Hippocampal activation during retrieval of spatial context from episodic and semantic memory.
Hoscheidt, Siobhan M; Nadel, Lynn; Payne, Jessica; Ryan, Lee
2010-10-15
The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of one's own life experiences or real-world semantic knowledge. Published by Elsevier B.V.
Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.
Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian
2018-01-15
Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Ekstrom, Arne D; Bookheimer, Susan Y
2007-10-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Rossato, Janine I; Köhler, Cristiano A; Radiske, Andressa; Bevilaqua, Lia R M; Cammarota, Martín
2015-11-01
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated. Copyright © 2015 Elsevier Inc. All rights reserved.
Oculomotor preparation as a rehearsal mechanism in spatial working memory.
Pearson, David G; Ball, Keira; Smith, Daniel T
2014-09-01
There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian
2016-12-01
Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions.
Jo, Yong Sang; Park, Eun Hye; Kim, Il Hwan; Park, Soon Kwon; Kim, Hyun; Kim, Hyun Taek; Choi, June-Seek
2007-12-05
Brain circuits involved in pattern completion, or retrieval of memory from fragmented cues, were investigated. Using different versions of the Morris water maze, we explored the roles of the CA3 subregion of the hippocampus and the medial prefrontal cortex (mPFC) in spatial memory retrieval under various conditions. In a hidden platform task, both CA3 and mPFC lesions disrupted memory retrieval under partial-cue, but not under full-cue, conditions. For a delayed matching-to-place task, CA3 lesions produced a deficit in both forming and recalling spatial working memory regardless of extramaze cue conditions. In contrast, damage to mPFC impaired memory retrieval only when a fraction of cues was available. To corroborate the lesion study, we examined the expression of the immediate early gene c-fos in mPFC and the hippocampus. After training of spatial reference memory in full-cue conditions for 6 d, the same training procedure in the absence of all cues except one increased the number of Fos-immunoreactive cells in mPFC and CA3. Furthermore, mPFC inactivation with muscimol, a GABA agonist, blocked memory retrieval in the degraded-cue environment. However, mPFC-lesioned animals initially trained in a single-cue environment had no difficulty in retrieving spatial memory when the number of cues was increased, demonstrating that contextual change per se did not impair the behavioral performance of the mPFC-lesioned animals. Together, these findings strongly suggest that pattern completion requires interactions between mPFC and the hippocampus, in which mPFC plays significant roles in retrieving spatial information maintained in the hippocampus for efficient navigation.
An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information
Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn
2011-01-01
Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871
Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex
ERIC Educational Resources Information Center
Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo
2016-01-01
We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…
Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval
Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.
2013-01-01
The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333
Ryan, Lee; Cox, Christine; Hayes, Scott M; Nadel, Lynn
2008-01-01
Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest.
Ryan, Lee; Cox, Christine; Hayes, Scott M.; Nadel, Lynn
2008-01-01
Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest. PMID:18420234
Forgetting, Reminding, and Remembering: The Retrieval of Lost Spatial Memory
Morris, Richard G. M
2004-01-01
Retrograde amnesia can occur after brain damage because this disrupts sites of storage, interrupts memory consolidation, or interferes with memory retrieval. While the retrieval failure account has been considered in several animal studies, recent work has focused mainly on memory consolidation, and the neural mechanisms responsible for reactivating memory from stored traces remain poorly understood. We now describe a new retrieval phenomenon in which rats' memory for a spatial location in a watermaze was first weakened by partial lesions of the hippocampus to a level at which it could not be detected. The animals were then reminded by the provision of incomplete and potentially misleading information—an escape platform in a novel location. Paradoxically, both incorrect and correct place information reactivated dormant memory traces equally, such that the previously trained spatial memory was now expressed. It was also established that the reminding procedure could not itself generate new learning in either the original environment, or in a new training situation. The key finding is the development of a protocol that definitively distinguishes reminding from new place learning and thereby reveals that a failure of memory during watermaze testing can arise, at least in part, from a disruption of memory retrieval. PMID:15314651
Nucleus incertus inactivation impairs spatial learning and memory in rats.
Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh
2015-02-01
Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2012-10-01
Episodic memory provides information about the "when" of events as well as "what" and "where" they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. Copyright © 2012 Elsevier Ltd. All rights reserved.
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2013-01-01
Episodic memory provides information about the “when” of events as well as “what” and “where” they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24 h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. PMID:22877840
Retrieval Induces Hippocampal-Dependent Reconsolidation of Spatial Memory
ERIC Educational Resources Information Center
Rossato, Janine I.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin; Bevilaqua, Lia R. M.
2006-01-01
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the…
Cue generation and memory construction in direct and generative autobiographical memory retrieval.
Harris, Celia B; O'Connor, Akira R; Sutton, John
2015-05-01
Theories of autobiographical memory emphasise effortful, generative search processes in memory retrieval. However recent research suggests that memories are often retrieved directly, without effortful search. We investigated whether direct and generative retrieval differed in the characteristics of memories recalled, or only in terms of retrieval latency. Participants recalled autobiographical memories in response to cue words. For each memory, they reported whether it was retrieved directly or generatively, rated its visuo-spatial perspective, and judged its accompanying recollective experience. Our results indicated that direct retrieval was commonly reported and was faster than generative retrieval, replicating recent findings. The characteristics of directly retrieved memories differed from generatively retrieved memories: directly retrieved memories had higher field perspective ratings and lower observer perspective ratings. However, retrieval mode did not influence recollective experience. We discuss our findings in terms of cue generation and content construction, and the implication for reconstructive models of autobiographical memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?
ERIC Educational Resources Information Center
Frank, David J.; Macnamara, Brooke N.
2017-01-01
Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…
Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X
2014-11-07
Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ekstrom, Arne D.; Bookheimer, Susan Y.
2007-01-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…
Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function
Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L.; Rajah, M. Natasha
2016-01-01
The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. PMID:25882039
Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats.
Farahmandfar, Maryam; Naghdi, Nasser; Karimian, Seyed Morteza; Kadivar, Mehdi; Zarrindast, Mohammad-Reza
2012-05-15
The present study investigated the effect of morphine sensitization on the impairment of spatial memory retrieval induced by acute morphine in adult male rats. Spatial memory was assessed by 2-day Morris water maze task which included training and test day. On the training day, rats were trained by a single training session of 8 trials. On the test day, a probe trial consisting of 60s free swim period without a platform and the visible test were administered. Morphine sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days without drug treatment before training. The results indicated that acute administration of morphine (7.5mg/kg, s.c.) before testing impaired spatial memory on the test day. Pre-test morphine-induced amnesia decreased in morphine-sensitized (15 and 20mg/kg, s.c.) rats. Improvement in spatial memory retrieval in morphine-sensitized rats was inhibited by once daily administration of naloxone (1 and 2mg/kg, s.c.) 30 min prior to the injection of morphine for three days. The results suggest that morphine sensitization reverses the impairment of spatial memory retrieval induced by acute morphine and it is implied that mu-opioid receptors may play an important role in this effect. Copyright © 2012 Elsevier B.V. All rights reserved.
Spatial attention interacts with serial-order retrieval from verbal working memory.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim
2013-09-01
The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.
Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.
Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha
2016-06-01
The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Zhang, Wei-Ping; Guzowski, John F.; Thomas, Steven A.
2005-01-01
We recently described a critical role for adrenergic signaling in the hippocampus during contextual and spatial memory retrieval. To determine which neurons are activated by contextual memory retrieval and its sequelae in the presence and absence of adrenergic signaling, transcriptional imaging for the immediate-early gene "Arc" was used in…
Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn
2005-01-01
We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory. PMID:16011544
Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn
2005-07-01
We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory.
NMDA Receptors Are Not Required for Pattern Completion During Associative Memory Recall
Gu, Yiran; Cui, Zhenzhong; Tsien, Joe Z.
2011-01-01
Pattern completion, the ability to retrieve complete memories initiated by subsets of external cues, has been a major focus of many computation models. A previously study reports that such pattern completion requires NMDA receptors in the hippocampus. However, such a claim was derived from a non-inducible gene knockout experiment in which the NMDA receptors were absent throughout all stages of memory processes as well as animal's adult life. This raises the critical question regarding whether the previously described results were truly resulting from the requirement of the NMDA receptors in retrieval. Here, we have examined the role of the NMDA receptors in pattern completion via inducible knockout of NMDA receptors limited to the memory retrieval stage. By using two independent mouse lines, we found that inducible knockout mice, lacking NMDA receptor in either forebrain or hippocampus CA1 region at the time of memory retrieval, exhibited normal recall of associative spatial reference memory regardless of whether retrievals took place under full-cue or partial-cue conditions. Moreover, systemic antagonism of NMDA receptor during retention tests also had no effect on full-cue or partial-cue recall of spatial water maze memories. Thus, both genetic and pharmacological experiments collectively demonstrate that pattern completion during spatial associative memory recall does not require the NMDA receptor in the hippocampus or forebrain. PMID:21559402
Rajah, M Natasha; Kromas, Michelle; Han, Jung Eun; Pruessner, Jens C
2010-12-01
The ability to retrieve temporal and spatial context information from memory declines with healthy aging. The hippocampus (HC) has been shown to be associated with successful encoding and retrieval of spatio-temporal context, versus item recognition information (Davachi, Mitchell, & Wagner, 2003; Nadel, Samsonovich, Ryan, & Moscovitch, 2000; Ross & Slotnick, 2008). Aging has been linked to volume reduction in the HC (Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, & Camicioli, 2008; Malykhin, Bouchard, Camicioli, & Coupland, 2008; Raz et al., 2005). As such, age-associated reductions in anterior HC volume may contribute to the context memory deficits observed in older adults. In the current MRI study we investigated whether item recognition, spatial context and temporal context memory performance would be predicted by regional volumes in HC head (HH), body (HB) and tail (HT) volumes, using within group multiple regression analyses in a sample of 19 healthy young (mean age 24.3) and 20 older adults (mean age 67.7). We further examined between age-group differences in the volumes of the same HC sub-regions. Multiple regression analyses revealed that in younger adults both spatial and temporal context retrieval performance was predicted by anterior HC volume. Older age was associated with significant volume reductions in HH and HB, but not HT; and with reduced ability to retrieve spatial and temporal contextual details from episodic memory. However, HC volumes did not predict context retrieval performance in older adults. We conclude that individual differences in anterior, not posterior, HC volumes predict context memory performance in young adults. With age there may be a posterior-to-anterior shift from using HC-related processes, due to HC volume loss, to employing the prefrontal cortex to aid in the performance of cognitively demanding context memory tasks. However, due to concomitant changes in the prefrontal system with age, there are limits to compensation in the aging brain. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Deployment of spatial attention towards locations in memory representations. An EEG study.
Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J
2013-01-01
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.
VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.
2011-01-01
We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501
Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna
2018-06-01
The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure affects memory retrieval and acquisition of new learning in the spatial and nonspatial, nonaversive learning tasks 24 hour after the treatment, along with the expression of molecules that participate in memory retrieval/reconsolidation in the dorsal hippocampus. These results may have clinical implications, favoring control of basic cognitive functions in older children after the propofol exposure. © 2018 John Wiley & Sons Ltd.
Role of cholinergic receptors in memory retrieval depends on gender and age of memory.
Rashid, Habiba; Mahboob, Aamra; Ahmed, Touqeer
2017-07-28
The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender. Copyright © 2017 Elsevier B.V. All rights reserved.
Gender dependent contribution of muscarinic receptors in memory retrieval under sub-chronic stress.
Rashid, Habiba; Ahmed, Touqeer
2018-05-15
Stress induces retrograde amnesia in humans and rodents. Muscarinic antagonism under normal physiological conditions causes gender dependent impairment in episodic memory retrieval. We aimed to explore the gender dependent role of muscarinic receptors in memory retrieval under sub-chronic stress condition. Male and female mice were trained for Morris water maze test and contextual fear conditioning, followed by 3 h restraint stress per day for five days. Stress was either given alone or in combination with a daily subcutaneous injection of scopolamine (1 mg/kg) or donepezil (1 mg/kg). Control mice were given saline without any stress. Sub-chronic stress (induced for five days) impaired spatial memory retrieval in males (P < 0.005) but not in females (P > 0.05). Stress induced spatial memory recall deficit in male mice was independent of muscarinic receptor activity (P > 0.05). However, stress induced contextual fear memory recall impairment was reversed by donepezil treatment in male (P < 0.005) and female (P < 0.0001) mice. These findings suggest that differential role of muscarinic activity in retrieving different types of memories under stress depends on gender of subjects. Copyright © 2018 Elsevier B.V. All rights reserved.
Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H
2009-10-01
Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.
Jo, Yong Sang; Choi, June-Seek
2014-03-01
The medial prefrontal cortex (mPFC) has been suggested to play a crucial role in retrieving detailed contextual information about a previous learning episode in response to a single retrieval cue. However, few studies investigated the neurochemical mechanisms that mediate the prefrontal retrieval process. In the current study, we examined whether N-methyl-D-aspartate receptors (NMDARs) in the mPFC were necessary for retrieval of a well-learned spatial location on the basis of partial or degraded spatial cues. Rats were initially trained to find a hidden platform in the Morris water maze using four extramaze cues in the surrounding environment. Their retrieval performance was subsequently tested under different cue conditions. Infusions of DL-2-amino-5-phosphonovaleric acid (APV), a NMDAR antagonist, significantly disrupted memory retrieval when three of the original cues were removed. By contrast, APV injections into the mPFC did not affect animals' retrieval performance when the original cues were presented or when three novels landmarks were added alongside the original cues. These results indicate that prefrontal NMDARs are required for memory retrieval when allocentric spatial information is degraded. NMDAR-dependent neurotransmission in the mPFC may facilitate an active retrieval process to reactivate complete contextual representations associated with partial retrieval cues. Copyright © 2013 Elsevier Inc. All rights reserved.
Sheldon, Signy; Levine, Brian
2015-12-01
During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.
Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings
ERIC Educational Resources Information Center
Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.
2013-01-01
Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…
Remembering the past and imagining the future
Byrne, Patrick; Becker, Suzanna; Burgess, Neil
2009-01-01
The neural mechanisms underlying spatial cognition are modelled, integrating neuronal, systems and behavioural data, and addressing the relationships between long-term memory, short-term memory and imagery, and between egocentric and allocentric and visual and idiothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory as egocentric parietal representations driven by perception, retrieval and imagery, and modulated by directed attention. Both encoding and retrieval/ imagery require translation between egocentric and allocentric representations, mediated by posterior parietal and retrosplenial areas and utilizing head direction representations in Papez’s circuit. Thus hippocampus effectively indexes information by real or imagined location, while Papez’s circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows “spatial updating” of representations, while prefrontal simulated motor efference allows mental exploration. The alternating temporo-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs. PMID:17500630
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one. PMID:29467698
Gruden, Marina A; Ratmirov, Alexander M; Storozheva, Zinaida I; Solovieva, Olga A; Sherstnev, Vladimir V; Sewell, Robert D E
2018-05-22
NR2B-containing NMDA (NR2B/NMDA) receptors are important in controlling neurogenesis and are involved in generating spatial memory. Ro25-6981 is a selective antagonist at these receptors and actuates neurogenesis and spatial memory. Inter-structural neuroanatomical profiles of gene expression regulating adult neurogenesis and neuroapoptosis require examination in the context of memory retrieval and reversal learning. The aim was to investigate spatial memory retrieval and reversal learning in relation to gene expression-linked neurogenetic processes following blockade of NR2B/NMDA receptors by Ro25-6981. Rats were trained in Morris water maze (MWM) platform location for 5 days. Ro25-6981 was administered (protocol days 6-7) followed by retraining (days 15-18 or 29-32). Platform location was tested (on days 19 or 33) then post-mortem brain tissue sampling (on days 20 or 34). The expression of three genes known to regulate cell proliferation (S100a6), differentiation (Ascl1), and apoptosis (Casp-3) were concomitantly evaluated in the hippocampus, prefrontal cortex, and cerebellum in relation to the MWM performance protocol. Following initial training, Ro25-6981 enhanced visuospatial memory retrieval performance during further retraining (protocol days 29-32) but did not influence visuospatial reversal learning (day 33). Hippocampal Ascl1 and Casp-3 expressions were correspondingly increased and decreased while cerebellar S100a6 and Casp-3 activities were decreased and increased respectively 27 days after Ro25-6981 treatment. Chronological analysis indicated a possible involvement of new mature neurons in the reconfiguration of memory processes. This was attended by behavioral/gene correlations which revealed direct links between spatial memory retrieval enhancement and modified gene activity induced by NR2B/NMDA receptor blockade and upregulation.
The Spatial Scaffold: The Effects of Spatial Context on Memory for Events
ERIC Educational Resources Information Center
Robin, Jessica; Wynn, Jordana; Moscovitch, Morris
2016-01-01
Events always unfold in a spatial context, leading to the claim that it serves as a scaffold for encoding and retrieving episodic memories. The ubiquitous co-occurrence of spatial context with events may induce participants to generate a spatial context when hearing scenarios of events in which it is absent. Spatial context should also serve as an…
Layout Geometry in Encoding and Retrieval of Spatial Memory
ERIC Educational Resources Information Center
Mou, Weimin; Liu, Xianyun; McNamara, Timothy P.
2009-01-01
Two experiments investigated whether the spatial reference directions that are used to specify objects' locations in memory can be solely determined by layout geometry. Participants studied a layout of objects from a single viewpoint while their eye movements were recorded. Subsequently, participants used memory to make judgments of relative…
Retrosplenial cortex is required for the retrieval of remote memory for auditory cues.
Todd, Travis P; Mehlman, Max L; Keene, Christopher S; DeAngeli, Nicole E; Bucci, David J
2016-06-01
The restrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of the RSC to recently acquired auditory fear memories. Since neocortical regions have been implicated in the permanent storage of remote memories, we examined the contribution of the RSC to remotely acquired auditory fear memories. In Experiment 1, retrieval of a remotely acquired auditory fear memory was impaired when permanent lesions (either electrolytic or neurotoxic) were made several weeks after initial conditioning. In Experiment 2, using a chemogenetic approach, we observed impairments in the retrieval of remote memory for an auditory cue when the RSC was temporarily inactivated during testing. In Experiment 3, after injection of a retrograde tracer into the RSC, we observed labeled cells in primary and secondary auditory cortices, as well as the claustrum, indicating that the RSC receives direct projections from auditory regions. Overall our results indicate the RSC has a critical role in the retrieval of remotely acquired auditory fear memories, and we suggest this is related to the quality of the memory, with less precise memories being RSC dependent. © 2016 Todd et al.; Published by Cold Spring Harbor Laboratory Press.
Retrieval and Sleep Both Counteract the Forgetting of Spatial Information
ERIC Educational Resources Information Center
Antony, James W.; Paller, Ken A.
2018-01-01
Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through…
Revealing past memories: proactive interference and ketamine-induced memory deficits.
Chrobak, James J; Hinman, James R; Sabolek, Helen R
2008-04-23
Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.
Han, Huili; Dai, Chunfang; Dong, Zhifang
2015-01-01
A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751
Single-photon-level quantum image memory based on cold atomic ensembles
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711
Memory retrieval along the proximodistal axis of CA1.
Nakazawa, Yuki; Pevzner, Aleksandr; Tanaka, Kazumasa Z; Wiltgen, Brian J
2016-09-01
The proximal and distal segments of CA1 are thought to perform distinct computations. Neurons in proximal CA1 are reciprocally connected with the medial entorhinal cortex (MEC) and exhibit precise spatial firing. In contrast, cells in distal CA1 communicate with the lateral entorhinal cortex (LEC), exhibit more diffuse spatial firing and are affected by the presence of objects in the environment. To determine if these segments make unique contributions to memory retrieval, we examined cellular activity along the proximodistal axis of CA1 using transgenic reporter mice. Neurons tagged during context learning in proximal CA1 were more likely to be reactivated during testing than those in distal CA1. This was true following context fear conditioning and after exposure to a novel environment. Reactivation was also higher in brain regions connected to proximal CA1 (MEC, distal CA3) than those connected to the distal segment (LEC, proximal CA3). To examine contributions to memory retrieval, we performed neurotoxic lesions of proximal or distal CA1 after training. Lesions of the proximal segment significantly impaired memory retrieval while damage to distal CA1 had no effect. These data suggest that context memories are retrieved by a hippocampal microcircuit that involves the proximal but not distal segment of CA1. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.
2014-01-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F
2015-02-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
Sex, estradiol, and spatial memory in a food-caching corvid.
Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A
2015-09-01
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.
SEX, ESTRADIOL, AND SPATIAL MEMORY IN A FOOD-CACHING CORVID
Rensel, Michelle A.; Ellis, Jesse M.S.; Harvey, Brigit; Schlinger, Barney A.
2015-01-01
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. PMID:26232613
Non-monotonic relationships between emotional arousal and memory for color and location.
