An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information
Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn
2011-01-01
Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871
NASA Astrophysics Data System (ADS)
Ahlers, Dirk; Boll, Susanne
In recent years, the relation of Web information to a physical location has gained much attention. However, Web content today often carries only an implicit relation to a location. In this chapter, we present a novel location-based search engine that automatically derives spatial context from unstructured Web resources and allows for location-based search: our focused crawler applies heuristics to crawl and analyze Web pages that have a high probability of carrying a spatial relation to a certain region or place; the location extractor identifies the actual location information from the pages; our indexer assigns a geo-context to the pages and makes them available for a later spatial Web search. We illustrate the usage of our spatial Web search for location-based applications that provide information not only right-in-time but also right-on-the-spot.
Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames
Kelemen, Eduard; Fenton, André A.
2010-01-01
Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble's preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus. PMID:20585373
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
Influence of local objects on hippocampal representations: landmark vectors and memory
Deshmukh, Sachin S.; Knierim, James J.
2013-01-01
The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. Here, we demonstrate correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects. We describe a new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day’s recording sessions, in 8 cases the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. We also demonstrate object-location memory in the hippocampus. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object +place conjunctive memory; in other neurons the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal’s location and the location of objects in its environment. PMID:23447419
Sex differences in the weighting of metric and categorical information in spatial location memory.
Holden, Mark P; Duff-Canning, Sarah J; Hampson, Elizabeth
2015-01-01
According to the Category Adjustment model, remembering a spatial location involves the Bayesian combination of fine-grained and categorical information about that location, with each cue weighted by its relative certainty. However, individuals may differ in terms of their certainty about each cue, resulting in estimates that rely more or less on metric or categorical representations. To date, though, very little research has examined individual differences in the relative weighting of these cues in spatial location memory. Here, we address this gap in the literature. Participants were asked to recall point locations in uniform geometric shapes and in photographs of complex, natural scenes. Error patterns were analyzed for evidence of a sex difference in the relative use of metric and categorical information. As predicted, women placed relatively more emphasis on categorical cues, while men relied more heavily on metric information. Location reproduction tasks showed a similar effect, implying that the sex difference arises early in spatial processing, possibly during encoding.
Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A
2018-01-30
Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.
Reference frames in allocentric representations are invariant across static and active encoding
Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.
2013-01-01
An influential model of spatial memory—the so-called reference systems account—proposes that relationships between objects are biased by salient axes (“frames of reference”) provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing. PMID:24009595
Roth, Zvi N
2016-01-01
Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.
Roth, Zvi N.
2016-01-01
Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455
Factors modulating social influence on spatial choice in rats.
Bisbing, Teagan A; Saxon, Marie; Sayde, Justin M; Brown, Michael F
2015-07-01
Three experiments examined the conditions under which the spatial choices of rats searching for food are influenced by the choices made by other rats. Model rats learned a consistent set of baited locations in a 5 × 5 matrix of locations, some of which contained food. In Experiment 1, subject rats could determine the baited locations after choosing 1 location because all of the baited locations were on the same side of the matrix during each trial (the baited side varied over trials). Under these conditions, the social cues provided by the model rats had little or no effect on the choices made by the subject rats. The lack of social influence on choices occurred despite a simultaneous social influence on rats' location in the testing arena (Experiment 2). When the outcome of the subject rats' own choices provided no information about the positions of other baited locations, on the other hand, social cues strongly controlled spatial choices (Experiment 3). These results indicate that social information about the location of food influences spatial choices only when those cues provide valid information that is not redundant with the information provided by other cues. This suggests that social information is learned about, processed, and controls behavior via the same mechanisms as other kinds of stimuli. (c) 2015 APA, all rights reserved).
Attention to multiple locations is limited by spatial working memory capacity.
Close, Alex; Sapir, Ayelet; Burnett, Katherine; d'Avossa, Giovanni
2014-08-21
What limits the ability to attend several locations simultaneously? There are two possibilities: Either attention cannot be divided without incurring a cost, or spatial memory is limited and observers forget which locations to monitor. We compared motion discrimination when attention was directed to one or multiple locations by briefly presented central cues. The cues were matched for the amount of spatial information they provided. Several random dot kinematograms (RDKs) followed the spatial cues; one of them contained task-relevant, coherent motion. When four RDKs were presented, discrimination accuracy was identical when one and two locations were indicated by equally informative cues. However, when six RDKs were presented, discrimination accuracy was higher following one rather than multiple location cues. We examined whether memory of the cued locations was diminished under these conditions. Recall of the cued locations was tested when participants attended the cued locations and when they did not attend the cued locations. Recall was inaccurate only when the cued locations were attended. Finally, visually marking the cued locations, following one and multiple location cues, equalized discrimination performance, suggesting that participants could attend multiple locations when they did not have to remember which ones to attend. We conclude that endogenously dividing attention between multiple locations is limited by inaccurate recall of the attended locations and that attention poses separate demands on the same central processes used to remember spatial information, even when the locations attended and those held in memory are the same. © 2014 ARVO.
Mapping the timecourse of goal-directed attention to location and colour in human vision.
Adams, Rachel C; Chambers, Christopher D
2012-03-01
Goal-directed attention prioritises perception of task-relevant stimuli according to location, features, or onset time. In this study we compared the behavioural timecourse of goal-directed selection to locations and colours by varying the stimulus-onset asynchrony (SOA) between cue and target in a strategic cueing paradigm. Participants reported the presence or absence of a target following prior information regarding its location or colour. Results revealed that preparatory selection by colour is more effective at enhancing perceptual sensitivity than selection by location, even though both types of cue provided equivalent overall information. More detailed analysis revealed that this advantage arose due a limitation of spatial attention in maintaining a sufficiently broad focus (>2°) for target detection across multiple stimuli. In contrast, when target stimuli fell within 2° of the spatial attention spotlight, the strategic advantages and speed of spatial and colour attention were equated. Our findings are consistent with the conclusion that, under spatially optimal conditions, prior spatial and colour information are equally proficient at guiding top-down selection. When spatial locations are ambiguous, however, colour-based selection is the more efficient mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Five on one side: personal and social information in spatial choice.
Brown, Michael F; Saxon, Marie E; Bisbing, Teagan; Evans, Jessica; Ruff, Jennifer; Stokesbury, Andrew
2015-03-01
To examine whether the outcome of a rat's own choices ("personal information") and the choice behavior of another rat ("social information") can jointly control spatial choices, rats were tested in an open field task in which they searched for food. For the rats of primary interest (Subject Rats), the baited locations were all on one side of the arena, but the specific locations baited and the side on which they occurred varied over trials. The Subject Rats were sometimes tested together with an informed "Model" rat that had learned to find food in the same five locations (all on the same side of the arena) on every trial. Unintended perceptual cues apparently controlled spatial choices at first, but when perceptual cues to food location were not available, choices were controlled by both personal information (allowing the baited side of the arena to be determined) and social information (allowing baited locations to be determined more precisely). This shows that control by personal and social information are not mutually exclusive and supports the view that these two kinds of information can be used flexibly and adaptively to guide spatial choices. This article is part of a Special Issue entitled: tribute to Tom Zentall. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient Information Access for Location-Based Services in Mobile Environments
ERIC Educational Resources Information Center
Lee, Chi Keung
2009-01-01
The demand for pervasive access of location-related information (e.g., local traffic, restaurant locations, navigation maps, weather conditions, pollution index, etc.) fosters a tremendous application base of "Location Based Services (LBSs)". Without loss of generality, we model location-related information as "spatial objects" and the accesses…
Number Prompts Left-to-Right Spatial Mapping in Toddlerhood
ERIC Educational Resources Information Center
McCrink, Koleen; Perez, Jasmin; Baruch, Erica
2017-01-01
Toddlers performed a spatial mapping task in which they were required to learn the location of a hidden object in a vertical array and then transpose this location information 90° to a horizontal array. During the vertical training, they were given (a) no labels, (b) alphabetical labels, or (c) numerical labels for each potential spatial location.…
Deployment of spatial attention towards locations in memory representations. An EEG study.
Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J
2013-01-01
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.
A category adjustment approach to memory for spatial location in natural scenes.
Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F
2010-05-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Ontology-Based Retrieval of Spatially Related Objects for Location Based Services
NASA Astrophysics Data System (ADS)
Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo
Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.
Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.
Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E
2017-11-06
Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age. Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.
Category-Based Errors and the Accessibility of Unbiased Spatial Memories: A Retrieval Model
ERIC Educational Resources Information Center
Sampaio, Cristina; Wang, Ranxiao Frances
2009-01-01
Studies have consistently shown a spatial memory bias such that a target location is remembered toward the prototypical location of the region to which the target belongs, indicating a blending between the target's specific information and the generic information of its region. The authors investigated whether people retain a veridical…
The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.
Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan
2016-01-01
Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.
Dorsal Hippocampus Function in Learning and Expressing a Spatial Discrimination
ERIC Educational Resources Information Center
White, Norman M.; Gaskin, Stephane
2006-01-01
Learning to discriminate between spatial locations defined by two adjacent arms of a radial maze in the conditioned cue preference paradigm requires two kinds of information: latent spatial learning when the rats explore the maze with no food available, and learning about food availability in two spatial locations when the rats are then confined…
How different location modes influence responses in a Simon-like task.
Luo, Chunming; Proctor, Robert W
2017-11-01
Spatial information can be conveyed not only by stimulus position but by the meaning of a location word or direction of an arrow. We examined whether all the location-, arrow- and word-based Simon effects or some of them can be observed when a location word or an arrow is presented eccentrically and a left-right keypress is made to indicate its ink color. Results showed that only the location-based Simon effect was observed for location words, whereas an additional smaller arrow-based Simon effect, compared to the location-based Simon effect was observed, for arrows. These results showed spatial location, arrow direction, and location word stimulus dimensions affect response position codes in a spatial-to-verbal priority order, consistent with the possibility that they can activate mode-specific spatial representations.
Sharp wave ripples during learning stabilize hippocampal spatial map
Roux, Lisa; Hu, Bo; Eichler, Ronny; Stark, Eran; Buzsáki, György
2017-01-01
Cognitive representation of the environment requires a stable hippocampal map but the mechanisms maintaining map representation are unknown. Because sharp wave-ripples (SPW-R) orchestrate both retrospective and prospective spatial information, we hypothesized that disrupting neuronal activity during SPW-Rs affects spatial representation. Mice learned daily a new set of three goal locations on a multi-well maze. We used closed-loop SPW-R detection at goal locations to trigger optogenetic silencing of a subset of CA1 pyramidal neurons. Control place cells (non-silenced or silenced outside SPW-Rs) largely maintained the location of their place fields after learning and showed increased spatial information content. In contrast, the place fields of SPW-R-silenced place cells remapped, and their spatial information remained unaltered. SPW-R silencing did not impact the firing rates or the proportions of place cells. These results suggest that interference with SPW-R-associated activity during learning prevents the stabilization and refinement of the hippocampal map. PMID:28394323
ERIC Educational Resources Information Center
Rekkas, P. V.; Westerveld, M.; Skudlarski, P.; Zumer, J.; Pugh, K.; Spencer, D. D.; Constable, R. T.
2005-01-01
The retrieval of temporal-order versus spatial-location information was investigated using fMRI. The primary finding in the hippocampus proper, seen in region of interest analyses, was an increase in BOLD signal intensity for temporal retrieval, and a decrease in signal intensity for spatial retrieval, relative to baseline. The negative BOLD…
Awh, E; Anllo-Vento, L; Hillyard, S A
2000-09-01
We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.
No Sex Differences in Spatial Location Memory for Abstract Designs
ERIC Educational Resources Information Center
Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan
2011-01-01
Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…
Integration of Hand and Finger Location in External Spatial Coordinates for Tactile Localization
ERIC Educational Resources Information Center
Heed, Tobias; Backhaus, Jenny; Roder, Brigitte
2012-01-01
Tactile stimulus location is automatically transformed from somatotopic into external spatial coordinates, rendering information about the location of touch in three-dimensional space. This process is referred to as tactile remapping. Whereas remapping seems to occur automatically for the hands and feet, the fingers may constitute an exception in…
A Category Adjustment Approach to Memory for Spatial Location in Natural Scenes
ERIC Educational Resources Information Center
Holden, Mark P.; Curby, Kim M.; Newcombe, Nora S.; Shipley, Thomas F.
2010-01-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in…
Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.
Shiell, Martha M; Hausfeld, Lars; Formisano, Elia
2018-05-23
The primary and posterior auditory cortex (AC) are known for their sensitivity to spatial information, but how this information is processed is not yet understood. AC that is sensitive to spatial manipulations is also modulated by the number of auditory streams present in a scene (Smith et al., 2010), suggesting that spatial and nonspatial cues are integrated for stream segregation. We reasoned that, if this is the case, then it is the distance between sounds rather than their absolute positions that is essential. To test this hypothesis, we measured human brain activity in response to spatially separated concurrent sounds with fMRI at 7 tesla in five men and five women. Stimuli were spatialized amplitude-modulated broadband noises recorded for each participant via in-ear microphones before scanning. Using a linear support vector machine classifier, we investigated whether sound location and/or location plus spatial separation between sounds could be decoded from the activity in Heschl's gyrus and the planum temporale. The classifier was successful only when comparing patterns associated with the conditions that had the largest difference in perceptual spatial separation. Our pattern of results suggests that the representation of spatial separation is not merely the combination of single locations, but rather is an independent feature of the auditory scene. SIGNIFICANCE STATEMENT Often, when we think of auditory spatial information, we think of where sounds are coming from-that is, the process of localization. However, this information can also be used in scene analysis, the process of grouping and segregating features of a soundwave into objects. Essentially, when sounds are further apart, they are more likely to be segregated into separate streams. Here, we provide evidence that activity in the human auditory cortex represents the spatial separation between sounds rather than their absolute locations, indicating that scene analysis and localization processes may be independent. Copyright © 2018 the authors 0270-6474/18/384977-08$15.00/0.
The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades
Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan
2016-01-01
Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID:27631767
ERIC Educational Resources Information Center
Marcinowski, Emily C.; Campbell, Julie Marie
2017-01-01
Object construction involves organizing multiple objects into a unified structure (e.g., stacking blocks into a tower) and may provide infants with unique spatial information. Because object construction entails placing objects in spatial locations relative to one another, infants can acquire information about spatial relations during construction…
Feature-based and spatial attentional selection in visual working memory.
Heuer, Anna; Schubö, Anna
2016-05-01
The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.
Spatial updating in area LIP is independent of saccade direction.
Heiser, Laura M; Colby, Carol L
2006-05-01
We explore the world around us by making rapid eye movements to objects of interest. Remarkably, these eye movements go unnoticed, and we perceive the world as stable. Spatial updating is one of the neural mechanisms that contributes to this perception of spatial constancy. Previous studies in macaque lateral intraparietal cortex (area LIP) have shown that individual neurons update, or "remap," the locations of salient visual stimuli at the time of an eye movement. The existence of remapping implies that neurons have access to visual information from regions far beyond the classically defined receptive field. We hypothesized that neurons have access to information located anywhere in the visual field. We tested this by recording the activity of LIP neurons while systematically varying the direction in which a stimulus location must be updated. Our primary finding is that individual neurons remap stimulus traces in multiple directions, indicating that LIP neurons have access to information throughout the visual field. At the population level, stimulus traces are updated in conjunction with all saccade directions, even when we consider direction as a function of receptive field location. These results show that spatial updating in LIP is effectively independent of saccade direction. Our findings support the hypothesis that the activity of LIP neurons contributes to the maintenance of spatial constancy throughout the visual field.
Some of the thousand words a picture is worth.
Mandler, J M; Johnson, N S
1976-09-01
The effects of real-world schemata on recognition of complex pictures were studied. Two kinds of pictures were used: pictures of objects forming real-world scenes and unorganized collections of the same objects. The recognition test employed distractors that varied four types of information: inventory, spatial location, descriptive and spatial composition. Results emphasized the selective nature of schemata since superior recognition of one kind of information was offset by loss of another. Spatial location information was better recognized in real-world scenes and spatial composition information was better recognized in unorganized scenes. Organized and unorganized pictures did not differ with respect of inventory and descriptive information. The longer the pictures were studied, the longer subjects took to recognize them. Reaction time for hits, misses, and false alarms increased dramatically as presentation time increased from 5 to 60 sec. It was suggested that detection of a difference in a distractor terminated search, but that when no difference was detected, an exhaustive search of the available information took place.
Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept. PMID:29593521
ERIC Educational Resources Information Center
Vossel, Simone; Weidner, Ralph; Thiel, Christiane M.; Fink, Gereon R.
2009-01-01
Within the parietal cortex, the temporo-parietal junction (TPJ) and the intraparietal sulcus (IPS) seem to be involved in both spatial and nonspatial functions: Both areas are activated when misleading information is provided by invalid spatial cues in Posner's location-cueing paradigm, but also when infrequent deviant stimuli are presented within…
Gaffan, D
1998-11-01
Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.
The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language
Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.
2013-01-01
Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348
Spatial language and converseness.
Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot
2016-12-01
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.
Finlayson, Nonie J.; Golomb, Julie D.
2016-01-01
A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features (Golomb, Kupitz, & Thiemann, 2014), such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information – not position-in-depth – seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. PMID:27468654
Finlayson, Nonie J; Golomb, Julie D
2016-10-01
A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features, such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information - not position-in-depth - seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Xiao-Bo; Li, Meng; Wang, Hui; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
In literature, there are many information on the distribution of Chinese herbal medicine. Limited by the technical methods, the origin of Chinese herbal medicine or distribution of information in ancient literature were described roughly. It is one of the main objectives of the national census of Chinese medicine resources, which is the background information of the types and distribution of Chinese medicine resources in the region. According to the national Chinese medicine resource census technical specifications and pilot work experience, census team with "3S" technology, computer network technology, digital camera technology and other modern technology methods, can effectively collect the location information of traditional Chinese medicine resources. Detailed and specific location information, such as regional differences in resource endowment and similarity, biological characteristics and spatial distribution, the Chinese medicine resource census data access to the accuracy and objectivity evaluation work, provide technical support and data support. With the support of spatial information technology, based on location information, statistical summary and sharing of multi-source census data can be realized. The integration of traditional Chinese medicine resources and related basic data can be a spatial integration, aggregation and management of massive data, which can help for the scientific rules data mining of traditional Chinese medicine resources from the overall level and fully reveal its scientific connotation. Copyright© by the Chinese Pharmaceutical Association.
Updating visual memory across eye movements for ocular and arm motor control.
Thompson, Aidan A; Henriques, Denise Y P
2008-11-01
Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.
Louwerse, Max M; Benesh, Nick
2012-01-01
Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.
Review of Spatial-Database System Usability: Recommendations for the ADDNS Project
2007-12-01
basic GIS background information , with a closer look at spatial databases. A GIS is also a computer- based system designed to capture, manage...foundation for deploying enterprise-wide spatial information systems . According to Oracle® [18], it enables accurate delivery of location- based services...Toronto TR 2007-141 Lanter, D.P. (1991). Design of a lineage- based meta-data base for GIS. Cartography and Geographic Information Systems , 18
Informational conflicts created by the waggle dance
Grüter, Christoph; Balbuena, M. Sol; Farina, Walter M
2008-01-01
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers. PMID:18331980
Informational conflicts created by the waggle dance.
Grüter, Christoph; Balbuena, M Sol; Farina, Walter M
2008-06-07
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers.
Spatially Enabling the Health Sector
Weeramanthri, Tarun Stephen; Woodgate, Peter
2016-01-01
Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings. PMID:27867933
Spatially Enabling the Health Sector.
Weeramanthri, Tarun Stephen; Woodgate, Peter
2016-01-01
Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings.
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
Assessing the benefits of the integration of location information in e-Government
NASA Astrophysics Data System (ADS)
Vandenbroucke, D.; Vancauwenberghe, G.; Crompvoets, J.
2014-12-01
Over the past years more and more geospatial data have been made readily accessible for different user communities as part of government efforts to set-up Spatial Data Infrastructures. As a result users from different sectors can search, find and bind spatial information and combine it with their own data resources and applications. However, too often, spatial data applications and services remain organised as separate silos, not well integrated in the business processes they are supposed to support. The European Union Location Framework (EULF), as part of the Interoperability Solutions for European Public Administrations (ISA) Programme of the EU (EC-DG DIGIT), aims to improve the integration of location information in e-Government processes through a better policy and strategy alignment, and through the improved legal, organisational, semantic and technical interoperability of data and systems. The EULF seeks to enhance interactions between Governments, Businesses and Citizens with location information and location enabled services and to make them part of the more generic ICT infrastructures of public administrations. One of the challenges that arise in this context is to describe, estimate or measure the benefits and added value of this integration of location information in e-Government. In the context of the EULF several existing approaches to assess the benefits of spatially enabled services and applications in e-Government have been studied. Two examples will be presented, one from Denmark, the other from Abu Dhabi. Both served as input to the approach developed for the EULF. A concrete case to estimate benefits at service and process level will be given with the aim to respond questions such as "which indicators can be used and how to measure them", "how can process owners collect the necessary information", "how to solve the benefits attribute question" and "how to extrapolate findings from one level of analysis to another"?
Geospatial Thinking of Information Professionals
ERIC Educational Resources Information Center
Bishop, Bradley Wade; Johnston, Melissa P.
2013-01-01
Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…
Implicit representations of space after bilateral parietal lobe damage.
Kim, M S; Robertson, L C
2001-11-15
There is substantial evidence that the primate cortex is grossly divided into two functional streams, an occipital-parietal-frontal pathway that processes "where" and an occipital-temporal-frontal pathway that processes "what" (Ungerleider and Mishkin, 1982). In humans, bilateral occipital-parietal damage results in severe spatial deficits and a neuropsychological disorder known as Balint's syndrome in which a single object can be perceived (simultanagnosia) but its location is unknown (Balint, 1995). The data reported here demonstrate that spatial information for visual features that cannot be explicitly located is represented normally below the level of spatial awareness even with large occipital-parietal lesions. They also demonstrate that parietal damage does not affect preattentive spatial coding of feature locations or complex spatial relationships between parts of a stimulus despite explicit spatial deficits and simultanagnosia.
Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout
NASA Astrophysics Data System (ADS)
Sedgwick, Hal A.
1990-03-01
An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.
Lateralization of spatial information processing in response monitoring
Stock, Ann-Kathrin; Beste, Christian
2014-01-01
The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855
NASA Technical Reports Server (NTRS)
Strahler, A. H.; Woodcock, C. E.; Logan, T. L.
1983-01-01
A timber inventory of the Eldorado National Forest, located in east-central California, provides an example of the use of a Geographic Information System (GIS) to stratify large areas of land for sampling and the collection of statistical data. The raster-based GIS format of the VICAR/IBIS software system allows simple and rapid tabulation of areas, and facilitates the selection of random locations for ground sampling. Algorithms that simplify the complex spatial pattern of raster-based information, and convert raster format data to strings of coordinate vectors, provide a link to conventional vector-based geographic information systems.
Kim, Steve M; Ganguli, Surya; Frank, Loren M
2012-08-22
Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.
Pilfering Eurasian jays use visual and acoustic information to locate caches.
Shaw, Rachael C; Clayton, Nicola S
2014-11-01
Pilfering corvids use observational spatial memory to accurately locate caches that they have seen another individual make. Accordingly, many corvid cache-protection strategies limit the transfer of visual information to potential thieves. Eurasian jays (Garrulus glandarius) employ strategies that reduce the amount of visual and auditory information that is available to competitors. Here, we test whether or not the jays recall and use both visual and auditory information when pilfering other birds' caches. When jays had no visual or acoustic information about cache locations, the proportion of available caches that they found did not differ from the proportion expected if jays were searching at random. By contrast, after observing and listening to a conspecific caching in gravel or sand, jays located a greater proportion of caches, searched more frequently in the correct substrate type and searched in fewer empty locations to find the first cache than expected. After only listening to caching in gravel and sand, jays also found a larger proportion of caches and searched in the substrate type where they had heard caching take place more frequently than expected. These experiments demonstrate that Eurasian jays possess observational spatial memory and indicate that pilfering jays may gain information about cache location merely by listening to caching. This is the first evidence that a corvid may use recalled acoustic information to locate and pilfer caches.
Data on strategically located land and spatially integrated urban human settlements in South Africa.
Musakwa, Walter
2017-12-01
In developing countries like South Africa processed geographic information systems (GIS) data on land suitability, is often not available for land use management. Data in this article is based on a published article "The strategically located land index support system for humans settlements land reform in South Africa" (Musakwa et al., 2017) [1]. This article utilities data from Musakwa et al. (2017) [1] and it goes on a step further by presenting the top 25th percentile of areas in the country that are strategically located and suited to develop spatially integrated human settlements. Furthermore the least 25th percentile of the country that are not strategically located and spatially integrated to establish human settlements are also presented. The article also presents the processed spatial datasets that where used to develop the strategically located land index as supplementary material. The data presented is meant to stir debate on spatially integrated human settlements in South Africa.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.
Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre
2011-05-16
We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world. Copyright © 2011 Elsevier B.V. All rights reserved.
a Comparative Analysis of Five Cropland Datasets in Africa
NASA Astrophysics Data System (ADS)
Wei, Y.; Lu, M.; Wu, W.
2018-04-01
The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.
Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David
2018-05-23
We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Perez-Sanagustin, Mar; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep
2012-01-01
Computer-Supported Collaborative Blended Learning (CSCBL) scripts are complex learning situations in which formal and informal activities conducted at different spatial locations are coordinated and integrated into one unique learning setting through the use of technology. We define a conceptual model identifying four factors to be considered when…
Location Memory in the Real World: Category Adjustment Effects in 3-Dimensional Space
ERIC Educational Resources Information Center
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.
2013-01-01
The ability to remember spatial locations is critical to human functioning, both in an evolutionary and in an everyday sense. Yet spatial memories and judgments often show systematic errors and biases. Bias has been explained by models such as the Category Adjustment model (CAM), in which fine-grained and categorical information about locations…
Getting the Big Picture: Development of Spatial Scaling Abilities
ERIC Educational Resources Information Center
Frick, Andrea; Newcombe, Nora S.
2012-01-01
Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3-6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference…
Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai
2014-08-01
In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-10-27
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-01-01
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
What does visual suffix interference tell us about spatial location in working memory?
Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D
2015-01-01
A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.
Access and Use of FIA Data Through FIA Spatial Data Services
Elizabeth LaPoint
2005-01-01
Forest Inventory and Analysis (FIA) Spatial Data Services (SDS) was established in May 2002 to facilitate outside access to FIA data and allow use of georeferenced plot data while protecting the confidentiality of plot locations. Modification of the Food Security Act of 1985 legislated the protection of information on plot location and ownership. Penalties were put in...
Schubert, Jonathan T. W.; Badde, Stephanie; Röder, Brigitte
2017-01-01
Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision. PMID:29228023
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
Spatial and Activities Models of Airport Based on GIS and Dynamic Model
NASA Astrophysics Data System (ADS)
Masri, R. M.; Purwaamijaya, I. M.
2017-02-01
The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.
ERIC Educational Resources Information Center
Wu, Bing Sheng
2013-01-01
This study integrates volunteered geographic information (VGI) into GIS and contextual analyses, and develops a framework to evaluate students' understanding of "locations and places in order to set national and international events within a geographical framework and to understand basic spatial relationships" as proposed by the…
Sauter, Megan; Uttal, David H.; Alman, Amanda Schaal; Goldin-Meadow, Susan; Levine, Susan C.
2013-01-01
This article examines two issues: the role of gesture in the communication of spatial information and the relation between communication and mental representation. Children (8–10 years) and adults walked through a space to learn the locations of six hidden toy animals and then explained the space to another person. In Study 1, older children and adults typically gestured when describing the space and rarely provided spatial information in speech without also providing the information in gesture. However, few 8-year-olds communicated spatial information in speech or gesture. Studies 2 and 3 showed that 8-year-olds did understand the spatial arrangement of the animals and could communicate spatial information if prompted to use their hands. Taken together, these results indicate that gesture is important for conveying spatial relations at all ages and, as such, provides us with a more complete picture of what children do and do not know about communicating spatial relations. PMID:22209401
Mayr, Susanne; Buchner, Axel; Möller, Malte; Hauke, Robert
2011-08-01
Two experiments are reported with identical auditory stimulation in three-dimensional space but with different instructions. Participants localized a cued sound (Experiment 1) or identified a sound at a cued location (Experiment 2). A distractor sound at another location had to be ignored. The prime distractor and the probe target sound were manipulated with respect to sound identity (repeated vs. changed) and location (repeated vs. changed). The localization task revealed a symmetric pattern of partial repetition costs: Participants were impaired on trials with identity-location mismatches between the prime distractor and probe target-that is, when either the sound was repeated but not the location or vice versa. The identification task revealed an asymmetric pattern of partial repetition costs: Responding was slowed down when the prime distractor sound was repeated as the probe target, but at another location; identity changes at the same location were not impaired. Additionally, there was evidence of retrieval of incompatible prime responses in the identification task. It is concluded that feature binding of auditory prime distractor information takes place regardless of whether the task is to identify or locate a sound. Instructions determine the kind of identity-location mismatch that is detected. Identity information predominates over location information in auditory memory.
