (NTRS)

    Keuper, H. R.; Peplies, R. W.; Gillooly, R. P.

    1977-01-01

    The use of machine scanning and/or computer-based techniques to provide greater objectivity in the photomorphic approach was investigated. Photomorphic analysis and its application in regional planning are discussed. Topics included: delineation of photomorphic regions; inadequacies of existing classification systems; tonal and textural characteristics and signature analysis techniques; pattern recognition and Fourier transform analysis; and optical experiments. A bibliography is included.

  19. Electrically tunable spatially variable switching in ferroelectric liquid crystal/water system

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Coondoo, I.; Prakash, J.; Sreenivas, K.; Biradar, A. M.

    2009-04-01

    An unusual switching phenomenon in the region outside conducting patterned area in ferroelectric liquid crystal (FLC) containing about 1-2 wt % of water has been observed. The presence of water in the studied heterogeneous system was confirmed by Fourier transform infrared spectroscopy. The observed optical studies have been emphasized on the "spatially variable switching" phenomenon of the molecules in the nonconducting region of the cell. The observed phenomenon is due to diffusion of water between the smectic layers of the FLC and the interaction of the curved electric field lines with the FLC molecules in the nonconducting region.

  20. Investigation of the phase velocities of guided acoustic waves in soft porous layers.

    PubMed

    Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F

    2005-02-01

    A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.

  1. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  2. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  3. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  4. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  5. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  6. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  7. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  8. Extended sources near-field processing of experimental aperture synthesis data and application of the Gerchberg method for enhancing radiometric three-dimensional millimetre-wave images in security screening portals

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    2017-10-01

    Aperture synthesis for passive millimetre wave imaging provides a means to screen people for concealed threats in the extreme near-field configuration of a portal, a regime where the imager to subject distance is of the order of both the required depth-of-field and the field-of-view. Due to optical aberrations, focal plane array imagers cannot deliver the large depth-of-fields and field-of-views required in this regime. Active sensors on the other hand can deliver these but face challenges of illumination, speckle and multi-path issues when imaging canyon regions of the body. Fortunately an aperture synthesis passive millimetre wave imaging system can deliver large depth-of-fields and field-of-views, whilst having no speckle effects, as the radiometric emission from the human body is spatially incoherent. Furthermore, as in portal security screening scenarios the aperture synthesis imaging technique delivers a half-wavelength spatial resolution, it can effectively screen the whole of the human body. Some recent measurements are presented that demonstrate the three-dimensional imaging capability of extended sources using a 22 GHz aperture synthesis system. A comparison is made between imagery generated via the analytic Fourier transform and a gridding fast Fourier transform method. The analytic Fourier transform enables aliasing in the imagery to be more clearly identified. Some initial results are also presented of how the Gerchberg technique, an image enhancement algorithm used in radio astronomy, is adapted for three-dimensional imaging in security screening. This technique is shown to be able to improve the quality of imagery, without adding extra receivers to the imager. The requirements of a walk through security screening system for use at entrances to airport departure lounges are discussed, concluding that these can be met by an aperture synthesis imager.

  9. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  10. Representation of Complex Spectra in Auditory Cortex

    DTIC Science & Technology

    1997-01-01

    predict the response to any broadband dynamic sound. Fourier Transform Inverse Transform ∫ [.] exp(±2πjΩx±2πjwt) 2 1 2 / 1 1 a 2 1 2 / 1 1 a...Systems Research University of Maryland Spectro-Temporal Transform Ω wx = log f t w = “ripple velocity” Ω = “ripple frequency” Fourier Transform Inverse ... Transform ∫ [.] exp(±2πjΩx±2πjwt) Real functions in the spectro-temporal domain give rise to complex conjugate symmetric functions in the Fourier

  11. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  12. Physically motivated correlation formalism in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Roy, Ankita; Rafert, J. Bruce

    2004-05-01

    Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.

  13. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  14. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    PubMed

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  15. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn; Liu, Xing; Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fouriermore » transforms are the beams themselves.« less

  16. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-04-15

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.

    2017-12-01

    Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.

  18. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  19. A Simple Approach to Fourier Aliasing

    ERIC Educational Resources Information Center

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…

  20. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    NASA Technical Reports Server (NTRS)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  1. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  2. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. High-resolution matrix-assisted laser desorption ionization–imaging mass spectrometry of lipids in rodent optic nerve tissue

    PubMed Central

    Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.

    2013-01-01

    Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852

  4. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms.

    PubMed

    Reuben, Sheela; Banas, Krzysztof; Banas, Agnieszka; Swarup, Sanjay

    2014-11-01

    Understanding the spatial heterogeneity within environmental biofilms can provide an insight into compartmentalization of different functions in biofilm communities. We used a non-destructive and label-free method by combining Synchrotron Radiation-based Fourier Transform Infrared Microspectroscopy (SR-FTIR) with Confocal Laser Scanning Microscopy (CLSM) to distinguish the spatial chemical changes within multispecies biofilms grown from natural storm waters in flow cells. Among the different surfaces tested for biofilm growth and optimal imaging, mylar membranes were most suited and it enabled successful spatial infrared imaging of natural biofilms for obtaining reliable and interpretable FTIR spectra. Time series analysis of biofilm growth showed that influx of water during biofilm growth, results in significant changes in biofilm formation. Early biofilms showed active nutrient acquisition and desiccation tolerance mechanisms corresponding with accumulation of secreted proteins. Statistical approach used for the evaluation of chemical spectra allowed for clustering and classification of various regions of the biofilm. Microheterogeneity was observed in the polymeric components of the biofilm matrix, including cellulose, glycocalyx and dextran-like molecules. Fructan and glycan-rich regions were distinguishable and glycocalyx was abundant in the strongly adhering peripheral regions of biofilms. Inner core showed coexistence of oxygen dimers and ferrihydrite that will likely support growth of Fe (II)-oxidising bacteria. The combined SR-FTIR microspectroscopy and CSLM approach for complex natural biofilms described here will be useful both in understanding heterogeneity of matrix components and in correlating functions of juxtaposed microbial species in complex natural biofilms with physicochemical microenvironment to which they are exposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  6. RANKING TEM CAMERAS BY THEIR RESPONSE TO ELECTRON SHOT NOISE

    PubMed Central

    Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.