Boywitt, C Dennis
2015-01-01
Recent research points to the decreased diagnostic value of subjective retrieval experience for memory accuracy for emotional stimuli. While for neutral stimuli rich recollective experiences are associated with better context memory than merely familiar memories this association appears questionable for emotional stimuli. The present research tested the implicit assumption that the effect of emotional arousal on memory is monotonic, that is, steadily increasing (or decreasing) with increasing arousal. In two experiments emotional arousal was manipulated in three steps using emotional pictures and subjective retrieval experience as well as context memory were assessed. The results show an inverted U-shape relationship between arousal and recognition memory but for context memory and retrieval experience the relationship was more complex. For frame colour, context memory decreased linearly while for spatial location it followed the inverted U-shape function. The complex, non-monotonic relationships between arousal and memory are discussed as possible explanations for earlier divergent findings.
Hippocampal-prefrontal input supports spatial encoding in working memory.
Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A
2015-06-18
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
Remaking memories: Reconsolidation updates positively motivated spatial memory in rats
Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc
2012-01-01
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a human list-learning paradigm. On Day 1, rats were trained to run to three feeders (List 1) for rewards. On Day 2, rats were trained to run to three different feeders (List 2) in either the same (Reminder condition) or a different (No Reminder condition) experimental context than on Day 1. On Day 3, rats were cued to recall List 1. Rats in the Reminder condition made significantly more visits to List 2 feeders (intrusions) during List 1 recall than rats in the No Reminder condition, indicating that the reminder triggered reactivation and allowed integration of List 2 items into List 1. This reminder effect was selective for the reactivated List 1 memory, as no intrusions occurred when List 2 was recalled on Day 3. No intrusions occurred when retrieval took place in a different context from the one used at encoding, indicating that the expression of the updated memory is dependent upon the retrieval context. Finally, the level of intrusions was highest when retrieval took place immediately after List 2 learning, and generally declined when retrieval occurred 1–4 h later, indicating that the List 2 memory competed with short-term retrieval of List 1. These results demonstrate the dynamic nature of memory over time and the impact of environmental context at different stages of memory processing. PMID:22345494
Remaking memories: reconsolidation updates positively motivated spatial memory in rats.
Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc
2012-02-17
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a human list-learning paradigm. On Day 1, rats were trained to run to three feeders (List 1) for rewards. On Day 2, rats were trained to run to three different feeders (List 2) in either the same (Reminder condition) or a different (No Reminder condition) experimental context than on Day 1. On Day 3, rats were cued to recall List 1. Rats in the Reminder condition made significantly more visits to List 2 feeders (intrusions) during List 1 recall than rats in the No Reminder condition, indicating that the reminder triggered reactivation and allowed integration of List 2 items into List 1. This reminder effect was selective for the reactivated List 1 memory, as no intrusions occurred when List 2 was recalled on Day 3. No intrusions occurred when retrieval took place in a different context from the one used at encoding, indicating that the expression of the updated memory is dependent upon the retrieval context. Finally, the level of intrusions was highest when retrieval took place immediately after List 2 learning, and generally declined when retrieval occurred 1-4 h later, indicating that the List 2 memory competed with short-term retrieval of List 1. These results demonstrate the dynamic nature of memory over time and the impact of environmental context at different stages of memory processing.
Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L
2012-02-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.
Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.
2011-01-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264
The neural basis of involuntary episodic memories.
Hall, Shana A; Rubin, David C; Miles, Amanda; Davis, Simon W; Wing, Erik A; Cabeza, Roberto; Berntsen, Dorthe
2014-10-01
Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that, because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented, panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a postscan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial-temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that, although there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems.
The Neural Basis of Involuntary Episodic Memories
Hall, Shana A.; Rubin, David C.; Miles, Amanda; Davis, Simon W.; Wing, Erik A.; Cabeza, Roberto; Berntsen, Dorthe
2014-01-01
Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a post-scan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that while there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems. PMID:24702453
ERIC Educational Resources Information Center
Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank
2009-01-01
The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…
Ku, Shih-pi; Nakamura, Nozomu H.; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M.
2017-01-01
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval. PMID:28790897
Ku, Shih-Pi; Nakamura, Nozomu H; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M
2017-01-01
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc , which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.
ERIC Educational Resources Information Center
Viosca, Jose; Malleret, Gael; Bourtchouladze, Rusiko; Benito, Eva; Vronskava, Svetlana; Kandel, Eric R.; Barco, Angel
2009-01-01
The activation of cAMP-responsive element-binding protein (CREB)-dependent gene expression is thought to be critical for the formation of different types of long-term memory. To explore the consequences of chronic enhancement of CREB function on spatial memory in mammals, we examined spatial navigation in bitransgenic mice that express in a…
Morena, Maria; De Castro, Valentina; Gray, J Megan; Palmery, Maura; Trezza, Viviana; Roozendaal, Benno; Hill, Matthew N; Campolongo, Patrizia
2015-10-14
Variations in environmental aversiveness influence emotional memory processes in rats. We have previously shown that cannabinoid effects on memory are dependent on the stress level at the time of training as well as on the aversiveness of the environmental context. Here, we investigated whether the hippocampal endocannabinoid system modulates memory retrieval depending on the training-associated arousal level. Male adult Sprague Dawley rats were trained on a water maze spatial task at two different water temperatures (19°C and 25°C) to elicit either higher or lower stress levels, respectively. Rats trained under the higher stress condition had better memory and higher corticosterone concentrations than rats trained at the lower stress condition. The cannabinoid receptor agonist WIN55212-2 (10-30 ng/side), the 2-arachidonoyl glycerol (2-AG) hydrolysis inhibitor JZL184 (0.1-1 μg/side), and the anandamide (AEA) hydrolysis inhibitor URB597 (10-30 ng/side) were administered bilaterally into the hippocampus 60 min before probe-trial retention testing. WIN55212-2 or JZL184, but not URB597, impaired probe-trial performances only of rats trained at the higher stressful condition. Furthermore, rats trained under higher stress levels displayed an increase in hippocampal 2-AG, but not AEA, levels at the time of retention testing and a decreased affinity of the main 2-AG-degrading enzyme for its substrate. The present findings indicate that the endocannabinoid 2-AG in the hippocampus plays a key role in the selective regulation of spatial memory retrieval of stressful experience, shedding light on the neurobiological mechanisms involved in the impact of stress effects on memory processing. Endogenous cannabinoids play a central role in the modulation of memory for emotional events. Here we demonstrate that the endocannabinoid 2-arachidonoylglycerol in the hippocampus, a brain region crucially involved in the regulation of memory processes, selectively modulates spatial memory recall of stressful experiences. Thus, our findings provide evidence that the endocannabinoid 2-arachidonoylglycerol is a key player in mediating the impact of stress on memory retrieval. These findings can pave the way to new potential therapeutic intervention for the treatment of neuropsychiatric disorders, such as post-traumatic stress disorder, where a previous exposure to traumatic events could alter the response to traumatic memory recall leading to mental illness. Copyright © 2015 the authors 0270-6474/15/3513963-13$15.00/0.
Carr, Margaret F.; Jadhav, Shantanu P.; Frank, Loren M.
2011-01-01
The hippocampus is required for the encoding, consolidation, and retrieval of event memories. While the neural mechanisms that underlie these processes are only partially understood, a series of recent papers point to awake memory replay as a potential contributor to both consolidation and retrieval. Replay is the sequential reactivation of hippocampal place cells that represent previously experienced behavioral trajectories and occurs frequently in the awake state, particularly during periods of relative immobility. Awake replay may reflect trajectories through either the current environment or previously visited environments that are spatially remote. The repetition of learned sequences on a compressed time scale is well suited to promote memory consolidation in distributed circuits beyond the hippocampus, suggesting that consolidation occurs in both the awake and sleeping animal. Moreover, sensory information can influence the content of awake replay, suggesting a role for awake replay in memory retrieval. PMID:21270783
Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval
Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong
2012-01-01
Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories. PMID:26630170
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories.
Controlling conflict from interfering long-term memory representations.
Jost, Kerstin; Khader, Patrick H; Düsel, Peter; Richter, Franziska R; Rohde, Kristina B; Bien, Siegfried; Rösler, Frank
2012-05-01
Remembering is more than an activation of a memory trace. As retrieval cues are often not uniquely related to one specific memory, cognitive control should come into play to guide selective memory retrieval by focusing on relevant while ignoring irrelevant information. Here, we investigated, by means of EEG and fMRI, how the memory system deals with retrieval interference arising when retrieval cues are associated with two material types (faces and spatial positions), but only one is task-relevant. The topography of slow EEG potentials and the fMRI BOLD signal in posterior storage areas indicated that in such situations not only the relevant but also the irrelevant material becomes activated. This results in retrieval interference that triggers control processes mediated by the medial and lateral PFC, which are presumably involved in biasing target representations by boosting the task-relevant material. Moreover, memory-based conflict was found to be dissociable from response conflict that arises when the relevant and irrelevant materials imply different responses. The two types of conflict show different activations in the medial frontal cortex, supporting the claim of domain-specific prefrontal control systems.
Functional Heterogeneity in Posterior Parietal Cortex Across Attention and Episodic Memory Retrieval
Hutchinson, J. Benjamin; Uncapher, Melina R.; Weiner, Kevin S.; Bressler, David W.; Silver, Michael A.; Preston, Alison R.; Wagner, Anthony D.
2014-01-01
While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes. PMID:23019246
Spatial Memory Engram in the Mouse Retrosplenial Cortex.
Milczarek, Michal M; Vann, Seralynne D; Sengpiel, Frank
2018-06-18
Memory relies on lasting adaptations of neuronal properties elicited by stimulus-driven plastic changes [1]. The strengthening (and weakening) of synapses results in the establishment of functional ensembles. It is presumed that such ensembles (or engrams) are activated during memory acquisition and re-activated upon memory retrieval. The retrosplenial cortex (RSC) has emerged as a key brain area supporting memory [2], including episodic and topographical memory in humans [3-5], as well as spatial memory in rodents [6, 7]. Dysgranular RSC is densely connected with dorsal stream visual areas [8] and contains place-like and head-direction cells, making it a prime candidate for integrating navigational information [9]. While previous reports [6, 10] describe the recruitment of RSC ensembles during navigational tasks, such ensembles have never been tracked long enough to provide evidence of stable engrams and have not been related to the retention of long-term memory. Here, we used in vivo 2-photon imaging to analyze patterns of activity of over 6,000 neurons within dysgranular RSC. Eight mice were trained on a spatial memory task. Learning was accompanied by the gradual emergence of a context-specific pattern of neuronal activity over a 3-week period, which was re-instated upon retrieval more than 3 weeks later. The stability of this memory engram was predictive of the degree of forgetting; more stable engrams were associated with better performance. This provides direct evidence for the interdependence of spatial memory consolidation and RSC engram formation. Our results demonstrate the participation of RSC in spatial memory storage at the level of neuronal ensembles. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan
2011-07-01
Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, whereas the subicular cortices support the retrieval of these learned associations. Whether these subregions are used in humans during encoding and retrieval of spatial information has yet to be explored. Using high-resolution fMRI (1.6 mm × 1.6-mm in-plane), we found that activity within the right CA23DG increased during encoding compared to retrieval. Conversely, right subicular activity increased during retrieval compared to encoding of spatial associations. These results are consistent with the previous studies illustrating dissociations within human hippocampal subregions and further suggest that these regions are similarly involved during the encoding and retrieval of spatial information. Copyright © 2010 Wiley-Liss, Inc.
Category-Based Errors and the Accessibility of Unbiased Spatial Memories: A Retrieval Model
ERIC Educational Resources Information Center
Sampaio, Cristina; Wang, Ranxiao Frances
2009-01-01
Studies have consistently shown a spatial memory bias such that a target location is remembered toward the prototypical location of the region to which the target belongs, indicating a blending between the target's specific information and the generic information of its region. The authors investigated whether people retain a veridical…
ERIC Educational Resources Information Center
Ramos, Juan M. J.
2008-01-01
Several lines of evidence in humans and experimental animals suggest that the hippocampus is critical for the formation and retrieval of spatial memory. However, although the hippocampus is reciprocally connected to adjacent cortices within the medial temporal lobe and they, in turn, are connected to the neocortex, little is known regarding the…
ERIC Educational Resources Information Center
Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G. M.
2008-01-01
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous…
Cognitive Behavioral Performance of Untreated Depressed Patients with Mild Depressive Symptoms
Li, Mi; Zhong, Ning; Lu, Shengfu; Wang, Gang; Feng, Lei; Hu, Bin
2016-01-01
This study evaluated the working memory performance of 18 patients experiencing their first onset of mild depression without treatment and 18 healthy matched controls. The results demonstrated that working memory impairment in patients with mild depression occurred when memorizing the position of a picture but not when memorizing the pictures themselves. There was no significant difference between the two groups in the emotional impact on the working memory, indicating that the attenuation of spatial working memory was not affected by negative emotion; however, cognitive control selectively affected spatial working memory. In addition, the accuracy of spatial working memory in the depressed patients was not significantly reduced, but the reaction time was significantly extended compared with the healthy controls. This finding indicated that there was no damage to memory encoding and function maintenance in the patients but rather only impaired memory retrieval, suggesting that the extent of damage to the working memory system and cognitive control abilities was associated with the corresponding depressive symptoms. The development of mild to severe depressive symptoms may be accompanied by spatial working memory damage from the impaired memory retrieval function extending to memory encoding and memory retention impairments. In addition, the impaired cognitive control began with an inadequate capacity to automatically process internal negative emotions and further extended to impairment of the ability to regulate and suppress external emotions. The results of the mood-congruent study showed that the memory of patients with mild symptoms of depression was associated with a mood-congruent memory effect, demonstrating that mood-congruent memory was a typical feature of depression, regardless of the severity of depression. This study provided important information for understanding the development of cognitive dysfunction. PMID:26730597
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing
Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914
Egocentric-updating during navigation facilitates episodic memory retrieval.
Gomez, Alice; Rousset, Stéphane; Baciu, Monica
2009-11-01
Influential models suggest that spatial processing is essential for episodic memory [O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press]. However, although several types of spatial relations exist, such as allocentric (i.e. object-to-object relations), egocentric (i.e. static object-to-self relations) or egocentric updated on navigation information (i.e. self-to-environment relations in a dynamic way), usually only allocentric representations are described as potentially subserving episodic memory [Nadel, L., & Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity. Neuropharmacology, 37(4-5), 431-439]. This study proposes to confront the allocentric representation hypothesis with an egocentric updated with self-motion representation hypothesis. In the present study, we explored retrieval performance in relation to these two types of spatial processing levels during learning. Episodic remembering has been assessed through Remember responses in a recall and in a recognition task, combined with a "Remember-Know-Guess" paradigm [Gardiner, J. M. (2001). Episodic memory and autonoetic consciousness: A first-person approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 1351-1361] to assess the autonoetic level of responses. Our results show that retrieval performance was significantly higher when encoding was performed in the egocentric-updated condition. Although egocentric updated with self-motion and allocentric representations are not mutually exclusive, these results suggest that egocentric updating processing facilitates remember responses more than allocentric processing. The results are discussed according to Burgess and colleagues' model of episodic memory [Burgess, N., Becker, S., King, J. A., & O'Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1413), 1493-1503].
Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues
ERIC Educational Resources Information Center
Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.
2016-01-01
The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…
Engagement of the PFC in Consolidation and Recall of Recent Spatial Memory
ERIC Educational Resources Information Center
Leon, Wanda C.; Bruno, Martin A.; Allard, Simon; Nader, Karim; Cuello, A. Claudio
2010-01-01
The standard model of system consolidation proposes that memories are initially hippocampus dependent and become hippocampus independent over time. Previous studies have demonstrated the involvement of the medial prefrontal cortex (mPFC) in the retrieval of remote memories. The transformations required to make a memory undergo system's…
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Sleep effects on slow-brain-potential reflections of associative learning.
Verleger, Rolf; Ludwig, Janna; Kolev, Vasil; Yordanova, Juliana; Wagner, Ullrich
2011-03-01
Previous research has indicated that information acquired before sleep gets consolidated during sleep. This process of consolidation might be reflected after sleep in changed extent and topography of cortical activation during retrieval of information. Here, we designed an experiment to measure those changes by means of slow event-related EEG potentials (SPs). Retrieval of newly learnt verbal or spatial associations was tested both immediately after learning and two days later. In the night directly following immediate recall, participants either slept or stayed awake. In line with previous studies, SPs measured during retrieval from memory had parietal or left-frontal foci depending on whether the retrieved associations were spatial or verbal. However, contrary to our expectations, sleep-related consolidation did not further accentuate these content-specific topographic profiles. Rather, sleep modified SPs independently of the spatial or verbal type of learned association: SPs were reduced more after sleep than after waking specifically for those stimulus configurations that had been presented in the same combination at retrieval before sleep. The association-independent stimulus-specific effect might generally form a major component of sleep-related effects on memory. Copyright © 2010 Elsevier B.V. All rights reserved.
Maillet, David; Rajah, M Natasha
2011-10-28
Age-related declines in memory for context have been linked to volume loss in the hippocampal head (HH) with age. However, it remains unclear how this volumetric decline correlates with age-related changes in whole-brain activity during context encoding, and subsequent context retrieval. In the current study we examine this. We collected functional magnetic resonance imaging data in young and older adults during the encoding of item, spatial context and temporal context. HH volume and subsequent retrieval performance was measured in all participants. In young adults only there was a positive three-way correlation between larger HH volumes, better memory retrieval, and increased activity in right hippocampus, right ventrolateral prefrontal cortex (VLPFC) and midline brain regions during episodic encoding. In contrast, older adults exhibited a positive three-way association between HH volume, generalized activity in bilateral hippocampus and dorsolateral PFC across all encoding tasks, and subsequent spatial context retrieval. Young adults also engaged this network, but only during the most difficult temporal context encoding task and activity in this network correlated with subsequent temporal context retrieval. We conclude that age-related volumetric reductions in HH disrupted the structure-function association between the hippocampus and activity in the first general encoding network recruited by young adults. Instead, older adults recruited those brain regions young adults only engaged for the most difficult temporal task, at lower difficulty levels. This altered pattern of association correlated with spatial context retrieval in older adults, but was not sufficient to maintain context memory abilities overall. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Magpies can use local cues to retrieve their food caches.
Feenders, Gesa; Smulders, Tom V
2011-03-01
Much importance has been placed on the use of spatial cues by food-hoarding birds in the retrieval of their caches. In this study, we investigate whether food-hoarding birds can be trained to use local cues ("beacons") in their cache retrieval. We test magpies (Pica pica) in an active hoarding-retrieval paradigm, where local cues are always reliable, while spatial cues are not. Our results show that the birds use the local cues to retrieve their caches, even when occasionally contradicting spatial information is available. The design of our study does not allow us to test rigorously whether the birds prefer using local over spatial cues, nor to investigate the process through which they learn to use local cues. We furthermore provide evidence that magpies develop landmark preferences, which improve their retrieval accuracy. Our findings support the hypothesis that birds are flexible in their use of memory information, using a combination of the most reliable or salient information to retrieve their caches. © Springer-Verlag 2010
Pravosudov, Vladimir V; Mendoza, Sally P; Clayton, Nicola S
2003-08-01
It has been hypothesized that in avian social groups subordinate individuals should maintain more energy reserves than dominants, as an insurance against increased perceived risk of starvation. Subordinates might also have elevated baseline corticosterone levels because corticosterone is known to facilitate fattening in birds. Recent experiments showed that moderately elevated corticosterone levels resulting from unpredictable food supply are correlated with enhanced cache retrieval efficiency and more accurate performance on a spatial memory task. Given the correlation between corticosterone and memory, a further prediction is that subordinates might be more efficient at cache retrieval and show more accurate performance on spatial memory tasks. We tested these predictions in dominant-subordinate pairs of mountain chickadees (Poecile gambeli). Each pair was housed in the same cage but caching behavior was tested individually in an adjacent aviary to avoid the confounding effects of small spaces in which birds could unnaturally and directly influence each other's behavior. In sharp contrast to our hypothesis, we found that subordinate chickadees cached less food, showed less efficient cache retrieval, and performed significantly worse on the spatial memory task than dominants. Although the behavioral differences could have resulted from social stress of subordination, and dominant birds reached significantly higher levels of corticosterone during their response to acute stress compared to subordinates, there were no significant differences between dominants and subordinates in baseline levels or in the pattern of adrenocortical stress response. We find no evidence, therefore, to support the hypothesis that subordinate mountain chickadees maintain elevated baseline corticosterone levels whereas lower caching rates and inferior cache retrieval efficiency might contribute to reduced survival of subordinates commonly found in food-caching parids.
Reactivation of Rate Remapping in CA3.
Schwindel, C Daniela; Navratilova, Zaneta; Ali, Karim; Tatsuno, Masami; McNaughton, Bruce L
2016-09-07
The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful for distinguishing these memories, the hippocampus must be able, not only to express, but also to retrieve both spatial and nonspatial information about events. Whether it can retrieve nonspatial information has been challenged recently. We exposed rats to two different experiences (running in different directions) in the same locations and showed that even the nonspatial components of hippocampal cell firing are reactivated spontaneously during sleep, supporting the conclusion that both types of information about a recent experience can be retrieved. Copyright © 2016 the authors 0270-6474/16/369342-09$15.00/0.
Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien
2018-01-25
Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.