Kennerley, Steven W.
2009-01-01
Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention. PMID:19776363
Using JournalMap to link spatial information with ecological site descriptions
USDA-ARS?s Scientific Manuscript database
JournalMap is a scientific literature search engine that empowers you to find relevant research based on location and biophysical variables as well as traditional keyword searches. All publications are geotagged based on reported location information and plotted on a world map showing where the rese...
Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh
2004-11-01
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.
Differential patterns of 2D location versus depth decoding along the visual hierarchy.
Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D
2017-02-15
Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.
Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael
2006-10-10
Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS.
Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael
2006-01-01
Background Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. Results We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. Conclusion The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS. PMID:17032448
NASA Astrophysics Data System (ADS)
Jung, Chinte; Sun, Chih-Hong
2006-10-01
Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.
KBGIS-II: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj
1986-01-01
The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.
KBGIS-2: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, T.; Peuquet, D.; Menon, S.; Agarwal, P.
1986-01-01
The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2.
Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.
Katus, Tobias; Andersen, Søren K; Müller, Matthias M
2014-03-01
Orienting attention to locations in mnemonic representations engages processes that functionally and anatomically overlap the neural circuitry guiding prospective shifts of spatial attention. The attention-based rehearsal account predicts that the requirement to withdraw attention from a memorized location impairs memory accuracy. In a dual-task study, we simultaneously presented retro-cues and pre-cues to guide spatial attention in short-term memory (STM) and perception, respectively. The spatial direction of each cue was independent of the other. The locations indicated by the combined cues could be compatible (same hand) or incompatible (opposite hands). Incompatible directional cues decreased lateralized activity in brain potentials evoked by visual cues, indicating interference in the generation of prospective attention shifts. The detection of external stimuli at the prospectively cued location was impaired when the memorized location was part of the perceptually ignored hand. The disruption of attention-based rehearsal by means of incompatible pre-cues reduced memory accuracy and affected encoding of tactile test stimuli at the retrospectively cued hand. These findings highlight the functional significance of spatial attention for spatial STM. The bidirectional interactions between both tasks demonstrate that spatial attention is a shared neural resource of a capacity-limited system that regulates information processing in internal and external stimulus representations.
Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.
2014-01-01
Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376
Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone
2016-01-01
Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...
Development of Allocentric Spatial Recall from New Viewpoints in Virtual Reality
ERIC Educational Resources Information Center
Negen, James; Heywood-Everett, Edward; Roome, Hannah E.; Nardini, Marko
2018-01-01
Using landmarks and other scene features to recall locations from new viewpoints is a critical skill in spatial cognition. In an immersive virtual reality task, we asked children 3.5-4.5 years old to remember the location of a target using various cues. On some trials they could use information from their own self-motion. On some trials they could…
R. Bruce Anderson; R. Bruce Anderson
1991-01-01
To assess the impact of grocery pallet production on future hardwood resources, better information is needed on the current use of reusable pallets by the grocery and related products industry. A spatial model of pallet use in the grocery distribution system that identifies the locational aspects of grocery pallet production and distribution, determines how these...
Object orientation affects spatial language comprehension.
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.
Geographic Information Systems and Martian Data: Compatibility and Analysis
NASA Technical Reports Server (NTRS)
Jones, Jennifer L.
2005-01-01
Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.
Array processing for RFID tag localization exploiting multi-frequency signals
NASA Astrophysics Data System (ADS)
Zhang, Yimin; Li, Xin; Amin, Moeness G.
2009-05-01
RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.
Reach Trajectories Characterize Tactile Localization for Sensorimotor Decision Making.
Brandes, Janina; Heed, Tobias
2015-10-07
Spatial target information for movement planning appears to be coded in a gaze-centered reference frame. In touch, however, location is initially coded with reference to the skin. Therefore, the tactile spatial location must be derived by integrating skin location and posture. It has been suggested that this recoding is impaired when the limb is placed in the opposite hemispace, for example, by limb crossing. Here, human participants reached toward visual and tactile targets located at uncrossed and crossed feet in a sensorimotor decision task. We characterized stimulus recoding by analyzing the timing and spatial profile of hand reaches. For tactile targets at crossed feet, skin-based information implicates the incorrect side, and only recoded information points to the correct location. Participants initiated straight reaches and redirected the hand toward a target presented in midflight. Trajectories to visual targets were unaffected by foot crossing. In contrast, trajectories to tactile targets were redirected later with crossed than uncrossed feet. Reaches to crossed feet usually continued straight until they were directed toward the correct tactile target and were not biased toward the skin-based target location. Occasional, far deflections toward the incorrect target were most likely when this target was implicated by trial history. These results are inconsistent with the suggestion that spatial transformations in touch are impaired by limb crossing, but are consistent with tactile location being recoded rapidly and efficiently, followed by integration of skin-based and external information to specify the reach target. This process may be implemented in a bounded integrator framework. How do you touch yourself, for instance, to scratch an itch? The place you need to reach is defined by a sensation on the skin, but our bodies are flexible, so this skin location could be anywhere in 3D space. The movement toward the tactile sensation must therefore be specified by merging skin location and body posture. By investigating human hand reach trajectories toward tactile stimuli on the feet, we provide experimental evidence that this transformation process is quick and efficient, and that its output is integrated with the original skin location in a fashion consistent with bounded integrator decision-making frameworks. Copyright © 2015 the authors 0270-6474/15/3513648-11$15.00/0.
Hedge, Craig; Oberauer, Klaus; Leonards, Ute
2015-11-01
We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map.
Sex Differences in Object Location Memory: Some Further Methodological Considerations
ERIC Educational Resources Information Center
Gallagher, Peter; Neave, Nick; Hamilton, Colin; Gray, John M.
2006-01-01
Previously it has been reported that female performance on the recall of objects and their locations in a spatial array is superior to that of males. This may reflect underlying information-processing biases whereby males organize information in a self-referential manner while females adopt a more comprehensive approach. The known female advantage…
Mochizuki, Kei
2015-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287
D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure
NASA Astrophysics Data System (ADS)
Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.
2016-06-01
Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.
A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation
NASA Astrophysics Data System (ADS)
Suryowati, K.; Bekti, R. D.; Faradila, A.
2018-04-01
Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list
Introduction to the Special Issue on Visual Working Memory
Wolfe, Jeremy M
2014-01-01
Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2008-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2009-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Coexistence between wildlife and humans at fine spatial scales.
Carter, Neil H; Shrestha, Binoj K; Karki, Jhamak B; Pradhan, Narendra Man Babu; Liu, Jianguo
2012-09-18
Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal's Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger-human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge-meeting human needs while sustaining wildlife.
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Spatial Context and Visual Perception for Action
ERIC Educational Resources Information Center
Coello, Yann
2005-01-01
In this paper, evidences that visuo-spatial perception in the peri-personal space is not an abstract, disembodied phenomenon but is rather shaped by action constraints are reviewed. Locating a visual target with the intention of reaching it requires that the relevant spatial information is considered in relation with the body-part that will be…
The nature of spatial transitions in the Arctic.
H. E. Epstein; J. Beringer; W. A. Gould; A. H. Lloyd; C. D. Thompson; F. S. Chapin III; G. J. Michaelson; C. L. Ping; T. S. Rupp; D. A. Walker
2004-01-01
Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundraforest region of the Seward Peninsula, Alaska. Methods We synthesize information from...
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
Cohen, Michael X; Ridderinkhof, K Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.
Drummond, Leslie; Shomstein, Sarah
2013-01-01
The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance. PMID:24367302
Route Network Construction with Location-Direction-Enabled Photographs
NASA Astrophysics Data System (ADS)
Fujita, Hideyuki; Sagara, Shota; Ohmori, Tadashi; Shintani, Takahiko
2018-05-01
We propose a method for constructing a geometric graph for generating routes that summarize a geographical area and also have visual continuity by using a set of location-direction-enabled photographs. A location- direction-enabled photograph is a photograph that has information about the location (position of the camera at the time of shooting) and the direction (direction of the camera at the time of shooting). Each nodes of the graph corresponds to a location-direction-enabled photograph. The location of each node is the location of the corresponding photograph, and a route on the graph corresponds to a route in the geographic area and a sequence of photographs. The proposed graph is constructed to represent characteristic spots and paths linking the spots, and it is assumed to be a kind of a spatial summarization of the area with the photographs. Therefore, we call the routes on the graph as spatial summary route. Each route on the proposed graph also has a visual continuity, which means that we can understand the spatial relationship among the continuous photographs on the route such as moving forward, backward, turning right, etc. In this study, when the changes in the shooting position and shooting direction satisfied a given threshold, the route was defined to have visual continuity. By presenting the photographs in order along the generated route, information can be presented sequentially, while maintaining visual continuity to a great extent.
Exploiting Spatial Channel Occupancy Information in WLANs
2014-05-15
transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a
Effects of spatial frequency and location of fearful faces on human amygdala activity.
Morawetz, Carmen; Baudewig, Juergen; Treue, Stefan; Dechent, Peter
2011-01-31
Facial emotion perception plays a fundamental role in interpersonal social interactions. Images of faces contain visual information at various spatial frequencies. The amygdala has previously been reported to be preferentially responsive to low-spatial frequency (LSF) rather than to high-spatial frequency (HSF) filtered images of faces presented at the center of the visual field. Furthermore, it has been proposed that the amygdala might be especially sensitive to affective stimuli in the periphery. In the present study we investigated the impact of spatial frequency and stimulus eccentricity on face processing in the human amygdala and fusiform gyrus using functional magnetic resonance imaging (fMRI). The spatial frequencies of pictures of fearful faces were filtered to produce images that retained only LSF or HSF information. Facial images were presented either in the left or right visual field at two different eccentricities. In contrast to previous findings, we found that the amygdala responds to LSF and HSF stimuli in a similar manner regardless of the location of the affective stimuli in the visual field. Furthermore, the fusiform gyrus did not show differential responses to spatial frequency filtered images of faces. Our findings argue against the view that LSF information plays a crucial role in the processing of facial expressions in the amygdala and of a higher sensitivity to affective stimuli in the periphery. Copyright © 2010 Elsevier B.V. All rights reserved.
Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...
Coding Location: The View from Toddler Studies
ERIC Educational Resources Information Center
Huttenlocher, Janellen
2008-01-01
The ability to locate objects in the environment is adaptively important for mobile organisms. Research on location coding reveals that even toddlers have considerable spatial skill. Important information has been obtained using a disorientation task in which children watch a target object being hidden and are then blindfolded and rotated so they…
The role of working memory in spatial S-R correspondence effects.
Wühr, Peter; Biebl, Rupert
2011-04-01
This study investigates the impact of working memory (WM) load on response conflicts arising from spatial (non) correspondence between irrelevant stimulus location and response location (Simon effect). The dominant view attributes the Simon effect to automatic processes of location-based response priming. The automaticity view predicts insensitivity of the Simon effect to manipulations of processing load. Four experiments investigated the role of spatial and verbal WM in horizontal and vertical Simon tasks by using a dual-task approach. Participants maintained different amounts of spatial or verbal information in WM while performing a horizontal or vertical Simon task. Results showed that high load generally decreased, and sometimes eliminated, the Simon effect. It is interesting to note that spatial load had a larger impact than verbal load on the horizontal Simon effect, whereas verbal load had a larger impact than spatial load on the vertical Simon effect. The results highlight the role of WM as the perception-action interface in choice-response tasks. Moreover, the results suggest spatial coding of horizontal stimulus-response (S-R) tasks, and verbal coding of vertical S-R tasks.
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.
Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237
Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M
2010-01-01
Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.
Daytime Locations in Spatial Mismatch: Job Accessibility and Employment at Reentry From Prison
Lens, Michael C.
2017-01-01
Individuals recently released from prison confront many barriers to employment. One potential obstacle is spatial mismatch—the concentration of low-skilled, nonwhite job-seekers within central cities and the prevalence of relevant job opportunities in outlying areas. Prior research has found mixed results about the importance of residential place for reentry outcomes. In this article, we propose that residential location matters for finding work, but this largely static measure does not capture the range of geographic contexts that individuals inhabit throughout the day. We combine novel, real-time GPS information on daytime locations and self-reported employment collected from smartphones with sophisticated measures of job accessibility to test the relative importance of spatial mismatch based on residence and daytime locations. Our findings suggest that the ability of low-skilled, poor, and urban individuals to compensate for their residential deficits by traveling to job-rich areas is an overlooked and salient consideration in spatial mismatch perspectives. PMID:28224468
Spatialized audio improves call sign recognition during multi-aircraft control.
Kim, Sungbin; Miller, Michael E; Rusnock, Christina F; Elshaw, John J
2018-07-01
We investigated the impact of a spatialized audio display on response time, workload, and accuracy while monitoring auditory information for relevance. The human ability to differentiate sound direction implies that spatial audio may be used to encode information. Therefore, it is hypothesized that spatial audio cues can be applied to aid differentiation of critical versus noncritical verbal auditory information. We used a human performance model and a laboratory study involving 24 participants to examine the effect of applying a notional, automated parser to present audio in a particular ear depending on information relevance. Operator workload and performance were assessed while subjects listened for and responded to relevant audio cues associated with critical information among additional noncritical information. Encoding relevance through spatial location in a spatial audio display system--as opposed to monophonic, binaural presentation--significantly reduced response time and workload, particularly for noncritical information. Future auditory displays employing spatial cues to indicate relevance have the potential to reduce workload and improve operator performance in similar task domains. Furthermore, these displays have the potential to reduce the dependence of workload and performance on the number of audio cues. Published by Elsevier Ltd.
Mochizuki, Kei; Funahashi, Shintaro
2016-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
Coexistence between wildlife and humans at fine spatial scales
Carter, Neil H.; Shrestha, Binoj K.; Karki, Jhamak B.; Pradhan, Narendra Man Babu; Liu, Jianguo
2012-01-01
Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal’s Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger–human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge—meeting human needs while sustaining wildlife. PMID:22949642
The OakMapper WebGIS: improved access to sudden oak death spatial data
K. Tuxen; M. Kelly
2008-01-01
Access to timely and accurate sudden oak death (SOD) location data is critical for SOD monitoring, management and research. Several websites (hereafter called the OakMapper sites) associated with sudden oak death monitoring efforts have been maintained with up-todate SOD location information for over five years, providing information and maps of the most current...
What aspects of vision facilitate haptic processing?
Millar, Susanna; Al-Attar, Zainab
2005-12-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.
Spatial Probability Dynamically Modulates Visual Target Detection in Chickens
Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.
2013-01-01
The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2014-06-01
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.
2014-01-01
Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731
Towards explaining spatial touch perception: Weighted integration of multiple location codes
Badde, Stephanie; Heed, Tobias
2016-01-01
ABSTRACT Touch is bound to the skin – that is, to the boundaries of the body. Yet, the activity of neurons in primary somatosensory cortex just mirrors the spatial distribution of the sensors across the skin. To determine the location of a tactile stimulus on the body, the body's spatial layout must be considered. Moreover, to relate touch to the external world, body posture has to be evaluated. In this review, we argue that posture is incorporated, by default, for any tactile stimulus. However, the relevance of the external location and, thus, its expression in behaviour, depends on various sensory and cognitive factors. Together, these factors imply that an external representation of touch dominates over the skin-based, anatomical when our focus is on the world rather than on our own body. We conclude that touch localization is a reconstructive process that is adjusted to the context while maintaining all available spatial information. PMID:27327353
Siordia, Carlos; Saenz, Joseph; Tom, Sarah E
2012-01-01
Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.
Jung, Ho-Won; El Emam, Khaled
2014-05-29
A linear programming (LP) model was proposed to create de-identified data sets that maximally include spatial detail (e.g., geocodes such as ZIP or postal codes, census blocks, and locations on maps) while complying with the HIPAA Privacy Rule's Expert Determination method, i.e., ensuring that the risk of re-identification is very small. The LP model determines the transition probability from an original location of a patient to a new randomized location. However, it has a limitation for the cases of areas with a small population (e.g., median of 10 people in a ZIP code). We extend the previous LP model to accommodate the cases of a smaller population in some locations, while creating de-identified patient spatial data sets which ensure the risk of re-identification is very small. Our LP model was applied to a data set of 11,740 postal codes in the City of Ottawa, Canada. On this data set we demonstrated the limitations of the previous LP model, in that it produces improbable results, and showed how our extensions to deal with small areas allows the de-identification of the whole data set. The LP model described in this study can be used to de-identify geospatial information for areas with small populations with minimal distortion to postal codes. Our LP model can be extended to include other information, such as age and gender.
From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation
Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.
2012-01-01
Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737
Spatial Designation of Critical Habitats for Endangered and Threatened Species in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, Mark A; Singh, Nagendra; Sabesan, Aarthy
Establishing biological reserves or "hot spots" for endangered and threatened species is critical to support real-world species regulatory and management problems. Geographic data on the distribution of endangered and threatened species can be used to improve ongoing efforts for species conservation in the United States. At present no spatial database exists which maps out the location endangered species for the US. However, spatial descriptions do exists for the habitat associated with all endangered species, but in a form not readily suitable to use in a geographic information system (GIS). In our study, the principal challenge was extracting spatial data describingmore » these critical habitats for 472 species from over 1000 pages of the federal register. In addition, an appropriate database schema was designed to accommodate the different tiers of information associated with the species along with the confidence of designation; the interpreted location data was geo-referenced to the county enumeration unit producing a spatial database of endangered species for the whole of US. The significance of these critical habitat designations, database scheme and methodologies will be discussed.« less
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case
NASA Astrophysics Data System (ADS)
Al-Joburi, Khalil; Dahman, Nidal
2017-11-01
This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute) data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations) was obtained from the Surveying and Land Registration Bureau (SLRB). Road, utilities, and population density are obtained from the Central Information Organization (CIO). Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM)-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations) as well as raster model (continuous representation). The model was tested at the Al-Areen proposed project, a relatively small area (15 km2). Optimum site spatial location for the location of wind turbines and solar panels was determined and initial results indicates that the combination of wind and solar energy would be sufficient for the project to meet the energy demand at the present per capita consummation rate..
Distortions in Judged Spatial Relations.
ERIC Educational Resources Information Center
Stevens, Albert
1978-01-01
Distortions in judgments of relative geographical relations were observed, particularly when the locations were in different geographical or political units. Subjects distorted the judged relation to conform with the relation of the superordinate political unit. A model for the hierachical storage of spatial information is presented. (Author/RD)
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.
Golob, Edward J; Winston, Jenna; Mock, Jeffrey R
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients
Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024
EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing
Cohen, Michael X; Ridderinkhof, K. Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201
Conflict Tasks of Different Types Divergently Affect the Attentional Processing of Gaze and Arrow.
Fan, Lingxia; Yu, Huan; Zhang, Xuemin; Feng, Qing; Sun, Mengdan; Xu, Mengsi
2018-01-01
The present study explored the attentional processing mechanisms of gaze and arrow cues in two different types of conflict tasks. In Experiment 1, participants performed a flanker task in which gaze and arrow cues were presented as central targets or bilateral distractors. The congruency between the direction of the target and the distractors was manipulated. Results showed that arrow distractors greatly interfered with the attentional processing of gaze, while the processing of arrow direction was immune to conflict from gaze distractors. Using a spatial compatibility task, Experiment 2 explored the conflict effects exerted on gaze and arrow processing by their relative spatial locations. When the direction of the arrow was in conflict with its spatial layout on screen, response times were slowed; however, the encoding of gaze was unaffected by spatial location. In general, processing to an arrow cue is less influenced by bilateral gaze cues but is affected by irrelevant spatial information, while processing to a gaze cue is greatly disturbed by bilateral arrows but is unaffected by irrelevant spatial information. Different effects on gaze and arrow cues by different types of conflicts may reflect two relatively distinct specific modes of the attentional process.
GIS Tools For Improving Pedestrian & Bicycle Safety
DOT National Transportation Integrated Search
2000-07-01
Geographic Information System (GIS) software turns statistical data, such as accidents, and geographic data, such as roads and crash locations, into meaningful information for spatial analysis and mapping. In this project, GIS-based analytical techni...
Typograph: Multiscale Spatial Exploration of Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.
2013-12-01
Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. However, these metaphors (e.g., word clouds, tag clouds, etc.) often lack interactivity to explore the information and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. Further, transitioning between levels of detail (i.e., from terms to full documents) can be challanging. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods, Typograh enables multipel levels of detailmore » (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geography metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less
Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence
Anton-Erxleben, Katharina; Carrasco, Marisa
2014-01-01
Attention allows us to select relevant sensory information for preferential processing. Behaviourally, it improves performance in various visual tasks. One prominent effect of attention is the modulation of performance in tasks that involve the visual system’s spatial resolution. Physiologically, attention modulates neuronal responses and alters the profile and position of receptive fields near the attended location. Here, we develop a hypothesis linking the behavioural and electrophysiological evidence. The proposed framework seeks to explain how these receptive field changes enhance the visual system’s effective spatial resolution and how the same mechanisms may also underlie attentional effects on the representation of spatial information. PMID:23422910
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
Endogenous spatial attention: evidence for intact functioning in adults with autism
Grubb, Michael A.; Behrmann, Marlene; Egan, Ryan; Minshew, Nancy J.; Carrasco, Marisa; Heeger, David J.
2012-01-01
Lay Abstract Attention allows us to selectively process the vast amount of information with which we are confronted. Focusing on a certain location of the visual scene (visual spatial attention) enables the prioritization of some aspects of information while ignoring others. Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured how well participants perform a visual discrimination task (accuracy) and how quickly they do so (reaction time), with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous spatial attention cannot be a latent characteristic of autism in general. Scientific Abstract Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three psychophysical experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured the spatial distribution of performance accuracies and reaction times to quantify the sizes and locations of the attention field, with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous attention cannot be a latent characteristic of autism in general. PMID:23427075
Human short-term spatial memory: precision predicts capacity.
Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre
2015-03-01
Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information. Copyright © 2015 Elsevier Inc. All rights reserved.
Reactivation of Rate Remapping in CA3.
Schwindel, C Daniela; Navratilova, Zaneta; Ali, Karim; Tatsuno, Masami; McNaughton, Bruce L
2016-09-07
The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful for distinguishing these memories, the hippocampus must be able, not only to express, but also to retrieve both spatial and nonspatial information about events. Whether it can retrieve nonspatial information has been challenged recently. We exposed rats to two different experiences (running in different directions) in the same locations and showed that even the nonspatial components of hippocampal cell firing are reactivated spontaneously during sleep, supporting the conclusion that both types of information about a recent experience can be retrieved. Copyright © 2016 the authors 0270-6474/16/369342-09$15.00/0.
The location-, word-, and arrow-based Simon effects: An ex-Gaussian analysis.
Luo, Chunming; Proctor, Robert W
2018-04-01
Task-irrelevant spatial information, conveyed by stimulus location, location word, or arrow direction, can influence the response to task-relevant attributes, generating the location-, word-, and arrow-based Simon effects. We examined whether different mechanisms are involved in the generation of these Simon effects by fitting a mathematical ex-Gaussian function to empirical response time (RT) distributions. Specifically, we tested whether which ex-Gaussian parameters (μ, σ, and τ) show Simon effects and whether the location-, word, and arrow-based effects are on different parameters. Results show that the location-based Simon effect occurred on mean RT and μ but not on τ, and a reverse Simon effect occurred on σ. In contrast, a positive word-based Simon effect was obtained on all these measures (including σ), and a positive arrow-based Simon effect was evident on mean RT, σ, and τ but not μ. The arrow-based Simon effect was not different from the word-based Simon effect on τ or σ but was on μ and mean RT. These distinct results on mean RT and ex-Gaussian parameters provide evidence that spatial information conveyed by the various location modes are different in the time-course of activation.
A spatially collocated sound thrusts a flash into awareness
Aller, Máté; Giani, Anette; Conrad, Verena; Watanabe, Masataka; Noppeney, Uta
2015-01-01
To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception. PMID:25774126
The Importance of "What": Infants Use Featural Information to Index Events
ERIC Educational Resources Information Center
Kirkham, Natasha Z.; Richardson, Daniel C.; Wu, Rachel; Johnson, Scott P.
2012-01-01
Dynamic spatial indexing is the ability to encode, remember, and track the location of complex events. For example, in a previous study, 6-month-old infants were familiarized to a toy making a particular sound in a particular location, and later they fixated that empty location when they heard the sound presented alone ("Journal of Experimental…
NASA Astrophysics Data System (ADS)
Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves
2007-03-01
Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.
Mennis, Jeremy; Mason, Michael; Ambrus, Andreea; Way, Thomas; Henry, Kevin
2017-09-01
Geographic ecological momentary assessment (GEMA) combines ecological momentary assessment (EMA) with global positioning systems (GPS) and geographic information systems (GIS). This study evaluates the spatial accuracy of GEMA location data and bias due to subject and environmental data characteristics. Using data for 72 subjects enrolled in a study of urban adolescent substance use, we compared the GPS-based location of EMA responses in which the subject indicated they were at home to the geocoded home address. We calculated the percentage of EMA locations within a sixteenth, eighth, quarter, and half miles from the home, and the percentage within the same tract and block group as the home. We investigated if the accuracy measures were associated with subject demographics, substance use, and emotional dysregulation, as well as environmental characteristics of the home neighborhood. Half of all subjects had more than 88% of their EMA locations within a half mile, 72% within a quarter mile, 55% within an eighth mile, 50% within a sixteenth of a mile, 83% in the correct tract, and 71% in the correct block group. There were no significant associations with subject or environmental characteristics. Results support the use of GEMA for analyzing subjects' exposures to urban environments. Researchers should be aware of the issue of spatial accuracy inherent in GEMA, and interpret results accordingly. Understanding spatial accuracy is particularly relevant for the development of 'ecological momentary interventions' (EMI), which may depend on accurate location information, though issues of privacy protection remain a concern. Copyright © 2017 Elsevier B.V. All rights reserved.
The influence of cue-task association and location on switch cost and alternating-switch cost.
Arbuthnott, Katherine D; Woodward, Todd S
2002-03-01
Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.
Spatial Analysis of Biomass Supply: Economic and Environmental Impacts
USDA-ARS?s Scientific Manuscript database
The EPIC simulation model is used with SSURGO soils, field location information, and a transportation cost model to analyze potential biomass supply for a West Central MN bioenergy plant. The simulation shows the relationship between biomass price, locations of where biomass production is profitable...
Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J
2011-03-01
Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
EPR oximetry in three spatial dimensions using sparse spin distribution
NASA Astrophysics Data System (ADS)
Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan
2008-08-01
A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.
Spatial reasoning to determine stream network from LANDSAT imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Wang, S.; Elliott, D. B.
1983-01-01
In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.
The design and implementation of GML data management information system based on PostgreSQL
NASA Astrophysics Data System (ADS)
Zhang, Aiguo; Wu, Qunyong; Xu, Qifeng
2008-10-01
GML expresses geographic information in text, and it provides an extensible and standard way of spatial information encoding. At the present time, the management of GML data is in terms of document. By this way, the inquiry and update of GML data is inefficient, and it demands high memory when the document is comparatively large. In this respect, the paper put forward a data management of GML based on PostgreSQL. It designs four kinds of inquiries, which are inquiry of metadata, inquiry of geometry based on property, inquiry of property based on spatial information, and inquiry of spatial data based on location. At the same time, it designs and implements the visualization of the inquired WKT data.
Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill
ERIC Educational Resources Information Center
Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.
2017-01-01
Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…
Categorical Biases in Spatial Memory: The Role of Certainty
ERIC Educational Resources Information Center
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.
2015-01-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. The Category Adjustment (CA) model suggests that this bias is due to a Bayesian combination of categorical and metric information, which offers an optimal solution under conditions of uncertainty (Huttenlocher, Hedges, & Duncan,…
Spatially-explicit ecosystem service valuation (ESV) allows for the identification of the location and magnitude of services provided by natural ecosystems along with an economic measure of their value based upon benefit transfer. While this provides an important function in term...
Orienting attention to locations in internal representations.