    2013-01-01

    We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera. PMID:23747527

  7. Spatiotemporal characterization of ultrashort optical vortex pulses

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel; Kotur, Marija; Rudawski, Piotr; Guo, Chen; Harth, Anne; L'Huillier, Anne; Arnold, Cord L.

    2017-12-01

    We use a spiral phase plate to generate few-cycle optical vortices from an ultrafast titanium:sapphire oscillator and characterize them in the spatiotemporal domain with a recently introduced technique based on spatially resolved Fourier transform spectrometry. The performance of this simple approach to the generation of optical vortices is analysed from a wavelength-dependent perspective as well as in the spatiotemporal domain, allowing us to characterize ultrashort vortex pulses in space, frequency and time.

  8. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates

    PubMed Central

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms. • The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform. • The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988

  9. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  10. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  11. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  12. A Comparison of Optical versus Hardware Fourier Transforms.

    DTIC Science & Technology

    1983-10-31

    AD- R136 223 A COMPRISON’OF OPTICAL ERSUS HARDWARE FOURIER i/i.TRANSFORMS(U) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG DEPT OF PHYSICS S P...transform and its inverse filtered Fourier transform obtained with the Digital Image Processing (DIP) hardware system located at the School of Aerospace...transparencies, and provided to us by Dr. Ralph G. Allen, Director of the Laser Effects Branch (Division of Radiation Sciences). The DIP system consisted of: an

  13. Fourier analysis and signal processing by use of the Moebius inversion formula

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.

    1990-01-01

    A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.

  14. Imaging through ground-level turbulence by Fourier telescopy: Simulations and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Randunu Pathirannehelage, Nishantha

    Fourier telescopy imaging is a recently-developed imaging method that relies on active structured-light illumination of the object. Reflected/scattered light is measured by a large "light bucket" detector; processing of the detected signal yields the magnitude and phase of spatial frequency components of the object reflectance or transmittance function. An inverse Fourier transform results in the image. In 2012 a novel method, known as time-average Fourier telescopy (TAFT), was introduced by William T. Rhodes as a means for diffraction-limited imaging through ground-level atmospheric turbulence. This method, which can be applied to long horizontal-path terrestrial imaging, addresses a need that is not solved by the adaptive optics methods being used in astronomical imaging. Field-experiment verification of the TAFT concept requires instrumentation that is not available at Florida Atlantic University. The objective of this doctoral research program is thus to demonstrate, in the absence of full-scale experimentation, the feasibility of time-average Fourier telescopy through (a) the design, construction, and testing of small-scale laboratory instrumentation capable of exploring basic Fourier telescopy data-gathering operations, and (b) the development of MATLAB-based software capable of demonstrating the effect of kilometer-scale passage of laser beams through ground-level turbulence in a numerical simulation of TAFT.

  15. Iterative wave-front reconstruction in the Fourier domain.

    PubMed

    Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

    2017-05-15

    The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

  16. Rapid update of discrete Fourier transform for real-time signal processing

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.; Kakad, Yogendra P.

    2001-10-01

    In many identification and target recognition applications, the incoming signal will have properties that render it amenable to analysis or processing in the Fourier domain. In such applications, however, it is usually essential that the identification or target recognition be performed in real time. An important constraint upon real-time processing in the Fourier domain is the time taken to perform the Discrete Fourier Transform (DFT). Ideally, a new Fourier transform should be obtained after the arrival of every new data point. However, the Fast Fourier Transform (FFT) algorithm requires on the order of N log2 N operations, where N is the length of the transform, and this usually makes calculation of the transform for every new data point computationally prohibitive. In this paper, we develop an algorithm to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computational order by a factor of log2 N. The algorithm can be modified to work in the presence of data window functions. This is a considerable advantage, because windowing is often necessary to reduce edge effects that occur because the implicit periodicity of the Fourier transform is not exhibited by the real-world signal. Versions are developed in this paper for use with the boxcar window, the split triangular, Hanning, Hamming, and Blackman windows. Generalization of these results to 2D is also presented.

  17. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  18. Fourier transform-wavefront reconstruction for the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone

    The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.

  19. Polarization Ratio Determination with Two Identical Linearly Polarized Antennas

    DTIC Science & Technology

    2017-01-17

    Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis

  20. Remote listening and passive acoustic detection in a 3-D environment

    NASA Astrophysics Data System (ADS)

    Barnhill, Colin

    Teleconferencing environments are a necessity in business, education and personal communication. They allow for the communication of information to remote locations without the need for travel and the necessary time and expense required for that travel. Visual information can be communicated using cameras and monitors. The advantage of visual communication is that an image can capture multiple objects and convey them, using a monitor, to a large group of people regardless of the receiver's location. This is not the case for audio. Currently, most experimental teleconferencing systems' audio is based on stereo recording and reproduction techniques. The problem with this solution is that it is only effective for one or two receivers. To accurately capture a sound environment consisting of multiple sources and to recreate that for a group of people is an unsolved problem. This work will focus on new methods of multiple source 3-D environment sound capture and applications using these captured environments. Using spherical microphone arrays, it is now possible to capture a true 3-D environment A spherical harmonic transform on the array's surface allows us to determine the basis functions (spherical harmonics) for all spherical wave solutions (up to a fixed order). This spherical harmonic decomposition (SHD) allows us to not only look at the time and frequency characteristics of an audio signal but also the spatial characteristics of an audio signal. In this way, a spherical harmonic transform is analogous to a Fourier transform in that a Fourier transform transforms a signal into the frequency domain and a spherical harmonic transform transforms a signal into the spatial domain. The SHD also decouples the input signals from the microphone locations. Using the SHD of a soundfield, new algorithms are available for remote listening, acoustic detection, and signal enhancement The new algorithms presented in this paper show distinct advantages over previous detection and listening algorithms especially for multiple speech sources and room environments. The algorithms use high order (spherical harmonic) beamforming and power signal characteristics for source localization and signal enhancement These methods are applied to remote listening, surveillance, and teleconferencing.