Memory retrieval as a self-propagating process.
Bäuml, Karl-Heinz T; Schlichting, Andreas
2014-07-01
Retrieval of a subset of studied items and the presentation of those items as retrieval cues typically impair retrieval of the other items. Previous research on this self-limiting property of memory retrieval has relied heavily on short retention intervals and similar context between encoding and test. Here, we examined retrieval dynamics also after a prolonged retention interval with different spatial and social context between encoding and test, conditions that mimic people's remembering in many situations of daily life. For both unrelated word lists and more integrated prose material, we found retrieval and cuing to impair recall of other studied items after a short retention interval, but to improve recall in the prolonged retention interval condition. The results demonstrate that retrieval dynamics depend critically on situation, indicating that quite often in daily life, retrieval may be a self-propagating, rather than a self-limiting process. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Qiong; van Vugt, Marieke; Borst, Jelmer P; Anderson, John R
2018-07-01
In this study, we investigated the time course and neural correlates of the retrieval process underlying visual working memory. We made use of a rare dataset in which the same task was recorded using both scalp electroencephalography (EEG) and Electrocorticography (ECoG), respectively. This allowed us to examine with great spatial and temporal detail how the retrieval process works, and in particular how the medial temporal lobe (MTL) is involved. In each trial, participants judged whether a probe face had been among a set of recently studied faces. With a method that combines hidden semi-Markov models and multivariate pattern analysis, the neural signal was decomposed into a sequence of latent cognitive stages with information about their durations on a trial-by-trial basis. Analyzed separately, EEG and ECoG data yielded converging results on discovered stages and their interpretation, which reflected 1) a brief pre-attention stage, 2) encoding the stimulus, 3) retrieving the studied set, and 4) making a decision. Combining these stages with the high spatial resolution of ECoG suggested that activity in the temporal cortex reflected item familiarity in the retrieval stage; and that once retrieval is complete, there is active maintenance of the studied face set in the decision stage in the MTL. During this same period, the frontal cortex guides the decision by means of theta coupling with the MTL. These observations generalize previous findings on the role of MTL theta from long-term memory tasks to short-term memory tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Sato, Naoyuki; Yamaguchi, Yoko
2009-06-01
The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.
Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G.M.
2008-01-01
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer’s disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13–16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous PDAPP mice relative to littermate controls. However, after overtraining to a criterion of equivalent navigational performance, a series of memory retention tests revealed faster forgetting in the PDAPP group. Very limited retraining was sufficient to reinstate good memory in both groups, indicating that their faster forgetting may be due to retrieval failure rather than trace decay. In Experiment 2, 6-mo-old PDAPP and controls were required to learn each of a series of spatial locations to criterion with their memory assessed 10 min after learning each location. No memory deficit was apparent in the PDAPP mice initially, but a deficit built up through the series of locations suggestive of increased sensitivity to interference. Faster forgetting and increased interference may each reflect a difficulty in accessing memory traces. This interpretation of one aspect of the cognitive deficit in human mutant APP mice has parallels to deficits observed in patients with Alzheimer’s disease, further supporting the validity of transgenic models of the disease. PMID:18772249
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.
Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lega, Bradley; Germi, James; Rugg, Michael
2017-08-01
Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70-180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items.
Neural networks supporting autobiographical memory retrieval in post-traumatic stress disorder
Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2013-01-01
Post-traumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contribution of large-scale neural networks supporting cognition in PTSD is unknown. In the current functional MRI (fMRI) study we employ independent component analysis to examine the influence the engagement of neural networks during the recall of personal memories in PTSD (15 participants) compared to non-trauma exposed, healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to controls during AM recall, including default network subsystems and control networks, but there were group differences in the spatial and temporal characteristics of these networks. First, there were spatial differences in the contribution of the anterior and posterior midline across the networks, and with the amygdala in particular for the medial temporal subsystem of the default network. Second, there were temporal differences in the relationship of the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that spatial and temporal characteristics of the default and control networks potentially differ in PTSD versus healthy controls, and contribute to altered recall of personal memory. PMID:23483523
Differential verbal, visual, and spatial working memory in written language production.
Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T
2010-02-01
The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
Orbito-Frontal Cortex Is Necessary for Temporal Context Memory
ERIC Educational Resources Information Center
Duarte, Audrey; Henson, Richard N.; Knight, Robert T.; Emery, Tina; Graham, Kim S.
2010-01-01
Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two…
Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval
Miller, Brian T.; D'Esposito, Mark
2012-01-01
Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations. PMID:22557959
Alijanpour, S; Tirgar, F; Zarrindast, M-R
2016-01-15
The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Duda, Weronika; Wesierska, Malgorzata; Ostaszewski, Pawel; Vales, Karel; Nekovarova, Tereza; Stuchlik, Ales
2016-09-15
N-methyl-d-aspartate receptors (NMDARs) play a crucial role in spatial memory formation. In neuropharmacological studies their functioning strongly depends on testing conditions and the dosage of NMDAR antagonists. The aim of this study was to assess the immediate effects of NMDAR block by (+)MK-801 or memantine on short-term allothetic memory. Memory was tested in a working memory version of the Morris water maze test. In our version of the test, rats underwent one day of training with 8 trials, and then three experimental days when rats were injected intraperitoneally with low- 5 (MeL), high - 20 (MeH) mg/kg memantine, 0.1mg/kg MK-801 or 1ml/kg saline (SAL) 30min before testing, for three consecutive days. On each experimental day there was just one acquisition and one test trial, with an inter-trial interval of 5 or 15min. During training the hidden platform was relocated after each trial and during the experiment after each day. The follow-up effect was assessed on day 9. Intact rats improved their spatial memory across the one training day. With a 5min interval MeH rats had longer latency then all rats during retrieval. With a 15min interval the MeH rats presented worse working memory measured as retrieval minus acquisition trial for path than SAL and MeL and for latency than MeL rats. MK-801 rats had longer latency than SAL during retrieval. Thus, the high dose of memantine, contrary to low dose of MK-801 disrupts short-term memory independent on the time interval between acquisition and retrieval. This shows that short-term memory tested in a working memory version of water maze is sensitive to several parameters: i.e., NMDA receptor antagonist type, dosage and the time interval between learning and testing. Copyright © 2016. Published by Elsevier B.V.
Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter
2017-08-01
Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.
De Goede, Maartje; Postma, Albert
2008-04-01
Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object location memory and its component object identity memory were assessed in the present study. In order to disentangle these two components, an object location memory task (in which objects had to be relocated in daily environments), and a separate object identity recognition task were carried out. This study also focused on the conditions under which object locations were encoded and retrieved. Only half of the participants were aware of the fact that object locations had to be retrieved later on. Moreover, by applying the 'process dissociation procedure' to the object location memory assessments and the 'remember-know' paradigm to the object identity measure, the amount of explicit (conscious) and implicit (unconscious) retrieval was estimated for each component. In general, females performed better than males on the object location memory task. However, when controlled for object identity memory, females no longer outperformed males, whereas they did not obtain a higher general object identity memory score, nor did they have more explicit or implicit recollection of the object identities. These complicated effects might stem from a difference between males and females, in the way locations or associations between objects and locations are retrieved. In general, participants had more explicit (conscious) recollection than implicit (unconscious) recollection. No effect of encoding context was found, nor any interaction effect of gender, encoding and retrieval context.
Li, Cai; Zhang, Ji; Xu, Haiwei; Chang, Mujun; Lv, Chuntao; Xue, Wenhua; Song, Zhizhen; Zhang, Lizhen; Zhang, Xiaojian; Tian, Xin
2018-06-01
Acute stress could trigger maladaptive changes associated with stress-related cognitive and emotional deficits. Dysfunction of ion channel or receptor in the hippocampal area has been linked to the cognitive deficits induced by stress. It is known that Kv7 channel openers, including FDA-approved drug retigabine, show cognitive protective efficacy. However, the underlying molecular mechanisms remain elusive. Here we showed that exposing adult male rats to acute stress significantly impaired the spatial memory, a cognitive process controlled by the hippocampus. Concomitantly, significantly reduced AMPA receptor expression was found in hippocampal CA1 area from acute stressed rats. This effect relied on the down-regulation of deubiquitinating enzyme USP2 and its upstream regulators (PGC-1α and β-catenin), and the subsequent enhancement of mTOR-related autophagy which is regulated by USP2. These findings suggested that acute stress dampened AMPA receptor expression by controlling USP2-related signaling, which caused the detrimental effect on hippocampus-dependent cognitive processes. We also found that retigabine alleviated acute stress-induced spatial memory retrieval impairment through adjusting the aberrance of USP2, its upstream regulators (PGC-1α, E4BP4 and β-catenin) and its downstream targets (mTOR, autophagy and GluA1). Our results have identified USP2 as a key molecule that mediates stress-induced spatial memory retrieval impairment, which provides a framework for new druggable targets to conceptually treat stress-associated cognitive deficits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pravosudov, V V; Lavenex, P; Clayton, N S
2002-05-01
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds. Copyright 2002 Wiley Periodicals, Inc.
Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice.
Belnik, A P; Ostrovskaya, R U; Poletaeva, I I
2007-04-01
The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer's disease.
Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning.
Scholz, Agnes; Krems, Josef F; Jahn, Georg
2017-10-01
Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.
Mei, Hao; Logothetis, Nikos K; Eschenko, Oxana
2018-03-01
Spatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and PFC and may coordinate the information flow within the HPC-PFC pathway. Here we examined if RE activity contributes to the spatial memory consolidation. Rats were trained to find reward following a complex trajectory on a crossword-like maze. Immediately after each of the five daily learning sessions the RE was reversibly inactivated by local injection of muscimol. The post-training RE inactivation affected neither the spatial task acquisition nor the memory retention, which was tested after a 20-d "forgetting" period. In contrast, the RE inactivation in well-trained rats prior to the maze exposure impaired the task performance without affecting locomotion or appetitive motivation. Our results support the role of the RE in memory retrieval and/or "online" processing of spatial information, but do not provide evidence for its engagement in "off-line" processing, at least within a time window immediately following learning experience. © 2018 Mei et al.; Published by Cold Spring Harbor Laboratory Press.
Voss, Joel L; Galvan, Ashley; Gonsalves, Brian D
2011-12-01
Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during retrieval. For example, learning in non-laboratory settings generally involves active exploration of memoranda, thus requiring the generation of action plans for behavior and the use of strategies deployed to improve subsequent memory performance. Is information pertaining to action planning and strategic processing retained and reactivated during retrieval? To address this question, we compared ERP correlates of memory retrieval for objects that had been studied in an active manner involving action planning and strategic processing to those for objects that had been studied passively. Memory performance was superior for actively studied objects, and unique ERP retrieval correlates for these objects were identified when subjects remembered the specific spatial locations at which objects were studied. Early-onset frontal shifts in ERP correlates of retrieval were noted for these objects, which parallel the recruitment of frontal cortex during learning object locations previously identified using fMRI with the same paradigm. Notably, ERPs during recall for items studied with a specific viewing strategy localized to the same supplementary motor cortex region previously identified with fMRI when this strategy was implemented during study, suggesting rapid reactivation of regions directly involved in strategic action planning. Collectively, these results implicate neural populations involved in learning in important retrieval functions, even for those populations involved in strategic control and action planning. Notably, these episodic features are not generally reported during recollective experiences, suggesting that reactivation is a more general property of memory retrieval that extends beyond those fragments of perceptual information that might be needed to re-live the past. Copyright © 2011 Elsevier Ltd. All rights reserved.
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Gut, Małgorzata; Staniszewski, Rafał
2016-01-01
Mental representations of numbers are spatially organized along a Mental Number Line (MNL). One widely proven manifestation of this relationship is the Spatial Numerical Association of Response Codes (SNARC) effect. It refers to the phenomenon of faster responses to numbers when there is congruency between the reaction side and the number position on the MNL . Although long-term memory is considered to house the MNL, short-term memory (STM) load may also modulate responses to numbers and the SN ARCRC effect. Our question, however, was not how STM content modulates the SNARC effect observed in responses to digits, but rather how the MNLNL representation affects the number retrieval from ST M. Each trial began with four digits presented horizontally in a spatial sequence (prime stimuli), which were then replaced by one of the priming digits as a single target. The task required participants to recall the exact location of the target. The SN ARCRC effect occurred only in the retrieval of left-sided digits, most likely because of the generally better processing of right-sided ones, as well as in reaction to digits presented more laterally. Moreover, memory processing was more efficient with low-magnitude numbers, which may suggest that they trigger attention shifting. We conclude that the MNL affects not only the responses to numbers obtained in typical SNARC-induction tasks, such as number detection, parity judgment or magnitude comparison, but also memorization and retrieval of them. Importantly, this effect seems to be dependent on the exact position of a digit in STM. PMID:28154615
Gut, Małgorzata; Staniszewski, Rafał
2016-01-01
Mental representations of numbers are spatially organized along a Mental Number Line (MNL). One widely proven manifestation of this relationship is the Spatial Numerical Association of Response Codes (SNARC) effect. It refers to the phenomenon of faster responses to numbers when there is congruency between the reaction side and the number position on the MNL . Although long-term memory is considered to house the MNL, short-term memory (STM) load may also modulate responses to numbers and the SN ARCRC effect. Our question, however, was not how STM content modulates the SNARC effect observed in responses to digits, but rather how the MNLNL representation affects the number retrieval from ST M. Each trial began with four digits presented horizontally in a spatial sequence (prime stimuli), which were then replaced by one of the priming digits as a single target. The task required participants to recall the exact location of the target. The SN ARCRC effect occurred only in the retrieval of left-sided digits, most likely because of the generally better processing of right-sided ones, as well as in reaction to digits presented more laterally. Moreover, memory processing was more efficient with low-magnitude numbers, which may suggest that they trigger attention shifting. We conclude that the MNL affects not only the responses to numbers obtained in typical SNARC-induction tasks, such as number detection, parity judgment or magnitude comparison, but also memorization and retrieval of them. Importantly, this effect seems to be dependent on the exact position of a digit in STM.
Overcoming default categorical bias in spatial memory.
Sampaio, Cristina; Wang, Ranxiao Frances
2010-12-01
In the present study, we investigated whether a strong default categorical bias can be overcome in spatial memory by using alternative membership information. In three experiments, we tested location memory in a circular space while providing participants with an alternative categorization. We found that visual presentation of the boundaries of the alternative categories (Experiment 1) did not induce the use of the alternative categories in estimation. In contrast, visual cuing of the alternative category membership of a target (Experiment 2) and unique target feature information associated with each alternative category (Experiment 3) successfully led to the use of the alternative categories in estimation. Taken together, the results indicate that default categorical bias in spatial memory can be overcome when appropriate cues are provided. We discuss how these findings expand the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in spatial memory by proposing a retrieval-based category adjustment (RCA) model.
Confident false memories for spatial location are mediated by V1.
Karanian, Jessica M; Slotnick, Scott D
2018-06-27
Prior functional magnetic resonance imaging (fMRI) results suggest that true memories, but not false memories, activate early sensory cortex. It is thought that false memories, which reflect conscious processing, do not activate early sensory cortex because these regions are associated with nonconscious processing. We posited that false memories may activate the earliest visual cortical processing region (i.e., V1) when task conditions are manipulated to evoke conscious processing in this region. In an fMRI experiment, abstract shapes were presented to the left or right of fixation during encoding. During retrieval, old shapes were presented at fixation and participants characterized each shape as previously on the "left" or "right" followed by an "unsure"-"sure"-"very sure" confidence rating. False memories for spatial location (i.e., "right"/left or "left"/right trials with "sure" or "very sure" confidence ratings) were associated with activity in bilateral early visual regions, including V1. In a follow-up fMRI-guided transcranial magnetic stimulation (TMS) experiment that employed the same paradigm, we assessed whether V1 activity was necessary for false memory construction. Between the encoding phase and the retrieval phase of each run, TMS (1 Hz, 8 min) was used to target the location of false memory activity (identified in the fMRI experiment) in left V1, right V1, or the vertex (control site). Confident false memories for spatial location were significantly reduced following TMS to V1, as compared to vertex. The results of the present experiments provide convergent evidence that early sensory cortex can contribute to false memory construction under particular task conditions.
A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks
1993-05-01
Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple
ERIC Educational Resources Information Center
Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal
2009-01-01
Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…
ERIC Educational Resources Information Center
Korz, Volker; Frey, Julietta U.
2007-01-01
Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems…
Retrieval and sleep both counteract the forgetting of spatial information.
Antony, James W; Paller, Ken A
2018-06-01
Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through repeated retrieval as well. That is, memories may generally be subject to forgetting that can be counteracted when memories become reactivated, and there are several types of reactivation: (i) via intentional restudying, (ii) via testing, (iii) without provocation during wake, or (iv) during sleep. We thus measured forgetting for spatial material subjected to repeated study or repeated testing followed by retention intervals with sleep versus wake. Four groups of subjects learned a set of visual object-location associations and either restudied the associations or recalled locations given the objects as cues. We found the advantage for restudied over retested information was greater in the PM than AM group. Additional groups tested at 5-min and 1-wk retention intervals confirmed previous findings of greater relative benefits for restudying in the short-term and for retesting in the long-term. Results overall support the conclusion that repeated reactivation through testing or sleeping stabilizes information against forgetting. © 2018 Antony and Paller; Published by Cold Spring Harbor Laboratory Press.
Sexual orientation and spatial memory.
Cánovas, Ma Rosa; Cimadevilla, José Manuel
2011-11-01
The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.
Acute administration of THC impairs spatial but not associative memory function in zebrafish.
Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard
2014-10-01
The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.
Overlapping parietal activity in memory and perception: evidence for the attention to memory model.
Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris
2011-11-01
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).
Phenomenological characteristics of autobiographical memory in Korsakoff's syndrome.
El Haj, Mohamad; Nandrino, Jean-Louis
2017-10-01
A body of research suggests compromise of autobiographical memory in Korsakoff's syndrome (KS). The present paper extends this literature by investigating the subjective experience of autobiographical recall in the syndrome. Patients with KS and controls were asked to retrieve autobiographical memories. After memory retrieval, participants were asked to rate phenomenological characteristics of their memories (i.e., reliving, back in time, remembering, realness, visual imagery, auditory imagery, language, emotion, rehearsal, importance, spatial recall and temporal recall). Analysis showed lower "Mean Phenomenological Experience" in the Korsakoff patients than in controls. However, the Korsakoff patients attributed relatively high emotional value and importance to their memories. Although our findings suggest compromised phenomenological reliving of autobiographical memory in patients with KS, affective characteristics such as emotion and importance are likely to play a main role in the subjective experience of the past in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Bilateral Parietal Cortex Damage Does Not Impair Associative Memory for Paired Stimuli
Berryhill, Marian E.; Drowos, David B.; Olson, Ingrid R.
2010-01-01
Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word-pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for non-verbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378
Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza
2012-01-06
Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.
Ankudowich, E; Pasvanis, S; Rajah, M N
2016-10-01
Age-related deficits in context memory may arise from neural changes underlying both encoding and retrieval of context information. Although age-related functional changes in the brain regions supporting context memory begin at midlife, little is known about the functional changes with age that support context memory encoding and retrieval across the adult lifespan. We investigated how age-related functional changes support context memory across the adult lifespan by assessing linear changes with age during successful context encoding and retrieval. Using functional magnetic resonance imaging (fMRI), we compared young, middle-aged and older adults during both encoding and retrieval of spatial and temporal details of faces. Multivariate behavioral partial least squares (B-PLS) analysis of fMRI data identified a pattern of whole-brain activity that correlated with a linear age term and a pattern of whole-brain activity that was associated with an age-by-memory phase (encoding vs. retrieval) interaction. Further investigation of this latter effect identified three main findings: 1) reduced phase-related modulation in bilateral fusiform gyrus, left superior/anterior frontal gyrus and right inferior frontal gyrus that started at midlife and continued to older age, 2) reduced phase-related modulation in bilateral inferior parietal lobule that occurred only in older age, and 3) changes in phase-related modulation in older but not younger adults in left middle frontal gyrus and bilateral parahippocampal gyrus that was indicative of age-related over-recruitment. We conclude that age-related reductions in context memory arise in midlife and are related to changes in perceptual recollection and changes in fronto-parietal retrieval monitoring. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
De Goede, Maartje; Postma, Albert
2008-01-01
Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object…
Staudigl, Tobias; Vollmar, Christian; Noachtar, Soheyl; Hanslmayr, Simon
2015-04-01
A powerful force in human memory is the context in which memories are encoded (Tulving and Thomson, 1973). Several studies suggest that the reinstatement of neural encoding patterns is beneficial for memory retrieval (Manning et al., 2011; Staresina et al., 2012; Jafarpour et al., 2014). However, reinstatement of the original encoding context is not always helpful, for instance, when retrieving a memory in a different contextual situation (Smith and Vela, 2001). It is an open question whether such context-dependent memory effects can be captured by the reinstatement of neural patterns. We investigated this question by applying temporal and spatial pattern similarity analysis in MEG and intracranial EEG in a context-match paradigm. Items (words) were tagged by individual dynamic context stimuli (movies). The results show that beta oscillatory phase in visual regions and the parahippocampal cortex tracks the incidental reinstatement of individual context trajectories on a single-trial level. Crucially, memory benefitted from reinstatement when the encoding and retrieval contexts matched but suffered from reinstatement when the contexts did not match. Copyright © 2015 the authors 0270-6474/15/355373-12$15.00/0.