Griffin, Ivan C; Nobre, Anna C
2003-11-15
Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.
Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T
2012-05-01
In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.
Balancing geo-privacy and spatial patterns in epidemiological studies.
Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien
2017-11-08
To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.
Spatial release from masking based on binaural processing for up to six maskers
Yost, William A.
2017-01-01
Spatial Release from Masking (SRM) was measured for identification of a female target word spoken in the presence of male masker words. Target words from a single loudspeaker located at midline were presented when two, four, or six masker words were presented either from the same source as the target or from spatially separated masker sources. All masker words were presented from loudspeakers located symmetrically around the centered target source in the front azimuth hemifield. Three masking conditions were employed: speech-in-speech masking (involving both informational and energetic masking), speech-in-noise masking (involving energetic masking), and filtered speech-in-filtered speech masking (involving informational masking). Psychophysical results were summarized as three-point psychometric functions relating proportion of correct word identification to target-to-masker ratio (in decibels) for both the co-located and spatially separated target and masker sources cases. SRM was then calculated by comparing the slopes and intercepts of these functions. SRM decreased as the number of symmetrically placed masker sources increased from two to six. This decrease was independent of the type of masking, with almost no SRM measured for six masker sources. These results suggest that when SRM is dependent primarily on binaural processing, SRM is effectively limited to fewer than six sound sources. PMID:28372135
Kim, Misun; Maguire, Eleanor A
2018-05-01
Humans commonly operate within 3D environments such as multifloor buildings and yet there is a surprising dearth of studies that have examined how these spaces are represented in the brain. Here, we had participants learn the locations of paintings within a virtual multilevel gallery building and then used behavioral tests and fMRI repetition suppression analyses to investigate how this 3D multicompartment space was represented, and whether there was a bias in encoding vertical and horizontal information. We found faster response times for within-room egocentric spatial judgments and behavioral priming effects of visiting the same room, providing evidence for a compartmentalized representation of space. At the neural level, we observed a hierarchical encoding of 3D spatial information, with left anterior hippocampus representing local information within a room, while retrosplenial cortex, parahippocampal cortex, and posterior hippocampus represented room information within the wider building. Of note, both our behavioral and neural findings showed that vertical and horizontal location information was similarly encoded, suggesting an isotropic representation of 3D space even in the context of a multicompartment environment. These findings provide much-needed information about how the human brain supports spatial memory and navigation in buildings with numerous levels and rooms.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter
2017-08-01
Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.
Perception of 3-D location based on vision, touch, and extended touch
Giudice, Nicholas A.; Klatzky, Roberta L.; Bennett, Christopher R.; Loomis, Jack M.
2012-01-01
Perception of the near environment gives rise to spatial images in working memory that continue to represent the spatial layout even after cessation of sensory input. As the observer moves, these spatial images are continuously updated.This research is concerned with (1) whether spatial images of targets are formed when they are sensed using extended touch (i.e., using a probe to extend the reach of the arm) and (2) the accuracy with which such targets are perceived. In Experiment 1, participants perceived the 3-D locations of individual targets from a fixed origin and were then tested with an updating task involving blindfolded walking followed by placement of the hand at the remembered target location. Twenty-four target locations, representing all combinations of two distances, two heights, and six azimuths, were perceived by vision or by blindfolded exploration with the bare hand, a 1-m probe, or a 2-m probe. Systematic errors in azimuth were observed for all targets, reflecting errors in representing the target locations and updating. Overall, updating after visual perception was best, but the quantitative differences between conditions were small. Experiment 2 demonstrated that auditory information signifying contact with the target was not a factor. Overall, the results indicate that 3-D spatial images can be formed of targets sensed by extended touch and that perception by extended touch, even out to 1.75 m, is surprisingly accurate. PMID:23070234
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
A spatio-temporal landslide inventory for the NW of Spain: BAPA database
NASA Astrophysics Data System (ADS)
Valenzuela, Pablo; Domínguez-Cuesta, María José; Mora García, Manuel Antonio; Jiménez-Sánchez, Montserrat
2017-09-01
A landslide database has been created for the Principality of Asturias, NW Spain: the BAPA (Base de datos de Argayos del Principado de Asturias - Principality of Asturias Landslide Database). Data collection is mainly performed through searching local newspaper archives. Moreover, a BAPA App and a BAPA website (http://geol.uniovi.es/BAPA) have been developed to obtain additional information from citizens and institutions. Presently, the dataset covers the period 1980-2015, recording 2063 individual landslides. The use of free cartographic servers, such as Google Maps, Google Street View and Iberpix (Government of Spain), combined with the spatial descriptions and pictures contained in the press news, makes it possible to assess different levels of spatial accuracy. In the database, 59% of the records show an exact spatial location, and 51% of the records provided accurate dates, showing the usefulness of press archives as temporal records. Thus, 32% of the landslides show the highest spatial and temporal accuracy levels. The database also gathers information about the type and characteristics of the landslides, the triggering factors and the damage and costs caused. Field work was conducted to validate the methodology used in assessing the spatial location, temporal occurrence and characteristics of the landslides.
Auditory attention strategy depends on target linguistic properties and spatial configurationa)
McCloy, Daniel R.; Lee, Adrian K. C.
2015-01-01
Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011
Spatial evolution of quantum mechanical states
NASA Astrophysics Data System (ADS)
Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.
2018-02-01
The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.
Sudakin, Daniel L; Power, Laura E
2009-03-01
Geographic information systems and spatial scan statistics have been utilized to assess regional clustering of symptomatic pesticide exposures reported to a state Poison Control Center (PCC) during a single year. In the present study, we analyzed five subsequent years of PCC data to test whether there are significant geographic differences in pesticide exposure incidents resulting in serious (moderate, major, and fatal) medical outcomes. A PCC provided the data on unintentional pesticide exposures for the time period 2001-2005. The geographic location of the caller, the location where the exposure occurred, the exposure route, and the medical outcome were abstracted. There were 273 incidents resulting in moderate effects (n = 261), major effects (n = 10), or fatalities (n = 2). Spatial scan statistics identified a geographic area consisting of two adjacent counties (one urban, one rural), where statistically significant clustering of serious outcomes was observed. The relative risk of moderate, major, and fatal outcomes was 2.0 in this spatial cluster (p = 0.0005). PCC data, geographic information systems, and spatial scan statistics can identify clustering of serious outcomes from human exposure to pesticides. These analyses may be useful for public health officials to target preventive interventions. Further investigation is warranted to understand better the potential explanations for geographical clustering, and to assess whether preventive interventions have an impact on reducing pesticide exposure incidents resulting in serious medical outcomes.
Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.
Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-05-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).
Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum).
Sotelo, María Inés; Bingman, Verner P; Muzio, Rubén N
2017-11-01
The current study was designed to test for the ability of terrestrial toads, Rhinella arenarum , to use slope as source of spatial information to locate a goal, and investigate the relative importance of slope and geometric information for goal localization. Toads were trained to locate a single, water-reward goal location in a corner of a rectangular arena placed on an incline. Once the toads learned the task, 3 types of probe trials were carried out to determine the relative use of slope and geometric information for goal localization. The probe trials revealed that the toads were able to independently use slope, and as previously reported, geometry to locate the goal. However, the boundary geometry of the experimental arena was found to be preferentially used by the toads when geometric and slope information were set in conflict. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
a Buffer Analysis Based on Co-Location Algorithm
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, S.; Wang, H.; Zhang, R.; Wang, Q.; Sha, H.; Liu, X.; Pan, Q.
2018-05-01
Buffer analysis is a common tool of spatial analysis, which deals with the problem of proximity in GIS. Buffer analysis researches the relationship between the center object and other objects around a certain distance. Buffer analysis can make the complicated problem be more scientifically and visually, and provide valuable information for users. Over the past decades, people have done a lot of researches on buffer analysis. Along with the constantly improvement of spatial analysis accuracy needed by people, people hope that the results of spatial analysis can be more exactly express the actual situation. Due to the influence of some certain factors, the impact scope and contact range of a geographic elements on the surrounding objects are uncertain. As all we know, each object has its own characteristics and changing rules in the nature. They are both independent and relative to each other. However, almost all the generational algorithms of existing buffer analysis are based on fixed buffer distance, which do not consider the co-location relationship among instances. Consequently, it is a waste of resource to retrieve the useless information, and useful information is ignored.
Locating Chicago's Charter Schools: A Socio-Spatial Analysis
ERIC Educational Resources Information Center
LaFleur, Jennifer C.
2016-01-01
This project contributes to the body of research examining the implications of the geographic location of charter schools for student access, especially in high-poverty communities. Using geographic information systems (GIS) software, this paper uses data from the U.S. Census American Community Survey to identify the socioeconomic characteristics…
Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients
ERIC Educational Resources Information Center
van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert
2009-01-01
Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…
Individual Differences in Spatial Relation Processing: Effects of Strategy, Ability, and Gender
ERIC Educational Resources Information Center
van der Ham, Ineke J. M.; Borst, Gregoire
2011-01-01
Numerous studies have focused on the distinction between categorical and coordinate spatial relations. Categorical relations are propositional and abstract, and often related to a left hemisphere advantage. Coordinate relations specify the metric information of the relative locations of objects, and can be linked to right hemisphere processing.…
Spatial nonuniformity in resistive-switching memory effects of NiO.
Oka, Keisuke; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Kawai, Tomoji; Kim, Jin-Soo; Park, Bae Ho
2011-08-17
Electrically driven resistance change phenomenon in metal/NiO/metal junctions, so-called resistive switching (RS), is a candidate for next-generation universal nonvolatile memories. However, the knowledge as to RS mechanisms is unfortunately far from comprehensive, especially the spatial switching location, which is crucial information to design reliable devices. In this communication, we demonstrate the identification of the spatial switching location of bipolar RS by introducing asymmetrically passivated planar NiO nanowire junctions. We have successfully identified that the bipolar RS in NiO occurs near the cathode rather than the anode. This trend can be interpreted in terms of an electrochemical redox model based on ion migration and p-type conduction.
Retrieving Enduring Spatial Representations after Disorientation
Li, Xiaoou; Mou, Weimin; McNamara, Timothy P.
2012-01-01
Four experiments tested whether there are enduring spatial representations of objects’ locations in memory. Previous studies have shown that under certain conditions the internal consistency of pointing to objects using memory is disrupted by disorientation. This disorientation effect has been attributed to an absence of or to imprecise enduring spatial representations of objects’ locations. Experiment 1 replicated the standard disorientation effect. Participants learned locations of objects in an irregular layout and then pointed to objects after physically turning to face an object and after disorientation. The expected disorientation was observed. In Experiment 2, after disorientation, participants were asked to imagine they were facing the original learning direction and then physically turned to adopt the test orientation. In Experiment 3, after disorientation, participants turned to adopt the test orientation and then were informed of the original viewing direction by the experimenter. A disorientation effect was not observed in Experiment 2 or 3. In Experiment 4, after disorientation, participants turned to face the test orientation but were not told the original learning orientation. As in Experiment 1, a disorientation effect was observed. These results suggest that there are enduring spatial representations of objects’ locations specified in terms of a spatial reference direction parallel to the learning view, and that the disorientation effect is caused by uncertainty in recovering the spatial reference direction relative to the testing orientation following disorientation. PMID:22682765
Murd, Carolina; Bachmann, Talis
2011-05-25
In searching for the target-afterimage patch among spatially separate alternatives of color-afterimages the target fades from awareness before its competitors (Bachmann, T., & Murd, C. (2010). Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: Introducing a method useful for the study of neural correlates of visual awareness. Vision Research 50, 1048-1053). In an analogous study presented here we show that a similar effect is obtained when a target spatial location specified according to the direction of motion aftereffect within it is searched by covert top-down attention. The adverse effect of selective attention on the duration of awareness of sensory qualiae known earlier to be present for color and periodic spatial contrast is extended also to sensory channels carrying motion information. Copyright © 2011 Elsevier Ltd. All rights reserved.
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
Impact Induced Delamination Detection and Quantification With Guided Wavefield Analysis
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu; Seebo, Jeffrey P.
2015-01-01
This paper studies impact induced delamination detection and quantification by using guided wavefield data and spatial wavenumber imaging. The complex geometry impact-like delamination is created through a quasi-static indentation on a CFRP plate. To detect and quantify the impact delamination in the CFRP plate, PZT-SLDV sensing and spatial wavenumber imaging are performed. In the PZT-SLDV sensing, the guided waves are generated from the PZT, and the high spatial resolution guided wavefields are measured by the SLDV. The guided wavefield data acquired from the PZT-SLDV sensing represent guided wave propagation in the composite laminate and include guided wave interaction with the delamination damage. The measured guided wavefields are analyzed through the spatial wavenumber imaging method, which generates an image containing the dominant local wavenumber at each spatial location. The spatial wavenumber imaging result for the simple single layer Teflon insert delamination provided quantitative information on delamination damage size and location. The location of delamination damage is indicated by the area with larger wavenumbers in the spatial wavenumber image. The impact-like delamination results only partially agreed with the damage size and shape. The results also demonstrated the dependence on excitation frequency. Future work will further investigate the accuracy of the wavenumber imaging method for real composite damage and the dependence on frequency of excitation.
Typograph: Multiscale Spatial Exploration of Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.
2013-10-06
Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. These visual metaphors (e.g., word clouds, tag clouds, etc.) traditionally show a series of terms organized by space-filling algorithms. However, often lacking in these views is the ability to interactively explore the information to gain more detail, and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods,more » Typograh enables multiple levels of detail (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geographic metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
NASA Astrophysics Data System (ADS)
Pascual-Aguilar, J. A.; Rubio, J. L.; Domínguez, J.; Andreu, V.
2012-04-01
New information technologies give the possibility of widespread dissemination of spatial information to different geographical scales from continental to local by means of Spatial Data Infrastructures. Also administrative awareness on the need for open access information services has allowed the citizens access to this spatial information through development of legal documents, such as the INSPIRE Directive of the European Union, adapted by national laws as in the case of Spain. The translation of the general criteria of generic Spatial Data Infrastructures (SDI) to thematic ones is a crucial point for the progress of these instruments as large tool for the dissemination of information. In such case, it must be added to the intrinsic criteria of digital information, such as the harmonization information and the disclosure of metadata, the own environmental information characteristics and the techniques employed in obtaining it. In the case of inventories and mapping of soils, existing information obtained by traditional means, prior to the digital technologies, is considered to be a source of valid information, as well as unique, for the development of thematic SDI. In this work, an evaluation of existing and accessible information that constitutes the basis for building a thematic SDI of soils in Spain is undertaken. This information framework has common features to other European Union states. From a set of more than 1,500 publications corresponding to the national territory of Spain, the study was carried out in those documents (94) found for five autonomous regions of northern Iberian Peninsula (Asturias, Cantabria, Basque Country, Navarra and La Rioja). The analysis was performed taking into account the criteria of soil mapping and inventories. The results obtained show a wide variation in almost all the criteria: geographic representation (projections, scales) and geo-referencing the location of the profiles, map location of profiles integrated with edaphic units, description and taxonomic classification systems of soils (FAO, Soil taxonomy, etc.), amount and type of soil analysis parameters and dates of the inventories. In conclusion, the construction of thematic SDI on soil should take into account, prior to the integration of all maps and inventories, a series of processes of harmonization that allows spatial continuity between existing information and also temporal identification of the inventories and maps. This should require the development of at least two types of integration tools: (1) enabling spatial continuity without contradictions between maps made at different times and with different criteria and (2) the development of information systems data (metadata) to highlight the characteristics of information and connection possibilities with other sources that comprise the Spatial Data Infrastructure. Acknowledgements This research has financed by the European Union within the framework of the GS Soil project (eContentplus Programme ECP-2008-GEO-318004).
Spatial Updating and the Maintenance of Visual Constancy
Klier, Eliana M.; Angelaki, Dora E.
2008-01-01
Spatial updating is the means by which we keep track of the locations of objects in space even as we move. Four decades of research have shown that humans and non-human primates can take the amplitude and direction of intervening movements into account, including saccades (both head-fixed and head-free), pursuit, whole-body rotations and translations. At the neuronal level, spatial updating is thought to be maintained by receptive field locations that shift with changes in gaze and evidence for such shifts have been shown in several cortical areas. These regions receive information about the intervening movement from several sources including motor efference copies when a voluntary movement is made and vestibular/somatosensory signals when the body is in motion. Many of these updating signals arise from brainstem regions that monitor our ongoing movements and subsequently transmit this information to the cortex via pathways that likely include the thalamus. Several issues of debate include (1) the relative contribution of extra-retinal sensory and efference copy signals to spatial updating, (2) the source of an updating signal for real life, three-dimensional motion that cannot arise from brain areas encoding only two-dimensional commands, and (3) the reference frames used by the brain to integrate updating signals from various sources. This review highlights the relevant spatial updating studies and provides a summary of the field today. We find that spatial constancy is maintained by a highly evolved neural mechanism that keeps track of our movements, transmits this information to relevant brain regions, and then uses this information to change the way in which single neurons respond. In this way, we are able to keep track of relevant objects in the outside world and interact with them in meaningful ways. PMID:18786618
Sustainable Street Vendors Spatial Zoning Models in Surakarta
NASA Astrophysics Data System (ADS)
Rahayu, M. J.; Putri, R. A.; Rini, E. F.
2018-02-01
Various strategies that have been carried out by Surakarta’s government to organize street vendors have not achieved the goal of street vendors’ arrangement comprehensively. The street vendors arrangement strategy consists of physical (spatial) and non-physical. One of the physical arrangements is to define the street vendor’s zoning. Based on the street vendors’ characteristics, there are two alternative locations of stabilization (as one kind of street vendors’ arrangement) that can be used. The aim of this study is to examine those alternative locations to set the street vendor’s zoning models. Quatitative method is used to formulate the spatial zoning model. The street vendor’s zoning models are formulated based on two approaches, which are the distance to their residences and previous trading locations. Geographic information system is used to indicate all street vendors’ residences and trading locations based on their type of goods. Through proximity point distance tool on ArcGIS, we find the closeness of residential location and previous trading location with the alternative location of street vendors’ stabilization. The result shows that the location was chosen by the street vendors to sell their goods mainly consider the proximity to their homes. It also shows street vendor’s zoning models which based on the type of street vendor’s goods.
Preparatory neural activity predicts performance on a conflict task.
Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A
2007-10-24
Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
Using spatial uncertainty to manipulate the size of the attention focus.
Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao
2016-09-01
Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Kun; National Institute of Parasitic Diseases; Zhou Xiaonong
2008-12-15
Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills,more » and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr{sup 6+} and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria.« less
Yang, Kun; Zhou, Xiao-Nong; Yan, Wei-An; Hang, De-Rong; Steinmann, Peter
2008-12-01
Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr(6+) and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria.
Geographic Information System and tools of spatial analysis in a pneumococcal vaccine trial.
Tanskanen, Antti; Nillos, Leilani T; Lehtinen, Antti; Nohynek, Hanna; Sanvictores, Diozele Hazel M; Simões, Eric Af; Tallo, Veronica L; Lucero, Marilla G
2012-01-20
The goal of this Geographic Information System (GIS) study was to obtain accurate information on the locations of study subjects, road network and services for research purposes so that the clinical outcomes of interest (e.g., vaccine efficacy, burden of disease, nasopharyngeal colonization and its reduction) could be linked and analyzed at a distance from health centers, hospitals, doctors and other important services. The information on locations can be used to investigate more accurate crowdedness, herd immunity and/or transmission patterns. A randomized, placebo-controlled, double-blind trial of an 11-valent pneumococcal conjugate vaccine (11PCV) was conducted in Bohol Province in central Philippines, from July 2000 to December 2004. We collected the information on the geographic location of the households (N = 13,208) of study subjects. We also collected a total of 1982 locations of health and other services in the six municipalities and a comprehensive GIS data over the road network in the area. We calculated the numbers of other study subjects (vaccine and placebo recipients, respectively) within the neighborhood of each study subject. We calculated distances to different services and identified the subjects sharing the same services (calculated by distance). This article shows how to collect a complete GIS data set for human to human transmitted vaccine study in developing country settings in an efficient and economical way. The collection of geographic locations in intervention trials should become a routine task. The results of public health research may highly depend on spatial relationships among the study subjects and between the study subjects and the environment, both natural and infrastructural. ISRCTN: ISRCTN62323832.
Spatially weighted mutual information image registration for image guided radiation therapy.
Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W
2010-09-01
To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with a Gaussian weight function (SWMI-GW) was tested between two different imaging modalities: CT and MRI image sets. SWMI-GW converges 10% faster than registration using mutual information with an ROI. SWMI-GW as well as SWMI with SOI-based weight function (SWMI-SOI) shows better compensation of the target organ's deformation and neighboring critical organs' deformation. SWMI-GW was also used to successfully fuse MRI and CT images. Rigid-body image registration using our SWMI-GW and SWMI-SOI as cost functions can achieve better registration results in (a) designated image region(s) as well as faster convergence. With the theoretical foundation established, we believe SWMI could be extended to larger clinical testing.
A comprehensive three-dimensional cortical map of vowel space.
Scharinger, Mathias; Idsardi, William J; Poe, Samantha
2011-12-01
Mammalian cortex is known to contain various kinds of spatial encoding schemes for sensory information including retinotopic, somatosensory, and tonotopic maps. Tonotopic maps are especially interesting for human speech sound processing because they encode linguistically salient acoustic properties. In this study, we mapped the entire vowel space of a language (Turkish) onto cortical locations by using the magnetic N1 (M100), an auditory-evoked component that peaks approximately 100 msec after auditory stimulus onset. We found that dipole locations could be structured into two distinct maps, one for vowels produced with the tongue positioned toward the front of the mouth (front vowels) and one for vowels produced in the back of the mouth (back vowels). Furthermore, we found spatial gradients in lateral-medial, anterior-posterior, and inferior-superior dimensions that encoded the phonetic, categorical distinctions between all the vowels of Turkish. Statistical model comparisons of the dipole locations suggest that the spatial encoding scheme is not entirely based on acoustic bottom-up information but crucially involves featural-phonetic top-down modulation. Thus, multiple areas of excitation along the unidimensional basilar membrane are mapped into higher dimensional representations in auditory cortex.
A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection
Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.
2006-01-01
Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353
The influence of cognitive load on spatial search performance.
Longstaffe, Kate A; Hood, Bruce M; Gilchrist, Iain D
2014-01-01
During search, executive function enables individuals to direct attention to potential targets, remember locations visited, and inhibit distracting information. In the present study, we investigated these executive processes in large-scale search. In our tasks, participants searched a room containing an array of illuminated locations embedded in the floor. The participants' task was to press the switches at the illuminated locations on the floor so as to locate a target that changed color when pressed. The perceptual salience of the search locations was manipulated by having some locations flashing and some static. Participants were more likely to search at flashing locations, even when they were explicitly informed that the target was equally likely to be at any location. In large-scale search, attention was captured by the perceptual salience of the flashing lights, leading to a bias to explore these targets. Despite this failure of inhibition, participants were able to restrict returns to previously visited locations, a measure of spatial memory performance. Participants were more able to inhibit exploration to flashing locations when they were not required to remember which locations had previously been visited. A concurrent digit-span memory task further disrupted inhibition during search, as did a concurrent auditory attention task. These experiments extend a load theory of attention to large-scale search, which relies on egocentric representations of space. High cognitive load on working memory leads to increased distractor interference, providing evidence for distinct roles for the executive subprocesses of memory and inhibition during large-scale search.
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition
Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A
2013-01-01
Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958
Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks
Kuruvilla, Maneesh V.; Ainge, James A.
2017-01-01
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task. PMID:28567006
ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access
ERIC Educational Resources Information Center
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-01-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one "simultaneously" in a spatially distributed fashion, the other "sequentially" at a single location. To understand their findings in a unified framework, we propose a…
ERIC Educational Resources Information Center
Cardini, Flavia; Haggard, Patrick; Ladavas, Elisabetta
2013-01-01
We have investigated the relation between visuo-tactile interactions and the self-other distinction. In the Visual Enhancement of Touch (VET) effect, non-informative vision of one's own hand improves tactile spatial perception. Previous studies suggested that looking at "another"person's hand could also enhance tactile perception, but did not…
Relationship among Environmental Pointing Accuracy, Mental Rotation, Sex, and Hormones
ERIC Educational Resources Information Center
Bell, Scott; Saucier, Deborah
2004-01-01
Humans rely on internal representations to solve a variety of spatial problems including navigation. Navigation employs specific information to compose a representation of space that is distinct from that obtained through static bird's-eye or horizontal perspectives. The ability to point to on-route locations, off-route locations, and the route…
ERIC Educational Resources Information Center
Fagioli, Sabrina; Macaluso, Emiliano
2009-01-01
Behavioral studies indicate that subjects are able to divide attention between multiple streams of information at different locations. However, it is still unclear to what extent the observed costs reflect processes specifically associated with spatial attention, versus more general interference due the concurrent monitoring of multiple streams of…
Mertes, Christine; Wascher, Edmund; Schneider, Daniel
2016-01-01
Even though information is spatially and temporally irrelevant, it can influence the processing of subsequent information. The present study used a spatial cuing paradigm to investigate the origins of this persisting influence by means of event-related potentials (ERPs) of the EEG. An irrelevant color cue that was either contingent (color search) or non-contingent (shape search) on attentional sets was presented prior to a target array with different stimulus-onset asynchronies (SOA; 200, 400, 800 ms). Behavioral results indicated that color cues captured attention only when they shared target-defining properties. These same-location effects persisted over time but were pronounced when cue and target array were presented in close succession. N2 posterior contralateral (N2pc) showed that the color cue generally drew attention, but was strongest in the contingent condition. A subsequently emerging contralateral posterior positivity referred to the irrelevant cue (i.e., distractor positivity, Pd) was unaffected by the attentional set and therefore interpreted as an inhibitory process required to enable a re-direction of the attentional focus. Contralateral delay activity (CDA) was only observable in the contingent condition, indicating the transfer of spatial information into working memory and thus providing an explanation for the same-location effect for longer SOAs. Inhibition of this irrelevant information was reflected by a second contralateral positivity triggered through target presentation. The results suggest that distracting information is actively maintained when it resembles a sought-after object. However, two independent attentional processes are at work to compensate for attentional distraction: the timely inhibition of attentional capture and the active inhibition of mental representation of irrelevant information. PMID:27242493
Beyond attentional bias: a perceptual bias in a dot-probe task.
Bocanegra, Bruno R; Huijding, Jorg; Zeelenberg, René
2012-12-01
Previous dot-probe studies indicate that threat-related face cues induce a bias in spatial attention. Independently of spatial attention, a recent psychophysical study suggests that a bilateral fearful face cue improves low spatial-frequency perception (LSF) and impairs high spatial-frequency perception (HSF). Here, we combine these separate lines of research within a single dot-probe paradigm. We found that a bilateral fearful face cue, compared with a bilateral neutral face cue, speeded up responses to LSF targets and slowed down responses to HSF targets. This finding is important, as it shows that emotional cues in dot-probe tasks not only bias where information is preferentially processed (i.e., an attentional bias in spatial location), but also bias what type of information is preferentially processed (i.e., a perceptual bias in spatial frequency). PsycINFO Database Record (c) 2012 APA, all rights reserved.
Algae Biofuels Co-Location Assessment Tool for Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-11-29
The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.
NASA Astrophysics Data System (ADS)
Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram
2017-08-01
Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2015-06-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.
Spatial selective attention in a complex auditory environment such as polyphonic music.
Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf
2010-01-01
To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.
Oculomotor preparation as a rehearsal mechanism in spatial working memory.
Pearson, David G; Ball, Keira; Smith, Daniel T
2014-09-01
There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
2015-07-30
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
Pearson, Daniel K.; Bumgarner, Johnathan R.; Houston, Natalie A.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.
2012-01-01
The U.S. Geological Survey, in cooperation with Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1, compiled groundwater, surface-water, water-quality, geophysical, and geologic data for site locations in the Pecos County region, Texas, and developed a geodatabase to facilitate use of this information. Data were compiled for an approximately 4,700 square mile area of the Pecos County region, Texas. The geodatabase contains data from 8,242 sampling locations; it was designed to organize and store field-collected geochemical and geophysical data, as well as digital database resources from the U.S. Geological Survey, Middle Pecos Groundwater Conservation District, Texas Water Development Board, Texas Commission on Environmental Quality,and numerous other State and local databases. The geodatabase combines these disparate database resources into a simple data model. Site locations are geospatially enabled and stored in a geodatabase feature class for cartographic visualization and spatial analysis within a Geographic Information System. The sampling locations are related to hydrogeologic information through the use of geodatabase relationship classes. The geodatabase relationship classes provide the ability to perform complex spatial and data-driven queries to explore data stored in the geodatabase.