  1. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  2. The spatial variability of coastal surface water temperature during upwelling. [in Lake Superior

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Green, T., III

    1979-01-01

    Thermal scanner imagery acquired during a field experiment designed to study an upwelling event in Lake Superior is investigated. Temperature data were measured by the thermal scanner, with a spatial resolution of 7 m. These data were correlated with temperatures measured from boats. One- and two-dimensional Fourier transforms of the data were calculated and temperature variances as a function of wavenumber were plotted. A k-to-the-minus-three dependence of the temperature variance on wavenumber was found in the wavenumber range of 1-25/km. At wavenumbers greater than 25/km, a k-to-the-minus-five-thirds dependence was found.

  3. Improving demodulation accuracy of low-coherence interferometer against spatial-frequency nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai

    2013-12-01

    We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.

  4. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  5. Theory and operational rules for the discrete Hankel transform.

    PubMed

    Baddour, Natalie; Chouinard, Ugo

    2015-04-01

    Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.

  6. Sequential measurement of conjugate variables as an alternative quantum state tomography.

    PubMed

    Di Lorenzo, Antonio

    2013-01-04

    It is shown how it is possible to reconstruct the initial state of a one-dimensional system by sequentially measuring two conjugate variables. The procedure relies on the quasicharacteristic function, the Fourier transform of the Wigner quasiprobability. The proper characteristic function obtained by Fourier transforming the experimentally accessible joint probability of observing "position" then "momentum" (or vice versa) can be expressed as a product of the quasicharacteristic function of the two detectors and that unknown of the quantum system. This allows state reconstruction through the sequence (1) data collection, (2) Fourier transform, (3) algebraic operation, and (4) inverse Fourier transform. The strength of the measurement should be intermediate for the procedure to work.

  7. Teaching Fourier optics through ray matrices

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.

    2005-03-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.

  8. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  9. Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system.

    PubMed

    Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao

    2010-03-01

    We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.

  10. Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture

    DTIC Science & Technology

    2016-07-10

    different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the

  11. Application of an Imaging Fourier-Transform Spectrometer for the Means of Combustion Diagnostics

    DTIC Science & Technology

    2012-06-14

    and P. McCready. Dial measurements of fugitive emissions from natural gas plants and the comparison with emission factor estimates. Proc. 15th...12-J02 Abstract A passive remote sensing technique for accurately monitoring the combustion effi- ciency of petrochemical flares is greatly desired. A...and the spatial distribu- tion of combustion by-products. The flame spectra were characterized by structured emissions from CO2, H2O and CO

  12. Understanding the Influence of Turbulence in Imaging Fourier-Transform Spectrometry of Smokestack Plumes

    DTIC Science & Technology

    2011-03-01

    capability of FTS to estimate plume effluent concentrations by comparing intrusive measurements of aircraft engine exhaust with those from an FTS. A... turbojet engine. Temporal averaging was used to reduce SCAs in the spectra, and spatial maps of temperature and concentration were generated. The time...density function ( PDF ) is the de- fined as the derivative of the CDF, and describes the probability of obtaining a given value of X. For a normally

  13. SITELLE at the CFHT

    NASA Astrophysics Data System (ADS)

    Rousseau-Nepton, Laurie; Robert, Carmelle; Drissen, Laurent; Martin, R. Pierre; Martin, Thomas; SITELLE Collaboration

    2017-03-01

    SITELLE is the new imaging Fourier transform spectrograph of the Canada-France-Hawaii Telescope. It produces an impressive 4 million spectra in a single datacube in selected bandpasses from 350 to 900 nm. Its large FOV (11'x11') and its high spatial sampling (0.32''/pixel, seeing limited) allow us to study extended objects with an unprecedented view (Drissen et al. 2014). SITELLE's first observations of nearby galaxies revealed its capabilities to conduct detailed studies of emission line regions.

  14. Imaging RF Phased Array Receivers using Optically-Coherent Up-conversion for High Beam-Bandwidth Processing

    DTIC Science & Technology

    2017-03-01

    It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that

  15. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  16. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  17. Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

    DTIC Science & Technology

    2014-06-01

    Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE

  18. An introduction to wavelet analysis in oceanography and meteorology - With application to the dispersion of Yanai waves

    NASA Technical Reports Server (NTRS)

    Meyers, Steven D.; Kelly, B. G.; O'Brien, J. J.

    1993-01-01

    Wavelet analysis is a relatively new technique that is an important addition to standard signal analysis methods. Unlike Fourier analysis that yields an average amplitude and phase for each harmonic in a dataset, the wavelet transform produces an instantaneous estimate or local value for the amplitude and phase of each harmonic. This allows detailed study of nonstationary spatial or time-dependent signal characteristics. The wavelet transform is discussed, examples are given, and some methods for preprocessing data for wavelet analysis are compared. By studying the dispersion of Yanai waves in a reduced gravity equatorial model, the usefulness of the transform is demonstrated. The group velocity is measured directly over a finite range of wavenumbers by examining the time evolution of the transform. The results agree well with linear theory at higher wavenumber but the measured group velocity is reduced at lower wavenumbers, possibly due to interaction with the basin boundaries.

  19. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  20. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  1. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  2. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  3. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  4. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  5. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  6. Optical information-processing systems and architectures II; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.

  7. A Short-Segment Fourier Transform Methodology

    DTIC Science & Technology

    2009-03-01

    defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.

  8. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  9. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  10. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  11. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  12. Recent applications of hyperspectral imaging in microbiology.

    PubMed

    Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis

    2015-05-01

    Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  14. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  15. Hyperspectral imager for components identification in the atmosphere

    NASA Astrophysics Data System (ADS)

    Dewandel, Jean-Luc; Beghuin, Didier; Dubois, Xavier; Antoine, Philippe

    2017-11-01

    Several applications require the identification of chemical elements during re-entry of material in the atmosphere. The materials can be from human origin or meteorites. The Automated Transfer Vehicle (ATV) re-entry has been filmed with conventional camera from airborne manual operation. In order to permit the identification of the separate elements from their glow, spectral analysis needs to be added to the video data. In a LET-SME contract with ESA, Lambda-X has built a Fourier Transform Imaging Spectrometer to permit, in a future work, to bring the technology to the readiness level required for the application. In this paper, the principles of the Fourier Transform Imaging spectroscopy are recalled, the different interferometers suitable for supporting the technique are reviewed and the selection process is explained. The final selection of the interferometer corresponds to a birefringent prism based common path shear interferometer. The design of the breadboard and its performances are presented in terms of spatial resolution, aperture, and spectral resolution. A discussion is open regarding perspective of the technique for other remote sensing applications compared to more usual push broom configurations.