Impact of sleep loss before learning on cortical dynamics during memory retrieval.
Alberca-Reina, E; Cantero, J L; Atienza, M
2015-12-01
Evidence shows that sleep loss before learning decreases activation of the hippocampus during encoding and promotes forgetting. But it remains to be determined which neural systems are functionally affected during memory retrieval after one night of recovery sleep. To investigate this issue, we evaluated memory for pairs of famous people's faces with the same or different profession (i.e., semantically congruent or incongruent faces) after one night of undisturbed sleep in subjects who either underwent 4hours of acute sleep restriction (ASR, N=20) or who slept 8hours the pre-training night (controls, N=20). EEG recordings were collected during the recognition memory task in both groups, and the cortical sources generating this activity localized by applying a spatial beamforming filter in the frequency domain. Even though sleep restriction did not affect accuracy of memory performance, controls showed a much larger decrease of alpha power relative to a baseline period when compared to sleep-deprived subjects. These group differences affected a widespread frontotemporoparietal network involved in retrieval of episodic/semantic memories. Regression analyses further revealed that associative memory in the ASR group was negatively correlated with alpha power in the occipital regions, whereas the benefit of congruency in the same group was positively correlated with delta power in the left lateral prefrontal cortex. Retrieval-related decreases of alpha power have been associated with the reactivation of material-specific memory representations, whereas increases of delta power have been related to inhibition of interferences that may affect the performance of the task. We can therefore draw the conclusion that a few hours of sleep loss in the pre-training night, though insufficient to change the memory performance, is sufficient to alter the processes involved in retrieving and manipulating episodic and semantic information. Copyright © 2015 Elsevier Inc. All rights reserved.
Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2012-11-15
The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Wei; Yang, Yuye; Ye, Qing; Yang, Bo; Wang, Zhengrong
2007-03-15
Repetitive transcranial magnetic stimulation (rTMS) is a novel, non-invasive neurological and psychiatric tool. The low-frequency (1 Hz or less) rTMS is likely to play a particular role in its mechanism of action with different effects in comparison with high-frequency (>1 Hz) rTMS. There is limited information regarding the effect of low-frequency rTMS on spatial memory. In our study, each male Wistar rat was daily given 300 stimuli (1.0 T, 200 micros) at a rate of 0.5 Hz or sham stimulation. We investigated the effects of chronic and acute rTMS on reference/working memory process in Morris water maze test with the hypothesis that the effect would differ by chronic or acute condition. Chronic low-frequency rTMS impaired the retrieval of spatial short- and long-term spatial reference memory but not acquisition process and working memory, whereas acute low-frequency rTMS predominantly induced no deficits in acquisition or short-term spatial reference memory as well as working memory except for long-term reference memory. In summary, chronic 0.5 Hz rTMS disrupts spatial short- and long-term reference memory function, but acute rTMS differently affects reference memory. Chronic low-frequency rTMS may be used to modulate reference memory. Treatment protocols using low-frequency rTMS in neurological and psychiatric disorders need to take into account the potential effect of chronic low-frequency rTMS on memory and other cognitive functions.
An Electrophysiological Signature of Unconscious Recognition Memory
Voss, Joel L.; Paller, Ken A.
2009-01-01
Contradicting the common assumption that accurate recognition reflects explicit-memory processing, we describe evidence for recognition lacking two hallmark explicit-memory features: awareness of memory retrieval and facilitation by attentive encoding. Kaleidoscope images were encoded in conjunction with an attentional diversion and subsequently recognized more accurately than those encoded without diversion. Confidence in recognition was superior following attentive encoding, though recognition was remarkably accurate when people claimed to be unaware of memory retrieval. This “implicit recognition” was associated with frontal-occipital negative brain potentials at 200-400 ms post-stimulus-onset, which were spatially and temporally distinct from positive brain potentials corresponding to explicit recollection and familiarity. This dissociation between behavioral and electrophysiological characteristics of “implicit recognition” versus explicit recognition indicates that a neurocognitive mechanism with properties similar to those that produce implicit memory can be operative in standard recognition tests. People can accurately discriminate repeat stimuli from new stimuli without necessarily knowing it. PMID:19198606
Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks
2012-05-01
Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0
Distinct slow and fast cortical theta dynamics in episodic memory retrieval.
Pastötter, Bernhard; Bäuml, Karl-Heinz T
2014-07-01
Brain oscillations in the theta frequency band (3-8 Hz) have been shown to be critically involved in human episodic memory retrieval. In prior work, both positive and negative relationships between cortical theta power and retrieval success have been reported. This study examined the hypothesis that slow and fast cortical theta oscillations at the edges of the traditional theta frequency band are differentially related to retrieval success. Scalp EEG was recorded in healthy human participants as they performed a cued-recall episodic memory task. Slow (~3 Hz) and fast (~7 Hz) theta oscillations at retrieval were examined as a function of whether an item was recalled or not and as a function of the items' output position at test. Recall success typically declines with output position, due to increases in interference level. The results showed that slow theta power was positively related but fast theta power was negatively related to retrieval success. Concurrent positive and negative episodic memory effects for slow and fast theta oscillations were dissociable in time and space, showing different time courses and different spatial locations on the scalp. Moreover, fast theta power increased from early to late output positions, whereas slow theta power was unaffected by items' output position. Together with prior work, the results suggest that slow and fast theta oscillations have distinct functional roles in episodic memory retrieval, with slow theta oscillations being related to processes of recollection and conscious awareness, and fast theta oscillations being linked to processes of interference and interference resolution. Copyright © 2014 Elsevier Inc. All rights reserved.
Martarelli, Corinna S; Mast, Fred W; Hartmann, Matthias
2017-01-01
Time is grounded in various ways, and previous studies point to a "mental time line" with past associated with the left, and future with the right side. In this study, we investigated whether spontaneous eye movements on a blank screen would follow a mental timeline during encoding, free recall, and recognition of past and future items. In all three stages of processing, gaze position was more rightward during future items compared to past items. Moreover, horizontal gaze position during encoding predicted horizontal gaze position during free recall and recognition. We conclude that mental time line and the stored gaze position during encoding assist memory retrieval of past versus future items. Our findings highlight the spatial nature of temporal representations.
Hayes, Scott M; Nadel, Lynn; Ryan, Lee
2007-01-01
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory. (c) 2007 Wiley-Liss, Inc.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2015-08-12
Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.
The beneficial effect of testing: an event-related potential study
Bai, Cheng-Hua; Bridger, Emma K.; Zimmer, Hubert D.; Mecklinger, Axel
2015-01-01
The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon. According to the episodic context account of the testing effect, this beneficial effect of testing is related to a process which reinstates the previously learnt episodic information. Few studies have explored the neural correlates of this effect at the time point when testing takes place, however. In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics. Participants were asked to learn Swahili-German word pairs before items were presented in either a testing or a restudy condition. Memory performance was assessed immediately and 1-day later with a cued recall task. Successfully recalling items at test increased the likelihood that items were remembered over time compared to items which were only restudied. An ERP subsequent memory contrast (later remembered vs. later forgotten tested items), which reflects the engagement of processes that ensure items are recallable the next day were topographically comparable with the ERP correlate of immediate recollection (immediately remembered vs. immediately forgotten tested items). This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test. This finding supports the notion that testing is more beneficial than restudying on memory performance over time because of its engagement of retrieval processes, such as the re-encoding of actively retrieved memory representations. PMID:26441577
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F
2010-07-01
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.
Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan
2013-02-15
Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding
Guise, Kevin G.; Shapiro, Matthew L.
2017-01-01
Summary The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances. PMID:28343868
Wang, Yunpeng; Zhang, Hongying; Cui, Jingjing; Zhang, Jing; Yin, Fangyuan; Guo, Hao; Lai, Jianghua; Xing, Bo
2018-04-17
Contextual memory driven by abused drugs such as opiates has a central role in maintenance and relapse of drug-taking behaviors. Although dopamine (DA) signaling favors memory storage and retrieval via regulation of hippocampal-prefrontal connectivity, its role in modulating opiate-associated contextual memory is largely unknown. Here, we report roles of DA signaling within the hippocampal-prefrontal circuit for opiate-related memories. Combining-conditioned place preference (CPP) with molecular analyses, we investigated the DA D1 receptor (D1R) and extracellular signal-regulated kinase (ERK)-cAMP-response element binding protein (CREB) signaling, as well as DA D2 receptor (D2R) and protein kinase B (PKB or Akt)/glycogen synthase kinase 3 (GSK3) signaling in the ventral hippocampus (vHip) and medial prefrontal cortex (mPFC) during the formation of opiate-related associative memories. Morphine-CPP acquisition increased the activity of the D1R-ERK-CREB pathway in both the vHip and mPFC. Morphine-CPP reinstatement was associated with the D2R-mediated hyperactive GSK3 via Akt inhibition in the vHip and PFC. Furthermore, integrated D1R-ERK-CREB and D2R-Akt-GSK3 pathways in the vHip-mPFC circuit are required for the acquisition and retrieval of the morphine contextual memory, respectively. Moreover, blockage of D1R or D2R signaling could alleviate normal Hip-dependent spatial memory. These results suggest that D1R and D2R signaling are differentially involved in the acquisition and retrieval of morphine contextual memory, and DA signaling in the vHip-mPFC connection contributes to morphine-associated and normal memory, largely depending on opiate exposure states.
Sestieri, Carlo; Capotosto, Paolo; Tosoni, Annalisa; Luca Romani, Gian; Corbetta, Maurizio
2013-04-01
Although posterior parietal cortex (PPC) has been traditionally associated with spatial attention and sensorimotor functions, recent neuroimaging evidence has suggested the involvement of regions of left PCC (LPPC) in memory retrieval. Yet, the role of the parietal lobe in memory-related functions is still controversial. Here we investigated the causal involvement of different LPPC regions in episodic memory retrieval using repetitive transcranial magnetic stimulation (rTMS) during a task that provided both objective and subjective measures of item recognition and source memory. Stimulation sites were identified on the basis of a recent fMRI study showing the involvement of regions of the default mode network (DMN), such as the angular gyrus (AG) in the inferior parietal lobule (IPL), during search for relevant information in episodic memory, and regions of the dorsal attention network (DAN), such as the superior parietal lobule (SPL), during perceptual search. We predicted a selective disruption of memory performance following rTMS stimulation of the left AG relative to a sham condition or stimulation of the left SPL. We found a modest but significant decrease of sensitivity for item recognition when AG was directly compared to SPL, but not to sham stimulation. A stronger effect was however observed for the criterion of source memory judgments when comparing AG with both SPL and sham stimulation, suggesting that the rTMS over AG affects subjective aspects of source monitoring associated with the weighing of relevant retrieved information for source attribution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meilinger, Tobias; Strickrodt, Marianne; Bülthoff, Heinrich H
2016-10-01
Two classes of space define our everyday experience within our surrounding environment: vista spaces, such as rooms or streets which can be perceived from one vantage point, and environmental spaces, for example, buildings and towns which are grasped from multiple views acquired during locomotion. However, theories of spatial representations often treat both spaces as equal. The present experiments show that this assumption cannot be upheld. Participants learned exactly the same layout of objects either within a single room or spread across multiple corridors. By utilizing a pointing and a placement task we tested the acquired configurational memory. In Experiment 1 retrieving memory of the object layout acquired in environmental space was affected by the distance of the traveled path and the order in which the objects were learned. In contrast, memory retrieval of objects learned in vista space was not bound to distance and relied on different ordering schemes (e.g., along the layout structure). Furthermore, spatial memory of both spaces differed with respect to the employed reference frame orientation. Environmental space memory was organized along the learning experience rather than layout intrinsic structure. In Experiment 2 participants memorized the object layout presented within the vista space room of Experiment 1 while the learning procedure emulated environmental space learning (movement, successive object presentation). Neither factor rendered similar results as found in environmental space learning. This shows that memory differences between vista and environmental space originated mainly from the spatial compartmentalization which was unique to environmental space learning. Our results suggest that transferring conclusions from findings obtained in vista space to environmental spaces and vice versa should be made with caution. Copyright © 2016 Elsevier B.V. All rights reserved.
Impaired category fluency in medial temporal lobe amnesia: the role of episodic memory.
Greenberg, Daniel L; Keane, Margaret M; Ryan, Lee; Verfaellie, Mieke
2009-09-02
Memory tasks are often classified as semantic or episodic, but recent research shows that these types of memory are highly interactive. Category fluency, for example, is generally considered to reflect retrieval from semantic memory, but behavioral evidence suggests that episodic memory is also involved: participants frequently draw on autobiographical experiences while generating exemplars of certain categories. Neuroimaging studies accordingly have reported increased medial temporal lobe (MTL) activation during exemplar generation. Studies of fluency in MTL amnesics have yielded mixed results but were not designed to determine the precise contributions of episodic memory. We addressed this issue by asking MTL amnesics and controls to generate exemplars of three types of categories. One type tended to elicit autobiographical and spatial retrieval strategies (AS). Another type elicited strategies that were autobiographical but nonspatial (AN). The third type elicited neither autobiographical nor spatial strategies (N). Amnesic patients and control participants generated exemplars for eight categories of each type. Patients were impaired on all category types but were more impaired on AS and AN categories. After covarying for phonemic fluency (total FAS score), the N category impairment was not significant, but the impairment on AS and AN categories remained. The same results were obtained for patients with lesions restricted to the MTL and those with more extensive lesions. We conclude that patients' episodic memory impairment hindered their performance on this putatively semantic task. This interaction between episodic and semantic memory might partially account for fluency deficits seen in aging, mild cognitive impairment, and Alzheimer's disease.
Pravosudov, Vladimir V
2003-12-22
It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds.
Subliminal encoding and flexible retrieval of objects in scenes.
Wuethrich, Sergej; Hannula, Deborah E; Mast, Fred W; Henke, Katharina
2018-04-27
Our episodic memory stores what happened when and where in life. Episodic memory requires the rapid formation and flexible retrieval of where things are located in space. Consciousness of the encoding scene is considered crucial for episodic memory formation. Here, we question the necessity of consciousness and hypothesize that humans can form unconscious episodic memories. Participants were presented with subliminal scenes, i.e., scenes invisible to the conscious mind. The scenes displayed objects at certain locations for participants to form unconscious object-in-space memories. Later, the same scenes were presented supraliminally, i.e., visibly, for retrieval testing. Scenes were presented absent the objects and rotated by 90°-270° in perspective to assess the representational flexibility of unconsciously formed memories. During the test phase, participants performed a forced-choice task that required them to place an object in one of two highlighted scene locations and their eye movements were recorded. Evaluation of the eye tracking data revealed that participants remembered object locations unconsciously, irrespective of changes in viewing perspective. This effect of gaze was related to correct placements of objects in scenes, and an intuitive decision style was necessary for unconscious memories to influence intentional behavior to a significant degree. We conclude that conscious perception is not mandatory for spatial episodic memory formation. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Li, Jun; Han, Zhou; Cao, Bo; Cai, Cheng-Yun; Lin, Yu-Hui; Li, Fei; Wu, Hai-Ying; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya
2017-11-04
Granule cells in the dentate gyrus regenerate constantly in adult hippocampus and then integrate into neural circuits in the hippocampus thereby providing the neural basis for learning and memory. Promoting the neurogenesis in the hippocampus facilitates learning and memory such as spatial learning, object identification, and extinction learning. The interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) is reported to negatively regulate neurogenesis in brain, so we hypothesized that disrupting this interaction might facilitate the neurogenesis in the dentate gyrus (DG) and thus enhance the extinction memory retrieval of fear learning. We found that uncoupling the nNOS-PSD-95 complex in remote contextual fear condition promoted both neuronal proliferation and survival in the DG, contributing to an enhanced retrieval of the extinction memory. Moreover, the nNOS-PSD-95 uncoupling-induced neurogenesis may be mediated by the extracellular signal-regulated kinase (ERK) as the phosphorylation level of ERK1/2 was increased after uncoupling. These findings suggest that the nNOS-PSD-95 complex may serve as a novel target for the treatment of post-traumatic stress disorder (PTSD). Copyright © 2017 Elsevier Inc. All rights reserved.
Klein, Stanley B
2013-01-01
Episodic memory often is conceptualized as a uniquely human system of long-term memory that makes available knowledge accompanied by the temporal and spatial context in which that knowledge was acquired. Retrieval from episodic memory entails a form of first-person subjectivity called autonoetic consciousness that provides a sense that a recollection was something that took place in the experiencer's personal past. In this paper I expand on this definition of episodic memory. Specifically, I suggest that (1) the core features assumed unique to episodic memory are shared by semantic memory, (2) episodic memory cannot be fully understood unless one appreciates that episodic recollection requires the coordinated function of a number of distinct, yet interacting, "enabling" systems. Although these systems-ownership, self, subjective temporality, and agency-are not traditionally viewed as memorial in nature, each is necessary for episodic recollection and jointly they may be sufficient, and (3) the type of subjective awareness provided by episodic recollection (autonoetic) is relational rather than intrinsic-i.e., it can be lost in certain patient populations, thus rendering episodic memory content indistinguishable from the content of semantic long-term memory.
Environmental cue saliency influences the vividness of a remote spatial memory in rats.
Lopez, Joëlle; de Vasconcelos, Anne Pereira; Cassel, Jean-Christophe
2008-07-01
The Morris water maze is frequently used to evaluate the acquisition and retrieval of spatial memories. Few experiments, however, have investigated the effects of environmental cue saliency on the strength or persistence of such memories after a short vs. long post-acquisition interval. Using a Morris water maze, we therefore tested in rats the effect of the saliency of distal cues on the vividness of a recent (5 days) vs. remote (25 days) memory. Rats trained in a cue-enriched vs. a cue-impoverished context showed a better overall level of performance during acquisition. Furthermore, the probe trials revealed that the rats trained and tested in the cue-impoverished context (1) spent less time in the target quadrant at the 25-day delay, and (2) swam shorter distances in the target area, with fewer crossings at both 5- and 25-day delays, as compared to their counterparts trained and tested in the cue-enriched context. Thus, the memory trace formed in the cue-enriched context shows better resistance to time, suggesting an implication of cue saliency in the vividness of a spatial memory.
Cutsuridis, Vassilis; Hasselmo, Michael
2012-07-01
Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. Copyright © 2011 Wiley Periodicals, Inc.
Posterior parietal cortex and long-term memory: some data from laboratory animals
Myskiw, Jociane C.; Izquierdo, Iván
2012-01-01
The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determine the extent to which these findings can be extrapolated to primates, including humans. In these there appears to be a paradox: imaging studies strongly suggest an important participation of the PPC in episodic memory, whereas lesion studies are much less suggestive, let alone conclusive. The data on the participation of the PPC in episodic memory so far do not permit any conclusion as to what aspect of consolidation and retrieval it handles in addition to those dealt with by the hippocampus and basolateral amygdala, if any. PMID:22375107
Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H
2016-05-01
The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to elucidate how these memory systems interact during aversive memory formation. Thus, the PMDAT can be useful for studying hippocampal-dependent memory when it involves emotional content. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of food quality during growth on spatial memory consolidation in adult pigeons.
Scriba, M F; Gasparini, J; Jacquin, L; Mettke-Hofmann, C; Rattenborg, N C; Roulin, A
2017-02-15
Poor environmental conditions experienced during early development can have negative long-term consequences on fitness. Animals can compensate for negative developmental effects through phenotypic plasticity by diverting resources from non-vital to vital traits such as spatial memory to enhance foraging efficiency. We tested in young feral pigeons ( Columba livia ) how diets of different nutritional value during development affect the capacity to retrieve food hidden in a spatially complex environment, a process we refer to as 'spatial memory'. Parents were fed with either high- or low-quality food from egg laying until young fledged, after which all young pigeons received the same high-quality diet until memory performance was tested at 6 months of age. The pigeons were trained to learn a food location out of 18 possible locations in one session, and then their memory of this location was tested 24 h later. Birds reared with the low-quality diet made fewer errors in the memory test. These results demonstrate that food quality during development has long-lasting effects on memory, with a moderate nutritional deficit improving spatial memory performance in a foraging context. It might be that under poor feeding conditions resources are redirected from non-vital to vital traits, or pigeons raised with low-quality food might be better in using environmental cues such as the position of the sun to find where food was hidden. © 2017. Published by The Company of Biologists Ltd.
Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context
Sawangjit, Anuck; Kelemen, Eduard; Born, Jan; Inostroza, Marion
2017-01-01
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered. PMID:28270755
Macaluso, Emiliano
2015-01-01
Abstract We investigated the neural correlates supporting three kinds of memory judgments after very short delays using naturalistic material. In two functional magnetic resonance imaging (fMRI) experiments, subjects watched short movie clips, and after a short retention (1.5–2.5 s), made mnemonic judgments about specific aspects of the clips. In Experiment 1, subjects were presented with two scenes and required to either choose the scene that happened earlier in the clip (“scene‐chronology”), or with a correct spatial arrangement (“scene‐layout”), or that had been shown (“scene‐recognition”). To segregate activity specific to seen versus unseen stimuli, in Experiment 2 only one probe image was presented (either target or foil). Across the two experiments, we replicated three patterns underlying the three specific forms of memory judgment. The precuneus was activated during temporal‐order retrieval, the superior parietal cortex was activated bilaterally for spatial‐related configuration judgments, whereas the medial frontal cortex during scene recognition. Conjunction analyses with a previous study that used analogous retrieval tasks, but a much longer delay (>1 day), demonstrated that this dissociation pattern is independent of retention delay. We conclude that analogous brain regions mediate task‐specific retrieval across vastly different delays, consistent with the proposal of scale‐invariance in episodic memory retrieval. Hum Brain Mapp 36:2495–2513, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25773646
Selective memory retrieval can impair and improve retrieval of other memories.
Bäuml, Karl-Heinz T; Samenieh, Anuscheh
2012-03-01
Research from the past decades has shown that retrieval of a specific memory (e.g., retrieving part of a previous vacation) typically attenuates retrieval of other memories (e.g., memories for other details of the event), causing retrieval-induced forgetting. More recently, however, it has been shown that retrieval can both attenuate and aid recall of other memories (K.-H. T. Bäuml & A. Samenieh, 2010). To identify the circumstances under which retrieval aids recall, the authors examined retrieval dynamics in listwise directed forgetting, context-dependent forgetting, proactive interference, and in the absence of any induced memory impairment. They found beneficial effects of selective retrieval in listwise directed forgetting and context-dependent forgetting but detrimental effects in all the other conditions. Because context-dependent forgetting and listwise directed forgetting arguably reflect impaired context access, the results suggest that memory retrieval aids recall of memories that are subject to impaired context access but attenuates recall in the absence of such circumstances. The findings are consistent with a 2-factor account of memory retrieval and suggest the existence of 2 faces of memory retrieval. 2012 APA, all rights reserved
Smulders, Tom V; Gould, Kristy L; Leaver, Lisa A
2010-03-27
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover.
Ultra-High Density Holographic Memory Module with Solid-State Architecture
NASA Technical Reports Server (NTRS)
Markov, Vladimir B.
2000-01-01
NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.
Niu, Haichen; Ding, Sheng; Li, Haiying; Wei, Jianfeng; Ren, Chao; Wu, Xiujuan
2018-01-01
Tinnitus is thought to be caused by damage to the auditory and nonauditory system due to exposure to loud noise, aging, or other etiologies. However, at present, the exact neurophysiological basis of chronic tinnitus remains unknown. To explore whether the function of the limbic system is disturbed in tinnitus, the hippocampus was selected, which plays a vital role in learning and memory. The hippocampal function was examined with a learning and memory procedure. For this purpose, sodium salicylate (NaSal) was used to create a rat animal model of tinnitus, evaluated with prepulse inhibition behavior (PPI). The acquisition and retrieval abilities of spatial memory were measured using the Morris water maze (MWM) in NaSal-treated and control animals, followed by observation of c-Fos and delta-FosB protein expression in the hippocampal field by immunohistochemistry. To further identify the neural substrate for memory change in tinnitus, neurogenesis in the subgranular zone of the dentate gyrus (DG) was compared between the NaSal group and the control group. The results showed that acquisition and retrieval of spatial memory were impaired by NaSal treatment. The expression of c-Fos and delta-FosB protein was also inhibited in NaSal-treated animals. Simultaneously, neurogenesis in the DG was also impaired in tinnitus animals. In general, our data suggest that the hippocampal system (limbic system) may play a key role in tinnitus pathology.
ERIC Educational Resources Information Center
Schulz, Kristina; Korz, Volker
2010-01-01
Emotionality as well as cognitive abilities contribute to the acquisition and retrieval of memories as well as to the consolidation of long-term potentiation (LTP), a cellular model of memory formation. However, little is known about the timescale and relative contribution of these processes. Therefore, we tested the effects of weak water maze…
Protocol for Short- and Longer-term Spatial Learning and Memory in Mice
Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana
2017-01-01
Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878
Klein, Stanley B.
2013-01-01
Episodic memory often is conceptualized as a uniquely human system of long-term memory that makes available knowledge accompanied by the temporal and spatial context in which that knowledge was acquired. Retrieval from episodic memory entails a form of first–person subjectivity called autonoetic consciousness that provides a sense that a recollection was something that took place in the experiencer's personal past. In this paper I expand on this definition of episodic memory. Specifically, I suggest that (1) the core features assumed unique to episodic memory are shared by semantic memory, (2) episodic memory cannot be fully understood unless one appreciates that episodic recollection requires the coordinated function of a number of distinct, yet interacting, “enabling” systems. Although these systems—ownership, self, subjective temporality, and agency—are not traditionally viewed as memorial in nature, each is necessary for episodic recollection and jointly they may be sufficient, and (3) the type of subjective awareness provided by episodic recollection (autonoetic) is relational rather than intrinsic—i.e., it can be lost in certain patient populations, thus rendering episodic memory content indistinguishable from the content of semantic long-term memory. PMID:23378832
Emotional working memory in patients with major depressive disorder.
Li, Mi; Feng, Lei; Liu, Xingwang; Zhang, Ming; Fu, Bingbing; Wang, Gang; Lu, Shengfu; Zhong, Ning; Hu, Bin
2018-05-01
Objective This study was performed to examine the working memory (WM) encoding and retrieval abilities in patients with major depressive disorder (MDD) and determine whether a mood-congruent memory effect is present. Methods The modified Sternberg WM paradigm with positive, negative, and neutral emotional pictures was used to investigate the WM abilities of 26 patients with MDD and 26 healthy controls (HCs). Results No significant difference in picture WM was found between the MDD and HC groups; however, the accuracy of picture position WM was significantly lower and the response time was significantly longer in the MDD than HC group, regardless of the picture or position WM. Additionally, in the MDD group, the accuracy of negative picture/position WM was significantly higher than that of positive picture/position WM. Conclusions These results suggest that in patients with MDD, spatial WM impairment was more severe than object WM. In addition, these patients' WM retrieval was impaired, resulting in a decrease in WM retrieval ability, which may be an important cause of the slow thought in patients with MDD. Moreover, patients with depression have a mood-congruent memory effect, which may be an important factor in the occurrence and maintenance of depression.
Two retrievals from a single cue: A bottleneck persists across episodic and semantic memory.
Orscheschek, Franziska; Strobach, Tilo; Schubert, Torsten; Rickard, Timothy
2018-05-01
There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black-right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black-"white"). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.
Dominance of objects over context in a mediotemporal lobe model of schizophrenia.
Talamini, Lucia M; Meeter, Martijn
2009-08-04
A large body of evidence suggests impaired context processing in schizophrenia. Here we propose that this impairment arises from defective integration of mediotemporal 'what' and 'where' routes, carrying object and spatial information to the hippocampus. We have previously shown, in a mediotemporal lobe (MTL) model, that the abnormal connectivity between MTL regions observed in schizophrenia can explain the episodic memory deficits associated with the disorder. Here we show that the same neuropathology leads to several context processing deficits observed in patients with schizophrenia: 1) failure to choose subordinate stimuli over dominant ones when the former fit the context, 2) decreased contextual constraints in memory retrieval, as reflected in increased false alarm rates and 3) impaired retrieval of contextual information in source monitoring. Model analyses show that these deficits occur because the 'schizophrenic MTL' forms fragmented episodic representations, in which objects are overrepresented at the expense of spatial contextual information. These findings highlight the importance of MTL neuropathology in schizophrenia, demonstrating that it may underlie a broad spectrum of deficits, including context processing and memory impairments. It is argued that these processing deficits may contribute to central schizophrenia symptoms such as contextually inappropriate behavior, associative abnormalities, conversational drift, concreteness and delusions.
Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E
2015-12-01
The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.
Situation models and retrieval interference: pictures and words.
Radvansky, Gabriel A; Copeland, David E
2006-07-01
Previous studies have found that interference in long-term memory retrieval occurs when information cannot be integrated into a single situation model, but this interference is greatly reduced or absent when the information can be so integrated. The current study looked at the influence of presentation format-sentences or pictures-on this observed pattern. When sentences were used at memorisation and recognition, a spatial organisation was observed. In contrast, when pictures were used, a different pattern of results was observed. Specifically, there was an overall speed-up in response times, and consistent evidence of interference. Possible explanations for this difference were examined in a third experiment using pictures during learning, but sentences during recognition. The results from Experiment 3 were consistent with the organisation of information into situation models in long-term memory, even from pictures. This suggests that people do create situation models when learning pictures, but their recognition memory may be oriented around more "verbatim", surface-form memories of the pictures.
Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.
2011-01-01
Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. PMID:21600227
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.
2010-01-01
Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023
Listen up, eye movements play a role in verbal memory retrieval.
Scholz, Agnes; Mehlhorn, Katja; Krems, Josef F
2016-01-01
People fixate on blank spaces if visual stimuli previously occupied these regions of space. This so-called "looking at nothing" (LAN) phenomenon is said to be a part of information retrieval from internal memory representations, but the exact nature of the relationship between LAN and memory retrieval is unclear. While evidence exists for an influence of LAN on memory retrieval for visuospatial stimuli, evidence for verbal information is mixed. Here, we tested the relationship between LAN behavior and memory retrieval in an episodic retrieval task where verbal information was presented auditorily during encoding. When participants were allowed to gaze freely during subsequent memory retrieval, LAN occurred, and it was stronger for correct than for incorrect responses. When eye movements were manipulated during memory retrieval, retrieval performance was higher when participants fixated on the area associated with to-be-retrieved information than when fixating on another area. Our results provide evidence for a functional relationship between LAN and memory retrieval that extends to verbal information.
Zhu, Huiwen; Zhou, Yiming; Liu, Zhiyuan; Chen, Xi; Li, Yanqing; Liu, Xing; Ma, Lan
2018-01-01
Abstract Background Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus) or drugs (unconditioned stimulus). Whether conditioned stimulus and unconditioned stimulus retrieval trigger different memory reconsolidation processes is not clear. Methods Protein synthesis inhibitor or β-adrenergic receptor (β-AR) antagonist was systemically administrated or intra-central amygdala infused immediately after cocaine reexposure in cocaine-conditioned place preference or self-administration mice models. β-ARs were selectively knocked out in the central amygdala to further confirm the role of β-adrenergic receptor in cocaine reexposure-induced memory reconsolidation of cocaine-conditioned place preference. Results Cocaine reexposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-conditioned place preference. Cocaine-priming-induced reinstatement was also impaired with post cocaine retrieval manipulation, in contrast to the relapse behavior with post context retrieval manipulation. Cocaine retrieval, but not context retrieval, induced central amygdala activation. Protein synthesis inhibitor or β1-adrenergic receptor antagonist infused in the central amygdala after cocaine retrieval, but not context retrieval, inhibited memory reconsolidation and reinstatement. β1-adrenergic receptor knockout in the central amygdala suppressed cocaine retrieval-triggered memory reconsolidation and reinstatement of cocaine conditioned place preference. β1-adrenergic receptor antagonism after cocaine retrieval also impaired reconsolidation and reinstatement of cocaine self-administration. Conclusions Cocaine reward memory triggered by unconditioned stimulus retrieval is distinct from conditioned stimulus retrieval. Unconditioned stimulus retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. Post unconditioned stimulus retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction. Significance Statement It is well known that drug memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS and US retrieval trigger different memory reconsolidation processes is unknown. In this study, we found that US retrieval, but not CS retrieval, triggered memory reconsolidation of cocaine-conditioned place preference dependent on β1-AR and de novo protein synthesis in the central amygdala. Furthermore, cocaine priming-induced reinstatement was impaired with post US retrieval manipulation in contrast to the relapse behavior with post CS retrieval manipulation. In cocaine self-administration, β1-AR antagonism after US retrieval also impaired reconsolidation and reinstatement. Our study indicates that reconsolidation of cocaine reward memory triggered by US retrieval is distinct from CS retrieval. US retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. PMID:29216351
Pravosudov, V V; Clayton, N S
2001-02-22
Birds rely, at least in part, on spatial memory for recovering previously hidden caches but accurate cache recovery may be more critical for birds that forage in harsh conditions where the food supply is limited and unpredictable. Failure to find caches in these conditions may potentially result in death from starvation. In order to test this hypothesis we compared the cache recovery behaviour of 24 wild-caught mountain chickadees (Poecile gambeli), half of which were maintained on a limited and unpredictable food supply while the rest were maintained on an ad libitum food supply for 60 days. We then tested their cache retrieval accuracy by allowing birds from both groups to cache seeds in the experimental room and recover them 5 hours later. Our results showed that birds maintained on a limited and unpredictable food supply made significantly fewer visits to non-cache sites when recovering their caches compared to birds maintained on ad libitum food. We found the same difference in performance in two versions of a one-trial associative learning task in which the birds had to rely on memory to find previously encountered hidden food. In a non-spatial memory version of the task, in which the baited feeder was clearly marked, there were no significant differences between the two groups. We therefore concluded that the two groups differed in their efficiency at cache retrieval. We suggest that this difference is more likely to be attributable to a difference in memory (encoding or recall) than to a difference in their motivation to search for hidden food, although the possibility of some motivational differences still exists. Overall, our results suggest that demanding foraging conditions favour more accurate cache retrieval in food-caching birds.
Taste aversion memory reconsolidation is independent of its retrieval.
Rodriguez-Ortiz, Carlos J; Balderas, Israela; Garcia-DeLaTorre, Paola; Bermudez-Rattoni, Federico
2012-10-01
Reconsolidation refers to the destabilization/re-stabilization memory process upon its activation. However, the conditions needed to undergo reconsolidation, as well as its functional significance is quite unclear and a matter of intense investigation. Even so, memory retrieval is held as requisite to initiate reconsolidation. Therefore, in the present work we examined whether transient pharmacological disruption of memory retrieval impedes reconsolidation of stored memory in the widely used associative conditioning task, taste aversion. We found that AMPA receptors inhibition in the amygdala impaired retrieval of taste aversion memory. Furthermore, AMPA receptors blockade impeded retrieval regardless of memory strength. However, inhibition of retrieval did not affect anisomycin-mediated disruption of reconsolidation. These results indicate that retrieval is a dispensable condition to undergo reconsolidation and provide evidence of molecular dissociation between retrieval and activation of memory in the non-declarative memory model taste aversion. Copyright © 2012 Elsevier Inc. All rights reserved.
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
Uzer, Tugba
2016-02-01
Previous research has shown that memories cued by concrete concepts, such as objects, are retrieved faster than those cued by more abstract concepts, such as emotions. This effect has been explained by the fact that more memories are directly retrieved from object versus emotion cues. In the present study, we tested whether RT differences between memories cued by emotion versus object terms occur not only because object cues elicit direct retrieval of more memories (Uzer, Lee, & Brown, 2012), but also because of differences in memory generation in response to emotions versus objects. One hundred university students retrieved memories in response to basic-level (e.g. orange), superordinate-level (e.g. plant), and emotion (e.g. surprised) cues. Retrieval speed was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that memories were retrieved faster in response to basic-level versus superordinate-level and emotion cues because a) basic-level cues elicited more directly retrieved memories, and b) generating memories was more difficult when cues were abstract versus concrete. These results suggest that generative retrieval is a cue generation process in which additional cues that provide contextual information including the target event are produced. Memories are retrieved more slowly in response to emotion cues in part because emotion labels are less effective cues of appropriate contextual information. This particular finding is inconsistent with the idea that emotion is a primary organizational unit for autobiographical memories. In contrast, the difficulty of emotional memory generation implies that emotions represent low-level event information in the organization of autobiographical memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction
Inda, Maria Carmen; Muravieva, Elizaveta V.; Alberini, Cristina M.
2011-01-01
An established memory can be made transiently labile if retrieved or reactivated. Over time, it becomes again resistant to disruption and this process that renders the memory stable is termed reconsolidation. The reasons why a memory becomes labile after retrieval and reconsolidates still remains debated. Here, using inhibitory avoidance (IA) learning in rats, we provide evidence that retrievals of a young memory, which are accompanied by its reconsolidation, result in memory strengthening and contribute to its overall consolidation. This function associated to reconsolidation is temporally limited. With the passage of time, the stored memory undergoes important changes, as revealed by the behavioral outcomes of its retrieval. Over time, without explicit retrievals, memory first strengthens and becomes refractory to both retrieval-dependent interference and strengthening. At later times, the same retrievals that lead to reconsolidation of a young memory extinguish an older memory. We conclude that the storage of information is very dynamic and that its temporal evolution regulates behavioral outcomes. These results are important for potential clinical applications. PMID:21289172
Activating attachment representations impact how we retrieve autobiographical memories.
Bryant, Richard A; Bali, Agnes
2018-04-01
Although much research indicates that proximity to attachment figures confers many psychological benefits, there is little evidence pertaining to how attachment activation may impact autobiographical memory retrieval. Following a negative mood induction to elicit overgeneral autobiographical retrieval, participants (N = 70) were administered an induction in which they imagined a person who is a strong attachment figure or an acquaintance. Participants then completed an autobiographical memory task to retrieve memories in response to neutral and negative cue words. Attachment priming resulted in less distress, increased retrieval of specific memories, and reduced retrieval of categoric memories. These findings indicate that activation of mental representations of attachment figures can impact on the specificity of autobiographical memory retrieval, and extends prevailing models of autobiographical memory by integrating them with attachment theory.
Barzykowski, Krystian; Staugaard, Søren Risløv
2016-08-01
Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, non-strategic retrieval. More recent theoretical advances suggest that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal, or emotional valence, has not been previously investigated. In the current study, participants reported memories in an experimental paradigm designed to elicit voluntary and involuntary memories and rated them on a number of characteristics. If intention affects the retrieval process, then we should expect differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person's mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation. © 2015 The British Psychological Society.
Guez, Jonathan; Naveh-Benjamin, Moshe
2013-01-01
In this study, we evaluate the conceptualization of encoding and retrieval processes established in previous studies that used a divided attention (DA) paradigm. These studies indicated that there were considerable detrimental effects of DA at encoding on later memory performance, but only minimal effects, if any, on divided attention at retrieval. We suggest that this asymmetry in the effects of DA on memory can be due, at least partially, to a confound between the memory phase (encoding and retrieval) and the memory requirements of the task (memory “for” encoded information versus memory “at” test). To control for this confound, we tested memory for encoded information and for retrieved information by introducing a second test that assessed memory for the retrieved information from the first test. We report the results of four experiments that use measures of memory performance, retrieval latency, and performance on the concurrent task, all of which consistently show that DA at retrieval strongly disrupts later memory for the retrieved episode, similarly to the effects of DA at encoding. We suggest that these symmetrical disruptive effects of DA at encoding and retrieval on later retrieval reflect a disruption of an episodic buffer (EB) or episodic register component (ER), rather than a failure of encoding or retrieval operations per se. PMID:24040249
Guez, Jonathan; Naveh-Benjamin, Moshe
2013-01-01
In this study, we evaluate the conceptualization of encoding and retrieval processes established in previous studies that used a divided attention (DA) paradigm. These studies indicated that there were considerable detrimental effects of DA at encoding on later memory performance, but only minimal effects, if any, on divided attention at retrieval. We suggest that this asymmetry in the effects of DA on memory can be due, at least partially, to a confound between the memory phase (encoding and retrieval) and the memory requirements of the task (memory "for" encoded information versus memory "at" test). To control for this confound, we tested memory for encoded information and for retrieved information by introducing a second test that assessed memory for the retrieved information from the first test. We report the results of four experiments that use measures of memory performance, retrieval latency, and performance on the concurrent task, all of which consistently show that DA at retrieval strongly disrupts later memory for the retrieved episode, similarly to the effects of DA at encoding. We suggest that these symmetrical disruptive effects of DA at encoding and retrieval on later retrieval reflect a disruption of an episodic buffer (EB) or episodic register component (ER), rather than a failure of encoding or retrieval operations per se.
Striatal contributions to declarative memory retrieval
Scimeca, Jason M.; Badre, David
2012-01-01
Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322
How intention and monitoring your thoughts influence characteristics of autobiographical memories.
Barzykowski, Krystian; Staugaard, Søren Risløv
2018-05-01
Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.
Hulbert, J. C.; Norman, K. A.
2015-01-01
Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced facilitation of competing memories. This result is consistent with an adaptive differentiation process that allows individuals to learn to distinguish between once-confusable memories. PMID:25477369
Kobayashi, Masanori; Tanno, Yoshihiko
2015-06-01
Retrieval of a memory can induce forgetting of other related memories, which is known as retrieval-induced forgetting. Although most studies have investigated retrieval-induced forgetting by remembering episodic memories, this also can occur by remembering semantic memories. The present study shows that retrieval of semantic memories can lead to forgetting of negative words. In two experiments, participants learned words and then engaged in retrieval practice where they were asked to recall words related to the learned words from semantic memory. Finally, participants completed a stem-cued recall test for the learned words. The results showed forgetting of neutral and negative words, which was characteristic of semantic retrieval-induced forgetting. A certain degree of overlapping features, except same learning episode, is sufficient to cause retrieval-induced forgetting of negative words. Given the present results, we conclude that retrieval-induced forgetting of negative words does not require recollection of episodic memories.