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve
2009-02-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.
Evaluating the Use of Auditory Systems to Improve Performance in Combat Search and Rescue
2012-03-01
take advantage of human binaural hearing to present spatial information through auditory stimuli as it would occur in the real world. This allows the...multiple operators unambiguously and in a short amount of time. Spatial audio basics Spatial audio works with human binaural hearing to generate... binaural recordings “sound better” when heard in the same location where the recordings were made. While this appears to be related to the acoustic
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.
Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.
Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.
Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G
2001-02-01
ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.
A Spatial Statistical Model for Landscape Genetics
Guillot, Gilles; Estoup, Arnaud; Mortier, Frédéric; Cosson, Jean François
2005-01-01
Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations, and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in the data set, estimates the number of populations in the studied area, assigns individuals to their population of origin, and detects individual migrants between populations, while taking into account uncertainty on the location of sampled individuals. The performance of the method is evaluated through the analysis of simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., FST < 0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the northwestern United States and genotyped at 10 microsatellites. PMID:15520263
Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S
2002-01-01
Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.
NASA Astrophysics Data System (ADS)
Vandenbroucke, D.; Vancauwenberghe, G.
2016-12-01
The European Union Location Framework (EULF), as part of the Interoperable Solutions for European Public Administrations (ISA) Programme of the EU (EC DG DIGIT), aims to enhance the interactions between governments, businesses and citizens by embedding location information into e-Government processes. The challenge remains to find scientific sound and at the same time practicable approaches to estimate or measure the impact of location enablement of e-Government processes on the performance of the processes. A method has been defined to estimate process performance in terms of variables describing the efficiency, effectiveness, as well as the quality of the output of the work processes. A series of use cases have been identified, corresponding to existing e-Government work processes in which location information could bring added value. In a first step, the processes are described by means of BPMN (Business Process Model and Notation) to better understand the process steps, the actors involved, the spatial data flows, as well as the required input and the generated output. In a second step the processes are assessed in terms of the (sub-optimal) use of location information and the potential enhancement of the process by better integrating location information and services. The process performance is measured ex ante (before using location enabled e-Government services) and ex-post (after the integration of such services) in order to estimate and measure the impact of location information. The paper describes the method for performance measurement and highlights how the method is applied to one use case, i.e. the process of traffic safety monitoring. The use case is analysed and assessed in terms of location enablement and its potential impact on process performance. The results of applying the methodology on the use case revealed that performance is highly impacted by factors such as the way location information is collected, managed and shared throughout the process, and the degree to which spatial data are harmonized. The work led also to the formulation of some recommendations to enrich the BPMN standard with additional methods for annotating processes, and to the proposal of the development of some tools for automatic process performance. In that context some planned future work is highlighted as well.
Tensor-guided fitting of subduction slab depths
Bazargani, Farhad; Hayes, Gavin P.
2013-01-01
Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.
Using GIS for spatial analysis of rectal lesions in the human body.
Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B
2007-03-15
Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process.
Using GIS for spatial analysis of rectal lesions in the human body
Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B
2007-01-01
Background Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Results Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. Conclusion This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process. PMID:17362510
Shrem, Talia; Murray, Micah M; Deouell, Leon Y
2017-11-01
Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.
Location perception: the X-Files parable.
Prinzmetal, William
2005-01-01
Three aspects of visual object location were investigated: (1) how the visual system integrates information for locating objects, (2) how attention operates to affect location perception, and (3) how the visual system deals with locating an object when multiple objects are present. The theories were described in terms of a parable (the X-Files parable). Then, computer simulations were developed. Finally, predictions derived from the simulations were tested. In the scenario described in the parable, we ask how a system of detectors might locate an alien spaceship, how attention might be implemented in such a spaceship detection system, and how the presence of one spaceship might influence the location perception of another alien spaceship. Experiment 1 demonstrated that location information is integrated with a spatial average rule. In Experiment 2, this rule was applied to a more-samples theory of attention. Experiment 3 demonstrated how the integration rule could account for various visual illusions.
Geographic Information System and tools of spatial analysis in a pneumococcal vaccine trial
2012-01-01
Background The goal of this Geographic Information System (GIS) study was to obtain accurate information on the locations of study subjects, road network and services for research purposes so that the clinical outcomes of interest (e.g., vaccine efficacy, burden of disease, nasopharyngeal colonization and its reduction) could be linked and analyzed at a distance from health centers, hospitals, doctors and other important services. The information on locations can be used to investigate more accurate crowdedness, herd immunity and/or transmission patterns. Method A randomized, placebo-controlled, double-blind trial of an 11-valent pneumococcal conjugate vaccine (11PCV) was conducted in Bohol Province in central Philippines, from July 2000 to December 2004. We collected the information on the geographic location of the households (N = 13,208) of study subjects. We also collected a total of 1982 locations of health and other services in the six municipalities and a comprehensive GIS data over the road network in the area. Results We calculated the numbers of other study subjects (vaccine and placebo recipients, respectively) within the neighborhood of each study subject. We calculated distances to different services and identified the subjects sharing the same services (calculated by distance). This article shows how to collect a complete GIS data set for human to human transmitted vaccine study in developing country settings in an efficient and economical way. Conclusions The collection of geographic locations in intervention trials should become a routine task. The results of public health research may highly depend on spatial relationships among the study subjects and between the study subjects and the environment, both natural and infrastructural. Trial registration number ISRCTN: ISRCTN62323832 PMID:22264271
Flasbeck, Vera; Atucha, Erika; Nakamura, Nozomu H; Yoshida, Motoharu; Sauvage, Magdalena M
2018-07-16
For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory. Copyright © 2018. Published by Elsevier B.V.
Cerebellar contributions to spatial memory.
Tomlinson, Simon P; Davis, Nick J; Morgan, Helen M; Bracewell, R Martyn
2014-08-22
There is mounting evidence for a role for the cerebellum in working memory (WM). The majority of relevant studies has examined verbal WM and has suggested specialisation of the right cerebellar hemisphere for language processing. Our study used theta burst stimulation (TBS) to examine whether there is a converse cerebellar hemispheric specialisation for spatial WM. We conducted two experiments to examine spatial WM performance before and after TBS to mid-hemispheric and lateral locations in the posterior cerebellum. Participants were required to recall the order of presentation of targets on a screen or the targets' order of presentation and their locations. We observed impaired recollection of target order after TBS to the mid left cerebellar hemisphere and reduced response speed after TBS to the left lateral cerebellum. We suggest that these results give evidence of the contributions of the left cerebellar cortex to the encoding and retrieval of spatial information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim
2016-08-01
Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad Atif; Curtis, Andrew
2018-04-01
We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.
Spatial Case Information Management System (SCIMS)
SCIMS facilitates the update of the Land Administration System (LAS) Case File location. Please select Cleanup Notes Utilities LAS Request Import Utility Privacy Copyright System Status Support User Guide
Spatial statistical analysis of tree deaths using airborne digital imagery
NASA Astrophysics Data System (ADS)
Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael
2013-04-01
High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).
Spatial memory in foraging games.
Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T
2016-03-01
Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.
De Sá Teixeira, Nuno Alexandre
2014-12-01
Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.
Information status and word order in Croatian Sign Language.
Milkovic, Marina; Bradaric-Joncic, Sandra; Wilbur, Ronnie B
2007-01-01
This paper presents the results of research on information structure and word order in narrative sentences taken from signed short stories in Croatian Sign Language (HZJ). The basic word order in HZJ is SVO. Factors that result in other word orders include: reversible arguments, verb categories, locative constructions, contrastive focus, and prior context. Word order in context depends on communication rules, based on the relationship between old (theme) and new (rheme) information, which is predicated of the theme. In accordance with Grice's Maxim of Quantity, HZJ has a tendency to omit old information, or to reduce it to pronominal status. If old information is overtly signed in non-pronominal form, it precedes the rheme. We have observed a variety of sign language mechanisms that are used to show items of reduced contextual significance: use of assigned spatial location for previously introduced referents; eyegaze to indicate spatial location of previously introduced referents; use of the non-dominant hand for backgrounded information; use of a special category of signs known as classifiers as pronominal indicators of previously introduced referents; and complex noun phrases that allow a single occurrence of a noun to simultaneously serve multiple functions. These devices permit information to be conveyed without the need for separate signs for every referent, which would create longer constructions that could be taxing to both production and perception. The results of this research are compatible with well-known word order generalizations - HZJ has its own grammar, independent of spoken language, like any other sign language.
Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus.
Kim, Misun; Jeffery, Kate J; Maguire, Eleanor A
2017-04-19
The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it. Copyright © 2017 Kim et al.
Association, inhibition, and object permanence in dogs' (Canis familiaris) spatial search.
Ashton, Rebecca L; De Lillo, Carlo
2011-05-01
The relative role of associative processes and the use of explicit cues about object location in search behavior in dogs (Canis familiaris) was assessed by using a spatial binary discrimination reversal paradigm in which reversal conditions featured: (1) a previously rewarded location and a novel location, (2) a previously nonrewarded location and a novel location, or (3) a previously rewarded location and a previously nonrewarded location. Rule mediated learning predicts a similar performance in these different reversal conditions whereas associative learning predicts the worst performance in Condition 3. Evidence for an associative control of search emerged when no explicit cues about food location were provided (Experiment 1) but also when dogs witnessed the hiding of food in the reversal trials (Experiment 2) and when they did so in both the prereversal and the reversal trials (Experiment 3). Nevertheless, dogs performed better in the prereversal phase of Experiment 3 indicating that their search could be informed by the knowledge of the food location. Experiment 4 confirmed the results of Experiments 1 and 2, under a different arrangement of search locations. We conclude that knowledge about object location guides search behavior in dogs but it cannot override associative processes. 2011 APA, all rights reserved
VizieR Online Data Catalog: Catalog of Suspected Nearby Young Stars (Riedel+, 2017)
NASA Astrophysics Data System (ADS)
Riedel, A. R.; Blunt, S. C.; Lambrides, E. L.; Rice, E. L.; Cruz, K. L.; Faherty, J. K.
2018-04-01
LocAting Constituent mEmbers In Nearby Groups (LACEwING) is a frequentist observation space kinematic moving group identification code. Using the spatial and kinematic information available about a target object (α, δ, Dist, μα, μδ, and γ), it determines the probability that the object is a member of each of the known nearby young moving groups (NYMGs). As with other moving group identification codes, LACEwING is capable of estimating memberships for stars with incomplete kinematic and spatial information. (2 data files).
How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
Zago, Laure; Petit, Laurent; Turbelin, Marie-Renée; Andersson, Frédéric; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie
2008-01-01
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intraparietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and nonsymbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with nonsymbolic material.
The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.
2011-12-01
Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.
Olivetti Belardinelli, Marta; Santangelo, Valerio
2005-07-08
This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.
Location of Road Emergency Stations in Fars Province, Using Spatial Multi-Criteria Decision Making.
Goli, Ali; Ansarizade, Najmeh; Barati, Omid; Kavosi, Zahra
2015-01-01
To locate the road emergency stations in Fars province based on using spatial multi-criteria decision making (Delphi method). In this study, the criteria affecting the location of road emergency stations have been identified through Delphi method and their importance was determined using Analytical Hierarchical Process (AHP). With regard to the importance of the criteria and by using Geographical Information System (GIS), the appropriateness of the existing stations with the criteria and the way of their distribution has been explored, and the appropriate arenas for creating new emergency stations were determined. In order to investigate the spatial distribution pattern of the stations, Moran's Index was used. The accidents (0.318), placement position (0.235), time (0.198), roads (0.160), and population (0.079) were introduced as the main criteria in location road emergency stations. The findings showed that the distribution of the existing stations was clustering (Moran's I=0.3). Three priorities were introduced for establishing new stations. Some arenas including Abade, north of Eghlid and Khoram bid, and small parts of Shiraz, Farashband, Bavanat, and Kazeroon were suggested as the first priority. GIS is a useful and applicable tool in investigating spatial distribution and geographical accessibility to the setting that provide health care, including emergency stations.
Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data
Henderson, R.D.; Day-Lewis, Frederick D.; Harvey, Charles F.
2009-01-01
Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologic information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater.
Active and passive spatial learning in human navigation: acquisition of survey knowledge.
Chrastil, Elizabeth R; Warren, William H
2013-09-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Uncertainty in georeferencing current and historic plant locations
McEachern, K.; Niessen, K.
2009-01-01
With shrinking habitats, weed invasions, and climate change, repeated surveys are becoming increasingly important for rare plant conservation and ecological restoration. We often need to relocate historical sites or provide locations for newly restored sites. Georeferencing is the technique of giving geographic coordinates to the location of a site. Georeferencing has been done historically using verbal descriptions or field maps that accompany voucher collections. New digital technology gives us more exact techniques for mapping and storing location information. Error still exists, however, and even georeferenced locations can be uncertain, especially if error information is not included with the observation. We review the concept of uncertainty in georeferencing and compare several institutional database systems for cataloging error and uncertainty with georeferenced locations. These concepts are widely discussed among geographers, but ecologists and restorationists need to become more aware of issues related to uncertainty to improve our use of spatial information in field studies. ?? 2009 by the Board of Regents of the University of Wisconsin System.
Lopez Hoffman, Laura; Diffendorfer, James E.; Widerholt, Ruscena; Thogmartin, Wayne E.; McCraken, Gary; Medellin, Rodrigo; Bagstad, Kenneth J.; Russell, Amy; Semmens, Darius J.
2017-01-01
Drivers of environmental change in one location can have profound effects on ecosystem services and human well-being in distant locations, often across international borders. The telecoupling provides a conceptual framework for describing these interactions—for example, locations can be defined as sending areas (sources of flows of ecosystem services, energy, or information) or receiving areas (recipients of flows). However, the ability to quantify feedbacks between ecosystem change in one area and societal benefits in other areas requires analytical approaches. We use spatial subsidies—an approach developed to measure the degree to which a migratory species’ ability to provide services in one location depends on habitat in another location—as an example of how telecoupling can be operationalized. Using the cotton pest control and ecotourism services of Mexican free-tailed bats as an example, we determined that of the 16 states in the United States and Mexico where the species resides, three states (Texas, New Mexico, and Colorado) are receiving areas, while the rest of the states are sending areas. In addition, the magnitude of spatial subsidy can be used as an indicator of the degree to which different locations are telecoupled to other locations. In this example, the Mexican free-tailed bat ecosystem services to cotton production and ecotourism in Texas and New Mexico are heavily dependent on winter habitat in four states in central and southern Mexico. In sum, spatial subsidies can be used to operationalize the telecoupling conceptual framework by identifying sending and receiving areas, and by indicating the degree to which locations are telecoupled to other locations.
Neural Correlates of Divided Attention in Natural Scenes.
Fagioli, Sabrina; Macaluso, Emiliano
2016-09-01
Individuals are able to split attention between separate locations, but divided spatial attention incurs the additional requirement of monitoring multiple streams of information. Here, we investigated divided attention using photos of natural scenes, where the rapid categorization of familiar objects and prior knowledge about the likely positions of objects in the real world might affect the interplay between these spatial and nonspatial factors. Sixteen participants underwent fMRI during an object detection task. They were presented with scenes containing either a person or a car, located on the left or right side of the photo. Participants monitored either one or both object categories, in one or both visual hemifields. First, we investigated the interplay between spatial and nonspatial attention by comparing conditions of divided attention between categories and/or locations. We then assessed the contribution of top-down processes versus stimulus-driven signals by separately testing the effects of divided attention in target and nontarget trials. The results revealed activation of a bilateral frontoparietal network when dividing attention between the two object categories versus attending to a single category but no main effect of dividing attention between spatial locations. Within this network, the left dorsal premotor cortex and the left intraparietal sulcus were found to combine task- and stimulus-related signals. These regions showed maximal activation when participants monitored two categories at spatially separate locations and the scene included a nontarget object. We conclude that the dorsal frontoparietal cortex integrates top-down and bottom-up signals in the presence of distractors during divided attention in real-world scenes.
The mechanism of valence-space metaphors: ERP evidence for affective word processing.
Xie, Jiushu; Wang, Ruiming; Chang, Song
2014-01-01
Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations. Valence-space metaphors might be grounded in attention allocation.
NASA Astrophysics Data System (ADS)
Kamer, Yavor; Ouillon, Guy; Sornette, Didier; Wössner, Jochen
2014-05-01
Latest advances in the instrumentation field have increased the station coverage and lowered event detection thresholds. This has resulted in a vast increase in the number of located events with each year. The abundance of data comes as a double edged sword: while it facilitates more robust statistics and provides better confidence intervals, it also paralyzes computations whose execution times grow exponentially with the number of data points. In this study, we present a novel method that assesses the relative importance of each data point, reduces the size of datasets while preserving the information content. For a given seismic catalog, the goal is to express the same spatial probability density distribution with fewer data points. To achieve this, we exploit the fact that seismic catalogs are not optimally encoded. This coding deficiency is the result of the sequential data entry where new events are added without taking into account previous ones. For instance, if there are several events with identical parameters occurring at the same location, these could be grouped together rather than occupying the same memory space as if they were distinct events. Following this reasoning, the proposed condensation methodology is implemented by grouping all event according to their overall variance, starting from the group with the highest variance (worst location uncertainty), each event is sampled by a number of sample points, these points are then used to calculate which better located events are able to express these probable locations with a higher likelihood. Based on these likelihood comparisons, weights from poorly located events are successively transferred to better located ones. As a result of the process, a large portion of the events (~30%) ends up with zero weights (thus being fully represented by events increasing their weights), while the information content (i.e the sum of all weights) remains preserved. The resulting condensed catalog not only provides more optimally encoding but is also regularized with respect to the local information quality. By investigating the locations of mass enrichment and depletion at different scales, we observe that the areas of increased mass are in good agreement with reported surface fault traces. We also conduct multifractal spatial analysis on condensed catalogs and investigate different spatial scaling regimes made clearer by reducing the effect of location uncertainty.
Resource selection by elk at two spatial scales in the Black Hills, South Dakota
Mark A. Rumble; R. Scott Gamo
2011-01-01
Understanding resource selection by elk (Cervus elaphus) at multiple spatial scales may provide information that will help resolve the increasing number of resource conflicts involving elk. We quantified vegetation at 412 sites where the precise location of elk was known by direct observation and 509 random sites in the Black Hills of South Dakota during 1998-2001. We...
NASA Technical Reports Server (NTRS)
Finn, J. T.; Howard, R.
1981-01-01
A preliminary dynamic model of beaver spatial distribution and population growth was developed. The feasibility of locating beaver ponds on LANDSAT digital tapes, and of using this information to provide initial conditions of beaver spatial distribution for the model, and to validate model predictions is discussed. The techniques used to identify beaver ponds on LANDSAT are described.
ERIC Educational Resources Information Center
Sauter, Megan; Uttal, David H.; Alman, Amanda Schaal; Goldin-Meadow, Susan; Levine, Susan C.
2012-01-01
This article examines two issues: the role of gesture in the communication of spatial information and the relation between communication and mental representation. Children (8-10 years) and adults walked through a space to learn the locations of six hidden toy animals and then explained the space to another person. In Study 1, older children and…
Role of right posterior parietal cortex in maintaining attention to spatial locations over time
Coulthard, Elizabeth J.; Husain, Masud
2009-01-01
Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time—a vigilance decrement—considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect. PMID:19158107
Kandala, Ngianga-Bakwin; Madungu, Tumwaka P; Emina, Jacques B O; Nzita, Kikhela P D; Cappuccio, Francesco P
2011-04-25
Although there are inequalities in child health and survival in the Democratic Republic of Congo (DRC), the influence of distal determinants such as geographic location on children's nutritional status is still unclear. We investigate the impact of geographic location on child nutritional status by mapping the residual net effect of malnutrition while accounting for important risk factors. We examine spatial variation in under-five malnutrition with flexible geo-additive semi-parametric mixed model while simultaneously controlling for spatial dependence and possibly nonlinear effects of covariates within a simultaneous, coherent regression framework based on Markov Chain Monte Carlo techniques. Individual data records were constructed for children. Each record represents a child and consists of nutritional status information and a list of covariates. For the 8,992 children born within the last five years before the survey, 3,663 children have information on anthropometric measures.Our novel empirical approach is able to flexibly determine to what extent the substantial spatial pattern of malnutrition is driven by detectable factors such as socioeconomic factors and can be attributable to unmeasured factors such as conflicts, political, environmental and cultural factors. Although childhood malnutrition was more pronounced in all provinces of the DRC, after accounting for the location's effects, geographic differences were significant: malnutrition was significantly higher in rural areas compared to urban centres and this difference persisted after multiple adjustments. The findings suggest that models of nutritional intervention must be carefully specified with regard to residential location. Childhood malnutrition is spatially structured and rates remain very high in the provinces that rely on the mining industry and comparable to the level seen in Eastern provinces under conflicts. Even in provinces such as Bas-Congo that produce foods, childhood malnutrition is higher probably because of the economic decision to sell more than the population consumes. Improving maternal and child nutritional status is a prerequisite for achieving MDG 4, to reduce child mortality rate in the DRC.
ERIC Educational Resources Information Center
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove
2009-01-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…
John W. Coulston; Gregory A. Reams; Ronald E. McRoberts; William D. Smith
2006-01-01
U.S. Department of Agriculture Forest Service Forest Inventory and Analysis plot information is used in many capacities including timber inventories, forest health assessments, and environmental risk analyses. With few exceptions, actual plot locations cannot be revealed to the general public. The public does, however, have access to perturbed plot coordinates. The...
Michael Hoppus; Andrew Lister
2007-01-01
Historically, field crews used Global Positioning System (GPS) coordinates to establish and relocate plots, as well as document their general location. During the past 5 years, the increase in Geographic Information System (GIS) capabilities and in customer requests to use the spatial relationships between Forest Inventory and Analysis (FIA) plot data and other GIS...
ERIC Educational Resources Information Center
Davies, Don A.; Hurtubise, Jessica L.; Greba, Quentin; Howland, John G.
2017-01-01
The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present…
Reconstructing Spatial Distributions from Anonymized Locations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horey, James L; Forrest, Stephanie; Groat, Michael
2012-01-01
Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstructionmore » algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.« less
Gmeindl, Leon; Nelson, James K.; Wiggin, Timothy; Reuter-Lorenz, Patricia A.
2011-01-01
In what form are multiple spatial locations represented in working memory? The current study revealed that people often maintain the configural properties (inter-item relationships) of visuospatial stimuli even when this information is explicitly task-irrelevant. However, results also indicate that the voluntary allocation of selective attention prior to stimulus presentation, as well as feature-based perceptual segregation of relevant from irrelevant stimuli, can eliminate the influences of stimulus configuration on location change detection performance. In contrast, voluntary attention cued to the relevant target location following presentation of the stimulus array failed to attenuate these influences. Thus, whereas voluntary selective attention can isolate or prevent the encoding of irrelevant stimulus locations and configural properties, people, perhaps due to limitations in attentional resources, reliably fail to isolate or suppress configural representations that have been encoded into working memory. PMID:21761373
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
MRNIDX - Marine Data Index: Database Description, Operation, Retrieval, and Display
Paskevich, Valerie F.
1982-01-01
A database referencing the location and content of data stored on magnetic medium was designed to assist in the indexing of time-series and spatially dependent marine geophysical data collected or processed by the U. S. Geological Survey. The database was designed and created for input to the Geologic Retrieval and Synopsis Program (GRASP) to allow selective retrievals of information pertaining to location of data, data format, cruise, geographical bounds and collection dates of data. This information is then used to locate the stored data for administrative purposes or further processing. Database utilization is divided into three distinct operations. The first is the inventorying of the data and the updating of the database, the second is the retrieval of information from the database, and the third is the graphic display of the geographical boundaries to which the retrieved information pertains.
NASA Astrophysics Data System (ADS)
Nackoney, J.; Hickey, J.; Williams, D.; Facheux, C.; Dupain, J.
2014-12-01
The bonobo (Pan paniscus), a great ape that is endemic to the Democratic Republic of the Congo (DRC), has been listed as Endangered on the IUCN Red List since 2007. Hunting and habitat loss are primary threats. Two recent wars and ongoing conflicts in the DRC have resulted in political and economic instability that hampers on-the-ground work, thereby accentuating the importance of spatial data and maps as tools for monitoring threats remotely and prioritizing locations for safeguarding bonobo habitat. Several regional and rangewide efforts have leveraged the utility of existing spatial data to help focus limited resources for effective broad-scale conservation of these great apes. At local scales, we developed spatial models to identify locations of highest hunting pressure, predict future human settlement and agricultural expansion, map areas of highest conservation value to bonobos, and identify the connective corridors linking them. We identified 42 least-disturbed wildland blocks meeting the minimum home range size needed for bonobos, and 32 potential corridors. At the range-wide scale, we developed a first range-wide spatial model of suitable conditions for the bonobo; this was a major contribution to the development of a Bonobo Conservation Strategy for 2012-2022, recently published by IUCN. The model used a forest edge density metric and other biotic and abiotic variables in conjunction with bonobo nest data collected during 2003-2010 by over 40 bonobo researchers. Approximately 28% of the range was predicted suitable; of that, about 27.5% was located in official protected areas. Highlighting these examples, this presentation will discuss the conservation status of bonobos and how spatial data and models are being utilized for the formation of strategic conservation plans.
Zekveld, Adriana A; Rudner, Mary; Kramer, Sophia E; Lyzenga, Johannes; Rönnberg, Jerker
2014-01-01
We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data.
Zekveld, Adriana A.; Rudner, Mary; Kramer, Sophia E.; Lyzenga, Johannes; Rönnberg, Jerker
2014-01-01
We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data. PMID:24808818
Mining Co-Location Patterns with Clustering Items from Spatial Data Sets
NASA Astrophysics Data System (ADS)
Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.
2018-05-01
The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.
2018-01-01
ABSTRACT Population at risk of crime varies due to the characteristics of a population as well as the crime generator and attractor places where crime is located. This establishes different crime opportunities for different crimes. However, there are very few efforts of modeling structures that derive spatiotemporal population models to allow accurate assessment of population exposure to crime. This study develops population models to depict the spatial distribution of people who have a heightened crime risk for burglaries and robberies. The data used in the study include: Census data as source data for the existing population, Twitter geo-located data, and locations of schools as ancillary data to redistribute the source data more accurately in the space, and finally gridded population and crime data to evaluate the derived population models. To create the models, a density-weighted areal interpolation technique was used that disaggregates the source data in smaller spatial units considering the spatial distribution of the ancillary data. The models were evaluated with validation data that assess the interpolation error and spatial statistics that examine their relationship with the crime types. Our approach derived population models of a finer resolution that can assist in more precise spatial crime analyses and also provide accurate information about crime rates to the public. PMID:29887766
A test of the reward-value hypothesis.
Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D
2017-03-01
Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.
Striking the balance: Privacy and spatial pattern preservation in masked GPS data
NASA Astrophysics Data System (ADS)
Seidl, Dara E.
Volunteered location and trajectory data are increasingly collected and applied in analysis for a variety of academic fields and recreational pursuits. As access to personal location data increases, issues of privacy arise as individuals become identifiable and linked to other repositories of information. While the quality and precision of data are essential to accurate analysis, there is a tradeoff between privacy and access to data. Obfuscation of point data is a solution that aims to protect privacy and maximize preservation of spatial pattern. This study explores two methods of location obfuscation for volunteered GPS data: grid masking and random perturbation. These methods are applied to travel survey GPS data in the greater metropolitan regions of Chicago and Atlanta in the first large-scale GPS masking study of its kind.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
Uncovering urban human mobility from large scale taxi GPS data
NASA Astrophysics Data System (ADS)
Tang, Jinjun; Liu, Fang; Wang, Yinhai; Wang, Hua
2015-11-01
Taxi GPS trajectories data contain massive spatial and temporal information of urban human activity and mobility. Taking taxi as mobile sensors, the information derived from taxi trips benefits the city and transportation planning. The original data used in study are collected from more than 1100 taxi drivers in Harbin city. We firstly divide the city area into 400 different transportation districts and analyze the origin and destination distribution in urban area on weekday and weekend. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to cluster pick-up and drop-off locations. Furthermore, four spatial interaction models are calibrated and compared based on trajectories in shopping center of Harbin city to study the pick-up location searching behavior. By extracting taxi trips from GPS data, travel distance, time and average speed in occupied and non-occupied status are then used to investigate human mobility. Finally, we use observed OD matrix of center area in Harbin city to model the traffic distribution patterns based on entropy-maximizing method, and the estimation performance verify its effectiveness in case study.