  16. Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher’s discriminant analysis

    PubMed Central

    Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang

    2016-01-01

    Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354

  17. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-01-01

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21416534

  18. Rotation invariant features for wear particle classification

    NASA Astrophysics Data System (ADS)

    Arof, Hamzah; Deravi, Farzin

    1997-09-01

    This paper investigates the ability of a set of rotation invariant features to classify images of wear particles found in used lubricating oil of machinery. The rotation invariant attribute of the features is derived from the property of the magnitudes of Fourier transform coefficients that do not change with spatial shift of the input elements. By analyzing individual circular neighborhoods centered at every pixel in an image, local and global texture characteristics of an image can be described. A number of input sequences are formed by the intensities of pixels on concentric rings of various radii measured from the center of each neighborhood. Fourier transforming the sequences would generate coefficients whose magnitudes are invariant to rotation. Rotation invariant features extracted from these coefficients were utilized to classify wear particle images that were obtained from a number of different particles captured at different orientations. In an experiment involving images of 6 classes, the circular neighborhood features obtained a 91% recognition rate which compares favorably to a 76% rate achieved by features of a 6 by 6 co-occurrence matrix.

  19. Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms.

    PubMed

    Yang, Fan; Kaczorowski, Andrzej; Wilkinson, Tim D

    2014-12-10

    A new method for constructing computer-generated holograms using a precalculated triangular mesh is presented. The speed of calculation can be increased dramatically by exploiting both the precalculated base triangle and GPU parallel computing. Unlike algorithms using point-based sources, this method can reconstruct a more vivid 3D object instead of a "hollow image." In addition, there is no need to do a fast Fourier transform for each 3D element every time. A ferroelectric liquid crystal spatial light modulator is used to display the binary hologram within our experiment and the hologram of a base right triangle is produced by utilizing just a one-step Fourier transform in the 2D case, which can be expanded to the 3D case by multiplying by a suitable Fresnel phase plane. All 3D holograms generated in this paper are based on Fresnel propagation; thus, the Fresnel plane is treated as a vital element in producing the hologram. A GeForce GTX 770 graphics card with 2 GB memory is used to achieve parallel computing.

  20. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    PubMed

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  2. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  4. Spatiotemporal Characteristics of Visual Localization. Phase 2.

    DTIC Science & Technology

    1987-09-30

    two monitors The delay between presentations gave the observer time to Wonrac 2900 C19 black -and-white monitors with 512 pixels saccade from one...FREQUENCY COMPONENTS d) Black and Wh,te Bars The following experiments investigate the role of high spatial frequencies in the localization of spectrally...s0 10O5 (c) GAUSSIAN-MODULATED HIGH FREQUENCY B3ARS 0 1 05 1 0 50 10 50 (dl BLACK AND WHITE BARS Fig 4 Fourier transforms of the stimuli used in the

  5. Acoustic Observation of the Time Dependence of the Roughness of Sandy Seafloors

    DTIC Science & Technology

    2009-11-25

    relations between acoustic and roughness temporal correlations are developed and applied. Manuscript received April 23, 2007; revised June 04. 2008 and...Fourier transform of the relief function as follows: (F(K2, t2)F*(Klt h)) = W(KU tu t2)6{Ki - K2) . (6) The presence of the Dirac delta function is only...appropriate if /(R, t) is stationary with infinite extent in the spatial coordi- nates. As a result of the windowing assumed here, the delta func

  6. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  7. A BASIC program for the removal of noise from reaction traces using Fourier filtering.

    PubMed

    Brittain, T

    1989-04-01

    Software for the removal of noise from reaction curves using the principle of Fourier filtering has been written in BASIC to execute on a PC. The program inputs reaction traces which are subjected to a rotation-inversion process, to produce functions suitable for Fourier analysis. Fourier transformation into the frequency domain is followed by multiplication of the transform by a rectangular filter function, to remove the noise frequencies. Inverse transformation then yields a noise-reduced reaction trace suitable for further analysis. The program is interactive at each stage and could easily be modified to remove noise from a range of input data types.

  8. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  9. Long Open Path Fourier Transform Spectroscopy Measurements of Greenhouse Gases in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Griffith, D. W. T.

    2015-12-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. Most in situ measurements are made at a point, but how representative are such measurements in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. In this paper we assess the precision, accuracy and reliability of long open path measurements by Fourier Transform Spectroscopy in the near infrared from a 5-month continuous record of measurements over a 1.5 km pathlength. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision, and we present recent progress in improving the original measurements.

  10. Resampling algorithm for the Spatial Infrared Imaging Telescope (SPIRIT III) Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Sargent, Steven D.; Greenman, Mark E.; Hansen, Scott M.

    1998-11-01

    The Spatial Infrared Imaging Telescope (SPIRIT III) is the primary sensor aboard the Midcourse Space Experiment (MSX), which was launched 24 April 1996. SPIRIT III included a Fourier transform spectrometer that collected terrestrial and celestial background phenomenology data for the Ballistic Missile Defense Organization (BMDO). This spectrometer used a helium-neon reference laser to measure the optical path difference (OPD) in the spectrometer and to command the analog-to-digital conversion of the infrared detector signals, thereby ensuring the data were sampled at precise increments of OPD. Spectrometer data must be sampled at accurate increments of OPD to optimize the spectral resolution and spectral position of the transformed spectra. Unfortunately, a failure in the power supply preregulator at the MSX spacecraft/SPIRIT III interface early in the mission forced the spectrometer to be operated without the reference laser until a failure investigation was completed. During this time data were collected in a backup mode that used an electronic clock to sample the data. These data were sampled evenly in time, and because the scan velocity varied, at nonuniform increments of OPD. The scan velocity profile depended on scan direction and scan length, and varied over time, greatly degrading the spectral resolution and spectral and radiometric accuracy of the measurements. The Convert software used to process the SPIRIT III data was modified to resample the clock-sampled data at even increments of OPD, using scan velocity profiles determined from ground and on-orbit data, greatly improving the quality of the clock-sampled data. This paper presents the resampling algorithm, the characterization of the scan velocity profiles, and the results of applying the resampling algorithm to on-orbit data.