Transient acidosis while retrieving a fear-related memory enhances its lability
Du, Jianyang; Price, Margaret P; Taugher, Rebecca J; Grigsby, Daniel; Ash, Jamison J; Stark, Austin C; Hossain Saad, Md Zubayer; Singh, Kritika; Mandal, Juthika; Wemmie, John A; Welsh, Michael J
2017-01-01
Attenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown. We hypothesized that augmenting synaptic signaling during retrieval would increase memory lability. To enhance synaptic transmission, mice inhaled CO2 to induce an acidosis and activate acid sensing ion channels. Transient acidification increased the retrieval-induced lability of an aversive memory. The labile memory could then be weakened by an extinction protocol or strengthened by reconditioning. Coupling CO2 inhalation to retrieval increased activation of amygdala neurons bearing the memory trace and increased the synaptic exchange from Ca2+-impermeable to Ca2+-permeable AMPA receptors. The results suggest that transient acidosis during retrieval renders the memory of an aversive event more labile and suggest a strategy to modify debilitating memories. DOI: http://dx.doi.org/10.7554/eLife.22564.001 PMID:28650315
Cerebellar contributions to spatial memory.
Tomlinson, Simon P; Davis, Nick J; Morgan, Helen M; Bracewell, R Martyn
2014-08-22
There is mounting evidence for a role for the cerebellum in working memory (WM). The majority of relevant studies has examined verbal WM and has suggested specialisation of the right cerebellar hemisphere for language processing. Our study used theta burst stimulation (TBS) to examine whether there is a converse cerebellar hemispheric specialisation for spatial WM. We conducted two experiments to examine spatial WM performance before and after TBS to mid-hemispheric and lateral locations in the posterior cerebellum. Participants were required to recall the order of presentation of targets on a screen or the targets' order of presentation and their locations. We observed impaired recollection of target order after TBS to the mid left cerebellar hemisphere and reduced response speed after TBS to the left lateral cerebellum. We suggest that these results give evidence of the contributions of the left cerebellar cortex to the encoding and retrieval of spatial information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.
2015-01-01
When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL subfields to processing spatial context and route retrieval, and support a prominent role for CA1 in distinguishing overlapping episodes during navigational “look-ahead” periods. PMID:24659134
Serial-position effects for items and relations in short-term memory.
Jones, Tim; Oberauer, Klaus
2013-04-01
Two experiments used immediate probed recall of words to investigate serial-position effects. Item memory was tested through probing with a semantic category. Relation memory was tested through probing with the word's spatial location of presentation. Input order and output order were deconfounded by presenting and probing items in different orders. Primacy and recency effects over input position were found for both item memory and relation memory. Both item and relation memory declined over output position. The finding of a U-shaped input position function for item memory rules out an explanation purely in terms of positional confusions (e.g., edge effects). Either these serial-position effects arise from variations in the intrinsic memory strength of the items, or they arise from variations in the strength of item-position bindings, together with retrieval by scanning.
Episodic memory for spatial context biases spatial attention.
Ciaramelli, Elisa; Lin, Olivia; Moscovitch, Morris
2009-01-01
The study explores the bottom-up attentional consequences of episodic memory retrieval. Individuals studied words (Experiment 1) or pictures (Experiment 2) presented on the left or on the right of the screen. They then viewed studied and new stimuli in the centre of the screen. One-second after the appearance of each stimulus, participants had to respond to a dot presented on the left or on the right of the screen. The dot could follow a stimulus that had been presented, during the study phase, on the same side as the dot (congruent condition), a stimulus that had been presented on the opposite side (incongruent condition), or a new stimulus (neutral condition). Subjects were faster to respond to the dot in the congruent compared to the incongruent condition, with an overall right visual field advantage in Experiment 1. The memory-driven facilitation effect correlated with subjects' re-experiencing of the encoding context (R responses; Experiment 1), but not with their explicit memory for the side of items' presentation (source memory; Experiment 2). The results indicate that memory contents are attended automatically and can bias the deployment of attention. The degree to which memory and attention interact appears related to subjective but not objective indicators of memory strength.
Dimsdale-Zucker, Halle R; Ritchey, Maureen; Ekstrom, Arne D; Yonelinas, Andrew P; Ranganath, Charan
2018-01-18
The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models predict that hippocampal subfields have computational specializations that differentially support memory. However, there is little empirical evidence suggesting differences between the subfields, particularly in humans. To clarify how hippocampal subfields support human spatial and episodic memory, we developed a virtual reality paradigm where participants passively navigated through houses (spatial contexts) across a series of videos (episodic contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural representations of contextual information during recollection. Multi-voxel pattern similarity analyses revealed that CA1 represented objects that shared an episodic context as more similar than those from different episodic contexts. CA23DG showed the opposite pattern, differentiating between objects encountered in the same episodic context. The complementary characteristics of these subfields explain how we can parse our experiences into cohesive episodes while retaining the specific details that support vivid recollection.
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
Retrieval practice enhances the accessibility but not the quality of memory.
Sutterer, David W; Awh, Edward
2016-06-01
Numerous studies have demonstrated that retrieval from long-term memory (LTM) can enhance subsequent memory performance, a phenomenon labeled the retrieval practice effect. However, the almost exclusive reliance on categorical stimuli in this literature leaves open a basic question about the nature of this improvement in memory performance. It has not yet been determined whether retrieval practice improves the probability of successful memory retrieval or the quality of the retrieved representation. To answer this question, we conducted three experiments using a mixture modeling approach (Zhang & Luck, 2008) that provides a measure of both the probability of recall and the quality of the recalled memories. Subjects attempted to memorize the color of 400 unique shapes. After every 10 images were presented, subjects either recalled the last 10 colors (the retrieval practice condition) by clicking on a color wheel with each shape as a retrieval cue or they participated in a control condition that involved no further presentations (Experiment 1) or restudy of the 10 shape/color associations (Experiments 2 and 3). Performance in a subsequent delayed recall test revealed a robust retrieval practice effect. Subjects recalled a significantly higher proportion of items that they had previously retrieved relative to items that were untested or that they had restudied. Interestingly, retrieval practice did not elicit any improvement in the precision of the retrieved memories. The same empirical pattern also was observed following delays of greater than 24 hours. Thus, retrieval practice increases the probability of successful memory retrieval but does not improve memory quality.
Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.
Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S
1994-01-01
Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342
Operant conditioning of autobiographical memory retrieval.
Debeer, Elise; Raes, Filip; Williams, J Mark G; Craeynest, Miet; Hermans, Dirk
2014-01-01
Functional avoidance is considered as one of the key mechanisms underlying overgeneral autobiographical memory (OGM). According to this view OGM is regarded as a learned cognitive avoidance strategy, based on principles of operant conditioning; i.e., individuals learn to avoid the emotionally painful consequences associated with the retrieval of specific negative memories. The aim of the present study was to test one of the basic assumptions of the functional avoidance account, namely that autobiographical memory retrieval can be brought under operant control. Here 41 students were instructed to retrieve personal memories in response to 60 emotional cue words. Depending on the condition, they were punished with an aversive sound for the retrieval of specific or nonspecific memories in an operant conditioning procedure. Analyzes showed that the course of memory specificity significantly differed between conditions. After the procedure participants punished for nonspecific memories retrieved significantly more specific memories compared to participants punished for specific memories. However, whereas memory specificity significantly increased in participants punished for specific memories, it did not significantly decrease in participants punished for nonspecific memories. Thus, while our findings indicate that autobiographical memory retrieval can be brought under operant control, they do not support a functional avoidance view on OGM.
Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2008-01-01
Recent neuroimaging studies have implicated the posterior parietal cortex in episodic memory retrieval, but there is uncertainty about its specific role. Research in the attentional domain has shown that superior parietal lobe (SPL) regions along the intraparietal sulcus are implicated in the voluntary orienting of attention to relevant aspects of the environment, whereas inferior parietal lobe (IPL) regions at the temporo-parietal junction mediate the automatic allocation of attention to task-relevant information. Here we propose that the SPL and the IPL play conceptually similar roles in episodic memory retrieval. We hypothesize that the SPL allocates top-down attention to memory retrieval, whereas the IPL mediates the automatic, bottom-up attentional capture by retrieved memory contents. By reviewing the existing fMRI literature, we show that the posterior intraparietal sulcus of SPL is consistently active when the need for top-down assistance to memory retrieval is supposedly maximal, e.g., for memories retrieved with low vs. high confidence, for familiar vs. recollected memories, for recognition of high vs. low frequency words. On the other hand, the supramarginal gyrus of IPL is consistently active when the attentional capture by memory contents is supposedly maximal, i.e., for strong vs. weak memories, for vividly recollected vs. familiar memories, for memories retrieved with high vs. low confidence. We introduce a model of episodic memory retrieval that characterizes contributions of posterior parietal cortex.
Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories
St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.
2016-01-01
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780
Brodin, Anders; Urhan, A Utku
2013-07-01
Laboratory studies of scatter hoarding birds have become a model system for spatial memory studies. Considering that such birds are known to have a good spatial memory, recovery success in lab studies seems low. In parids (titmice and chickadees) typically ranging between 25 and 60% if five seeds are cached in 50-128 available caching sites. Since these birds store many thousands of food items in nature in one autumn one might expect that they should easily retrieve five seeds in a laboratory where they know the environment with its caching sites in detail. We designed a laboratory set up to be as similar as possible with previous studies and trained wild caught marsh tits Poecile palustris to store and retrieve in this set up. Our results agree closely with earlier studies, of the first ten looks around 40% were correct when the birds had stored five seeds in 100 available sites both 5 and 24h after storing. The cumulative success curve suggests high success during the first 15 looks where after it declines. Humans performed much better, in the first five looks most subjects were 100% correct. We discuss possible reasons for why the birds were not doing better. Copyright © 2013 Elsevier B.V. All rights reserved.
Dominance of Objects over Context in a Mediotemporal Lobe Model of Schizophrenia
Talamini, Lucia M.; Meeter, Martijn
2009-01-01
Background A large body of evidence suggests impaired context processing in schizophrenia. Here we propose that this impairment arises from defective integration of mediotemporal ‘what’ and ‘where’ routes, carrying object and spatial information to the hippocampus. Methodology and Findings We have previously shown, in a mediotemporal lobe (MTL) model, that the abnormal connectivity between MTL regions observed in schizophrenia can explain the episodic memory deficits associated with the disorder. Here we show that the same neuropathology leads to several context processing deficits observed in patients with schizophrenia: 1) failure to choose subordinate stimuli over dominant ones when the former fit the context, 2) decreased contextual constraints in memory retrieval, as reflected in increased false alarm rates and 3) impaired retrieval of contextual information in source monitoring. Model analyses show that these deficits occur because the ‘schizophrenic MTL’ forms fragmented episodic representations, in which objects are overrepresented at the expense of spatial contextual information. Conclusions and Significance These findings highlight the importance of MTL neuropathology in schizophrenia, demonstrating that it may underlie a broad spectrum of deficits, including context processing and memory impairments. It is argued that these processing deficits may contribute to central schizophrenia symptoms such as contextually inappropriate behavior, associative abnormalities, conversational drift, concreteness and delusions. PMID:19652706
Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories
Jarome, Timothy J; Ferrara, Nicole C; Kwapis, Janine L; Helmstetter, Fred J
2015-01-01
Stored memories enter a temporary state of vulnerability following retrieval known as ‘reconsolidation', a process that can allow memories to be modified to incorporate new information. Although reconsolidation has become an attractive target for treatment of memories related to traumatic past experiences, we still do not know what new information triggers the updating of retrieved memories. Here, we used biochemical markers of synaptic plasticity in combination with a novel behavioral procedure to determine what was learned during memory reconsolidation under normal retrieval conditions. We eliminated new information during retrieval by manipulating animals' training experience and measured changes in proteasome activity and GluR2 expression in the amygdala, two established markers of fear memory lability and reconsolidation. We found that eliminating new contextual information during the retrieval of memories for predictable and unpredictable fear associations prevented changes in proteasome activity and glutamate receptor expression in the amygdala, indicating that this new information drives the reconsolidation of both predictable and unpredictable fear associations on retrieval. Consistent with this, eliminating new contextual information prior to retrieval prevented the memory-impairing effects of protein synthesis inhibitors following retrieval. These results indicate that under normal conditions, reconsolidation updates memories by incorporating new contextual information into the memory trace. Collectively, these results suggest that controlling contextual information present during retrieval may be a useful strategy for improving reconsolidation-based treatments of traumatic memories associated with anxiety disorders such as post-traumatic stress disorder. PMID:26062788
Emmerdinger, Kathrin J.; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the “testing effect”). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure. PMID:29881365
Emmerdinger, Kathrin J; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the "testing effect"). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure.
Familiar real-world spatial cues provide memory benefits in older and younger adults.
Robin, Jessica; Moscovitch, Morris
2017-05-01
Episodic memory, future thinking, and memory for scenes have all been proposed to rely on the hippocampus, and evidence suggests that these all decline in healthy aging. Despite this age-related memory decline, studies examining the effects of context reinstatement on episodic memory have demonstrated that reinstating elements of the encoding context of an event leads to better memory retrieval in both younger and older adults. The current study was designed to test whether more familiar, real-world contexts, such as locations that participants visited often, would improve the detail richness and vividness of memory for scenes, autobiographical events, and imagination of future events in young and older adults. The predicted age-related decline in internal details across all 3 conditions was accompanied by persistent effects of contextual familiarity, in which a more familiar spatial context led to increased detail and vividness of remembered scenes, autobiographical events, and, to some extent, imagined future events. This study demonstrates that autobiographical memory, imagination of the future, and scene memory are similarly affected by aging, and all benefit from being associated with more familiar (real-world) contexts, illustrating the stability of contextual reinstatement effects on memory throughout the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Transfer after process-based object-location memory training in healthy older adults.
Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne
2016-11-01
A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Retrieval of Emotional Memories
Buchanan, Tony W.
2008-01-01
Long-term memories are influenced by the emotion experienced during learning as well as by the emotion experienced during memory retrieval. The present article reviews the literature addressing the effects of emotion on retrieval, focusing on the cognitive and neurological mechanisms that have been revealed. The reviewed research suggests that the amygdala, in combination with the hippocampus and prefrontal cortex, plays an important role in the retrieval of memories for emotional events. The neural regions necessary for online emotional processing also influence emotional memory retrieval, perhaps through the reexperience of emotion during the retrieval process. PMID:17723029
Hippocampal GABAB(1a) Receptors Constrain Generalized Contextual Fear
Lynch, Joseph F; Winiecki, Patrick; Gilman, T Lee; Adkins, Jordan M; Jasnow, Aaron M
2017-01-01
Many anxiety disorders are characterized by generalization of fear responses to neutral or ambiguous stimuli. Therefore, a comprehensive understanding of the mechanisms contributing to generalized fear is essential for formulating successful treatments for anxiety disorders. Previous research shows that GABA-mediated presynaptic inhibition has a critical role in cued fear generalization, as animals with genetically deleted presynaptic GABAB(1a) receptors cannot discriminate between CS+ and CS− tones. Work from our laboratory has further identified that GABAB(1a) receptors are necessary for maintaining contextual memory precision, thereby constraining generalized contextual fear. We previously found that GABAB(1a) KO mice show generalized fear to a neutral context 24 h after training, but not 2 h after training. A similar pattern was observed with object location and recognition, suggesting that this receptor subtype affects consolidation and/or retrieval of precise contextual and spatial memories. Here we sought to specifically examine the involvement of GABAB(1a) receptors in consolidation or retrieval of a precise fear memory. To do so, we infused a selective GABAB(1a) receptor antagonist, CGP 36216, intracerebroventricularly (ICV), or locally into the dorsal hippocampus, ventral hippocampus, or anterior cingulate cortex (ACC), during consolidation and retrieval of context fear training. Blockade of GABAB(1a) receptors through ICV, dorsal hippocampal, or ventral hippocampal infusions ‘after' training (consolidation) resulted in fear generalization to the neutral context when mice were tested 24, but not 6 h after training. Post-training infusions of CGP into the ACC, however, did not promote generalized fear. In addition, ICV, dorsal hippocampal, ventral hippocampal, or ACC infusions immediately ‘before' testing (retrieval) did not result in context fear generalization. These data suggest that GABA-mediated presynaptic inhibition is not critical for retrieval of precise contextual memory, but rather has an important role in the long-term consolidation of precise contextual memories and constrains generalized fear responses. PMID:27834391
Ryan, Lee; Lin, Chun-Yu; Ketcham, Katie; Nadel, Lynn
2010-01-01
This study examined the involvement of medial temporal lobe, especially the hippocampus, in processing spatial and nonspatial relations using episodic and semantic versions of a relational judgment task. Participants studied object arrays and were tested on different types of relations between pairs of objects. Three prevalent views of hippocampal function were considered. Cognitive map theory (O'Keefe and Nadel (1978) The Hippocampus as a Cognitive Map. USA: Oxford University Press) emphasizes hippocampal involvement in spatial relational tasks. Multiple trace theory (Nadel and Moscovitch (1997) Memory consolidation, retrograde amnesia and the hippocampal complex Curr Opin Neurobiol 7:217-227) emphasizes hippocampal involvement in episodic tasks. Eichenbaum and Cohen's ((2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. USA: Oxford University Press) relational theory predicts equivalent hippocampal involvement in all relational tasks within both semantic and episodic memory. The fMRI results provided partial support for all three theories, though none of them fit the data perfectly. We observed hippocampal activation during all relational tasks, with increased activation for spatial compared to nonspatial relations, and for episodic compared to semantic relations. The placement of activation along the anterior-posterior axis of the hippocampus also differentiated the conditions. We suggest a view of hippocampal function in memory that incorporates aspects of all three theories. Copyright 2009 Wiley-Liss, Inc.
Timing the state of light with anomalous dispersion and a gradient echo memory
NASA Astrophysics Data System (ADS)
Clark, Jeremy B.
We study the effects of anomalous dispersion on the continuous-variable entanglement of EPR states (generated using four-wave mixing in 85 Rb) by sending one part of the state through a fast-light medium and measuring the state's quantum mutual information. We observe an advance in the maximum of the quantum mutual information between modes. In contrast, due to uncorrelated noise added by a small phase-insensitive gain, we do not observe any statistically significant advance in the leading edge of the mutual information. We also study the storage and retrieval of multiplexed optical signals in a Gradient Echo Memory (GEM) at relevant four-wave mixing frequencies in 85Rb. Temporal multiplexing capabilities are demonstrated by storing multiple classical images in the memory simultaneously and observing the expected first-in last-out order of recall without obvious cross-talk. We also develop a technique wherein selected portions of an image written into the memory can be spatially targeted for readout and erasure on demand. The effect of diffusion on the quality of the recalled images is characterized. Our results indicate that Raman-based atomic memories may serve as a flexible platform for the storage and retrieval of multiplexed optical signals.
Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu
2010-12-31
Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.
Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu
2010-01-01
Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. PMID:20018213
Dissociating the two faces of selective memory retrieval.
Dobler, Ina M; Bäuml, Karl-Heinz T
2012-07-01
Research in the past four decades has repeatedly shown that selective retrieval of some (non-target) memories can impair subsequent retrieval of other (target) information, a finding known as retrieval-induced forgetting. More recently, however, there is evidence that selective retrieval can both impair and enhance recall of related memories (K-H. T. Bäuml & Samenieh, 2010). To identify possible experimental dissociations between the detrimental and the beneficial effects of memory retrieval, we examined retrieval dynamics in listwise directed forgetting, varying the delay between preceding non-target and subsequent target recall. When target recall immediately followed non-target recall, we replicated the prior work and found detrimental effects of memory retrieval on to-be-remembered items but beneficial effects on to-be-forgotten items. In contrast, when a delay was introduced between non-target and target recall, the detrimental effects were present but the beneficial effects were absent. The results demonstrate a first experimental dissociation between the two effects of memory retrieval. They are consistent with a recent two-factor account of the two faces of selective memory retrieval.
ERIC Educational Resources Information Center
Xie, Zhiyong; Huang, Cheng; Ci, Bo; Lianzhang, Wang; Zhong, Yi
2013-01-01
Extensive studies of "Drosophila" mushroom body in formation and retrieval of olfactory memories allow us to delineate the functional logic for memory storage and retrieval. Currently, there is a questionable disassociation of circuits for memory storage and retrieval during "Drosophila" olfactory memory processing. Formation…
Place Cells, Grid Cells, and Memory
Moser, May-Britt; Rowland, David C.; Moser, Edvard I.
2015-01-01
The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382
Han, Huili; Peng, Yan; Dong, Zhifang
2015-06-01
It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural reactivation reveals mechanisms for updating memory
Kuhl, Brice A.; Bainbridge, Wilma A.; Chun, Marvin M.