Inferring Human Activity in Mobile Devices by Computing Multiple Contexts.
Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei
2015-08-28
This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user's mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution.
Spatially Informed Plant PRA Models for Security Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric
2006-07-01
Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic riskmore » assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)« less
NASA Astrophysics Data System (ADS)
Ferreira, M. C.; Ferreira, M. F. M.
2016-06-01
Leptospirosis is a zoonosis caused by Leptospira genus bacteria. Rodents, especially Rattus norvegicus, are the most frequent hosts of this microorganism in the cities. The human transmission occurs by contact with urine, blood or tissues of the rodent and contacting water or mud contaminated by rodent urine. Spatial patterns of concentration of leptospirosis are related to the multiple environmental and socioeconomic factors, like housing near flooding areas, domestic garbage disposal sites and high-density of peoples living in slums located near river channels. We used geospatial techniques and geographical information system (GIS) to analysing spatial relationship between the distribution of leptospirosis cases and distance from rivers, river density in the census sector and terrain slope factors, in Sao Paulo County, Brazil. To test this methodology we used a sample of 183 geocoded leptospirosis cases confirmed in 2007, ASTER GDEM2 data, hydrography and census sectors shapefiles. Our results showed that GIS and geospatial analysis techniques improved the mapping of the disease and permitted identify the spatial pattern of association between location of cases and spatial distribution of the environmental variables analyzed. This study showed also that leptospirosis cases might be more related to the census sectors located on higher river density areas and households situated at shorter distances from rivers. In the other hand, it was not possible to assert that slope terrain contributes significantly to the location of leptospirosis cases.
Ahmetovic, Dragan; Manduchi, Roberto; Coughlan, James M.; Mascetti, Sergio
2016-01-01
In this paper we propose a computer vision-based technique that mines existing spatial image databases for discovery of zebra crosswalks in urban settings. Knowing the location of crosswalks is critical for a blind person planning a trip that includes street crossing. By augmenting existing spatial databases (such as Google Maps or OpenStreetMap) with this information, a blind traveler may make more informed routing decisions, resulting in greater safety during independent travel. Our algorithm first searches for zebra crosswalks in satellite images; all candidates thus found are validated against spatially registered Google Street View images. This cascaded approach enables fast and reliable discovery and localization of zebra crosswalks in large image datasets. While fully automatic, our algorithm could also be complemented by a final crowdsourcing validation stage for increased accuracy. PMID:26824080
Retinotopic memory is more precise than spatiotopic memory.
Golomb, Julie D; Kanwisher, Nancy
2012-01-31
Successful visually guided behavior requires information about spatiotopic (i.e., world-centered) locations, but how accurately is this information actually derived from initial retinotopic (i.e., eye-centered) visual input? We conducted a spatial working memory task in which subjects remembered a cued location in spatiotopic or retinotopic coordinates while making guided eye movements during the memory delay. Surprisingly, after a saccade, subjects were significantly more accurate and precise at reporting retinotopic locations than spatiotopic locations. This difference grew with each eye movement, such that spatiotopic memory continued to deteriorate, whereas retinotopic memory did not accumulate error. The loss in spatiotopic fidelity is therefore not a generic consequence of eye movements, but a direct result of converting visual information from native retinotopic coordinates. Thus, despite our conscious experience of an effortlessly stable spatiotopic world and our lifetime of practice with spatiotopic tasks, memory is actually more reliable in raw retinotopic coordinates than in ecologically relevant spatiotopic coordinates.
Representation control increases task efficiency in complex graphical representations.
Moritz, Julia; Meyerhoff, Hauke S; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients.
Representation control increases task efficiency in complex graphical representations
Meyerhoff, Hauke S.; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients. PMID:29698443
Temporal associations for spatial events: the role of the dentate gyrus.
Morris, Andrea M; Curtis, Brian J; Churchwell, John C; Maasberg, David W; Kesner, Raymond P
2013-11-01
Previous research suggests that the dorsal dentate gyrus (DG) hippocampal subregion mediates spatial processing functions. However, a novel role for the DG in temporal processing for spatial information has begun to emerge based on the development of a computational model of neurogenesis. According to this model, adult born granule cells in the DG contribute to a temporal associative integration process for events presented closer in time. Currently, there is a paucity of behavioral evidence to support the temporal integration theory. Therefore, we developed a novel behavioral paradigm to investigate the role of the dDG in temporal integration for proximal and distal spatial events. Male Long-Evans rats were randomly assigned to a control group or to receive bilateral intracranial infusions of colchicine into the dDG. Following recovery from surgery, each rat was tested on a cued-recall of sequence paradigm. In this task, animals were allowed to explore identical objects placed in designated spatial locations on a cheeseboard maze across 2 days (e.g., Day 1: A and B; Day 2: C and D). One week later, animals were given a brief cue (A or C) followed by a preference test between spatial location B and D. Control animals had a significant preference for the spatial location previously paired with the cue (the temporal associate) whereas dDG lesioned animals failed to show a preference. These findings suggest that selective colchicine-induced dDG lesions are capable of disrupting the formation of temporal associations between spatial events presented close in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Active and passive spatial learning in human navigation: acquisition of graph knowledge.
Chrastil, Elizabeth R; Warren, William H
2015-07-01
It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.
A variational Bayes spatiotemporal model for electromagnetic brain mapping.
Nathoo, F S; Babul, A; Moiseev, A; Virji-Babul, N; Beg, M F
2014-03-01
In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI. © 2013, The International Biometric Society.
A spatial mark–resight model augmented with telemetry data
Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.
2013-01-01
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.
Retrosplenial Cortex Indexes Stability beyond the Spatial Domain
2018-01-01
Retrosplenial cortex (RSC) is highly responsive to landmarks in the environment that remain fixed in a permanent location, and this has been linked with its known involvement in scene and spatial processing. However, it is unclear whether RSC representations of permanence are a purely spatial phenomenon or whether they extend into behavioral and conceptual domains. To test this, during functional MRI scanning, we had people (males and females) read three different types of sentences that described either something permanent or transient. The first two sentence types were imageable, with a focus either on a spatial landmark or on an action. The third type of sentence involved non-imageable abstract concepts. We found that, in addition to being more active for sentences describing landmarks with a permanent location in space, RSC was also significantly engaged by sentences describing stable and consistent behaviors or actions, as long as they were rooted within a concrete imageable setting. RSC was not responsive to abstract concepts, even those that embodied the notion of stability. Similarly, it was not engaged by imageable sentences with transient contents. In contrast, parahippocampal cortex was more engaged by imageable sentences describing landmarks, whereas the hippocampus was active for all imageable sentences. In addition, for imageable sentences describing permanence, there was bidirectional functional coupling between RSC and these medial temporal lobe structures. It appears, therefore, that RSC-mediated permanence representations could be helpful for more than spatially mapping environments and may also provide information about the reliability of events occurring within them. SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is known to process information about landmarks in the environment that have a fixed, permanent location. Here we tested whether this permanence response was apparent beyond the spatial domain, which could have implications for understanding the role of the RSC more widely across cognition. We found that the RSC was engaged not only by permanent landmarks but also by stable and consistent actions. It was not responsive to transient landmarks or actions or to abstract concepts, even those that embodied the notion of stability. We conclude that the RSC might do more than help to map spatial environments, by possibly also providing information about the reliability of events occurring within them. PMID:29311139
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.
2014-01-01
We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.
Viewing the body modulates tactile receptive fields.
Haggard, Patrick; Christakou, Anastasia; Serino, Andrea
2007-06-01
Tactile discrimination performance depends on the receptive field (RF) size of somatosensory cortical (SI) neurons. Psychophysical masking effects can reveal the RF of an idealized "virtual" somatosensory neuron. Previous studies show that top-down factors strongly affect tactile discrimination performance. Here, we show that non-informative vision of the touched body part influences tactile discrimination by modulating tactile RFs. Ten subjects performed spatial discrimination between touch locations on the forearm. Performance was improved when subjects saw their forearm compared to viewing a neutral object in the same location. The extent of visual information was relevant, since restricted view of the forearm did not have this enhancing effect. Vibrotactile maskers were placed symmetrically on either side of the tactile target locations, at two different distances. Overall, masking significantly impaired discrimination performance, but the spatial gradient of masking depended on what subjects viewed. Viewing the body reduced the effect of distant maskers, but enhanced the effect of close maskers, as compared to viewing a neutral object. We propose that viewing the body improves functional touch by sharpening tactile RFs in an early somatosensory map. Top-down modulation of lateral inhibition could underlie these effects.
Patrick C. Tobin; Laura M. Blackburn; Rebecca H. Gray; Christopher T. Lettau; Andrew M. Liebhold; Kenneth F. Raffa
2013-01-01
The ability to ascertain abundance and spatial extent of a nascent population of a non-native species can inform management decisions. Following initial detection, delimiting surveys, which involve the use of a finer network of samples around the focal point of a newly detected colony, are often used to quantify colony size, spatial extent, and the location of the...
Fernández-Guisuraga, José Manuel; Sanz-Ablanedo, Enoc; Suárez-Seoane, Susana; Calvo, Leonor
2018-02-14
This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas.
2018-01-01
This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas. PMID:29443914
Quantifying the impact of human mobility on malaria
Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.
2013-01-01
Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.
Use of space-filling curves to select sample locations in natural resource monitoring studies
Andrew Lister; Charles T. Scott
2009-01-01
The establishment of several large area monitoring networks over the past few decades has led to increased research into ways to spatially balance sample locations across the landscape. Many of these methods are well documented and have been used in the past with great success. In this paper, we present a method using geographic information systems (GIS) and fractals...
Posture Affects How Robots and Infants Map Words to Objects
Morse, Anthony F.; Benitez, Viridian L.; Belpaeme, Tony; Cangelosi, Angelo; Smith, Linda B.
2015-01-01
For infants, the first problem in learning a word is to map the word to its referent; a second problem is to remember that mapping when the word and/or referent are again encountered. Recent infant studies suggest that spatial location plays a key role in how infants solve both problems. Here we provide a new theoretical model and new empirical evidence on how the body – and its momentary posture – may be central to these processes. The present study uses a name-object mapping task in which names are either encountered in the absence of their target (experiments 1–3, 6 & 7), or when their target is present but in a location previously associated with a foil (experiments 4, 5, 8 & 9). A humanoid robot model (experiments 1–5) is used to instantiate and test the hypothesis that body-centric spatial location, and thus the bodies’ momentary posture, is used to centrally bind the multimodal features of heard names and visual objects. The robot model is shown to replicate existing infant data and then to generate novel predictions, which are tested in new infant studies (experiments 6–9). Despite spatial location being task-irrelevant in this second set of experiments, infants use body-centric spatial contingency over temporal contingency to map the name to object. Both infants and the robot remember the name-object mapping even in new spatial locations. However, the robot model shows how this memory can emerge –not from separating bodily information from the word-object mapping as proposed in previous models of the role of space in word-object mapping – but through the body’s momentary disposition in space. PMID:25785834
Effect of motion on speech recognition.
Davis, Timothy J; Grantham, D Wesley; Gifford, René H
2016-07-01
The benefit of spatial separation for talkers in a multi-talker environment is well documented. However, few studies have examined the effect of talker motion on speech recognition. In the current study, we evaluated the effects of (1) motion of the target or distracters, (2) a priori information about the target and distracter spatial configurations, and (3) target and distracter location. In total, seventeen young adults with normal hearing were tested in a large anechoic chamber in two experiments. In Experiment 1, seven stimulus conditions were tested using the Coordinate Response Measure (Bolia et al., 2000) speech corpus, in which subjects were required to report the key words in a target sentence presented simultaneously with two distracter sentences. As in previous studies, there was a significant improvement in key word identification for conditions in which the target and distracters were spatially separated as compared to the co-located conditions. In addition, 1) motion of either talker or distracter resulted in improved performance compared to stationary presentation (talker motion yielded significantly better performance than distracter motion) 2) a priori information regarding stimulus configuration was not beneficial, and 3) performance was significantly better with key words at 0° azimuth as compared to -60° (on the listener's left). Experiment 2 included two additional conditions designed to assess whether the benefit of motion observed in Experiment 1 was due to the motion itself or to the fact that the motion conditions introduced small spatial separations in the target and distracter key words. Results showed that small spatial separations (on the order of 5-8°) resulted in improved performance (relative to co-located key words) whether the sentences were moving or stationary. These results suggest that in the presence of distracting messages, motion of either target or distracters and/or small spatial separation of the key words may be beneficial for sound source segregation and thus for improved speech recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient spatial privacy preserving scheme for sensor network
NASA Astrophysics Data System (ADS)
Debnath, Ashmita; Singaravelu, Pradheepkumar; Verma, Shekhar
2013-03-01
The privacy of sensitive events observed by a wireless sensor networks (WSN) needs to be protected. Adversaries with the knowledge of sensor deployment and network protocols can infer the location of a sensed event by monitoring the communication from the sensors even when the messages are encrypted. Encryption provides confidentiality; however, the context of the event can used to breach the privacy of sensed objects. An adversary can track the trajectory of a moving object or determine the location of the occurrence of a critical event to breach its privacy. In this paper, we propose ring signature to obfuscate the spatial information. Firstly, the extended region of location of an event of interest as estimated from a sensor communication is presented. Then, the increase in this region of spatial uncertainty due to the effect of ring signature is determined. We observe that ring signature can effectively enhance the region of location uncertainty of a sensed event. As the event of interest can be situated anywhere in the enhanced region of uncertainty, its privacy against local or global adversary is ensured. Both analytical and simulation results show that induced delay and throughput are insignificant with negligible impact on the performance of a WSN.
Identifying geographic hot spots of reassortment in a multipartite plant virus
Savory, Fiona R; Varma, Varun; Ramakrishnan, Uma
2014-01-01
Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains. PMID:24944570
Changing viewer perspectives reveals constraints to implicit visual statistical learning.
Jiang, Yuhong V; Swallow, Khena M
2014-10-07
Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
NASA Astrophysics Data System (ADS)
Chen, Nan
2018-03-01
Conversion of points or lines from vector to grid format, or vice versa, is the first operation required for most spatial analysis. Conversion, however, usually causes the location of points or lines to change, which influences the reliability of the results of spatial analysis or even results in analysis errors. The purpose of this paper is to evaluate the change of the location of points and lines during conversion using the concepts of probability and entropy. This paper shows that when a vector point is converted to a grid point, the vector point may be outside or inside the grid point. This paper deduces a formula for computing the probability that the vector point is inside the grid point. It was found that the probability increased with the side length of the grid and with the variances of the coordinates of the vector point. In addition, the location entropy of points and lines are defined in this paper. Formulae for computing the change of the location entropy during conversion are deduced. The probability mentioned above and the change of location entropy may be used to evaluate the location reliability of points and lines in Geographic Information Systems and may be used to choose an appropriate range of the side length of grids before conversion. The results of this study may help scientists and users to avoid mistakes caused by the change of location during conversion as well as in spatial decision and analysis.
Compression and accelerated rendering of volume data using DWT
NASA Astrophysics Data System (ADS)
Kamath, Preyas; Akleman, Ergun; Chan, Andrew K.
1998-09-01
2D images cannot convey information on object depth and location relative to the surfaces. The medical community is increasingly using 3D visualization techniques to view data from CT scans, MRI etc. 3D images provide more information on depth and location in the spatial domain to help surgeons making better diagnoses of the problem. 3D images can be constructed from 2D images using 3D scalar algorithms. With recent advances in communication techniques, it is possible for doctors to diagnose and plan treatment of a patient who lives at a remote location. It is made possible by transmitting relevant data of the patient via telephone lines. If this information is to be reconstructed in 3D, then 2D images must be transmitted. However 2D dataset storage occupies a lot of memory. In addition, visualization algorithms are slow. We describe in this paper a scheme which reduces the data transfer time by only transmitting information that the doctor wants. Compression is achieved by reducing the amount of data transfer. This is possible by using the 3D wavelet transform applied to 3D datasets. Since the wavelet transform is localized in frequency and spatial domain, we transmit detail only in the region where the doctor needs it. Since only ROM (Region of Interest) is reconstructed in detail, we need to render only ROI in detail, thus we can reduce the rendering time.
Potential roles of cholinergic modulation in the neural coding of location and movement speed
Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.
2016-01-01
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935
The Michelin red guide of the brain: role of dopamine in goal-oriented navigation.
Retailleau, Aude; Boraud, Thomas
2014-01-01
Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson's disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex-basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control.
Siebeneck, Laura K; Cova, Thomas J
2012-09-01
Developing effective evacuation and return-entry plans requires understanding the spatial and temporal dimensions of risk perception experienced by evacuees throughout a disaster event. Using data gathered from the 2008 Cedar Rapids, Iowa Flood, this article explores how risk perception and location influence evacuee behavior during the evacuation and return-entry process. Three themes are discussed: (1) the spatial and temporal characteristics of risk perception throughout the evacuation and return-entry process, (2) the relationship between risk perception and household compliance with return-entry orders, and (3) the role social influences have on the timing of the return by households. The results indicate that geographic location and spatial variation of risk influenced household risk perception and compliance with return-entry plans. In addition, sociodemographic characteristics influenced the timing and characteristics of the return groups. The findings of this study advance knowledge of evacuee behavior throughout a disaster and can inform strategies used by emergency managers throughout the evacuation and return-entry process. © 2012 Society for Risk Analysis.
Reputation-Based Secure Sensor Localization in Wireless Sensor Networks
He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing
2014-01-01
Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940
Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F
2017-07-01
Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.
Household perceptions of coastal hazards and climate change in the Central Philippines.
Combest-Friedman, Chelsea; Christie, Patrick; Miles, Edward
2012-12-15
As a tropical archipelagic nation, the Philippines is particularly susceptible to coastal hazards, which are likely to be exacerbated by climate change. To improve coastal hazard management and adaptation planning, it is imperative that climate information be provided at relevant scales and that decision-makers understand the causes and nature of risk in their constituencies. Focusing on a municipality in the Central Philippines, this study examines local meteorological information and explores household perceptions of climate change and coastal hazard risk. First, meteorological data and local perceptions of changing climate conditions are assessed. Perceived changes in climate include an increase in rainfall and rainfall variability, an increase in intensity and frequency of storm events and sea level rise. Second, factors affecting climate change perceptions and perceived risk from coastal hazards are determined through statistical analysis. Factors tested include social status, economic standing, resource dependency and spatial location. Results indicate that perceived risk to coastal hazards is most affected by households' spatial location and resource dependency, rather than socio-economic conditions. However, important differences exist based on the type of hazard and nature of risk being measured. Resource dependency variables are more significant in determining perceived risk from coastal erosion and sea level rise than flood events. Spatial location is most significant in determining households' perceived risk to their household assets, but not perceived risk to their livelihood. Copyright © 2012 Elsevier Ltd. All rights reserved.
Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David
2017-10-01
Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinear Spatial Inversion Without Monte Carlo Sampling
NASA Astrophysics Data System (ADS)
Curtis, A.; Nawaz, A.
2017-12-01
High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable, so these do not need to be estimated from samples as is required in MC methods. On a 2-D test example the method is shown to outperform previous methods significantly, and at a fraction of the computational cost. In many foreseeable applications there are therefore no serious impediments to extending the method to 3-D spatial models.
Clark, Emma; Antoniak, Kristen; Feniquito, Alyssandra; Dringenberg, Hans C
2017-02-15
Recent evidence has implicated N-methyl-d-aspartate receptors (NMDARs) in several aspects of learning and behavioral flexibility in rodents. Here, we examined the effects of treatment with Ro 25-6981, a selective antagonist of NMDARs containing GluN2B subunits, on two types of behavioral flexibility in rats, spatial reversal learning and set-shifting (spatial vs. motor strategy). To examine spatial reversal learning, rats were trained to swim to a hidden platform in a water maze over four days. On the following day, the platform was moved to a new location in the maze. Administration of Ro 25-6981 (10mg/kg) selectively impaired the early phase of reversal learning, but all rats learned to navigate to the new platform location over 12 trials. To examine set-shifting, independent groups of rats were trained to either swim to a fixed location (spatial strategy) or use a motor response (e.g., "turn left"; motor strategy) to find a hidden escape platform in a cross-shaped water maze apparatus; after task acquisition, rats were trained on the second, novel strategy (set-shift) following treatment with either Ro 25-6981 (10mg/kg) or saline. Administration of Ro 25-6981 had no effect on the ability of rats to perform the set-shift and use the new strategy to locate the escape platform. These results suggest that, in rats, spatial reversal learning, but not set-shifting, is sensitive to Ro-25-6981 treatment. Thus, NMDARs-GluN2B signaling may play a selective role in some forms of behavioral plasticity, particularly for situations involving the updating of information in the spatial domain. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of source location and listener location on ILD cues in a reverberant room
NASA Astrophysics Data System (ADS)
Ihlefeld, Antje; Shinn-Cunningham, Barbara G.
2004-05-01
Short-term interaural level differences (ILDs) were analyzed for simulations of the signals that would reach a listener in a reverberant room. White noise was convolved with manikin head-related impulse responses measured in a classroom to simulate different locations of the source relative to the manikin and different manikin positions in the room. The ILDs of the signals were computed within each third-octave band over a relatively short time window to investigate how reliably ILD cues encode source laterality. Overall, the mean of the ILD magnitude increases with lateral angle and decreases with distance, as expected. Increasing reverberation decreases the mean ILD magnitude and increases the variance of the short-term ILD, so that the spatial information carried by ILD cues is degraded by reverberation. These results suggest that the mean ILD is not a reliable cue for determining source laterality in a reverberant room. However, by taking into account both the mean and variance, the distribution of high-frequency short-term ILDs provides some spatial information. This analysis suggests that, in order to use ILDs to judge source direction in reverberant space, listeners must accumulate information about how the short-term ILD varies over time. [Work supported by NIDCD and AFOSR.
Krawczyk, Christopher; Gradziel, Pat; Geraghty, Estella M.
2014-01-01
Objectives. We used a geographic information system and cluster analyses to determine locations in need of enhanced Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Program services. Methods. We linked documented births in the 2010 California Birth Statistical Master File with the 2010 data from the WIC Integrated Statewide Information System. Analyses focused on the density of pregnant women who were eligible for but not receiving WIC services in California’s 7049 census tracts. We used incremental spatial autocorrelation and hot spot analyses to identify clusters of WIC-eligible nonparticipants. Results. We detected clusters of census tracts with higher-than-expected densities, compared with the state mean density of WIC-eligible nonparticipants, in 21 of 58 (36.2%) California counties (P < .05). In subsequent county-level analyses, we located neighborhood-level clusters of higher-than-expected densities of eligible nonparticipants in Sacramento, San Francisco, Fresno, and Los Angeles Counties (P < .05). Conclusions. Hot spot analyses provided a rigorous and objective approach to determine the locations of statistically significant clusters of WIC-eligible nonparticipants. Results helped inform WIC program and funding decisions, including the opening of new WIC centers, and offered a novel approach for targeting public health services. PMID:24354821
Overcoming default categorical bias in spatial memory.
Sampaio, Cristina; Wang, Ranxiao Frances
2010-12-01
In the present study, we investigated whether a strong default categorical bias can be overcome in spatial memory by using alternative membership information. In three experiments, we tested location memory in a circular space while providing participants with an alternative categorization. We found that visual presentation of the boundaries of the alternative categories (Experiment 1) did not induce the use of the alternative categories in estimation. In contrast, visual cuing of the alternative category membership of a target (Experiment 2) and unique target feature information associated with each alternative category (Experiment 3) successfully led to the use of the alternative categories in estimation. Taken together, the results indicate that default categorical bias in spatial memory can be overcome when appropriate cues are provided. We discuss how these findings expand the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in spatial memory by proposing a retrieval-based category adjustment (RCA) model.
Effects of cue types on sex differences in human spatial memory.
Chai, Xiaoqian J; Jacobs, Lucia F
2010-04-02
We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.
Smieszek, Tomas W.; Granato, Gregory E.
2000-01-01
Spatial data are important for interpretation of water-quality information on a regional or national scale. Geographic information systems (GIS) facilitate interpretation and integration of spatial data. The geographic information and data compiled for the conterminous United States during the National Highway Runoff Water-Quality Data and Methodology Synthesis project is described in this document, which also includes information on the structure, file types, and the geographic information in the data files. This 'geodata' directory contains two subdirectories, labeled 'gisdata' and 'gisimage.' The 'gisdata' directory contains ArcInfo coverages, ArcInfo export files, shapefiles (used in ArcView), Spatial Data Transfer Standard Topological Vector Profile format files, and meta files in subdirectories organized by file type. The 'gisimage' directory contains the GIS data in common image-file formats. The spatial geodata includes two rain-zone region maps and a map of national ecosystems originally published by the U.S. Environmental Protection Agency; regional estimates of mean annual streamflow, and water hardness published by the Federal Highway Administration; and mean monthly temperature, mean annual precipitation, and mean monthly snowfall modified from data published by the National Climatic Data Center and made available to the public by the Oregon Climate Service at Oregon State University. These GIS files were compiled for qualitative spatial analysis of available data on a national and(or) regional scale and therefore should be considered as qualitative representations, not precise geographic location information.
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Knierim, James J; Neunuebel, Joshua P; Deshmukh, Sachin S
2014-02-05
The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between 'where' versus 'what' needs revision. We propose a refinement of this model, which is more complex than the simple spatial-non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.
NASA Astrophysics Data System (ADS)
Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie
2016-09-01
Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.
Stelzenmüller, V; Diekmann, R; Bastardie, F; Schulze, T; Berkenhagen, J; Kloppmann, M; Krause, G; Pogoda, B; Buck, B H; Kraus, G
2016-12-01
Worldwide the renewable energy sector is expanding at sea to address increasing demands. Recently the race for space in heavily used areas such as the North Sea triggered the proposal of co-locating other activities such as aquaculture or fisheries with passive gears in offshore wind farms (OWFs). Our interdisciplinary approach combined a quantification of spatial overlap of activities by using Vessel Monitoring System and logbook data with a stakeholder consultation to conclude and verify on the actual feasibility of co-location. In the German Exclusive Economic Zone (EEZ) of the North Sea up to 90% of Danish and 40% of German annual gillnet fleet landings of plaice overlapped with areas where OWFs are developed. Our results indicated further that the international gillnet fishery could lose up to 50% in landings within the North Sea German EEZ when OWF areas are closed entirely for fisheries. No spatial overlap was found for UK potters targeting brown crab in the German EEZ. We further identified a number of key issues and obstacles that to date hinder an actual implementation of co-location as a measure in the marine spatial planning process: defining the legal base; implementation of safety regulations; delineation of minimum requirements for fishing vessels such as capacities, quotas, technical equipment; implementation of a licensing process; and scoping for financial subsidies to set up business. The stakeholder consultation verified the scientific findings and highlighted that all those points need to be addressed in a planning process. In the German EEZ we have shown that the socio-economic importance of spatial overlap varies within planning boundaries. Therefore we recommend an interdisciplinary bottom-up approach when scoping for suitable areas of co-location. Hence, an informed marine spatial planning process requires comprehensive and spatial explicit socio-economic viability studies factoring in also ecological effects of OWFs on target species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2010-01-01
The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.
Mapping soil landscape as spatial continua: The Neural Network Approach
NASA Astrophysics Data System (ADS)
Zhu, A.-Xing
2000-03-01
A neural network approach was developed to populate a soil similarity model that was designed to represent soil landscape as spatial continua for hydroecological modeling at watersheds of mesoscale size. The approach employs multilayer feed forward neural networks. The input to the network was data on a set of soil formative environmental factors; the output from the network was a set of similarity values to a set of prescribed soil classes. The network was trained using a conjugate gradient algorithm in combination with a simulated annealing technique to learn the relationships between a set of prescribed soils and their environmental factors. Once trained, the network was used to compute for every location in an area the similarity values of the soil to the set of prescribed soil classes. The similarity values were then used to produce detailed soil spatial information. The approach also included a Geographic Information System procedure for selecting representative training and testing samples and a process of determining the network internal structure. The approach was applied to soil mapping in a watershed, the Lubrecht Experimental Forest, in western Montana. The case study showed that the soil spatial information derived using the neural network approach reveals much greater spatial detail and has a higher quality than that derived from the conventional soil map. Implications of this detailed soil spatial information for hydroecological modeling at the watershed scale are also discussed.
NASA Astrophysics Data System (ADS)
Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra
2012-02-01
Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.
Liu, Lei; Zhao, Jing
2014-01-01
An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users. PMID:24790579
Zhong, Cheng; Liu, Lei; Zhao, Jing
2014-01-01
An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users.