  11. Analyses of Diamond Wire Sawn Wafers: Effect of Various Cutting Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas

    We have evaluated surface characteristics of diamond wire cut (DWC) wafers sawn under a variety of cutting parameters. These characteristics include surface roughness, spatial frequencies of surface profiles, phase changes, damage depth, and lateral non-uniformities in the surface damage. Various cutting parameters investigated are: wire size, diamond grit size, reciprocating frequency, feed rate, and wire usage. Spatial frequency components of surface topography/roughness are influenced by individual cutting parameters as manifested by distinct peaks in the Fourier transforms of the Dektak profiles. The depth of damage is strongly controlled by diamond grit size and wire usage and to a smaller degreemore » by the wire size.« less

  12. Photographic film image enhancement

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1975-01-01

    A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of optical spatial filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fourier transformation lenses. An array of spatial filters was fabricated on black and white emulsion slides using the coherent optical processor. The technique was first applied to laboratory white light fogged film, and the results were successful. However, when the same technique was applied to some original Apollo X radiation fogged color negatives, the results showed no similar restoration. Examples of each experiment are presented and possible reasons for the lack of restoration in the Apollo films are discussed.

  13. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  14. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  15. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  16. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  17. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  18. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  19. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.

  20. Use of the fractional Fourier transform in {pi}/2 converters of laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutin, A A

    2004-02-28

    The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic {pi}/2 converters of Hermite-Gaussian modes to donut Laguerre-Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared. (laser beams)

  1. Restoration algorithms for imaging through atmospheric turbulence

    DTIC Science & Technology

    2017-02-18

    the Fourier spectrum of each frame. The reconstructed image is then obtained by taking the inverse Fourier transform of the average of all processed...with wipξq “ Gσp|Fpviqpξq|pq řM j“1Gσp|Fpvjqpξq|pq , where F denotes the Fourier transform (ξ are the frequencies) and Gσ is a Gaussian filter of...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors

  2. Tomography: Three Dimensional Image Construction. Applications of Analysis to Medical Radiology. [and] Genetic Counseling. Applications of Probability to Medicine. [and] The Design of Honeycombs. Applications of Differential Equations to Biology. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 318, 456, 502.

    ERIC Educational Resources Information Center

    Solomon, Frederick; And Others.

    This document consists of three modules. The first looks at applications of analysis to medical radiology. The goals are to provide: 1) acquaintance with a significant applied mathematics problem utilizing Fourier Transforms; 2) generalization of the Fourier Transforms to two dimensions; 3) practice with Fourier Transforms; and 4) introduction to…

  3. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  4. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  5. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  6. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  7. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  8. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  9. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  10. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  11. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  12. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  13. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOEpatents

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  14. Logo recognition using alpha-rooted phase correlation in the radon transform domain

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2009-08-01

    Alpha-rooted phase correlation (ARPC) is a recently-developed variant of classical phase correlation that includes a Fourier domain image enhancement operation. ARPC combines classical phase correlation with alpha-rooting to provide tunable image enhancement. The alpha-rooting parameters may be adjusted to provide a tradeoff between height and width of the ARPC main lobe. A high narrow main lobe peak provides high matching accuracy for aligned images, but reduced matching performance for misaligned logos. A lower, wider peak trades matching accuracy on aligned logos, for improved matching performance on misaligned imagery. Previously, we developed ARPC and used it in the spatial domain for logo recognition as part of an overall automated document analysis problem. However, spatial domain ARPC performance can be sensitive to logo misalignments, including rotational misalignment. In this paper we use ARPC as a match metric in the radon transform domain for logo recognition. In the radon transform domain, rotational misalignments correspond to translations in the radon transform angle parameter. These translations are captured by ARPC, thereby producing rotation-invariant logo matching. In the paper, we first present an overview of ARPC, and then describe the logo matching algorithm. We present numerical performance results demonstrating matching tolerance to rotational misalignments. We demonstrate robustness of the radon transform domain rotation estimation to noise. We present logo verification and recognition performance results using the proposed approach on a public domain logo database. We compare performance results to performance obtained using spatial domain ARPC, and state-of-the-art SURF features, for logos in salt-and-pepper noise.

  15. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  16. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  17. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device.

    PubMed

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V

    2014-02-01

    We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered PA signal was enhanced by ∼4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells.

  18. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device

    PubMed Central

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V.

    2014-01-01

    We have developed spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded photoacoustic measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered photoacoustic signal was enhanced by ~4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells. PMID:24487832

  19. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    PubMed

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. 40 CFR Appendix B to Subpart Uuuuu - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix B to... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  1. An Evaluation of the Environmental Fate and Behavior of Munitions Materiel (Tetryl and Polar Metabolites of TNT) in Soil and Plant Systems. Environmental Fate and Behavior of Tetryl

    DTIC Science & Technology

    1992-03-01

    attempted to verify product identity and purity by GC with either Fourier transform infrared spectro.icopy (FTIR) or mass spectroscopy (MS) detection...ýl0 5 In-1 z U)-’i0oo -3g’i o -6o0 626o a i60 ito1 2i oo I ’ o [JfnVENUII8ER (cm- FIGURE 3,9. Fourier Transform Infrared Spectroscopy Spectrum of...Fourier Transform Infrared Spectroscopy Spectrum of Tetryl I-I F1U~IGUR Fourier Utransformlfret Spcrop S ectrum of TeasomtinPoutrl 0 , -39 i : : : -. . i

  2. Modeling of earthquake ground motion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation model is assessed using data from the SMART-1 array in Taiwan. The interpolation model provides an effective method to estimate ground motion at a site using recordings from stations located up to several kilometers away. Reliable estimates of differential ground motion are restricted to relatively limited ranges of frequencies and inter-station spacings.