2012-01-01
Our ability to remember new information is often compromised by competition from prior learning, leading to many instances of forgetting. One of the challenges in studying why these lapses occur and how they can be prevented is that it is methodologically difficult to ‘see’ competition between memories as it occurs. Here, we used multi-voxel pattern analysis of human fMRI data to measure the neural reactivation of both older (competing) and newer (target) memories during individual attempts to retrieve newer memories. Of central interest was (a) whether older memories were reactivated during retrieval of newer memories, (b) how reactivation of older memories related to retrieval performance, and (c) whether neural mechanisms engaged during the encoding of newer memories were predictive of neural competition experienced during retrieval. Our results indicate that older and newer visual memories were often simultaneously reactivated in ventral temporal cortex—even when target memories were successfully retrieved. Importantly, stronger reactivation of older memories was associated with less accurate retrieval of newer memories, slower mnemonic decisions, and increased activity in anterior cingulate cortex. Finally, greater activity in the inferior frontal gyrus during the encoding of newer memories (memory updating) predicted lower competition in ventral temporal cortex during subsequent retrieval. Together, these results provide novel insight into how older memories compete with newer memories and specify neural mechanisms that allow competition to be overcome and memories to be updated. PMID:22399768
Shafer, Andrea T.; Dolcos, Florin
2014-01-01
The memory-enhancing effect of emotion has been linked to the engagement of emotion- and memory-related medial temporal lobe (MTL) regions (amygdala-AMY; hippocampus-HC; parahippocampus-PHC), during both encoding and retrieval. However, recognition tasks used to investigate the neural correlates of retrieval make it difficult to distinguish MTL engagement linked to retrieval success (RS) from that linked to incidental encoding success (ES) during retrieval. This issue has been investigated for retrieval of non-emotional memories, but not for emotional memory retrieval. To address this, we used event-related functional MRI in conjunction with an emotional distraction and two episodic memory tasks (one testing memory for distracter items and the other testing memory for new/lure items presented in the first memory task). This paradigm allowed for dissociation of MTL activity specifically linked to RS from that linked to both RS and incidental ES during retrieval. There were two novel findings regarding the neural correlates of emotional memory retrieval. First, greater emotional RS was identified bilaterally in AMY, HC, and PHC. However, AMY activity was most impacted when accounting for ES activity, as only RS activity in left AMY was dissociated from ES activity during retrieval, whereas portions of HC and PHC showing greater emotional RS were largely uninvolved in ES. Second, an earlier and more anteriorly spread response (left AMY and bilateral HC, PHC) was linked to greater emotional RS activity, whereas a later and more posteriorly localized response (right posterior PHC) was linked to greater neutral RS activity. These findings shed light on MTL mechanisms subserving the memory-enhancing effect of emotion at retrieval. PMID:24917798
Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P
2013-03-01
In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bekinschtein, Pedro; Renner, Maria Constanza; Gonzalez, Maria Carolina; Weisstaub, Noelia
2013-10-02
Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.
Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory
Auger, Meagan L.
2015-01-01
Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433
Common Neural Representations for Visually Guided Reorientation and Spatial Imagery
Vass, Lindsay K.; Epstein, Russell A.
2017-01-01
Abstract Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with fMRI, while they performed a judgment of relative direction (JRD) task that required them to retrieve real-world spatial relationships in response to either pictorial or verbal cues. Multivoxel pattern analyses revealed several brain regions that exhibited representations that were independent of the cues to access spatial memory. Specifically, entorhinal cortex in the medial temporal lobe and the retrosplenial complex (RSC) in the medial parietal lobe coded for the heading assumed on a particular trial, whereas the parahippocampal place area (PPA) contained information about the starting location of the JRD. These results demonstrate the existence of spatial representations in RSC, ERC, and PPA that are common to visually guided navigation and spatial imagery. PMID:26759482
Plescia, Fulvio; Marino, Rosa A M; Cannizzaro, Emanuele; Brancato, Anna; Cannizzaro, Carla
2013-10-01
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study, we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10 mg/Kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of spatial information-acquisition during the baseline training, and of memory retention in the longitudinal study. Furthermore, on the basis of PREGS pharmacological profile, the modulation of depressive-like behaviour was also evaluated in the forced swim test (FST). Our results indicate that acute PREGS induces: an improvement in spatial orientation-acquisition and in reference memory, during the baseline training; a strengthening effect on reference and working memory during the longitudinal study. A decrease in immobility time in the FST has also been recorded. In conclusion, PREGS exerts enhancing properties on acquisition, consolidation and retrieval of spatial information, probably due of improved hippocampal-dependent memory processes. The additional antidepressant effect observed in the FST can provide further evidence in support of the potential of PREGS as a therapeutic tool for the treatment of cognitive deficits associated with mood disorders. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.
Neural Similarity Between Encoding and Retrieval is Related to Memory Via Hippocampal Interactions
Ritchey, Maureen; Wing, Erik A.; LaBar, Kevin S.; Cabeza, Roberto
2013-01-01
A fundamental principle in memory research is that memory is a function of the similarity between encoding and retrieval operations. Consistent with this principle, many neurobiological models of declarative memory assume that memory traces are stored in cortical regions, and the hippocampus facilitates the reactivation of these traces during retrieval. The present investigation tested the novel prediction that encoding–retrieval similarity can be observed and related to memory at the level of individual items. Multivariate representational similarity analysis was applied to functional magnetic resonance imaging data collected during encoding and retrieval of emotional and neutral scenes. Memory success tracked fluctuations in encoding–retrieval similarity across frontal and posterior cortices. Importantly, memory effects in posterior regions reflected increased similarity between item-specific representations during successful recognition. Mediation analyses revealed that the hippocampus mediated the link between cortical similarity and memory success, providing crucial evidence for hippocampal–cortical interactions during retrieval. Finally, because emotional arousal is known to modulate both perceptual and memory processes, similarity effects were compared for emotional and neutral scenes. Emotional arousal was associated with enhanced similarity between encoding and retrieval patterns. These findings speak to the promise of pattern similarity measures for evaluating memory representations and hippocampal–cortical interactions. PMID:22967731
An, Xianli; Yang, Ping; Chen, Siguang; Zhang, Fenfen; Yu, Duonan
2018-01-01
Several studies have shown that the isolated retrieval of a consolidated fear memory can induce a labile phase, during which extinction training can prevent the reinstatement, a form of relapse in which fear response to a fear-provoking context returns when a mild shock is presented. However, fear memory retrieval may also have another opposing result: the enhancement of fear memory. This implies that the fear memory trace can be modified by a brief retrieval. Unclear is whether the fear-impairing effect of retrieval-extinction (RE) is altered by a prior brief retrieval. The present study investigated the responses of recent and remote fear memories to the RE procedure after the presentation of an additional prior retrieval (priRet). We found that a single RE procedure effectively blocked the reinstatement of 2-day recent contextual fear memory. The memory-impairing effect of the RE procedure on recent fear was not observed when priRet was presented 6 or 24 h before the RE procedure. In contrast to the 2-day recent memory, the RE procedure failed to block the reinstatement of 36-day remote fear memory but successfully disrupted the return of remote fear memory after priRet. This memory-disruptive effect on remote memory did not occur when priRet was performed in a novel context. Nimodipine administration revealed that the blockade of priRet-induced processes recovered the effects of the RE procedure on both recent and remote fear memories. Our findings suggest that the susceptibility of recent and remote fear memories to RE procedures can be altered by an additional retrieval. PMID:29358910
An, Xianli; Yang, Ping; Chen, Siguang; Zhang, Fenfen; Yu, Duonan
2017-01-01
Several studies have shown that the isolated retrieval of a consolidated fear memory can induce a labile phase, during which extinction training can prevent the reinstatement, a form of relapse in which fear response to a fear-provoking context returns when a mild shock is presented. However, fear memory retrieval may also have another opposing result: the enhancement of fear memory. This implies that the fear memory trace can be modified by a brief retrieval. Unclear is whether the fear-impairing effect of retrieval-extinction (RE) is altered by a prior brief retrieval. The present study investigated the responses of recent and remote fear memories to the RE procedure after the presentation of an additional prior retrieval (priRet). We found that a single RE procedure effectively blocked the reinstatement of 2-day recent contextual fear memory. The memory-impairing effect of the RE procedure on recent fear was not observed when priRet was presented 6 or 24 h before the RE procedure. In contrast to the 2-day recent memory, the RE procedure failed to block the reinstatement of 36-day remote fear memory but successfully disrupted the return of remote fear memory after priRet. This memory-disruptive effect on remote memory did not occur when priRet was performed in a novel context. Nimodipine administration revealed that the blockade of priRet-induced processes recovered the effects of the RE procedure on both recent and remote fear memories. Our findings suggest that the susceptibility of recent and remote fear memories to RE procedures can be altered by an additional retrieval.
Mathematical outcomes and working memory in children with TBI and orthopedic injury.
Raghubar, Kimberly P; Barnes, Marcia A; Prasad, Mary; Johnson, Chad P; Ewing-Cobbs, Linda
2013-03-01
This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n550) or orthopedic injury (OI; n547) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI.
Mathematical Outcomes and Working Memory in Children With TBI and Orthopedic Injury
Raghubar, Kimberly P.; Barnes, Marcia A.; Prasad, Mary; Johnson, Chad P.; Ewing-Cobbs, Linda
2013-01-01
This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n =50) or orthopedic injury (OI; n=47) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI. PMID:23164058
Tracking down the path of memory: eye scanpaths facilitate retrieval of visuospatial information.
Bochynska, Agata; Laeng, Bruno
2015-09-01
Recent research points to a crucial role of eye fixations on the same spatial locations where an item appeared when learned, for the successful retrieval of stored information (e.g., Laeng et al. in Cognition 131:263-283, 2014. doi: 10.1016/j.cognition.2014.01.003 ). However, evidence about whether the specific temporal sequence (i.e., scanpath) of these eye fixations is also relevant for the accuracy of memory remains unclear. In the current study, eye fixations were recorded while looking at a checkerboard-like pattern. In a recognition session (48 h later), animations were shown where each square that formed the pattern was presented one by one, either according to the same, idiosyncratic, temporal sequence in which they were originally viewed by each participant or in a shuffled sequence although the squares were, in both conditions, always in their correct positions. Afterward, participants judged whether they had seen the same pattern before or not. Showing the elements serially according to the original scanpath's sequence yielded a significantly better recognition performance than the shuffled condition. In a forced fixation condition, where the gaze was maintained on the center of the screen, the advantage of memory accuracy for same versus shuffled scanpaths disappeared. Concluding, gaze scanpaths (i.e., the order of fixations and not simply their positions) are functional to visual memory and physical reenacting of the original, embodied, perception can facilitate retrieval.
Retrieval-Induced Inhibition in Short-Term Memory.
Kang, Min-Suk; Choi, Joongrul
2015-07-01
We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.
Everaert, Jonas; Koster, Ernst H W
2015-10-01
Emotional biases in attention modulate encoding of emotional material into long-term memory, but little is known about the role of such attentional biases during emotional memory retrieval. The present study investigated how emotional biases in memory are related to attentional allocation during retrieval. Forty-nine individuals encoded emotionally positive and negative meanings derived from ambiguous information and then searched their memory for encoded meanings in response to a set of retrieval cues. The remember/know/new procedure was used to classify memories as recollection-based or familiarity-based, and gaze behavior was monitored throughout the task to measure attentional allocation. We found that a bias in sustained attention during recollection-based, but not familiarity-based, retrieval predicted subsequent memory bias toward positive versus negative material following encoding. Thus, during emotional memory retrieval, attention affects controlled forms of retrieval (i.e., recollection) but does not modulate relatively automatic, familiarity-based retrieval. These findings enhance understanding of how distinct components of attention regulate the emotional content of memories. Implications for theoretical models and emotion regulation are discussed. (c) 2015 APA, all rights reserved).
Later maturation of the beneficial than the detrimental effect of selective memory retrieval.
Aslan, Alp; Bäuml, Karl-Heinz T
2014-04-01
In adults, selective memory retrieval can both impair and improve recall of other memories. The study reported here examined whether children also show these two faces of memory retrieval. Employing a variant of the directed-forgetting task, we asked second, fourth, and seventh graders to study a list of target and nontarget words. After study, the participants received a cue to either forget or continue remembering the list. We subsequently asked some participants to recall the nontarget words before we tested their memory for the target words; for the remaining participants, we tested memory only for the target words. Prior retrieval of nontarget words impaired retrieval of to-be-remembered target words, regardless of children's age. In contrast, prior retrieval of nontarget words improved recall of to-be-forgotten target words in seventh graders, though not in fourth and second graders. These results suggest a developmental dissociation between the two faces of memory retrieval and indicate later maturation of the beneficial effect than of the detrimental effect of selective memory retrieval.
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism
Cooper, Rose A.; Richter, Franziska R.; Bays, Paul M.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon
2017-01-01
Abstract Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population. PMID:28057726
Visual imagery in autobiographical memory: The role of repeated retrieval in shifting perspective
Butler, Andrew C.; Rice, Heather J.; Wooldridge, Cynthia L.; Rubin, David C.
2016-01-01
Recent memories are generally recalled from a first-person perspective whereas older memories are often recalled from a third-person perspective. We investigated how repeated retrieval affects the availability of visual information, and whether it could explain the observed shift in perspective with time. In Experiment 1, participants performed mini-events and nominated memories of recent autobiographical events in response to cue words. Next, they described their memory for each event and rated its phenomenological characteristics. Over the following three weeks, they repeatedly retrieved half of the mini-event and cue-word memories. No instructions were given about how to retrieve the memories. In Experiment 2, participants were asked to adopt either a first- or third-person perspective during retrieval. One month later, participants retrieved all of the memories and again provided phenomenology ratings. When first-person visual details from the event were repeatedly retrieved, this information was retained better and the shift in perspective was slowed. PMID:27064539
El Haj, Mohamad; Daoudi, Mohamed; Gallouj, Karim; Moustafa, Ahmed A; Nandrino, Jean-Louis
2018-05-11
Thanks to the current advances in the software analysis of facial expressions, there is a burgeoning interest in understanding emotional facial expressions observed during the retrieval of autobiographical memories. This review describes the research on facial expressions during autobiographical retrieval showing distinct emotional facial expressions according to the characteristics of retrieved memoires. More specifically, this research demonstrates that the retrieval of emotional memories can trigger corresponding emotional facial expressions (e.g. positive memories may trigger positive facial expressions). Also, this study demonstrates the variations of facial expressions according to specificity, self-relevance, or past versus future direction of memory construction. Besides linking research on facial expressions during autobiographical retrieval to cognitive and affective characteristics of autobiographical memory in general, this review positions this research within the broader context research on the physiologic characteristics of autobiographical retrieval. We also provide several perspectives for clinical studies to investigate facial expressions in populations with deficits in autobiographical memory (e.g. whether autobiographical overgenerality in neurologic and psychiatric populations may trigger few emotional facial expressions). In sum, this review paper demonstrates how the evaluation of facial expressions during autobiographical retrieval may help understand the functioning and dysfunctioning of autobiographical memory.
Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials
Hellerstedt, Robin; Johansson, Mikael
2016-01-01
Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit—Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit—Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks—Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation—Dentist). The participants’ memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring whereas retrieval success was reflected in an anterior positive slow wave. PMID:26901865
Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials.
Hellerstedt, Robin; Johansson, Mikael
2016-01-01
Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit-Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit-Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks-Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation-Dentist). The participants' memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring whereas retrieval success was reflected in an anterior positive slow wave.
Shifting visual perspective during memory retrieval reduces the accuracy of subsequent memories.
Marcotti, Petra; St Jacques, Peggy L
2018-03-01
Memories for events can be retrieved from visual perspectives that were never experienced, reflecting the dynamic and reconstructive nature of memories. Characteristics of memories can be altered when shifting from an own eyes perspective, the way most events are initially experienced, to an observer perspective, in which one sees oneself in the memory. Moreover, recent evidence has linked these retrieval-related effects of visual perspective to subsequent changes in memories. Here we examine how shifting visual perspective influences the accuracy of subsequent memories for complex events encoded in the lab. Participants performed a series of mini-events that were experienced from their own eyes, and were later asked to retrieve memories for these events while maintaining the own eyes perspective or shifting to an alternative observer perspective. We then examined how shifting perspective during retrieval modified memories by influencing the accuracy of recall on a final memory test. Across two experiments, we found that shifting visual perspective reduced the accuracy of subsequent memories and that reductions in vividness when shifting visual perspective during retrieval predicted these changes in the accuracy of memories. Our findings suggest that shifting from an own eyes to an observer perspective influences the accuracy of long-term memories.
Huang, Bing; Zhu, Huiwen; Zhou, Yiming; Liu, Xing; Ma, Lan
2017-01-01
Consolidated long-term fear memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS-retrieval or US-retrieval will trigger different memory reconsolidation processes is unknown. In this study, we introduced a sequential fear conditioning paradigm in which footshock (FS) was paired with two distinct sounds (CS-A and CS-B). The treatment with propranolol, a β-adrenergic receptor (β-AR) antagonist, after US (FS)-retrieval impaired freezing behavior evoked by either CS-A or CS-B. Betaxolol, a selective β1-AR antagonist, showed similar effects. However, propranolol treatment after retrieval by one CS (e.g., CS-A) only inhibited freezing behavior evoked by the same CS (i.e., CS-A), not the other CS (CS-B). These data suggest that β-AR is critically involved in reconsolidation of fear memory triggered by US- and CS-retrieval, whereas β-AR blockade after US-retrieval disrupts more CS-US associations than CS-retrieval does. Furthermore, significant CREB activation in almost the whole amygdala and hippocampus was observed after US-retrieval, but CS-retrieval only stimulated CREB activation in the lateral amygdala and the CA3 of hippocampus. In addition, propranolol treatment suppressed memory retrieval-induced CREB activation. These data indicate that US-retrieval activates more memory traces than CS-retrieval does, leading to memory reconsolidation of more CS-US associations. PMID:28848401
Retrieval of bilingual autobiographical memories: effects of cue language and cue imageability.
Mortensen, Linda; Berntsen, Dorthe; Bohn, Ocke-Schwen
2015-01-01
An important issue in theories of bilingual autobiographical memory is whether linguistically encoded memories are represented in language-specific stores or in a common language-independent store. Previous research has found that autobiographical memory retrieval is facilitated when the language of the cue is the same as the language of encoding, consistent with language-specific memory stores. The present study examined whether this language congruency effect is influenced by cue imageability. Danish-English bilinguals retrieved autobiographical memories in response to Danish and English high- or low-imageability cues. Retrieval latencies were shorter to Danish than English cues and shorter to high- than low-imageability cues. Importantly, the cue language effect was stronger for low-than high-imageability cues. To examine the relationship between cue language and the language of internal retrieval, participants identified the language in which the memories were internally retrieved. More memories were retrieved when the cue language was the same as the internal language than when the cue was in the other language, and more memories were identified as being internally retrieved in Danish than English, regardless of the cue language. These results provide further evidence for language congruency effects in bilingual memory and suggest that this effect is influenced by cue imageability.
Fiechter, Joshua L; Benjamin, Aaron S
2017-08-28
Retrieval practice has been shown to be a highly effective tool for enhancing memory, a fact that has led to major changes to educational practice and technology. However, when initial learning is poor, initial retrieval practice is unlikely to be successful and long-term benefits of retrieval practice are compromised or nonexistent. Here, we investigate the benefit of a scaffolded retrieval technique called diminishing-cues retrieval practice (Finley, Benjamin, Hays, Bjork, & Kornell, Journal of Memory and Language, 64, 289-298, 2011). Under learning conditions that favored a strong testing effect, diminishing cues and standard retrieval practice both enhanced memory performance relative to restudy. Critically, under learning conditions where standard retrieval practice was not helpful, diminishing cues enhanced memory performance substantially. These experiments demonstrate that diminishing-cues retrieval practice can widen the range of conditions under which testing can benefit memory, and so can serve as a model for the broader application of testing-based techniques for enhancing learning.
Memory Retrieval and Interference: Working Memory Issues
ERIC Educational Resources Information Center
Radvansky, Gabriel A.; Copeland, David E.
2006-01-01
Working memory capacity has been suggested as a factor that is involved in long-term memory retrieval, particularly when that retrieval involves a need to overcome some sort of interference (Bunting, Conway, & Heitz, 2004; Cantor & Engle, 1993). Previous work has suggested that working memory is related to the acquisition of information during…
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Post-retrieval late process contributes to persistence of reactivated fear memory.
Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi
2013-05-16
Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated fear memory after 7 d, but not after 2 d. In contrast, infusion of anisomycin 5- or 24-h post-retrieval was ineffective. These findings indicate that anisomycin attenuates the persistence of reactivated fear memory in a time-dependent manner. We propose that late protein synthesis is required for memory persistence after retrieval.
Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer's disease mice.