NASA Astrophysics Data System (ADS)
Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.
2016-12-01
Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.
NASA Technical Reports Server (NTRS)
Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki
2016-01-01
Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.
Elgethun, Kai; Fenske, Richard A; Yost, Michael G; Palcisko, Gary J
2003-01-01
Global positioning system (GPS) technology is used widely for business and leisure activities and offers promise for human time-location studies to evaluate potential exposure to environmental contaminants. In this article we describe the development of a novel GPS instrument suitable for tracking the movements of young children. Eleven children in the Seattle area (2-8 years old) wore custom-designed data-logging GPS units integrated into clothing. Location data were transferred into geographic information systems software for map overlay, visualization, and tabular analysis. Data were grouped into five location categories (in vehicle, inside house, inside school, inside business, and outside) to determine time spent and percentage reception in each location. Additional experiments focused on spatial resolution, reception efficiency in typical environments, and sources of signal interference. Significant signal interference occurred only inside concrete/steel-frame buildings and inside a power substation. The GPS instruments provided adequate spatial resolution (typically about 2-3 m outdoors and 4-5 m indoors) to locate subjects within distinct microenvironments and distinguish a variety of human activities. Reception experiments showed that location could be tracked outside, proximal to buildings, and inside some buildings. Specific location information could identify movement in a single room inside a home, on a playground, or along a fence line. The instrument, worn in a vest or in bib overalls, was accepted by children and parents. Durability of the wiring was improved early in the study to correct breakage problems. The use of GPS technology offers a new level of accuracy for direct quantification of time-location activity patterns in exposure assessment studies. PMID:12515689
Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline
2010-05-01
This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim
2009-02-01
Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.
Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune
2015-01-01
When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not for egocentric position perception. Therefore, the two visual spatial perceptions about observers’ own viewpoints are fundamentally dissociable. PMID:26648895
Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota
2017-02-01
Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mitchell, Richard; Ogilvie, David
2017-01-01
Background The World Health Organisation reports that road traffic accidents (accidents) could become the seventh leading cause of death globally by 2030. Accidents often occur in spatial clusters and, generally, there are more accidents in less advantaged areas. Infrastructure changes, such as new roads, can affect the locations and magnitude of accident clusters but evidence of impact is lacking. A new 5-mile motorway extension was opened in 2011 in Glasgow, Scotland. Previous research found no impact on the number of accidents but did not consider their spatial location or socio-economic setting. We evaluated impacts on these, both locally and city-wide. Methods We used STATS19 data covering the period 2008 to 2014 and describing the location and details of all reported accidents involving a personal injury. Poisson-based continuous scan statistics were used to detect spatial clusters of accidents and any change in these over time. Change in the socio-economic distribution of accident cluster locations during the study period was also assessed. Results In each year accidents were strongly clustered, with statistically significant clusters more likely to occur in socio-economically deprived areas. There was no significant shift in the magnitude or location of accident clusters during motorway construction or following opening, either locally or city-wide. There was also no impact on the socio-economic patterning of accident cluster locations. Conclusions Although urban infrastructure changes occur constantly, all around the world, this is the first study to evaluate the impact of such changes on road accident clusters. Despite expectations to the contrary from both proponents and opponents of the M74 extension, we found no beneficial or adverse change in the socio-spatial distribution of accidents associated with its construction, opening or operation. Our approach and findings can help inform urban planning internationally. PMID:28880956
Olsen, Jonathan R; Mitchell, Richard; Ogilvie, David
2017-01-01
The World Health Organisation reports that road traffic accidents (accidents) could become the seventh leading cause of death globally by 2030. Accidents often occur in spatial clusters and, generally, there are more accidents in less advantaged areas. Infrastructure changes, such as new roads, can affect the locations and magnitude of accident clusters but evidence of impact is lacking. A new 5-mile motorway extension was opened in 2011 in Glasgow, Scotland. Previous research found no impact on the number of accidents but did not consider their spatial location or socio-economic setting. We evaluated impacts on these, both locally and city-wide. We used STATS19 data covering the period 2008 to 2014 and describing the location and details of all reported accidents involving a personal injury. Poisson-based continuous scan statistics were used to detect spatial clusters of accidents and any change in these over time. Change in the socio-economic distribution of accident cluster locations during the study period was also assessed. In each year accidents were strongly clustered, with statistically significant clusters more likely to occur in socio-economically deprived areas. There was no significant shift in the magnitude or location of accident clusters during motorway construction or following opening, either locally or city-wide. There was also no impact on the socio-economic patterning of accident cluster locations. Although urban infrastructure changes occur constantly, all around the world, this is the first study to evaluate the impact of such changes on road accident clusters. Despite expectations to the contrary from both proponents and opponents of the M74 extension, we found no beneficial or adverse change in the socio-spatial distribution of accidents associated with its construction, opening or operation. Our approach and findings can help inform urban planning internationally.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-11-13
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-01-01
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027
Probabilistic self-localisation on a qualitative map based on occlusions
NASA Astrophysics Data System (ADS)
Santos, Paulo E.; Martins, Murilo F.; Fenelon, Valquiria; Cozman, Fabio G.; Dee, Hannah M.
2016-09-01
Spatial knowledge plays an essential role in human reasoning, permitting tasks such as locating objects in the world (including oneself), reasoning about everyday actions and describing perceptual information. This is also the case in the field of mobile robotics, where one of the most basic (and essential) tasks is the autonomous determination of the pose of a robot with respect to a map, given its perception of the environment. This is the problem of robot self-localisation (or simply the localisation problem). This paper presents a probabilistic algorithm for robot self-localisation that is based on a topological map constructed from the observation of spatial occlusion. Distinct locations on the map are defined by means of a classical formalism for qualitative spatial reasoning, whose base definitions are closer to the human categorisation of space than traditional, numerical, localisation procedures. The approach herein proposed was systematically evaluated through experiments using a mobile robot equipped with a RGB-D sensor. The results obtained show that the localisation algorithm is successful in locating the robot in qualitatively distinct regions.
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
NASA Astrophysics Data System (ADS)
Ciepłuch, C.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanely, A. C.
2011-12-01
New trends in GIS such as Volunteered Geographical Information (VGI), Citizen Science, and Urban Sensing, have changed the shape of the geoinformatics landscape. The OpenStreetMap (OSM) project provided us with an exciting, evolving, free and open solution as a base dataset for our geoserver and spatial data provider for our research. OSM is probably the best known and best supported example of VGI and user generated spatial content on the Internet. In this paper we will describe current results from the development of quality indicators for measures for OSM data. Initially we have analysed the Ireland OSM data in grid cells (5km) to gather statistical data about the completeness, accuracy, and fitness for purpose of the underlying spatial data. This analysis included: density of user contributions, spatial density of points and polygons, types of tags and metadata used, dominant contributors in a particular area or for a particular geographic feature type, etc. There greatest OSM activity and spatial data density is highly correlated with centres of large population. The ability to quantify and assess if VGI, such as OSM, is of sufficient quality for mobile mapping applications and Location-based services is critical to the future success of VGI as a spatial data source for these technologies.
Filgueira, Ramon; Grant, Jon; Strand, Øivind
2014-06-01
Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.
Firing rate dynamics in the hippocampus induced by trajectory learning.
Ji, Daoyun; Wilson, Matthew A
2008-04-30
The hippocampus is essential for spatial navigation, which may involve sequential learning. However, how the hippocampus encodes new sequences in familiar environments is unknown. To study the impact of novel spatial sequences on the activity of hippocampal neurons, we monitored hippocampal ensembles while rats learned to switch from two familiar trajectories to a new one in a familiar environment. Here, we show that this novel spatial experience induces two types of changes in firing rates, but not locations of hippocampal place cells. First, place-cell firing rates on the two familiar trajectories start to change before the actual behavioral switch to the new trajectory. Second, repeated exposure on the new trajectory is associated with an increased dependence of place-cell firing rates on immediate past locations. The result suggests that sequence encoding in the hippocampus may involve integration of information about the recent past into current state.
Firing Rate Dynamics in the Hippocampus Induced by Trajectory Learning
Wilson, Matthew A.
2008-01-01
The hippocampus is essential for spatial navigation, which may involve sequential learning. However, how the hippocampus encodes new sequences in familiar environments is unknown. To study the impact of novel spatial sequences on the activity of hippocampal neurons, we monitored hippocampal ensembles while rats learned to switch from two familiar trajectories to a new one in a familiar environment. Here, we show that this novel spatial experience induces two types of changes in firing rates, but not locations of hippocampal place cells. First, place-cell firing rates on the two familiar trajectories start to change before the actual behavioral switch to the new trajectory. Second, repeated exposure on the new trajectory is associated with an increased dependence of place-cell firing rates on immediate past locations. The result suggests that sequence encoding in the hippocampus may involve integration of information about the recent past into current state. PMID:18448645
GIS representation of coal-bearing areas in Antarctica
Merrill, Matthew D.
2016-03-11
Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.
Economics of forest fire management: Spatial accounting of costs and benefits
José J. Sánchez; Ken Baerenklau; Armando González-Cabán; Kurt Schwabe
2013-01-01
To better evaluate the potential impacts of wildland fire in the San Bernardino National Forest, we developed a geographic information system (GIS) data layer containing nonmarket economic values for the San Jacinto Ranger District. Each pixel in the data layer contains an estimate of the most prominent nonmarket values at that location. This information can be used by...
M. A. Wulder; J. C. White; B. J. Bentz
2005-01-01
Estimates of the location and extent of the red attack stage of mountain pine beetle (Dentroctonus ponderosae Hopkins) infestations are critical for forest management. The degree of spatial and temporal precision required for these estimates varies according to the management objectives and the nature of the infestation. This paper outlines a hierarchy of information...
Human Dimensions in Future Battle Command Systems: A Workshop Report
2008-04-01
information processing). These dimensions can best be described anecdotally and metaphorically as: • Battle command is a human-centric...enhance information visualization techniques in the decision tools, including multimodal platforms: video, graphics, symbols, etc. This should be...organization members. Each dimension can metaphorically represent the spatial location of individuals and group thinking in a trajectory of social norms
Beyond scene gist: Objects guide search more than scene background.
Koehler, Kathryn; Eckstein, Miguel P
2017-06-01
Although the facilitation of visual search by contextual information is well established, there is little understanding of the independent contributions of different types of contextual cues in scenes. Here we manipulated 3 types of contextual information: object co-occurrence, multiple object configurations, and background category. We isolated the benefits of each contextual cue to target detectability, its impact on decision bias, confidence, and the guidance of eye movements. We find that object-based information guides eye movements and facilitates perceptual judgments more than scene background. The degree of guidance and facilitation of each contextual cue can be related to its inherent informativeness about the target spatial location as measured by human explicit judgments about likely target locations. Our results improve the understanding of the contributions of distinct contextual scene components to search and suggest that the brain's utilization of cues to guide eye movements is linked to the cue's informativeness about the target's location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Singing numbers…in cognitive space--a dual-task study of the link between pitch, space, and numbers.
Fischer, Martin H; Riello, Marianna; Giordano, Bruno L; Rusconi, Elena
2013-04-01
We assessed the automaticity of spatial-numerical and spatial-musical associations by testing their intentionality and load sensitivity in a dual-task paradigm. In separate sessions, 16 healthy adults performed magnitude and pitch comparisons on sung numbers with variable pitch. Stimuli and response alternatives were identical, but the relevant stimulus attribute (pitch or number) differed between tasks. Concomitant tasks required retention of either color or location information. Results show that spatial associations of both magnitude and pitch are load sensitive and that the spatial association for pitch is more powerful than that for magnitude. These findings argue against the automaticity of spatial mappings in either stimulus dimension. Copyright © 2013 Cognitive Science Society, Inc.
Visualization of spatial-temporal data based on 3D virtual scene
NASA Astrophysics Data System (ADS)
Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang
2009-10-01
The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.
Cortical systems mediating visual attention to both objects and spatial locations
Shomstein, Sarah; Behrmann, Marlene
2006-01-01
Natural visual scenes consist of many objects occupying a variety of spatial locations. Given that the plethora of information cannot be processed simultaneously, the multiplicity of inputs compete for representation. Using event-related functional MRI, we show that attention, the mechanism by which a subset of the input is selected, is mediated by the posterior parietal cortex (PPC). Of particular interest is that PPC activity is differentially sensitive to the object-based properties of the input, with enhanced activation for those locations bound by an attended object. Of great interest too is the ensuing modulation of activation in early cortical regions, reflected as differences in the temporal profile of the blood oxygenation level-dependent (BOLD) response for within-object versus between-object locations. These findings indicate that object-based selection results from an object-sensitive reorienting signal issued by the PPC. The dynamic circuit between the PPC and earlier sensory regions then enables observers to attend preferentially to objects of interest in complex scenes. PMID:16840559
Moreno, Pedro A; Hernando, M Elena; Gómez, Enrique J
2015-01-01
The progressive ageing of population has turned the mild cognitive impairment (MCI) into a prevalent disease suffered by elderly. Consequently, the spatial disorientation has become a significant problem for older people and their caregivers. The ambient-assisted living applications are offering location-based services for empowering elderly to go outside and encouraging a greater independence. Therefore, this paper describes the design and technical evaluation of a location-awareness service enabler aimed at supporting and managing probable wandering situations of a person with MCI. Through the presence capabilities of the IP multimedia subsystem (IMS) architecture, the service will alert patient's contacts if a hazardous situation is detected depending on his location. Furthermore, information about the older person's security areas has been included in the user profile managed by IMS. In doing so, the service enabler introduced contribute to "context-awareness" paradigm allowing the adaptation and personalization of services depending on user's context and specific conditions or preferences.
Kelly, Debbie M; Bischof, Walter F
2008-10-01
We investigated how human adults orient in enclosed virtual environments, when discrete landmark information is not available and participants have to rely on geometric and featural information on the environmental surfaces. In contrast to earlier studies, where, for women, the featural information from discrete landmarks overshadowed the encoding of the geometric information, Experiment 1 showed that when featural information is conjoined with the environmental surfaces, men and women encoded both types of information. Experiment 2 showed that, although both types of information are encoded, performance in locating a goal position is better if it is close to a geometrically or featurally distinct location. Furthermore, although features are relied upon more strongly than geometry, initial experience with an environment influences the relative weighting of featural and geometric cues. Taken together, these results show that human adults use a flexible strategy for encoding spatial information.
Liu, Ying; Guo, Xin-biao; Li, Hai-rong; Yang, Lin-sheng
2006-07-01
To study some factors that affected food poison and appeals in restaurants which were hidden danger on the cards. Data on food hygiene events from 2002 to 2004 in restaurants of 14 blocks which were located in the important city zone of Qingdao were collected and studied. The spatial distribution was conducted by means of Geographic Information System (GIS). Possible factors related to food hygiene events were investigated and analysed by NCSS Data statistics software. information of every block were marked on digitalized map by ARCVIEW3.2a software in order to show the spatial distribution of food hygiene events palpably in different areas in the course of three years. It was showed that air temperature, humidity, sunlight length were the important factors of food poison. Average amount of guests and floating population related to administration level of sanitation, the level of sanitation administration, geography location, business status of restaurants related to their status of food sanitation. This study showed the method that analysed and studied status of food sanitation from different areas by GIS were effective, simple and palpable.
Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals
Daigle, Courtney L.; Banerjee, Debasmit; Montgomery, Robert A.; Biswas, Subir; Siegford, Janice M.
2014-01-01
A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421
Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.
2013-12-01
Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth). To check/test the spatial proposal of the ground station site, this analysis methodology uses mission simulation software of spatial vehicles to analyze and quantify how the geographic accuracy of the position of the spatial vehicles along the horizon visible from the antenna, increases communication time with the ground station. Experimental results that have been obtained from a ground station located at ETSIT-UPM in Spain (QBito Nanosatellite, UPM spacecraft mission within the QB50 project) show that selection of the optimal site increases the field of view from the antenna and hence helps to meet mission requirements.
Knowing what and where: TMS evidence for the dual neural basis of geographical knowledge.
Hoffman, Paul; Crutch, Sebastian
2016-02-01
All animals acquire knowledge about the topography of their immediate environment through direct exploration. Uniquely, humans also acquire geographical knowledge indirectly through exposure to maps and verbal information, resulting in a rich database of global geographical knowledge. We used transcranial magnetic stimulation to investigate the structure and neural basis of this critical but poorly understood component of semantic knowledge. Participants completed tests of geographical knowledge that probed either information about spatial locations (e.g., France borders Spain) or non-spatial taxonomic information (e.g., France is a country). TMS applied to the anterior temporal lobe, a region that codes conceptual knowledge for words and objects, had a general disruptive effect on the geographical tasks. In contrast, stimulation of the intraparietal sulcus (IPS), a region involved in the coding of spatial and numerical information, had a highly selective effect on spatial geographical decisions but no effect on taxonomic judgements. Our results establish that geographical concepts lie at the intersection of two distinct neural representation systems, and provide insights into how the interaction of these systems shape our understanding of the world. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Maintenance of tactile short-term memory for locations is mediated by spatial attention.
Katus, Tobias; Andersen, Søren K; Müller, Matthias M
2012-01-01
According to the attention-based rehearsal hypothesis, maintenance of spatial information is mediated by covert orienting towards memorized locations. In a somatosensory memory task, participants simultaneously received bilateral pairs of mechanical sample pulses. For each hand, sample stimuli were randomly assigned to one of three locations (fingers). A subsequent visual retro-cue determined whether the left or right hand sample was to be memorized. The retro-cue elicited lateralized activity reflecting the location of the relevant sample stimulus. Sensory processing during the retention period was probed by task-irrelevant pulses randomized to locations at the cued and uncued hand. The somatosensory N140 was enhanced for probes delivered to the cued hand, relative to uncued. Probes presented shortly after the retro-cue showed greatest attentional modulations. This suggests that transient contributions from retrospective selection overlapped with the sustained effect of attention-based rehearsal. In conclusion, focal attention shifts within tactile mnemonic content occurred after retro-cues and guided sensory processing during retention. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.
2017-07-01
The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.
High-Dimensional Bayesian Geostatistics
Banerjee, Sudipto
2017-01-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
Shi, Xun; Miller, Stephanie; Mwenda, Kevin; Onda, Akikazu; Reese, Judy; Onega, Tracy; Gui, Jiang; Karagas, Margret; Demidenko, Eugene; Moeschler, John
2013-09-06
Limited by data availability, most disease maps in the literature are for relatively large and subjectively-defined areal units, which are subject to problems associated with polygon maps. High resolution maps based on objective spatial units are needed to more precisely detect associations between disease and environmental factors. We propose to use a Restricted and Controlled Monte Carlo (RCMC) process to disaggregate polygon-level location data to achieve mapping aggregate data at an approximated individual level. RCMC assigns a random point location to a polygon-level location, in which the randomization is restricted by the polygon and controlled by the background (e.g., population at risk). RCMC allows analytical processes designed for individual data to be applied, and generates high-resolution raster maps. We applied RCMC to the town-level birth defect data for New Hampshire and generated raster maps at the resolution of 100 m. Besides the map of significance of birth defect risk represented by p-value, the output also includes a map of spatial uncertainty and a map of hot spots. RCMC is an effective method to disaggregate aggregate data. An RCMC-based disease mapping maximizes the use of available spatial information, and explicitly estimates the spatial uncertainty resulting from aggregation.
High-Dimensional Bayesian Geostatistics.
Banerjee, Sudipto
2017-06-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.
Hedonic valuation of the spatial competition for urban circumstance utilities: case Wuhan, China
NASA Astrophysics Data System (ADS)
Zheng, Bin; Liu, Yaolin; Huang, Lina
2008-10-01
It has generally accepted Alonso's [1] theory about the allocation of different land uses of commerce, resident and industry in urban area. A bunch of researches have provided their aspects of the theme of the relationships between urban circumstances and urban land uses in either the influence of one or several designate circumstance factors on different land uses, or the comprehensive analysis of the influence of all kinds of circumstance on one selected land usage (e.g. residential use). There is still not a wholly analysis about the influence of all kinds of spatial characteristics, available for the location selection of different land uses. That's why this research selects to engage in a study on the difference among "consumer preferences" to the location amenities in the city. Here we regard the behavior as "spatial competition of the locations". Hedonic regression model (HRM) analysis is employed as the basic framework of the research. Tabular comparison of HRM parameters performed with principal components analysis (PCA) and Geographic Information Science (GIS) provides all necessary numerical investigation and spatial analysis until to the finally results. The research can be helpful for putting forward to a further integrated investigation on the relationship between urban circumstance and real land use values.
Photoacoustic tomography guided diffuse optical tomography for small-animal model
NASA Astrophysics Data System (ADS)
Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao
2015-03-01
Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.
The effect of path length and display size on memory for spatial information.
Guérard, Katherine; Tremblay, Sébastien
2012-01-01
In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.
An Exploratory Study of Civil Servants Spatial Thinking, Awareness and Use of Maps in Africa-Nigeria
NASA Astrophysics Data System (ADS)
Asiyanbola, R. A.
2018-04-01
The paper is an exploratory study of spatial thinking, awareness and use of maps among civil servants in Nigeria with a view towards enhancing capacity building in the development and use of global mapping and geospatial information technologies products and services. The data used in the paper was from administration of 152 questionnaires to civil servants in Ibadan, Oyo State, Nigeria between February and August, 2017. Descriptive statistics were used to analyse the data. The study shows among others that majority of the civil servants had situations in their daily lives or specialty that require spatial thinking; the three top situations in their daily lives or specialty that require spatial thinking were identification of places, wayfinding and walking; majority of them asked from people information about location, direction, distances and other needed information about places they do not know; majority of them were aware of maps; majority of them could read maps; majority of them had interest to learn more how to read maps and were willing to pay for the training.
Changes in the distribution of sustained attention alter the perceived structure of visual space.
Fortenbaugh, Francesca C; Robertson, Lynn C; Esterman, Michael
2017-02-01
Visual spatial attention is a critical process that allows for the selection and enhanced processing of relevant objects and locations. While studies have shown attentional modulations of perceived location and the representation of distance information across multiple objects, there remains disagreement regarding what influence spatial attention has on the underlying structure of visual space. The present study utilized a method of magnitude estimation in which participants must judge the location of briefly presented targets within the boundaries of their individual visual fields in the absence of any other objects or boundaries. Spatial uncertainty of target locations was used to assess perceived locations across distributed and focused attention conditions without the use of external stimuli, such as visual cues. Across two experiments we tested locations along the cardinal and 45° oblique axes. We demonstrate that focusing attention within a region of space can expand the perceived size of visual space; even in cases where doing so makes performance less accurate. Moreover, the results of the present studies show that when fixation is actively maintained, focusing attention along a visual axis leads to an asymmetrical stretching of visual space that is predominantly focused across the central half of the visual field, consistent with an expansive gradient along the focus of voluntary attention. These results demonstrate that focusing sustained attention peripherally during active fixation leads to an asymmetrical expansion of visual space within the central visual field. Published by Elsevier Ltd.
Object-location binding across a saccade: A retinotopic Spatial Congruency Bias
Shafer-Skelton, Anna; Kupitz, Colin N.; Golomb, Julie D.
2017-01-01
Despite frequent eye movements that rapidly shift the locations of objects on our retinas, our visual system creates a stable perception of the world. To do this, it must convert eye-centered (retinotopic) input to world-centered (spatiotopic) percepts. Moreover, for successful behavior we must also incorporate information about object features/identities during this updating – a fundamental challenge that remains to be understood. Here we adapted a recent behavioral paradigm, the “Spatial Congruency Bias”, to investigate object-location binding across an eye movement. In two initial baseline experiments, we showed that the Spatial Congruency Bias was present for both gabor and face stimuli in addition to the object stimuli used in the original paradigm. Then, across three main experiments, we found the bias was preserved across an eye movement, but only in retinotopic coordinates: Subjects were more likely to perceive two stimuli as having the same features/identity when they were presented in the same retinotopic location. Strikingly, there was no evidence of location binding in the more ecologically relevant spatiotopic (world-centered) coordinates; the reference frame did not update to spatiotopic even at longer post-saccade delays, nor did it transition to spatiotopic with more complex stimuli (gabors, shapes, and faces all showed a retinotopic Congruency Bias). Our results suggest that object-location binding may be tied to retinotopic coordinates, and that it may need to be re-established following each eye movement rather than being automatically updated to spatiotopic coordinates. PMID:28070793
2011-01-01
Background Although there are inequalities in child health and survival in the Democratic Republic of Congo (DRC), the influence of distal determinants such as geographic location on children's nutritional status is still unclear. We investigate the impact of geographic location on child nutritional status by mapping the residual net effect of malnutrition while accounting for important risk factors. Methods We examine spatial variation in under-five malnutrition with flexible geo-additive semi-parametric mixed model while simultaneously controlling for spatial dependence and possibly nonlinear effects of covariates within a simultaneous, coherent regression framework based on Markov Chain Monte Carlo techniques. Individual data records were constructed for children. Each record represents a child and consists of nutritional status information and a list of covariates. For the 8,992 children born within the last five years before the survey, 3,663 children have information on anthropometric measures. Our novel empirical approach is able to flexibly determine to what extent the substantial spatial pattern of malnutrition is driven by detectable factors such as socioeconomic factors and can be attributable to unmeasured factors such as conflicts, political, environmental and cultural factors. Results Although childhood malnutrition was more pronounced in all provinces of the DRC, after accounting for the location's effects, geographic differences were significant: malnutrition was significantly higher in rural areas compared to urban centres and this difference persisted after multiple adjustments. The findings suggest that models of nutritional intervention must be carefully specified with regard to residential location. Conclusion Childhood malnutrition is spatially structured and rates remain very high in the provinces that rely on the mining industry and comparable to the level seen in Eastern provinces under conflicts. Even in provinces such as Bas-Congo that produce foods, childhood malnutrition is higher probably because of the economic decision to sell more than the population consumes. Improving maternal and child nutritional status is a prerequisite for achieving MDG 4, to reduce child mortality rate in the DRC. PMID:21518428
Distribution of indoor radon concentrations in Pennsylvania, 1990-2007
Gross, Eliza L.
2013-01-01
Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.
Evidence from a partial report task for forgetting in dynamic spatial memory.
Gugerty, L
1998-09-01
G. Sperling (1960) and others have investigated memory for briefly presented stimuli by using a partial versus whole report technique in which participants sometimes reported part of a stimulus array and sometimes reported all of it. For simple, static stimulus displays, the partial report technique showed that participants could recall most of the information in the stimulus array but that this information faded quickly when participants engaged in whole report recall. An experiment was conducted that applied the partial report method to a task involving complex displays of moving objects. In the experiment, 26 participants viewed cars in a low-fidelity driving simulator and then reported the locations of some or all of the cars in each scene. A statistically significant advantage was found for the partial report trials. This finding suggests that detailed spatial location information was forgotten from dynamic spatial memory over the 14 s that it took participants to recall whole report trials. The experiment results suggest better ways of measuring situation awareness. Partial report recall techniques may give a more accurate measure of people's momentary situation awareness than whole report techniques. Potential applications of this research include simulator-based measures of situation awareness ability that can be part of inexpensive test batteries to select people for real-time tasks (e.g., in a driver licensing battery) and to identify people who need additional training.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano
2015-01-01
Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.
Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano
2015-01-01
Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205
Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission
NASA Astrophysics Data System (ADS)
Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.
2015-10-01
Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.
2013-01-01
Background Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Methods Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Results Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”. Conclusions Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations. PMID:23587358
Curtis, Andrew; Blackburn, Jason K; Widmer, Jocelyn M; Morris, J Glenn
2013-04-15
Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these "hotspots". Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.
Leak detection utilizing analog binaural (VLSI) techniques
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1995-01-01
A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.
2011-01-01
Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462
Newspaper archives + text mining = rich sources of historical geo-spatial data
NASA Astrophysics Data System (ADS)
Yzaguirre, A.; Smit, M.; Warren, R.
2016-04-01
Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.
Fast Ss-Ilm a Computationally Efficient Algorithm to Discover Socially Important Locations
NASA Astrophysics Data System (ADS)
Dokuz, A. S.; Celik, M.
2017-11-01
Socially important locations are places which are frequently visited by social media users in their social media lifetime. Discovering socially important locations provide several valuable information about user behaviours on social media networking sites. However, discovering socially important locations are challenging due to data volume and dimensions, spatial and temporal calculations, location sparseness in social media datasets, and inefficiency of current algorithms. In the literature, several studies are conducted to discover important locations, however, the proposed approaches do not work in computationally efficient manner. In this study, we propose Fast SS-ILM algorithm by modifying the algorithm of SS-ILM to mine socially important locations efficiently. Experimental results show that proposed Fast SS-ILM algorithm decreases execution time of socially important locations discovery process up to 20 %.