  3. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizikov, Konstantin; Lin, Tzu-Yung; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The rangemore » of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.« less

  4. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  5. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    NASA Astrophysics Data System (ADS)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  6. Synthesis, Analysis, and Processing of Fractal Signals

    DTIC Science & Technology

    1991-10-01

    coordinator in hockey, squash, volleyball, and softball, but also for reminding me periodically that 1/f noise can exist outside a computer. More...similar signals as Fourier-based representations are for stationary and periodic signals. Furthermore, because wave- let transformations can be...and periodic signals. Furthermore, just as the discovery of fast Fourier transform (FFT) algorithms dramatically increased the viability the Fourier

  7. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    NASA Astrophysics Data System (ADS)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  8. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    PubMed

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  9. Wavelets

    NASA Astrophysics Data System (ADS)

    Strang, Gilbert

    1994-06-01

    Several methods are compared that are used to analyze and synthesize a signal. Three ways are mentioned to transform a symphony: into cosine waves (Fourier transform), into pieces of cosines (short-time Fourier transform), and into wavelets (little waves that start and stop). Choosing the best basis, higher dimensions, fast wavelet transform, and Daubechies wavelets are discussed. High-definition television is described. The use of wavelets in identifying fingerprints in the future is related.

  10. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  11. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  12. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  13. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  14. A Comparison of FTNMR and FTIR Techniques.

    ERIC Educational Resources Information Center

    Ahn, Myong-Ku

    1989-01-01

    Nuclear magnetic resonance and infrared are two spectroscopic methods that commonly use the Fourier transform technique. Discussed are the similarities and differences in the use of the Fourier transform in these two spectroscopic techniques. (CW)

  15. A Graphical Presentation to Teach the Concept of the Fourier Transform

    ERIC Educational Resources Information Center

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  16. Novel hybrid optical correlator: theory and optical simulation.

    PubMed

    Casasent, D; Herold, R L

    1975-02-01

    The inverse transform of the product of two Fourier transform holograms is analyzed and shown to contain the correlation of the two images from which the holograms were formed. The theory, analysis, and initial experimental demonstration of the feasibility of a novel correlation scheme using this multiplied Fourier transform hologram system are presented.

  17. Fast algorithm for chirp transforms with zooming-in ability and its applications.

    PubMed

    Deng, X; Bihari, B; Gan, J; Zhao, F; Chen, R T

    2000-04-01

    A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10(-12) for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0 < or = z < d2/lambda. It compensates another algorithm for Fresnel diffraction that is limited to z > d2/lambdaN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.

  18. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  19. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  20. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  1. Experimental image alignment system

    NASA Technical Reports Server (NTRS)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  2. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  3. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  4. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  5. Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fabre, David Hanks

    The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.

  6. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  7. Nonlinear Optical Image Processing with Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Deiss, Ron (Technical Monitor)

    1994-01-01

    The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.

  8. A fast D.F.T. algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.

  9. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  10. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  11. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  12. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  13. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  14. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  15. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  16. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  17. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  18. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  19. Partial Fourier techniques in single-shot cross-term spatiotemporal encoded MRI.

    PubMed

    Zhang, Zhiyong; Frydman, Lucio

    2018-03-01

    Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses-especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments' acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506-1514, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    PubMed

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  1. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  2. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  3. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  4. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  5. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  6. Biomolecular surface construction by PDE transform

    PubMed Central

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2011-01-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140

  7. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  8. A fast Karhunen-Loeve transform for a class of random processes

    NASA Technical Reports Server (NTRS)

    Jain, A. K.

    1976-01-01

    It is shown that for a class of finite first-order Markov signals, the Karhunen-Loeve (KL) transform for data compression is a set of periodic sine functions if the boundary values of the signal are fixed or known. These sine functions are shown to be related to the Fourier transform so that a fast Fourier transform algorithm can be used to implement the KL transform. Extension to two dimensions with reference to images with separable contravariance function is shown.

  9. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    DOEpatents

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  10. Aperture synthesis for microwave radiometers in space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Good, J. C.

    1983-01-01

    A technique is described for obtaining passive microwave measurements from space with high spatial resolution for remote sensing applications. The technique involves measuring the product of the signal from pairs of antennas at many different antenna spacings, thereby mapping the correlation function of antenna voltage. The intensity of radiation at the source can be obtained from the Fourier transform of this correlation function. Theory is presented to show how the technique can be applied to large extended sources such as the Earth when observed from space. Details are presented for a system with uniformly spaced measurements.

  11. Optical restoration of images blurred by atmospheric turbulence using optimum filter theory.

    PubMed

    Horner, J L

    1970-01-01

    The results of optimum filtering from communications theory have been applied to an image restoration problem. Photographic film imagery, degraded by long-term artificial atmospheric turbulence, has been restored by spatial filters placed in the Fourier transform plane. The time-averaged point spread function was measured and used in designing the filters. Both the simple inverse filter and the optimum least-mean-square filters were used in the restoration experiments. The superiority of the latter is conclusively demonstrated. An optical analog processor was used for the restoration.

  12. Extracellular proteins limit the dispersal of biogenic nanoparticles

    USGS Publications Warehouse

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  13. Polarization-phase tomography of biological fluids polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Dubolazov, A. V.; Vanchuliak, O. Ya.; Garazdiuk, M.; Sidor, M. I.; Motrich, A. V.; Kostiuk, S. V.

    2013-12-01

    Our research is aimed at designing an experimental method of Fourier's laser polarization phasometry of the layers of human effusion for an express diagnostics during surgery and a differentiation of the degree of severity (acute - gangrenous) appendectomy by means of statistical, correlation and fractal analysis of the coherent scattered field. A model of generalized optical anisotropy of polycrystal networks of albumin and globulin of the effusion of appendicitis has been suggested and the method of Fourier's phasometry of linear (a phase shift between the orthogonal components of the laser wave amplitude) and circular (the angle of rotation of the polarization plane) birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. Comparative studies of the efficacy of the methods of direct mapping of phase distributions and Fourier's phasometry of a laser radiation field transformed by the dendritic and spherolitic networks of albumin and globulin of the layers of effusion of appendicitis on the basis of complex statistical, correlation and fractal analysis of the structure of phase maps.

  14. KAM Tori Construction Algorithms

    NASA Astrophysics Data System (ADS)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  15. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  16. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  17. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  18. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  19. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    PubMed

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  20. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    PubMed

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  1. Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction.

    PubMed

    Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui

    2015-06-01

    We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hyperspectral fundus imager

    NASA Astrophysics Data System (ADS)

    Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III

    2000-11-01

    A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.

  3. Final design of SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Grandmont, F.; Drissen, L.; Mandar, Julie; Thibault, S.; Baril, Marc

    2012-09-01

    We report here on the current status of SITELLE, an imaging Fourier transform spectrometer to be installed on the Canada-France Hawaii Telescope in 2013. SITELLE is an Integral Field Unit (IFU) spectrograph capable of obtaining the visible (350 nm - 900 nm) spectrum of every pixel of a 2k x 2k CCD imaging a field of view of 11 x 11 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R < 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional IFUs, such as GMOS-IFU on Gemini or the upcoming MUSE on the VLT. SITELLE follows on the legacy of BEAR, an imaging conversion of the CFHT FTS and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  4. Fourier Transform Infrared Spectroscopy of CF4 on the GEC Reference Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Cruden, Brett A.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize inductively coupled CF4 plasmas in a GEC Reference Cell in-situ In examining these FTIR spectra, several assumptions and approximations of FTIR analysis are addressed. This includes the density dependence of cross-sections, non-linear effects in the addition of overlapping bands and the effect of spatial variations in density and temperature, This analysis demonstrates that temperatures extracted from MR spectra may provide a poor estimate of the true neutral plasma temperature. The FTIR spectra are dominated by unreacted CF, accounting for 40-60% of the gas products. The amount of CF4 consumption is found to have a marked dependence on power, and is nearly independent of pressure in the range of 10-50 mtorr. Small amounts of C2F6 are observed at low power. Also observed are etching products from the quartz window SiF4 COF2 and CO which occur in approximately equal ratios and together account for less than 10% of the gas. The concentrations of these species are nearly independent of pressure. CFx radicals are below the detection limit of this apparatus (approx. 1012/cc).

  5. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    PubMed

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-07

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  6. Development and application of Fourier-transform infrared chemical imaging of tumour in human tissue.

    PubMed

    Petter, C H; Heigl, N; Rainer, M; Bakry, R; Pallua, J; Bonn, G K; Huck, C W

    2009-01-01

    Fourier-transform infrared (FT-IR) based mapping and imaging is a fast emerging technology which is being increasingly applied to investigate tissues in the high-throughput mode. The high resolution close to the cellular level, the possibility to determine the bio-distribution of molecules of interest (proteins, peptides, lipids, carbohydrates) without any pre-treatment and the offer to yield molecular structure information have brought evidence that this technique allows to gain new insights in cancer pathology. Thus, several individual mainly protein and peptide cancer markers ("biomarkers") can be identified from FT-IR tissue images, enabling accurate discrimination between healthy and tumour areas. Optimal data acquisition (spatial resolution, spectral resolution, signal to noise ratio), classification, and validation are necessary to establish practical protocols that can be translated to the qualitative and quantitative clinical routine analysis. Thereby, the development of modern fast infrared imaging systems has strongly supported its acceptance in clinical histopathology. In this review, the necessity of analysis based on global cancer statistics, instrumental setups and developments, experimental state of the art are summarised and applications to investigate different kinds of cancer (e.g., prostate, breast, cervical, colon, oral cavity) are shown and discussed in detail.

  7. Measurement of drug and macromolecule diffusion across atherosclerotic rabbit aorta ex vivo by attenuated total reflection-Fourier transform infrared imaging

    NASA Astrophysics Data System (ADS)

    Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.

    2009-07-01

    Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.

  8. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.

  9. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  10. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  11. A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies

    NASA Astrophysics Data System (ADS)

    Leśniewska, Danuta

    2017-06-01

    Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.

  12. Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko

    2017-07-10

    This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.

  13. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  14. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  15. Fourier transform spectroscopy of cotton and cotton trash

    USDA-ARS?s Scientific Manuscript database

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  16. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  17. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  18. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  19. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  20. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    PubMed

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  1. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  2. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com; LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex; Lehe, Remi

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas.more » The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.« less

  3. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    DTIC Science & Technology

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier

  4. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  5. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Surjan; Rai, K. N.

    2016-06-01

    In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.

  6. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  7. A Method to Compute the Force Signature of a Body Impacting on a Linear Elastic Structure Using Fourier Analysis

    DTIC Science & Technology

    1982-09-17

    FK * 1PK (2) The convolution of two transforms in time domain is the inverse transform of the product in frequency domain. Thus Rp(s) - Fgc() Ipg(*) (3...its inverse transform by: R,(r)- R,(a.)e’’ do. (5)2w In order to nuke use f a very accurate numerical method to ompute Fourier "ke and coil...taorm. When the inverse transform it tken by using Eq. (15), the cosine transform, because it converges faster than the sine transform refu-ft the

  8. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  9. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  10. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  11. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  12. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  13. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  14. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  15. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  16. Controlling the motion of solitons in 1-D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Giridharan, D.; Sabareesan, P.; Daniel, M.

    2018-04-01

    We investigate nonlinear localized magnetic excitations in a simple form of one dimensional magnonic crystal by considering a ferromagnetic medium under periodic applied magnetic field of spatially varying strength. The governing Landau-Lifshitz equation is transformed into nonlinear evolution equation of a complex function through stereographic projection technique. The associated evolution equation numerically solved by using split-step Fourier method (SSFM). From the obtained results it is observed that the excitations appear in the form of solitons and the periodic magnetic field of spatially varying strength perturbs the soliton propagation. Bright and dark soliton solutions are constructed and studied the effect of tuning the strength of spatially periodic applied magnetic field on the nonlinear excitation of magnetization. The results show that the amplitude and velocity of the soliton can be effectively managed by varying the strength of spatially periodic applied magnetic field and it act as periodic potential which provides an additional degree of freedom to control the nature of soliton propagation in a ferromagnetic medium.

  17. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  18. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  19. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    PubMed

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  20. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  1. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  2. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  3. Extreme ultraviolet interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less

  4. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  5. Fourier-transform imaging of cotton and botanical and field trash mixtures

    USDA-ARS?s Scientific Manuscript database

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  6. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  7. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  8. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  9. Fourier phase in Fourier-domain optical coherence tomography.