Ideas of home in palliative care research: A concept analysis.
Tryselius, Kristina; Benzein, Eva; Persson, Carina
2018-04-23
To explore the concept of home and its' expressed spatialities in current palliative care research. Home is a central environment for living, caring, and dying. However, pure investigations of the sets of ideas linked to the concept seemed missing. Although identified as an important location, spatial perspectives expressed through the concept of home appeared unexplored. Rodgers' evolutionary concept analysis. Scientific articles published between January 2009 and September 2015. Rodgers' evolutionary concept analysis. Resulting attributes were explored from two geographically informed spatial perspectives. As main results, six attributes were identified and explored: Home as actor-capable of acting; emotional environment-something people have feelings for; place-a part of personal identity and a location; space-complex and relational spatial connections and a site for care; setting-passive background and absolute space; becoming-a fluid spatiality constantly folded. Examples of attributes and suggestions for further concept development were identified. The concept reflects various sets of ideas as well as expressing both relational and absolute perspectives of space. The most challenging for nursing research and practice seems to be investigation, operationalization, and testing the implementation of sets of ideas reflecting a relational thinking of space. © 2018 Wiley Periodicals, Inc.
Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems
NASA Technical Reports Server (NTRS)
Cholewiak, Roger W.; Reschke, Millard F.
1997-01-01
When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.
Evaluation criteria for software classification inventories, accuracies, and maps
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1976-01-01
Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.
Nutrients and the Great Lakes Nearshore, Circa 2002-2007
Nearshore nutrient impressions were largely limited to observations of local spatial trends from a few site-specific studies and some temporal trends at a set of Canadian water intake locations (later summarized in Nicholls et al. 1999). Lacking a systematic information base fo...
NASA Technical Reports Server (NTRS)
Lathrop, William B.; Kaiser, Mary K.
2002-01-01
Two experiments examined perceived spatial orientation in a small environment as a function of experiencing that environment under three conditions: real-world, desktop-display (DD), and head-mounted display (HMD). Across the three conditions, participants acquired two targets located on a perimeter surrounding them, and attempted to remember the relative locations of the targets. Subsequently, participants were tested on how accurately and consistently they could point in the remembered direction of a previously seen target. Results showed that participants were significantly more consistent in the real-world and HMD conditions than in the DD condition. Further, it is shown that the advantages observed in the HMD and real-world conditions were not simply due to nonspatial response strategies. These results suggest that the additional idiothetic information afforded in the real-world and HMD conditions is useful for orientation purposes in our presented task domain. Our results are relevant to interface design issues concerning tasks that require spatial search, navigation, and visualization.
Distinct cortical codes and temporal dynamics for conscious and unconscious percepts
Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas
2015-01-01
The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100
Jácome, Gabriel; Valarezo, Carla; Yoo, Changkyoo
2018-03-30
Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.
Thomson, Dana R; Shitole, Shrutika; Shitole, Tejal; Sawant, Kiran; Subbaraman, Ramnath; Bloom, David E; Patil-Deshmukh, Anita
2014-01-01
We devised and implemented an innovative Location-Based Household Coding System (LBHCS) appropriate to a densely populated informal settlement in Mumbai, India. LBHCS codes were designed to double as unique household identifiers and as walking directions; when an entire community is enumerated, LBHCS codes can be used to identify the number of households located per road (or lane) segment. LBHCS was used in community-wide biometric, mental health, diarrheal disease, and water poverty studies. It also facilitated targeted health interventions by a research team of youth from Mumbai, including intensive door-to-door education of residents, targeted follow-up meetings, and a full census. In addition, LBHCS permitted rapid and low-cost preparation of GIS mapping of all households in the slum, and spatial summation and spatial analysis of survey data. LBHCS was an effective, easy-to-use, affordable approach to household enumeration and re-identification in a densely populated informal settlement where alternative satellite imagery and GPS technologies could not be used.
Six dimensional X-ray Tensor Tomography with a compact laboratory setup
NASA Astrophysics Data System (ADS)
Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.
2016-09-01
Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
Biologically-inspired robust and adaptive multi-sensor fusion and active control
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.
2017-01-01
Understanding the impacts of recreational fishing on habitats and species, as well as the social and ecological importance of place to anglers, requires information on the spatial distribution of fishing activities. This study documented long-term changes in core fishing areas of a major recreational fishery in Alaska and identified biological, regulatory, social, and economic drivers of spatial fishing patterns by charter operators. Using participatory mapping and in-person interviews, we characterized the spatial footprint of 46 charter operators in the communities of Sitka and Homer since the 1990s. The spatial footprint differed between Homer and Sitka respondents, with Homer operators consistently using larger areas for Pacific halibut than Sitka operators. Homer and Sitka showed opposite trends in core fishing location area over time, with an overall decrease in Homer and an overall increase in Sitka. For both Sitka and Homer respondents, the range of areas fished was greater for Pacific halibut than for rockfish/lingcod or Pacific salmon. Spatial patterns were qualitatively different between businesses specializing in single species trips and those that operated multispecies trips and between businesses with one vessel and those with multiple vessels. In Homer, the most frequently cited reasons for changes in the location and/or extent of fishing were changes in trip type and the price of fuel, while in Sitka, the most frequently cited reasons for spatial shifts were changes to Pacific halibut regulations and gaining experience or exploring new locations. The diversity of charter fishing strategies in Alaska may allow individual charter operators to respond differently to perturbations and thus maintain resilience of the industry as a whole to social, environmental, and regulatory change. This research also highlights the importance of understanding fishers’ diverse portfolio of activities to effective ecosystem-based management. PMID:28632745
Chan, Maggie N; Beaudreau, Anne H; Loring, Philip A
2017-01-01
Understanding the impacts of recreational fishing on habitats and species, as well as the social and ecological importance of place to anglers, requires information on the spatial distribution of fishing activities. This study documented long-term changes in core fishing areas of a major recreational fishery in Alaska and identified biological, regulatory, social, and economic drivers of spatial fishing patterns by charter operators. Using participatory mapping and in-person interviews, we characterized the spatial footprint of 46 charter operators in the communities of Sitka and Homer since the 1990s. The spatial footprint differed between Homer and Sitka respondents, with Homer operators consistently using larger areas for Pacific halibut than Sitka operators. Homer and Sitka showed opposite trends in core fishing location area over time, with an overall decrease in Homer and an overall increase in Sitka. For both Sitka and Homer respondents, the range of areas fished was greater for Pacific halibut than for rockfish/lingcod or Pacific salmon. Spatial patterns were qualitatively different between businesses specializing in single species trips and those that operated multispecies trips and between businesses with one vessel and those with multiple vessels. In Homer, the most frequently cited reasons for changes in the location and/or extent of fishing were changes in trip type and the price of fuel, while in Sitka, the most frequently cited reasons for spatial shifts were changes to Pacific halibut regulations and gaining experience or exploring new locations. The diversity of charter fishing strategies in Alaska may allow individual charter operators to respond differently to perturbations and thus maintain resilience of the industry as a whole to social, environmental, and regulatory change. This research also highlights the importance of understanding fishers' diverse portfolio of activities to effective ecosystem-based management.
Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor
2011-03-09
Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing.
Sandoval, C. Jimena; Pérez, Oswaldo; Ramírez-Amaya, Víctor
2011-01-01
Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012
Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C
2015-10-01
Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.
The Interaction of Spatial and Object Pathways: Evidence from Balint's Syndrome.
Robertson, L; Treisman, A; Friedman-Hill, S; Grabowecky, M
1997-05-01
An earlier report described a patient (RM) with bilateral parietal damage who showed severe binding problems between shape and color and shape and size (Friedman-Hill, Robertson, & Treisman, 1995). When shown two different-colored letters, RM reported a large number of illusory conjunctions (ICs) combining the shape of one letter with the color of the other, even when he was looking directly at one of them and had as long as 10 sec to respond. The lesions also produced severe deficits in locating and reaching for objects, and difficulty in seeing more than one object at a time, resulting in a neuropsychological diagnosis of Balint's syndrome or dorsal simultanagnosia. The pattern of deficits supported predictions of Treisman's Feature Integration Theory (FIT) that the loss of spatial information would lead to binding errors. They further suggested that the spatial information used in binding depends on intact parietal function. In the present paper we extend these findings and examine other deficits in RM that would be predicted by FIT. We show that: (1) Object individuation is impaired, making it impossible for him correctly to count more than one or two objects, even when he is aware that more are present. (2) Visual search for a target defined by a conjunction of features (requiring binding) is impaired, while the detection of a target defined by a unique feature is not. Search for the absence of a feature (0 among Qs) is also severely impaired, while search for the presence (Q among 0s) is not. Feature absence can only be detected when all the present features are bound to the nontarget items. (3) RM's deficits cannot be attributed to a general binding problem: binding errors were far more likely with simultaneous presentation where spatial information was required than with sequential presentation where time could be used as the medium for binding. (4) Selection for attention was severely impaired, whether it was based on the position of a marker or on some other feature (color). (5) Spatial information seems to exist that RM cannot access, suggesting that feature binding relies on a relatively late stage where implicit spatial information is made explicitly accessible. The data converge to support our conclusions that explicit spatial knowledge is necessary for the perception of accurately bound features, for accurate attentional selection, and for accurate and rapid search for a conjunction of features in a multiitem display. It is obviously necessary for directing attention to spatial locations, but the consequences of impairments in this ability seem also to affect object selection, object individuation, and feature integration. Thus, the functional effects of parietal damage are not limited to the spatial and attentional problems that have long been described in patients with Balint's syndrome. Damage to parietal areas also affects object perception through damage to spatial representations that are fundamental for spatial awareness.
Mining Spatiotemporal Patterns of the Elder's Daily Movement
NASA Astrophysics Data System (ADS)
Chen, C. R.; Chen, C. F.; Liu, M. E.; Tsai, S. J.; Son, N. T.; Kinh, L. V.
2016-06-01
With rapid developments in wearable device technology, a vast amount of spatiotemporal data, such as people's movement and physical activities, are generated. Information derived from the data reveals important knowledge that can contribute a long-term care and psychological assessment of the elders' living condition especially in long-term care institutions. This study aims to develop a method to investigate the spatial-temporal movement patterns of the elders with their outdoor trajectory information. To achieve the goal, GPS based location data of the elderly subjects from long-term care institutions are collected and analysed with geographic information system (GIS). A GIS statistical model is developed to mine the elderly subjects' spatiotemporal patterns with the location data and represent their daily movement pattern at particular time. The proposed method first finds the meaningful trajectory and extracts the frequent patterns from the time-stamp location data. Then, a density-based clustering method is used to identify the major moving range and the gather/stay hotspot in both spatial and temporal dimensions. The preliminary results indicate that the major moving area of the elderly people encompasses their dorm and has a short moving distance who often stay in the same site. Subjects' outdoor appearance are corresponded to their life routine. The results can be useful for understanding elders' social network construction, risky area identification and medical care monitoring.
Value of Information spreadsheet
Trainor-Guitton, Whitney
2014-05-12
This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.
King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.
2000-12-31
The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined toolsmore » of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.« less
Russell, Robin E.; Tinsley, Karl; Erickson, Richard A.; Thogmartin, Wayne E.; Jennifer A. Szymanski,
2014-01-01
Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land-use change, management activities, disease, and other landscape-level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.
Spatial analysis of infection by the human immunodeficiency virus among pregnant women1
de Holanda, Eliane Rolim; Galvão, Marli Teresinha Gimeniz; Pedrosa, Nathália Lima; Paiva, Simone de Sousa; de Almeida, Rosa Lívia Freitas
2015-01-01
OBJECTIVES: to analyze the spatial distribution of reported cases of pregnant women infected by the human immunodeficiency virus and to identify the urban areas with greater social vulnerability to the infection among pregnant women. METHOD: ecological study, developed by means of spatial analysis techniques of area data. Secondary data were used from the Brazilian National Disease Notification System for the city of Recife, Pernambuco. Birth data were obtained from the Brazilian Information System on Live Births and socioeconomic data from the 2010 Demographic Census. RESULTS: the presence of spatial self-correlation was verified. Moran's Index was significant for the distribution. Clusters were identified, considered as high-risk areas, located in grouped neighborhoods, with equally high infection rates among pregnant women. A neighborhood located in the Northwest of the city was distinguished, considered in an epidemiological transition phase. CONCLUSION: precarious living conditions, as evidenced by the indicators illiteracy, absence of prenatal care and poverty, were relevant for the risk of vertical HIV transmission, converging to the grouping of cases among disadvantaged regions. PMID:26155005
Visuospatial working memory mediates inhibitory and facilitatory guidance in preview search.
Barrett, Doug J K; Shimozaki, Steven S; Jensen, Silke; Zobay, Oliver
2016-10-01
Visual search is faster and more accurate when a subset of distractors is presented before the display containing the target. This "preview benefit" has been attributed to separate inhibitory and facilitatory guidance mechanisms during search. In the preview task the temporal cues thought to elicit inhibition and facilitation provide complementary sources of information about the likely location of the target. In this study, we use a Bayesian observer model to compare sensitivity when the temporal cues eliciting inhibition and facilitation produce complementary, and competing, sources of information. Observers searched for T-shaped targets among L-shaped distractors in 2 standard and 2 preview conditions. In the standard conditions, all the objects in the display appeared at the same time. In the preview conditions, the initial subset of distractors either stayed on the screen or disappeared before the onset of the search display, which contained the target when present. In the latter, the synchronous onset of old and new objects negates the predictive utility of stimulus-driven capture during search. The results indicate observers combine memory-driven inhibition and sensory-driven capture to reduce spatial uncertainty about the target's likely location during search. In the absence of spatially predictive onsets, memory-driven inhibition at old locations persists despite irrelevant sensory change at previewed locations. This result is consistent with a bias toward unattended objects during search via the active suppression of irrelevant capture at previously attended locations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Reconstructions of information in visual spatial working memory degrade with memory load.
Sprague, Thomas C; Ester, Edward F; Serences, John T
2014-09-22
Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of complete monocular deprivation in visuo-spatial memory.
Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso
2008-09-30
Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
Close binding of identity and location in visual feature perception
NASA Technical Reports Server (NTRS)
Johnston, J. C.; Pashler, H.
1990-01-01
The binding of identity and location information in disjunctive feature search was studied. Ss searched a heterogeneous display for a color or a form target, and reported both target identity and location. To avoid better than chance guessing of target identity (by choosing the target less likely to have been seen), the difficulty of the two targets was equalized adaptively; a mathematical model was used to quantify residual effects. A spatial layout was used that minimized postperceptual errors in reporting location. Results showed strong binding of identity and location perception. After correction for guessing, no perception of identity without location was found. A weak trend was found for accurate perception of target location without identity. We propose that activated features generate attention-calling "interrupt" signals, specifying only location; attention then retrieves the properties at that location.
NASA Astrophysics Data System (ADS)
Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.
2017-12-01
Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.
The Applications of Model-Based Geostatistics in Helminth Epidemiology and Control
Magalhães, Ricardo J. Soares; Clements, Archie C.A.; Patil, Anand P.; Gething, Peter W.; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. PMID:21295680
NASA Astrophysics Data System (ADS)
Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario
The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.
A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.
Riby, Leigh M; Orme, Elizabeth
2013-03-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Exogenous spatial attention decreases audiovisual integration.
Van der Stoep, N; Van der Stigchel, S; Nijboer, T C W
2015-02-01
Multisensory integration (MSI) and spatial attention are both mechanisms through which the processing of sensory information can be facilitated. Studies on the interaction between spatial attention and MSI have mainly focused on the interaction between endogenous spatial attention and MSI. Most of these studies have shown that endogenously attending a multisensory target enhances MSI. It is currently unclear, however, whether and how exogenous spatial attention and MSI interact. In the current study, we investigated the interaction between these two important bottom-up processes in two experiments. In Experiment 1 the target location was task-relevant, and in Experiment 2 the target location was task-irrelevant. Valid or invalid exogenous auditory cues were presented before the onset of unimodal auditory, unimodal visual, and audiovisual targets. We observed reliable cueing effects and multisensory response enhancement in both experiments. To examine whether audiovisual integration was influenced by exogenous spatial attention, the amount of race model violation was compared between exogenously attended and unattended targets. In both Experiment 1 and Experiment 2, a decrease in MSI was observed when audiovisual targets were exogenously attended, compared to when they were not. The interaction between exogenous attention and MSI was less pronounced in Experiment 2. Therefore, our results indicate that exogenous attention diminishes MSI when spatial orienting is relevant. The results are discussed in terms of models of multisensory integration and attention.
Object-location memory in adults with autism spectrum disorder.
Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M
2015-10-01
This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
Mena, Carlos; Sepúlveda, Cesar; Fuentes, Eduardo; Ormazábal, Yony; Palomo, Iván
2018-05-07
Cardiovascular diseases (CVDs) are the primary cause of death and disability in de world, and the detection of populations at risk as well as localization of vulnerable areas is essential for adequate epidemiological management. Techniques developed for spatial analysis, among them geographical information systems and spatial statistics, such as cluster detection and spatial correlation, are useful for the study of the distribution of the CVDs. These techniques, enabling recognition of events at different geographical levels of study (e.g., rural, deprived neighbourhoods, etc.), make it possible to relate CVDs to factors present in the immediate environment. The systemic literature presented here shows that this group of diseases is clustered with regard to incidence, mortality and hospitalization as well as obesity, smoking, increased glycated haemoglobin levels, hypertension physical activity and age. In addition, acquired variables such as income, residency (rural or urban) and education, contribute to CVD clustering. Both local cluster detection and spatial regression techniques give statistical weight to the findings providing valuable information that can influence response mechanisms in the health services by indicating locations in need of intervention and assignment of available resources.
Body-Specific Representations of Spatial Location
ERIC Educational Resources Information Center
Brunye, Tad T.; Gardony, Aaron; Mahoney, Caroline R.; Taylor, Holly A.
2012-01-01
The body specificity hypothesis (Casasanto, 2009) posits that the way in which people interact with the world affects their mental representation of information. For instance, right- versus left-handedness affects the mental representation of affective valence, with right-handers categorically associating good with rightward areas and bad with…
Knierim, James J.; Neunuebel, Joshua P.; Deshmukh, Sachin S.
2014-01-01
The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience. PMID:24366146
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2015-01-01
Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208
Moehler, Tobias; Fiehler, Katja
2014-12-01
The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.
Clustering of Multivariate Geostatistical Data
NASA Astrophysics Data System (ADS)
Fouedjio, Francky
2017-04-01
Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.
Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander
2016-01-01
Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.
On the spatial decorrelation of stochastic solar resource variability at long timescales
Perez, Marc J. R.; Fthenakis, Vasilis M.
2015-05-16
Understanding the spatial and temporal characteristics of solar resource variability is important because it helps inform the discussion surrounding the merits of geographic dispersion and subsequent electrical interconnection of photovoltaics as part of a portfolio of future solutions for coping with this variability. The unpredictable resource variability arising from the stochastic nature of meteorological phenomena (from the passage of clouds to the movement of weather systems) is of most concern for achieving high PV penetration because unlike the passage of seasons or the shift from day to night, the uncertainty makes planning a challenge. A suitable proxy for unpredictable solarmore » resource variability at any given location is the series of variations in the clearness index from one time period to the next because the clearness index is largely independent of the predictable influence of solar geometry. At timescales shorter than one day, the correlation between these variations in clearness index at pairs of distinct geographic locations decreases with spatial extent and with timescale. As the aggregate variability across N decorrelated locations decreases as 1/√N, identifying the distance required to achieve this decorrelation is critical to quantifying the expected reduction in variability from geographic dispersion.« less
Spatial cluster detection for repeatedly measured outcomes while accounting for residential history.
Cook, Andrea J; Gold, Diane R; Li, Yi
2009-10-01
Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information on study participants relocation, which most cluster detection statistics cannot. Application of these methods will be illustrated by the Home Allergens and Asthma prospective cohort study analyzing the relationship between environmental exposures and repeated measured outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.
Characterizing local biological hotspots in the Gulf of Maine using remote sensing data
NASA Astrophysics Data System (ADS)
Ribera, Marta M.
Researchers increasingly advocate the use of ecosystem-based management (EBM) for managing complex marine ecosystems. This approach requires managers to focus on processes and cross-scale interactions, rather than individual components. However, they often lack appropriate tools and data sources to pursue this change in management approach. One method that has been proposed to understand the ecological complexity inherent in marine ecosystems is the study of biological hotspots. Biological hotspots are locations where organisms from different trophic levels aggregate to feed on abundant supplies, and they are considered a first step toward understanding the processes driving spatial and temporal heterogeneity in marine systems. Biological hotspots are supported by phytoplankton aggregations, which are characterized by high spatial and temporal variability. As a result, methods developed to locate biological hotspots in relatively stable terrestrial systems are not well suited for more dynamic marine ecosystems. The main objective of this thesis is thus to identify and characterize local-scale biological hotspots in the western side of the Gulf of Maine. The first chapter describes a new methodological framework with the steps needed to locate these types of hotspots in marine ecosystems using remote sensing datasets. Then, in the second chapter these hotspots are characterized using a novel metric that uses time series information and spatial statistics to account for both the temporal variability and spatial structure of these marine aggregations. This metric redefines biological hotspots as areas with a high probability of exhibiting positive anomalies of productivity compared to the expected regional seasonal pattern. Finally, the third chapter compares the resulting biological hotspots to fishery-dependent abundance indices of surface and benthic predators to determine the effect of the location and magnitude of phytoplankton aggregations on the rest of the ecosystem. Analyses indicate that the spatial scale and magnitude of biological hotspots in the Gulf of Maine depend on the location and time of the year. Results also show that these hotspots change over time in response to both short-term oceanographic processes and long-term climatic cycles. Finally, the new metric presented here facilitates the spatial comparison between different trophic levels, thus allowing interdisciplinary ecosystem-wide studies.
Geographic Information Systems and travel health.
Bauer, Irmgard L; Puotinen, Marji
2002-01-01
Questions dealing with space and/or location have always been integral to understanding and addressing health issues, such as charting the spread of a disease. Health researchers have traditionally used paper maps to explore the spatial dimensions of health. However, due to advances in technology, it is now possible to ask such questions using a suite of computer-based methods and tools that are collectively known as a Geographic Information System (GIS).
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
Factors related to northern goshawk landscape use in the western Great Lakes region
Bruggeman, Jason E.; Andersen, David E.; Woodford, James E.
2014-01-01
Northern Goshawks (Accipiter gentilis) are a species of special conservation concern in the western Great Lakes bioregion and elsewhere in North America, and exhibit landscape-scale spatial use patterns. However, little information exists about Northern Goshawk habitat relations at broad spatial extents, as most existing published information comes from a few locations of relatively small spatial extent and, in some cases, short durations. We used an information-theoretic approach to evaluate competing hypotheses regarding factors (forest canopy cover, successional stage, and heights of the canopy top and base) related to odds of Northern Goshawk landscape use throughout the western Great Lakes bioregion based on an occupancy survey completed in 2008 (Bruggeman et al. 2011). We also combined these data with historical data of Northern Goshawk nest locations in the bioregion from 1979–2006 to evaluate the same competing hypotheses to elucidate long-term trends in use. The odds of Northern Goshawk use in 2008, and from 1979–2008, were positively correlated with average percent canopy cover. In the best-approximating models developed using 1979–2008 data, the odds of landscape use were positively correlated with the percentages of the landscape having canopy heights between 10 m and 25 m, and 25 m and 50 m, and the amount of variability in canopy base height. Also, the odds of landscape use were negatively correlated with the average height at the canopy base. Our results suggest multiple habitat factors were related to Northern Goshawk landscape-scale habitat use, similar to habitat use described at smaller spatial scales in the western Great Lakes bioregion and in western North America and Europe.
Retrieval and sleep both counteract the forgetting of spatial information.
Antony, James W; Paller, Ken A
2018-06-01
Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through repeated retrieval as well. That is, memories may generally be subject to forgetting that can be counteracted when memories become reactivated, and there are several types of reactivation: (i) via intentional restudying, (ii) via testing, (iii) without provocation during wake, or (iv) during sleep. We thus measured forgetting for spatial material subjected to repeated study or repeated testing followed by retention intervals with sleep versus wake. Four groups of subjects learned a set of visual object-location associations and either restudied the associations or recalled locations given the objects as cues. We found the advantage for restudied over retested information was greater in the PM than AM group. Additional groups tested at 5-min and 1-wk retention intervals confirmed previous findings of greater relative benefits for restudying in the short-term and for retesting in the long-term. Results overall support the conclusion that repeated reactivation through testing or sleeping stabilizes information against forgetting. © 2018 Antony and Paller; Published by Cold Spring Harbor Laboratory Press.
Three-dimensional GIS approach for management of assets
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Yee, S. X.; Majid, Z.; Setan, H.
2014-02-01
Assets play an important role in human life, especially to an organization. Organizations strive and put more effort to improve its operation and assets management. The development of GIS technology has become a powerful tool in management as it is able to provide a complete inventory for managing assets with location-based information. Spatial information is one of the requirements in decision making in various areas, including asset management in the buildings. This paper describes a 3D GIS approach for management of assets. An asset management system was developed by integrating GIS concept and 3D model assets. The purposes of 3D visualization to manage assets are to facilitate the analysis and understanding in the complex environment. Behind the 3D model of assets is a database to store the asset information. A user-friendly interface was also designed for more easier to operate the application. In the application developed, location of each individual asset can be easily tracked according to the referring spatial information and 3D viewing. The 3D GIS approach described in this paper is certainly would be useful in asset management. Systematic management of assets can be carried out and this will lead to less-time consuming and cost-effective. The results in this paper will show a new approach to improve asset management.
Bayesian modeling to assess populated areas impacted by radiation from Fukushima
NASA Astrophysics Data System (ADS)
Hultquist, C.; Cervone, G.
2017-12-01
Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.
Lambrey, Simon; Berthoz, Alain
2007-09-01
Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Ground penetrating radar water content mapping of golf course green sand layers
USDA-ARS?s Scientific Manuscript database
Information on the spatial distribution of water content across the sand layer component of a golf course green can be important to golf course superintendents for evaluating drainage effectiveness and scheduling irrigation. To estimate the bulk water content of the sand layer at point locations ac...
Wireless tracking of cotton modules Part II: automatic machine identification and system testing
USDA-ARS?s Scientific Manuscript database
Mapping the harvest location of cotton modules is essential to practical understanding and utilization of spatial-variability information in fiber quality. A wireless module-tracking system was recently developed, but automation of the system is required before it will find practical use on the far...
The Need for a Harmonized Repository for Next-Generation Human Activity Data
Multi-tiered human time-activity-location data can inform many efforts to describe human exposures to air pollutants and other chemicals on a range of temporal and spatial scales. In the last decade, EPA's Consolidated Human Activity Database (CHAD) has served as a harmonized rep...
DOT National Transportation Integrated Search
2016-06-01
The purpose of this study was to develop a wetland identification tool that makes use of freely available geospatial : datasets to identify potential wetland locations at a spatial scale relevant for transportation corridor assessments. The tool was ...
Unconscious Cross-Modal Priming of Auditory Sound Localization by Visual Words
ERIC Educational Resources Information Center
Ansorge, Ulrich; Khalid, Shah; Laback, Bernhard
2016-01-01
Little is known about the cross-modal integration of unconscious and conscious information. In the current study, we therefore tested whether the spatial meaning of an unconscious visual word, such as "up", influences the perceived location of a subsequently presented auditory target. Although cross-modal integration of unconscious…
Spatial Strategies in the Description of Complex Configurations
ERIC Educational Resources Information Center
Tenbrink, Thora; Coventry, Kenny R.; Andonova, Elena
2011-01-01
How people describe complex arrangements of objects in a small-scale setting has not been sufficiently investigated to predict when discourse strategies shift versus remain stable. In a study involving 100 native German participants, we investigated speakers' choices of perspective, as well as location and orientation information, when describing…
NASA Astrophysics Data System (ADS)
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
Validating crash locations for quantitative spatial analysis: a GIS-based approach.
Loo, Becky P Y
2006-09-01
In this paper, the spatial variables of the crash database in Hong Kong from 1993 to 2004 are validated. The proposed spatial data validation system makes use of three databases (the crash, road network and district board databases) and relies on GIS to carry out most of the validation steps so that the human resource required for manually checking the accuracy of the spatial data can be enormously reduced. With the GIS-based spatial data validation system, it was found that about 65-80% of the police crash records from 1993 to 2004 had correct road names and district board information. In 2004, the police crash database contained about 12.7% mistakes for road names and 9.7% mistakes for district boards. The situation was broadly comparable to the United Kingdom. However, the results also suggest that safety researchers should carefully validate spatial data in the crash database before scientific analysis.
Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping
2014-03-10
Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.
Spatial analysis of the etiology of amyotrophic lateral sclerosis among 1991 Gulf War veterans.
Miranda, Marie Lynn; Alicia Overstreet Galeano, M; Tassone, Eric; Allen, Kelli D; Horner, Ronnie D
2008-11-01
Veterans of the 1991 Gulf War have an increased risk of amyotrophic lateral sclerosis (ALS), but the etiology is unknown. This study sought to identify geographic areas with elevated risk for the later development of ALS among military personnel who served in the first Gulf War. A unified geographic information system (GIS) was constructed to allow analysis of secondary data on troop movements in the 1991 Gulf War theatre in the Persian Gulf region including Iraq, northern Saudi Arabia, and Kuwait. We fit Bayesian Poisson regression models to adjust for potential risk factors, including one relatively discrete environmental exposure, and to identify areas associated with elevated risk of ALS. We found that service in particular locations of the Gulf was associated with an elevated risk for later developing ALS, both before and after adjustment for branch of service and potential of exposure to chemical warfare agents in and around Khamisiyah, Iraq. Specific geographic locations of troop units within the 1991 Gulf War theatre are associated with an increased risk for the subsequent development of ALS among members of those units. The identified spatial locations represent the logical starting points in the search for potential etiologic factors of ALS among Gulf War veterans. Of note, for locations where the relative odds of subsequently developing ALS are among the highest, specific risk factors, whether environmental or occupationally related, have not been identified. The results of spatial models can be used to subsequently look for risk factors that follow the spatial pattern of elevated risk.
Ireland, Kathryn B; Hansen, Andrew J; Keane, Robert E; Legg, Kristin; Gump, Robert L
2018-06-01
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.
NASA Astrophysics Data System (ADS)
Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.
2018-06-01
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.
Auditory Attentional Control and Selection during Cocktail Party Listening
Hill, Kevin T.
2010-01-01
In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393
Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.
Kim, Han-Ul; Kim, Chang-Su
2017-08-01
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
Visualizing Spatially Varying Distribution Data
NASA Technical Reports Server (NTRS)
Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique
A geographic information system applied to a malaria field study in western Kenya.
Hightower, A W; Ombok, M; Otieno, R; Odhiambo, R; Oloo, A J; Lal, A A; Nahlen, B L; Hawley, W A
1998-03-01
This paper describes use of the global positioning system (GPS) in differential mode (DGPS) to obtain highly accurate longitudes, latitudes, and altitudes of 1,169 houses, 15 schools, 40 churches, four health care centers, 48 major mosquito breeding sites, 10 borehole wells, seven shopping areas, major roads, streams, the shore of Lake Victoria, and other geographic features of interest associated with a longitudinal study of malaria in 15 villages in western Kenya. The area mapped encompassed approximately 70 km2 and included 42.0 km of roads, 54.3 km of streams, and 15.0 km of lake shore. Location data were entered into a geographic information system for map production and linkage with various databases for spatial analyses. Spatial analyses using parasitologic and entomologic data are presented as examples. Background information on DGPS is presented along with estimates of effort and expense to produce the map information.
Location error uncertainties - an advanced using of probabilistic inverse theory
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2016-04-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analyzed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. While estimating of the earthquake foci location is relatively simple a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling, and apriori uncertainties. In this presentation we addressed this task when statistics of observational and/or modeling errors are unknown. This common situation requires introduction of apriori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland we illustrate an approach based on an analysis of Shanon's entropy calculated for the aposteriori distribution. We show that this meta-characteristic of the aposteriori distribution carries some information on uncertainties of the solution found.
Exploring the Potential of the iPad and Xbox Kinect for Cognitive Science Research.
Rolle, Camarin E; Voytek, Bradley; Gazzaley, Adam
2015-06-01
Many studies have validated consumer-facing hardware platforms as efficient, cost-effective, and accessible data collection instruments. However, there are few reports that have assessed the reliability of these platforms as assessment tools compared with traditional data collection platforms. Here we evaluated performance on a spatial attention paradigm obtained by our standard in-lab data collection platform, the personal computer (PC), and compared performance with that of two widely adopted, consumer technology devices: the Apple (Cupertino, CA) iPad(®) 2 and Microsoft (Redmond, WA) Xbox(®) Kinect(®). The task assessed spatial attention, a fundamental ability that we use to navigate the complex sensory input we face daily in order to effectively engage in goal-directed activities. Participants were presented with a central spatial cue indicating where on the screen a stimulus would appear. We manipulated spatial cueing such that, on a given trial, the cue presented one of four levels of information indicating the upcoming target location. Based on previous research, we hypothesized that as information of the cued spatial area decreased (i.e., larger area of possible target location) there would be a parametric decrease in performance, as revealed by slower response times and lower accuracies. Identical paradigm parameters were used for each of the three platforms, and testing was performed in a single session with a counterbalanced design. We found that performance on the Kinect and iPad showed a stronger parametric effect across the cued-information levels than that on the PC. Our results suggest that not only can the Kinect and iPad be reliably used as assessment tools to yield research-quality behavioral data, but that these platforms exploit mechanics that could be useful in building more interactive, and therefore effective, cognitive assessment and training designs. We include a discussion on the possible contributing factors to the differential effects between platforms, as well as potential confounds of the study.
Spatiotemporal conceptual platform for querying archaeological information systems
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Sartzetaki, Mary; Sarris, Apostolos
2015-04-01
Spatial and temporal distribution of archaeological sites has been shown to associate with several attributes including marine, water, mineral and food resources, climate conditions, geomorphological features, etc. In this study, archeological settlement attributes are evaluated under various associations in order to provide a specialized query platform in a geographic information system (GIS). Towards this end, a spatial database is designed to include a series of archaeological findings for a secluded geographic area of Crete in Greece. The key categories of the geodatabase include the archaeological type (palace, burial site, village, etc.), temporal information of the habitation/usage period (pre Minoan, Minoan, Byzantine, etc.), and the extracted geographical attributes of the sites (distance to sea, altitude, resources, etc.). Most of the related spatial attributes are extracted with readily available GIS tools. Additionally, a series of conceptual data attributes are estimated, including: Temporal relation of an era to a future one in terms of alteration of the archaeological type, topologic relations of various types and attributes, spatial proximity relations between various types. These complex spatiotemporal relational measures reveal new attributes towards better understanding of site selection for prehistoric and/or historic cultures, yet their potential combinations can become numerous. Therefore, after the quantification of the above mentioned attributes, they are classified as of their importance for archaeological site location modeling. Under this new classification scheme, the user may select a geographic area of interest and extract only the important attributes for a specific archaeological type. These extracted attributes may then be queried against the entire spatial database and provide a location map of possible new archaeological sites. This novel type of querying is robust since the user does not have to type a standard SQL query but graphically select an area of interest. In addition, according to the application at hand, novel spatiotemporal attributes and relations can be supported, towards the understanding of historical settlement patterns.
GIS and Geodatabase Disaster Risk for Spatial Planning
NASA Astrophysics Data System (ADS)
Hendriawan Nur, Wawan; Kumoro, Yugo; Susilowati, Yuliana
2018-02-01
The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.
Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.
Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W
2014-04-01
In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.
Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David
2013-01-01
The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161
A High Spatial Resolution Depth Sensing Method Based on Binocular Structured Light
Yao, Huimin; Ge, Chenyang; Xue, Jianru; Zheng, Nanning
2017-01-01
Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences. PMID:28397759
Robust sampling of decision information during perceptual choice
Vandormael, Hildward; Herce Castañón, Santiago; Balaguer, Jan; Li, Vickie; Summerfield, Christopher
2017-01-01
Humans move their eyes to gather information about the visual world. However, saccadic sampling has largely been explored in paradigms that involve searching for a lone target in a cluttered array or natural scene. Here, we investigated the policy that humans use to overtly sample information in a perceptual decision task that required information from across multiple spatial locations to be combined. Participants viewed a spatial array of numbers and judged whether the average was greater or smaller than a reference value. Participants preferentially sampled items that were less diagnostic of the correct answer (“inlying” elements; that is, elements closer to the reference value). This preference to sample inlying items was linked to decisions, enhancing the tendency to give more weight to inlying elements in the final choice (“robust averaging”). These findings contrast with a large body of evidence indicating that gaze is directed preferentially to deviant information during natural scene viewing and visual search, and suggest that humans may sample information “robustly” with their eyes during perceptual decision-making. PMID:28223519
Dong, Junzi; Colburn, H. Steven
2016-01-01
In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056
Dong, Junzi; Colburn, H Steven; Sen, Kamal
2016-01-01
In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.
Spatial Acuity and Prey Detection in Weakly Electric Fish
Babineau, David; Lewis, John E; Longtin, André
2007-01-01
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background. PMID:17335346
Attention reduces spatial uncertainty in human ventral temporal cortex.
Kay, Kendrick N; Weiner, Kevin S; Grill-Spector, Kalanit
2015-03-02
Ventral temporal cortex (VTC) is the latest stage of the ventral "what" visual pathway, which is thought to code the identity of a stimulus regardless of its position or size [1, 2]. Surprisingly, recent studies show that position information can be decoded from VTC [3-5]. However, the computational mechanisms by which spatial information is encoded in VTC are unknown. Furthermore, how attention influences spatial representations in human VTC is also unknown because the effect of attention on spatial representations has only been examined in the dorsal "where" visual pathway [6-10]. Here, we fill these significant gaps in knowledge using an approach that combines functional magnetic resonance imaging and sophisticated computational methods. We first develop a population receptive field (pRF) model [11, 12] of spatial responses in human VTC. Consisting of spatial summation followed by a compressive nonlinearity, this model accurately predicts responses of individual voxels to stimuli at any position and size, explains how spatial information is encoded, and reveals a functional hierarchy in VTC. We then manipulate attention and use our model to decipher the effects of attention. We find that attention to the stimulus systematically and selectively modulates responses in VTC, but not early visual areas. Locally, attention increases eccentricity, size, and gain of individual pRFs, thereby increasing position tolerance. However, globally, these effects reduce uncertainty regarding stimulus location and actually increase position sensitivity of distributed responses across VTC. These results demonstrate that attention actively shapes and enhances spatial representations in the ventral visual pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Attention reduces spatial uncertainty in human ventral temporal cortex
Kay, Kendrick N.; Weiner, Kevin S.; Grill-Spector, Kalanit
2014-01-01
SUMMARY Ventral temporal cortex (VTC) is the latest stage of the ventral ‘what’ visual pathway, which is thought to code the identity of a stimulus regardless of its position or size [1, 2]. Surprisingly, recent studies show that position information can be decoded from VTC [3–5]. However, the computational mechanisms by which spatial information is encoded in VTC are unknown. Furthermore, how attention influences spatial representations in human VTC is also unknown because the effect of attention on spatial representations has only been examined in the dorsal ‘where’ visual pathway [6–10]. Here we fill these significant gaps in knowledge using an approach that combines functional magnetic resonance imaging and sophisticated computational methods. We first develop a population receptive field (pRF) model [11, 12] of spatial responses in human VTC. Consisting of spatial summation followed by a compressive nonlinearity, this model accurately predicts responses of individual voxels to stimuli at any position and size, explains how spatial information is encoded, and reveals a functional hierarchy in VTC. We then manipulate attention and use our model to decipher the effects of attention. We find that attention to the stimulus systematically and selectively modulates responses in VTC, but not early visual areas. Locally, attention increases eccentricity, size, and gain of individual pRFs, thereby increasing position tolerance. However, globally, these effects reduce uncertainty regarding stimulus location and actually increase position sensitivity of distributed responses across VTC. These results demonstrate that attention actively shapes and enhances spatial representations in the ventral visual pathway. PMID:25702580
Encoding of goal-relevant stimuli is strengthened by emotional arousal in memory.
Lee, Tae-Ho; Greening, Steven G; Mather, Mara
2015-01-01
Emotional information receives preferential processing, which facilitates adaptive strategies for survival. However, the presence of emotional stimuli and the arousal they induce also influence how surrounding non-emotional information is processed in memory (Mather and Sutherland, 2011). For example, seeing a highly emotional scene often leads to forgetting of what was seen right beforehand, but sometimes instead enhances memory for the preceding information. In two studies, we examined how emotional arousal affects short-term memory retention for goal-relevant information that was just seen. In Study 1, participants were asked to remember neutral objects in spatially-cued locations (i.e., goal-relevant objects determined by specific location), while ignoring objects in uncued locations. After each set of objects were shown, arousal was manipulated by playing a previously fear-conditioned tone (i.e., CS+) or a neutral tone that had not been paired with shock (CS-). In Study 1, memory for the goal-relevant neutral objects from arousing trials was enhanced compared to those from the non-arousing trials. This result suggests that emotional arousal helps to increase the impact of top-down priority (i.e., goal-relevancy) on memory encoding. Study 2 supports this conclusion by demonstrating that when the goal was to remember all objects regardless of the spatial cue, emotional arousal induced memory enhancement in a more global manner for all objects. In sum, the two studies show that the ability of arousal to enhance memory for previously encoded items depends on the goal relevance initially assigned to those items.
Role of Alpha-Band Oscillations in Spatial Updating across Whole Body Motion
Gutteling, Tjerk P.; Medendorp, W. P.
2016-01-01
When moving around in the world, we have to keep track of important locations in our surroundings. In this process, called spatial updating, we must estimate our body motion and correct representations of memorized spatial locations in accordance with this motion. While the behavioral characteristics of spatial updating across whole body motion have been studied in detail, its neural implementation lacks detailed study. Here we use electroencephalography (EEG) to distinguish various spectral components of this process. Subjects gazed at a central body-fixed point in otherwise complete darkness, while a target was briefly flashed, either left or right from this point. Subjects had to remember the location of this target as either moving along with the body or remaining fixed in the world while being translated sideways on a passive motion platform. After the motion, subjects had to indicate the remembered target location in the instructed reference frame using a mouse response. While the body motion, as detected by the vestibular system, should not affect the representation of body-fixed targets, it should interact with the representation of a world-centered target to update its location relative to the body. We show that the initial presentation of the visual target induced a reduction of alpha band power in contralateral parieto-occipital areas, which evolved to a sustained increase during the subsequent memory period. Motion of the body led to a reduction of alpha band power in central parietal areas extending to lateral parieto-temporal areas, irrespective of whether the targets had to be memorized relative to world or body. When updating a world-fixed target, its internal representation shifts hemispheres, only when subjects’ behavioral responses suggested an update across the body midline. Our results suggest that parietal cortex is involved in both self-motion estimation and the selective application of this motion information to maintaining target locations as fixed in the world or fixed to the body. PMID:27199882
NASA Astrophysics Data System (ADS)
Yang, Wei; Sharp, Basil
2017-04-01
This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.
Spatial-spectral blood cell classification with microscopic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng
2017-10-01
Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.
Yang, Wei; Sharp, Basil
2017-04-01
This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Liu, Yu; Sun, Jiuhu; Zhang, Jie
2006-10-01
Spatial relationship is an important research area in GIS. The orientation information about the urban environment is directly available to human beings through perception and is crucial for establishing their spatial location and for way-finding. People perceive the layout of entities in space, categorize them as spatial relationships, and describe them as spatial expression in language. The orientation expression in different language is different. This paper will discuss the road network in Beijing and its characteristic. We analyze the post-position in Chinese, we know that people like to use 'outside' and 'inside' in the sentence "N is + ring road + postposition" by first experiment. We will illustrate the fuzzy range by 'outside or inside' in the ring-road by the second experiment. In the last part, we conclude the paper and our further research.
Spatiotopic updating of visual feature information.
Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R
2017-10-01
Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
2017-03-20
comparison with the more intensive demographic study . We found support for spatial variation in productivity at both location and station scales. At location...the larger intensive demographic monitoring study , we also fit a productivity model that included a covariate calculated for the 12 stations included...Reference herein to any specific commercial product , process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
Ahuja, A K; Dorn, J D; Caspi, A; McMahon, M J; Dagnelie, G; daCruz, L; Stanga, P; Humayun, M S; Greenberg, R J
2012-01-01
Background/aims To determine to what extent subjects implanted with the Argus II retinal prosthesis can improve performance compared with residual native vision in a spatial-motor task. Methods High-contrast square stimuli (5.85 cm sides) were displayed in random locations on a 19″ (48.3 cm) touch screen monitor located 12″ (30.5 cm) in front of the subject. Subjects were instructed to locate and touch the square centre with the system on and then off (40 trials each). The coordinates of the square centre and location touched were recorded. Results Ninety-six percent (26/27) of subjects showed a significant improvement in accuracy and 93% (25/27) show a significant improvement in repeatability with the system on compared with off (p<0.05, Student t test). A group of five subjects that had both accuracy and repeatability values <250 pixels (7.4 cm) with the system off (ie, using only their residual vision) was significantly more accurate and repeatable than the remainder of the cohort (p<0.01). Of this group, four subjects showed a significant improvement in both accuracy and repeatability with the system on. Conclusion In a study on the largest cohort of visual prosthesis recipients to date, we found that artificial vision augments information from existing vision in a spatial-motor task. Clinical trials registry no NCT00407602. PMID:20881025
The inferior colliculus encodes the Franssen auditory spatial illusion
Rajala, Abigail Z.; Yan, Yonghe; Dent, Micheal L.; Populin, Luis C.
2014-01-01
Illusions are effective tools for the study of the neural mechanisms underlying perception because neural responses can be correlated to the physical properties of stimuli and the subject’s perceptions. The Franssen illusion (FI) is an auditory spatial illusion evoked by presenting a transient, abrupt tone and a slowly rising, sustained tone of the same frequency simultaneously on opposite sides of the subject. Perception of the FI consists of hearing a single sound, the sustained tone, on the side that the transient was presented. Both subcortical and cortical mechanisms for the FI have been proposed, but, to date, there is no direct evidence for either. The data show that humans and rhesus monkeys perceive the FI similarly. Recordings were taken from single units of the inferior colliculus in the monkey while they indicated the perceived location of sound sources with their gaze. The results show that the transient component of the Franssen stimulus, with a shorter first spike latency and higher discharge rate than the sustained tone, encodes the perception of sound location. Furthermore, the persistent erroneous perception of the sustained stimulus location is due to continued excitation of the same neurons, first activated by the transient, by the sustained stimulus without location information. These results demonstrate for the first time, on a trial-by-trial basis, a correlation between perception of an auditory spatial illusion and a subcortical physiological substrate. PMID:23899307
The neural correlates of age effects on verbal-spatial binding in working memory.
Meier, Timothy B; Nair, Veena A; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek
2014-06-01
In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding. Copyright © 2014 Elsevier B.V. All rights reserved.
This entry contains two files. The first file, Hance_WFSR Flasher locations.xlxs, contains information describing the location of installed landmark 'flashers' consisting of 2 square aluminum metal tags. Each tag was inscribed with a number to aid field personnel in the identification of landmark location within the West Fork Smith River watershed in southern coastal Oregon. These landmarks were used to calculate stream distances between points in the watershed, including distances between tagging locations and detection events for tagged fish. A second file, named Hance_fish_detection_data1.xlxs contains information on the detection of tagged fish within the West Fork Smith River stream network. The file includes both the location where the fish were tagged and where they were subsequently detected. Together with the information in the WFSR flasher location dataset, these data allow estimation of the minimum distances and directions moved by juvenile coho salmon during the fall transition period.A map locator is provided in Figure 1 in the accompanying manuscript: Dalton J. Hance, Lisa M. Ganio, Kelly M. Burnett & Joseph L. Ebersole (2016) Basin-Scale Variation in the Spatial Pattern of Fall Movement of Juvenile Coho Salmon in the West Fork Smith River, Oregon, Transactions of the American Fisheries Society, 145:5, 1018-1034, DOI: 10.1080/00028487.2016.1194892This dataset is associated with the following publication:Hance, D.J., L.M. Ganio, K.M. Burnett, an
Mackrous, I; Simoneau, M
2011-11-10
Following body rotation, optimal updating of the position of a memorized target is attained when retinal error is perceived and corrective saccade is performed. Thus, it appears that these processes may enable the calibration of the vestibular system by facilitating the sharing of information between both reference frames. Here, it is assessed whether having sensory information regarding body rotation in the target reference frame could enhance an individual's learning rate to predict the position of an earth-fixed target. During rotation, participants had to respond when they felt their body midline had crossed the position of the target and received knowledge of result. During practice blocks, for two groups, visual cues were displayed in the same reference frame of the target, whereas a third group relied on vestibular information (vestibular-only group) to predict the location of the target. Participants, unaware of the role of the visual cues (visual cues group), learned to predict the location of the target and spatial error decreased from 16.2 to 2.0°, reflecting a learning rate of 34.08 trials (determined from fitting a falling exponential model). In contrast, the group aware of the role of the visual cues (explicit visual cues group) showed a faster learning rate (i.e. 2.66 trials) but similar final spatial error 2.9°. For the vestibular-only group, similar accuracy was achieved (final spatial error of 2.3°), but their learning rate was much slower (i.e. 43.29 trials). Transferring to the Post-test (no visual cues and no knowledge of result) increased the spatial error of the explicit visual cues group (9.5°), but it did not change the performance of the vestibular group (1.2°). Overall, these results imply that cognition assists the brain in processing the sensory information within the target reference frame. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Ortiz-Pelaez, Angel; Pfeiffer, Dirk U; Tempia, Stefano; Otieno, F Tom; Aden, Hussein H; Costagli, Riccardo
2010-04-28
In contrast to most pastoral systems, the Somali livestock production system is oriented towards domestic trade and export with seasonal movement patterns of herds/flocks in search of water and pasture and towards export points. Data from a rinderpest survey and other data sources have been integrated to explore the topology of a contact network of cattle herds based on a spatial proximity criterion and other attributes related to cattle herd dynamics. The objective of the study is to integrate spatial mobility and other attributes with GIS and network approaches in order to develop a predictive spatial model of presence of rinderpest. A spatial logistic regression model was fitted using data for 562 point locations. It includes three statistically significant continuous-scale variables that increase the risk of rinderpest: home range radius, herd density and clustering coefficient of the node of the network whose link was established if the sum of the home ranges of every pair of nodes was equal or greater than the shortest distance between the points. The sensitivity of the model is 85.1% and the specificity 84.6%, correctly classifying 84.7% of the observations. The spatial autocorrelation not accounted for by the model is negligible and visual assessment of a semivariogram of the residuals indicated that there was no undue amount of spatial autocorrelation. The predictive model was applied to a set of 6176 point locations covering the study area. Areas at high risk of having serological evidence of rinderpest are located mainly in the coastal districts of Lower and Middle Juba, the coastal area of Lower Shabele and in the regions of Middle Shabele and Bay. There are also isolated spots of high risk along the border with Kenya and the southern area of the border with Ethiopia. The identification of point locations and areas with high risk of presence of rinderpest and their spatial visualization as a risk map will be useful for informing the prioritization of disease surveillance and control activities for rinderpest in Somalia. The methodology applied here, involving spatial and network parameters, could also be applied to other diseases and/or species as part of a standardized approach for the design of risk-based surveillance activities in nomadic pastoral settings.
The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning
Nelson, A. J. D.; Hindley, E. L.; Pearce, J. M.; Vann, S. D.; Aggleton, J. P.
2015-01-01
The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information. PMID:25705182
Object, spatial and social recognition testing in a single test paradigm.
Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming
2018-07-01
Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories. Copyright © 2018. Published by Elsevier Inc.
The traveling salesrat: insights into the dynamics of efficient spatial navigation in the rodent
NASA Astrophysics Data System (ADS)
Watkins de Jong, Laurel; Gereke, Brian; Martin, Gerard M.; Fellous, Jean-Marc
2011-10-01
Rodent spatial navigation requires the dynamic evaluation of multiple sources of information, including visual cues, self-motion signals and reward signals. The nature of the evaluation, its dynamics and the relative weighting of the multiple information streams are largely unknown and have generated many hypotheses in the field of robotics. We use the framework of the traveling salesperson problem (TSP) to study how this evaluation may be achieved. The TSP is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. We show that after a few trials, rats converge on a short route between rewarded food cups. We propose that this route emerges from a series of local decisions that are derived from weighing information embedded in the context of the task. We study the relative weighting of spatial and reward information and establish that, in the conditions of this experiment, when the contingencies are not in conflict, rats choose the spatial or reward optimal solution. There was a trend toward a preference for space when the contingencies were in conflict. We also show that the spatial decision about which cup to go to next is biased by the orientation of the animal. Reward contingencies are also shown to significantly and dynamically modulate the decision-making process. This paradigm will allow for further neurophysiological studies aimed at understanding the synergistic role of brain areas involved in planning, reward processing and spatial navigation. These insights will in turn suggest new neural-like architectures for the control of mobile autonomous robots.
Choice of saccade endpoint under risk
Ackermann, John F.; Landy, Michael S.
2013-01-01
Eye movements function to bring detailed information onto the high-resolution region of the retina. Previous research has shown that human observers select fixation points that maximize information acquisition and minimize target location uncertainty. In this study, we ask whether human observers choose the saccade endpoint that maximizes gain when there are explicit rewards associated with correctly detecting the target. Observers performed an 8-alternative forced-choice detection task for a contrast-defined target in noise. After a single saccade, observers indicated the target location. Each potential target location had an associated reward that was known to the observer. In some conditions, the reward at one location was higher than at the other locations. We compared human saccade endpoints to those of an ideal observer that maximizes expected gain given the respective human observer's visibility map, i.e., d′ for target detection as a function of retinal location. Varying the location of the highest reward had a significant effect on human observers' distribution of saccade endpoints. Both human and ideal observers show a high density of saccades made toward the highest rewarded and actual target locations. But humans' overall spatial distributions of saccade endpoints differed significantly from the ideal observer as they made a greater number of saccade to locations far from the highest rewarded and actual target locations. Suboptimal choice of saccade endpoint, possibly in combination with suboptimal integration of information across saccades, had a significant effect on human observers' ability to correctly detect the target and maximize gain. PMID:24023277
Predictive spatial modeling of narcotic crop growth patterns
Waltz, Frederick A.; Moore, D.G.
1986-01-01
Spatial models for predicting the geographic distribution of marijuana crops have been developed and are being evaluated for use in law enforcement programs. The models are based on growing condition preferences and on psychological inferences regarding grower behavior. Experiences of local law officials were used to derive the initial model, which was updated and improved as data from crop finds were archived and statistically analyzed. The predictive models are changed as crop locations are moved in response to the pressures of law enforcement. The models use spatial data in a raster geographic information system. The spatial data are derived from the U.S. Geological Survey's US GeoData, standard 7.5-minute topographic quadrangle maps, interpretations of aerial photographs, and thematic maps. Updating of cultural patterns, canopy closure, and other dynamic features is conducted through interpretation of aerial photographs registered to the 7.5-minute quadrangle base. The model is used to numerically weight various data layers that have been processed using spread functions, edge definition, and categorization. The building of the spatial data base, model development, model application, product generation, and use are collectively referred to as the Area Reduction Program (ARP). The goal of ARP is to provide law enforcement officials with tactical maps that show the most likely locations for narcotic crops.
Altered spatial profile of distraction in people with schizophrenia.
Leonard, Carly J; Robinson, Benjamin M; Hahn, Britta; Luck, Steven J; Gold, James M
2017-11-01
Attention is critical for effective processing of incoming information and has long been identified as a potential area of dysfunction in people with schizophrenia (PSZ). In the realm of visual processing, both spatial attention and feature-based attention are involved in biasing selection toward task-relevant stimuli and avoiding distraction. Evidence from multiple paradigms has suggested that PSZ may hyperfocus and have a narrower "spotlight" of spatial attention. In contrast, feature-based attention seems largely preserved, with some suggestion of increased processing of stimuli sharing the target-defining feature. In the current study, we examined the spatial profile of feature-based distraction using a task in which participants searched for a particular color target and attempted to ignore distractors that varied in distance from the target location and either matched or mismatched the target color. PSZ differed from healthy controls in terms of interference from peripheral distractors that shared the target-color presented 200 ms before a central target. Specifically, PSZ showed an amplified gradient of spatial attention, with increased distraction to near distractors and less interference to far distractors. Moreover, consistent with hyperfocusing, individual differences in this spatial profile were correlated with positive symptoms, such that those with greater positive symptoms showed less distraction by target-colored distractors near the task-relevant location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.