    PubMed

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  10. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  11. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofschen, S.; Wolff, I.

    1996-08-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less

  12. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  13. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Coherent optical processing using noncoherent light after source masking.

    PubMed

    Boopathi, V; Vasu, R M

    1992-01-10

    Coherent optical processing starting with spatially noncoherent illumination is described. Good spatial coherence is introduced in the far field by modulating a noncoherent source when masks with sharp autocorrelation are used. The far-field mutual coherence function of light is measured and it is seen that, for the masks and the source size used here, we get a fairly large area over which the mutual coherence function is high and flat. We demonstrate traditional coherent processing operations such as Fourier transformation and image deblurring when coherent light that is produced in the above fashion is used. A coherence-redundancy merit function is defined for this type of processing system. It is experimentally demonstrated that the processing system introduced here has superior blemish tolerance compared with a traditional processor that uses coherent illumination.

  15. Feature Extraction for Bearing Prognostics and Health Management (PHM) - A Survey (Preprint)

    DTIC Science & Technology

    2008-05-01

    Envelope analysis • Cepstrum analysis • Higher order spectrum • Short-time Fourier Transform (STFT) • Wigner - Ville distribution ( WVD ) • Empirical mode...techniques are the short-time Fourier transform (STFT), the Wigner - Ville distribution , and the wavelet transform. In this paper we categorize wavelets...diagnosis have shown in many publications, for example, [22]. b) Wigner – Ville distribution : The afore-mentioned STFT is conceptually simple. However

  16. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  17. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  18. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  19. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  20. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  1. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  2. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  3. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  4. Machine Learning-Aided, Robust Wideband Spectrum Sensing for Cognitive Radios

    DTIC Science & Technology

    2015-06-12

    to even Approved for public release; distribution is unlimited. 2 on the order of a giga -Hertz (GHz). Due to wide bandwidth and noncontiguous...Frequency Band CS Compressive Sampling DFT Discrete Fourier Transform EMI Electro Magnetic Interference FFT Fast Fourier Transform GHz Giga Hertz Hz Hertz

  5. The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer

    DTIC Science & Technology

    2015-12-30

    unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 19 Harold D. Ladouceur (202) 767-3558 Fourier ...13 REFERENCES………………………………………………………………………………….………..14 E-1 EXECUTIVE SUMMARY Fourier transform infrared...Raman spectroscopy, ambient x-ray photoelectron spectroscopy, near- infrared thermal imaging, and Fourier transform infrared emission spectroscopy

  6. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    PubMed

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  7. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  8. Diffraction Theory and Almost Periodic Distributions

    NASA Astrophysics Data System (ADS)

    Strungaru, Nicolae; Terauds, Venta

    2016-09-01

    We introduce and study the notions of translation bounded tempered distributions, and autocorrelation for a tempered distribution. We further introduce the spaces of weakly, strongly and null weakly almost periodic tempered distributions and show that for weakly almost periodic tempered distributions the Eberlein decomposition holds. For translation bounded measures all these notions coincide with the classical ones. We show that tempered distributions with measure Fourier transform are weakly almost periodic and that for this class, the Eberlein decomposition is exactly the Fourier dual of the Lebesgue decomposition, with the Fourier-Bohr coefficients specifying the pure point part of the Fourier transform. We complete the project by looking at few interesting examples.

  9. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  10. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  11. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  12. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  13. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  14. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    PubMed Central

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  15. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  16. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  17. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  18. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  19. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  20. Ultra-Wideband Radar Transient Detection using Time-Frequency and Wavelet Transforms.

    DTIC Science & Technology

    1992-12-01

    if p==2, mesh(flipud(abs(spdatamatrix).A2)) end 2. Wigner - Ville Distribution function P = wvd (data,winlenstep,begintheendp) % Filename: wvd.m % Title...short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution , and time-scale methods, such as the a trous...such as the short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution [1], and time-scale methods, such

  1. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  2. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  3. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  4. Innovative design method of automobile profile based on Fourier descriptor

    NASA Astrophysics Data System (ADS)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  5. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  6. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  7. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  8. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  9. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  10. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  11. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  12. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  13. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  14. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  15. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  16. Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A

    NASA Astrophysics Data System (ADS)

    Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.

    2017-02-01

    Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.

  17. An alternative path to the boundary: The CFT as the Fourier space of AdS

    NASA Astrophysics Data System (ADS)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the possible representations of a black hole in the CFT. We find that the black hole micro-states live on the boundary, not on the horizon, and correspond to the possible emission modes of the black hole.

  18. Biomolecular surface construction by PDE transform.

    PubMed

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2012-03-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.

  19. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  20. Content-based fused off-axis object illumination direct-to-digital holography

    DOEpatents

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  1. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    PubMed

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  2. Resolvent estimates in homogenisation of periodic problems of fractional elasticity

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill; Waurick, Marcus

    2018-03-01

    We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier-Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.

  3. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  4. Theory of Wavelet-Based Coarse-Graining Hierarchies for Molecular Dynamics

    DTIC Science & Technology

    2017-04-01

    resolution. ............................................... 15 Fig. 6 Fourier transform of the y-component of 1,000 atoms in crystalline PE (100,800 atoms...of magnitude of optimal representation. . 16 Fig. 7 Top row: Fourier transform of the y-component of a 100,800 atom crystalline PE sampled at 1 fs. 3... transform of the z-component of alanine dipeptide in vacuum excluding zero frequency to allow detail at other frequencies. MD at 500 K and 1 atm. Left

  5. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  6. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  7. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  8. Geometry and dynamics in the fractional discrete Fourier transform.

    PubMed

    Wolf, Kurt Bernardo; Krötzsch, Guillermo

    2007-03-01

    The N x N Fourier matrix is one distinguished element within the group U(N) of all N x N unitary matrices. It has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators. The dynamical correspondence is exact only in the N-->infinity contraction limit for the integral Fourier transform and its fractional powers. In the finite-N case, several options have been considered in the literature. We compare their fidelity in reproducing the classical harmonic motion of discrete coherent states.

  9. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  10. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  11. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  12. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    ERIC Educational Resources Information Center

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  13. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  14. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  15. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  16. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  17. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  18. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  19. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  20. Application of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

Top