Perusini, Jennifer N; Cajigas, Stephanie A; Cohensedgh, Omid; Lim, Sean C; Pavlova, Ina P; Donaldson, Zoe R; Denny, Christine A
2017-10-01
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. APPswe/PS1dE9 (APP/PS1) mice have been developed as an AD model and are characterized by plaque formation at 4-6 months of age. Here, we sought to better understand AD-related cognitive decline by characterizing various types of memory. In order to better understand how memory declines with AD, APP/PS1 mice were bred with ArcCreER T2 mice. In this line, neural ensembles activated during memory encoding can be indelibly tagged and directly compared with neural ensembles activated during memory retrieval (i.e., memory traces/engrams). We first administered a battery of tests examining depressive- and anxiety-like behaviors, as well as spatial, social, and cognitive memory to APP/PS1 × ArcCreER T2 × channelrhodopsin (ChR2)-enhanced yellow fluorescent protein (EYFP) mice. Dentate gyrus (DG) neural ensembles were then optogenetically stimulated in these mice to improve memory impairment. AD mice had the most extensive differences in fear memory, as assessed by contextual fear conditioning (CFC), which was accompanied by impaired DG memory traces. Optogenetic stimulation of DG neural ensembles representing a CFC memory increased memory retrieval in the appropriate context in AD mice when compared with control (Ctrl) mice. Moreover, optogenetic stimulation facilitated reactivation of the neural ensembles that were previously activated during memory encoding. These data suggest that activating previously learned DG memory traces can rescue cognitive impairments and point to DG manipulation as a potential target to treat memory loss commonly seen in AD. © 2017 Wiley Periodicals, Inc.
Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno
2012-01-01
There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883
Determinants to trigger memory reconsolidation: The role of retrieval and updating information.
Rodriguez-Ortiz, Carlos J; Bermúdez-Rattoni, Federico
2017-07-01
Long-term memories can undergo destabilization/restabilization processes, collectively called reconsolidation. However, the parameters that trigger memory reconsolidation are poorly understood and are a matter of intense investigation. Particularly, memory retrieval is widely held as requisite to initiate reconsolidation. This assumption makes sense since only relevant cues will induce reconsolidation of a specific memory. However, recent studies show that pharmacological inhibition of retrieval does not avoid memory from undergoing reconsolidation, indicating that memory reconsolidation occurs through a process that can be dissociated from retrieval. We propose that retrieval is not a unitary process but has two dissociable components; one leading to the expression of memory and the other to reconsolidation, referred herein as executer and integrator respectively. The executer would lead to the behavioral expression of the memory. This component would be the one disrupted on the studies that show reconsolidation independence from retrieval. The integrator would deal with reconsolidation. This component of retrieval would lead to long-term memory destabilization when specific conditions are met. We think that an important number of reports are consistent with the hypothesis that reconsolidation is only initiated when updating information is acquired. We suggest that the integrator would initiate reconsolidation to integrate updating information into long-term memory. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-01-01
From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue’s relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue’s capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue–target distinctiveness. In Experiment 1, associative memory differences for cue–target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults’ associative memory deficits reduced the impact of competing retrieval candidates—hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. PMID:27831714
Badham, Stephen P; Poirier, Marie; Gandhi, Navina; Hadjivassiliou, Anna; Maylor, Elizabeth A
2016-11-01
From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue's relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue's capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue-target distinctiveness. In Experiment 1, associative memory differences for cue-target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults' associative memory deficits reduced the impact of competing retrieval candidates-hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Retrieving fear memories, as time goes by…
Do Monte, Fabricio H.; Quirk, Gregory J.; Li, Bo; Penzo, Mario A.
2016-01-01
Fear conditioning researches have led to a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, knowledge about the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring clarity and raise awareness on the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points after conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus, and its BDNFergic efferents to the central nucleus of the amygdala, for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change across time, and the functional benefits of recruiting structures such as the paraventricular nucleus into the retrieval circuit. PMID:27217148
Sestieri, Carlo; Corbetta, Maurizio; Romani, Gian Luca; Shulman, Gordon L.
2011-01-01
The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g. episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative “default” processes such as episodic memory retrieval. Using fMRI, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in post-retrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. While angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval. PMID:21430142
Age differences in memory for meaningful and arbitrary associations: A memory retrieval account.
Amer, Tarek; Giovanello, Kelly S; Grady, Cheryl L; Hasher, Lynn
2018-02-01
Older adults typically show poor associative memory performance relative to younger adults. This age-related effect, however, is mediated by the meaningfulness of the materials used, such that age differences are minimized with the use of information that is consistent with prior knowledge. While this effect has been interpreted as facilitative learning through schematic support, the role of memory retrieval on this effect has yet to be explored. Using an associative memory paradigm that varied the extent of controlled retrieval for previously studied meaningful or arbitrary associations, older and younger adults in the present study retrieved realistic and unrealistic grocery item prices in a speeded, or in a slow, more control-based retrieval condition. There were no age differences in memory for realistic (meaningful) prices in either condition; however, younger adults showed better memory than older adults for unrealistic prices in the controlled retrieval condition only. These results suggest that age differences in memory for arbitrary associations can, at least partly, be accounted for by age reductions in strategic, controlled retrieval. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking.
Luo, Yi-xiao; Xue, Yan-xue; Liu, Jian-feng; Shi, Hai-shui; Jian, Min; Han, Ying; Zhu, Wei-li; Bao, Yan-ping; Wu, Ping; Ding, Zeng-bo; Shen, Hao-wei; Shi, Jie; Shaham, Yavin; Lu, Lin
2015-07-14
We recently reported that a conditioned stimulus (CS) memory retrieval-extinction procedure decreases reinstatement of cocaine and heroin seeking in rats and heroin craving in humans. Here we show that non-contingent cocaine or methylphenidate injections (UCS retrieval) 1 h before the extinction sessions decreases cocaine-priming-induced reinstatement, spontaneous recovery, and renewal of cocaine seeking in rats. Unlike the CS-based memory retrieval-extinction procedure, the UCS memory retrieval manipulation decreases renewal and reinstatement of cocaine seeking in the presence of cocaine cues that were not present during extinction training and also decreases cocaine seeking when the procedure commences after 28 days of abstinence. The inhibitory effect of the UCS retrieval manipulation on cocaine-priming-induced reinstatement is mediated by regulation of AMPA-receptor endocytosis in the basolateral amygdala. The UCS memory retrieval-extinction procedure has superior relapse prevention characteristics than the CS memory retrieval-extinction procedure and could be a promising method for decreasing relapse in human addicts.
A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking
Luo, Yi-xiao; Xue, Yan-xue; Liu, Jian-feng; Shi, Hai-shui; Jian, Min; Han, Ying; Zhu, Wei-li; Bao, Yan-ping; Wu, Ping; Ding, Zeng-bo; Shen, Hao-wei; Shi, Jie; Shaham, Yavin; Lu, Lin
2015-01-01
We recently reported that a conditioned stimulus (CS) memory retrieval-extinction procedure decreases reinstatement of cocaine and heroin seeking in rats and heroin craving in humans. Here we show that non-contingent cocaine or methylphenidate injections (UCS retrieval) 1 h before the extinction sessions decreases cocaine-priming-induced reinstatement, spontaneous recovery, and renewal of cocaine seeking in rats. Unlike the CS-based memory retrieval-extinction procedure, the UCS memory retrieval manipulation decreases renewal and reinstatement of cocaine seeking in the presence of cocaine cues that were not present during extinction training and also decreases cocaine seeking when the procedure commences after 28 days of abstinence. The inhibitory effect of the UCS retrieval manipulation on cocaine-priming-induced reinstatement is mediated by regulation of AMPA-receptor endocytosis in the basolateral amygdala. The UCS memory retrieval-extinction procedure has superior relapse prevention characteristics than the CS memory retrieval-extinction procedure and could be a promising method for decreasing relapse in human addicts. PMID:26169171
Urhan, A Utku; Brodin, Anders
2015-05-01
Scatter hoarding birds are known for their accurate spatial memory. In a previous experiment, we tested the retrieval accuracy in marsh tits in a typical laboratory set-up for this species. We also tested the performance of humans in this experimental set-up. Somewhat unexpectedly, humans performed much better than marsh tits. In the first five attempts, humans relocated almost 90 % of the caches they had hidden 5 h earlier. Marsh tits only relocated 25 % in the first five attempts and just above 40 % in the first ten attempts. Typically, in this type of experiment, the birds will be caching and retrieving many times in the same sites in the same experimental room. This is very different from the conditions in nature where hoarding parids only cache once in a caching site. Hence, it is possible that memories from previous sessions will disturb the formation of new memories. If there is such proactive interference, the prediction is that success should decay over sessions. Here, we have designed an experiment to investigate whether there is such memory interference in this type of experiment. We allowed marsh tits and humans to cache and retrieve in three repeated sessions without prior experience of the arena. The performance did not change over sessions, and on average, marsh tits correctly visited around 25 % of the caches in the first five attempts. The corresponding success in humans was constant across sessions, and it was around 90 % on average. We conclude that the somewhat poor performance of the marsh tits did not depend on proactive memory interference. We also discuss other possible reasons for why marsh tits in general do not perform better in laboratory experiments.
Oscillatory Reinstatement Enhances Declarative Memory.
Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J
2017-10-11
Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.
Parallel pathways for cross-modal memory retrieval in Drosophila.
Zhang, Xiaonan; Ren, Qingzhong; Guo, Aike
2013-05-15
Memory-retrieval processing of cross-modal sensory preconditioning is vital for understanding the plasticity underlying the interactions between modalities. As part of the sensory preconditioning paradigm, it has been hypothesized that the conditioned response to an unreinforced cue depends on the memory of the reinforced cue via a sensory link between the two cues. To test this hypothesis, we studied cross-modal memory-retrieval processing in a genetically tractable model organism, Drosophila melanogaster. By expressing the dominant temperature-sensitive shibire(ts1) (shi(ts1)) transgene, which blocks synaptic vesicle recycling of specific neural subsets with the Gal4/UAS system at the restrictive temperature, we specifically blocked visual and olfactory memory retrieval, either alone or in combination; memory acquisition remained intact for these modalities. Blocking the memory retrieval of the reinforced olfactory cues did not impair the conditioned response to the unreinforced visual cues or vice versa, in contrast to the canonical memory-retrieval processing of sensory preconditioning. In addition, these conditioned responses can be abolished by blocking the memory retrieval of the two modalities simultaneously. In sum, our results indicated that a conditioned response to an unreinforced cue in cross-modal sensory preconditioning can be recalled through parallel pathways.
Prefrontal cortical GABA modulation of spatial reference and working memory.
Auger, Meagan L; Floresco, Stan B
2014-10-31
Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.
If It Is Stored in My Memory I Will Surely Retrieve It: Anatomy of a Metacognitive Belief
ERIC Educational Resources Information Center
Kornell, Nate
2015-01-01
Retrieval failures--moments when a memory will not come to mind--are a universal human experience. Yet many laypeople believe human memory is a reliable storage system in which a stored memory should be accessible. I predicted that people would see retrieval failures as aberrations and predict that fewer retrieval failures would happen in the…
Positive facial expressions during retrieval of self-defining memories.
Gandolphe, Marie Charlotte; Nandrino, Jean Louis; Delelis, Gérald; Ducro, Claire; Lavallee, Audrey; Saloppe, Xavier; Moustafa, Ahmed A; El Haj, Mohamad
2017-11-14
In this study, we investigated, for the first time, facial expressions during the retrieval of Self-defining memories (i.e., those vivid and emotionally intense memories of enduring concerns or unresolved conflicts). Participants self-rated the emotional valence of their Self-defining memories and autobiographical retrieval was analyzed with a facial analysis software. This software (Facereader) synthesizes the facial expression information (i.e., cheek, lips, muscles, eyebrow muscles) to describe and categorize facial expressions (i.e., neutral, happy, sad, surprised, angry, scared, and disgusted facial expressions). We found that participants showed more emotional than neutral facial expressions during the retrieval of Self-defining memories. We also found that participants showed more positive than negative facial expressions during the retrieval of Self-defining memories. Interestingly, participants attributed positive valence to the retrieved memories. These findings are the first to demonstrate the consistency between facial expressions and the emotional subjective experience of Self-defining memories. These findings provide valuable physiological information about the emotional experience of the past.
Post-Retrieval Extinction Attenuates Cocaine Memories
Sartor, Gregory C; Aston-Jones, Gary
2014-01-01
Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine. PMID:24257156
Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.
Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno
2016-05-01
Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411
Emotional memory can be persistently weakened by suppressing cortisol during retrieval.
Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan
2015-03-01
Cortisol's effects on memory follow an inverted U-shaped function such that memory retrieval is impaired with very low concentrations, presumably due to insufficient activation of high-affine mineralocorticoid receptors (MR), or with very high concentrations, due to predominant low-affine glucocorticoid receptor (GR) activation. Through corresponding changes in re-encoding, the retrieval effect of cortisol might translate into a persistent change of the retrieved memory. We tested whether partial suppression of morning cortisol synthesis by metyrapone, leading to intermediate, circadian nadir-like levels with presumed predominant MR activation, improves retrieval, particularly of emotional memory, and persistently changes the memory. In a randomized, placebo-controlled, double-blind, within-subject cross-over design, 18 men were orally administered metyrapone (1g) vs. placebo at 4:00 AM to suppress the morning cortisol rise. Retrieval of emotional and neutral texts and pictures (learned 3 days earlier) was assessed 4h after substance administration and a second time one week later. Metyrapone suppressed endogenous cortisol release to circadian nadir-equivalent levels at the time of retrieval testing. Contrary to our expectations, metyrapone significantly impaired free recall of emotional texts (p<.05), whereas retrieval of neutral texts or pictures remained unaffected. One week later, participants still showed lower memory for emotional texts in the metyrapone than placebo condition (p<.05). Our finding that suppressing morning cortisol to nadir-like concentrations not only impairs acute retrieval, but also persistently weakens emotional memories corroborates the concept that retrieval effects of cortisol produce persistent memory changes, possibly by affecting re-encoding. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wingenfeld, Katja; Driessen, Martin; Schlosser, Nicole; Terfehr, Kirsten; Carvalho Fernando, Silvia; Wolf, Oliver Tobias
2013-09-01
In healthy participants, cortisol administration has been found to impair autobiographic memory retrieval. We recently reported that administration of 10 mg of hydrocortisone had enhancing effects on autobiographical memory retrieval, i.e. more specific memory retrieval, in patients with posttraumatic stress disorder (PTSD), while in healthy controls the impairing effects were replicated. We here report a re-analysis of these data with respect to cue-word valence and retrieval time. In a placebo-controlled cross-over study, 43 patients with PTSD and 43 age- and sex-matched healthy controls received either placebo or hydrocortisone orally before the autobiographical memory test was performed. We found that the effects of cortisol on memory retrieval depended on cue-word valence and group (significant interaction effects of drug by group and drug by valence by group). The enhancing effect of cortisol on memory retrieval in PTSD seemed to be relatively independent of cue-word valence, while in the control group the impairing effects of cortisol were only seen in response to neutral cue-words. The second result of the study was that in patients as well as in controls, cortisol administration led to faster memory retrieval compared to placebo. This was seen in response to positive and (to lesser extend) to neutral cue-words, but not in response to negative cue-words. Our findings illustrate that the opposing effects of cortisol on autobiographical memory retrieval in PTSD patients and controls are further modulated by the emotionality of the cue-words.
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory
Otis, James M.; Dashew, Kidane B.; Mueller, Devin
2013-01-01
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents NE-induced potentiation of PL-mPFC pyramidal and GABAergic neuronal excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse. PMID:23325262
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory.
Otis, James M; Dashew, Kidane B; Mueller, Devin
2013-01-16
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents norepinephrine-induced potentiation of PL-mPFC pyramidal cell and γ-aminobutyric-acid (GABA) interneuron excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse.
The Testing Effect under Divided Attention
ERIC Educational Resources Information Center
Buchin, Zachary L.; Mulligan, Neil W.
2017-01-01
Memory retrieval often enhances later memory compared with restudying (i.e., the testing effect), indicating that retrieval does not simply reveal but also modifies memory representations. Dividing attention (DA) during encoding greatly disrupts later memory performance while DA during retrieval typically has modest effects--but what of the…
Rodriguez-Ortiz, Carlos J.; De la Cruz, Vanesa; Gutiérrez, Ranier; Bermudez-Rattoni, Federico
2005-01-01
Consolidation theory proposes that through the synthesis of new proteins recently acquired memories are strengthened over time into a stable long-term memory trace. However, evidence has accumulated suggesting that retrieved memory is susceptible to disruption, seeming to consolidate again (reconsolidate) to be retained in long-term storage. Here we show that intracortical blockade of protein synthesis in the gustatory cortex after retrieval of taste-recognition memory disrupts previously consolidated memory to a restricted degree only if the experience is updated. Our results suggest that retrieved memory can be modified as part of a mechanism for incorporating updated information into previously consolidated memory. PMID:16166395
Zielinski, Mark C; Tang, Wenbo; Jadhav, Shantanu P
2017-12-18
Sequential activity is seen in the hippocampus during multiple network patterns, prominently as replay activity during both awake and sleep sharp-wave ripples (SWRs), and as theta sequences during active exploration. Although various mnemonic and cognitive functions have been ascribed to these hippocampal sequences, evidence for these proposed functions remains primarily phenomenological. Here, we briefly review current knowledge about replay events and theta sequences in spatial memory tasks. We reason that in order to gain a mechanistic and causal understanding of how these patterns influence memory and cognitive processing, it is important to consider how these sequences influence activity in other regions, and in particular, the prefrontal cortex, which is crucial for memory-guided behavior. For spatial memory tasks, we posit that hippocampal-prefrontal interactions mediated by replay and theta sequences play complementary and overlapping roles at different stages in learning, supporting memory encoding and retrieval, deliberative decision making, planning, and guiding future actions. This framework offers testable predictions for future physiology and closed-loop feedback inactivation experiments for specifically targeting hippocampal sequences as well as coordinated prefrontal activity in different network states, with the potential to reveal their causal roles in memory-guided behavior. © 2017 Wiley Periodicals, Inc.
The effect of environmental harshness on neurogenesis: a large-scale comparison.
Chancellor, Leia V; Roth, Timothy C; LaDage, Lara D; Pravosudov, Vladimir V
2011-03-01
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical. Copyright © 2010 Wiley Periodicals, Inc.
Mace, John H
2009-01-01
Recent studies have shown that conscious recollection of the past occurs spontaneously when subjects voluntarily recall their own past experiences or a list of previously studied words. Naturalistic diary studies and laboratory studies of this phenomenon, often called involuntary conscious memory (ICM), show that it occurs in 2 ways. One is direct ICM retrieval, which occurs when a cue spontaneously triggers a conscious memory; the other is chained ICM retrieval, which occurs when a retrieved conscious memory spontaneously triggers another. Laboratory studies investigating ICM show that chained ICM retrieval occurs on voluntary autobiographical memory tasks. The present results show that chained ICM retrieval also occurs on a voluntary word list memory task (cued recall). These results are among a handful suggesting that ICM retrieval routinely occurs during voluntary recall.
The effect of cue content on retrieval from autobiographical memory.
Uzer, Tugba; Brown, Norman R
2017-01-01
It has long been argued that personal memories are usually generated in an effortful search process in word-cueing studies. However, recent research (Uzer, Lee, & Brown, 2012) shows that direct retrieval of autobiographical memories, in response to word cues, is common. This invites the question of whether direct retrieval phenomenon is generalizable beyond the standard laboratory paradigm. Here we investigated prevalence of direct retrieval of autobiographical memories cued by specific and individuated cues versus generic cues. In Experiment 1, participants retrieved memories in response to cues from their own life (e.g., the names of friends) and generic words (e.g., chair). In Experiment 2, participants provided their personal cues two or three months prior to coming to the lab (min: 75days; max: 100days). In each experiment, RT was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that personal cues elicited a high rate of direct retrieval. Personal cues were more likely to elicit direct retrieval than generic word cues, and as a consequence, participants responded faster, on average, to the former than to the latter. These results challenge the constructive view of autobiographical memory and suggest that autobiographical memories consist of pre-stored event representations, which are largely governed by associative mechanisms. These demonstrations offer theoretically interesting questions such as why are we not overwhelmed with directly retrieved memories cued by everyday familiar surroundings? Copyright © 2016 Elsevier B.V. All rights reserved.
Stability of retrieved memory: inverse correlation with trace dominance.
Eisenberg, Mark; Kobilo, Tali; Berman, Diego E; Dudai, Yadin
2003-08-22
In memory consolidation, the memory trace stabilizes and becomes resistant to certain amnesic agents. The textbook account is that for any memorized item, consolidation starts and ends just once. However, evidence has accumulated that upon activation in retrieval, the trace may reconsolidate. Whereas some authors reported transient renewed susceptibility of retrieved memories to consolidation blockers, others could not detect it. Here, we report that in both conditioned taste aversion in the rat and fear conditioning in the medaka fish, the stability of retrieved memory is inversely correlated with the control of behavior by that memory. This result may explain some conflicting findings on reconsolidation of activated memories.
Divided attention improves delayed, but not immediate retrieval of a consolidated memory.
Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris
2014-01-01
A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1) on a future memory test (Test 2). These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.
Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.
Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin
2016-01-01
Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.
Sormaz, Mladen; Jefferies, Elizabeth; Bernhardt, Boris C; Karapanagiotidis, Theodoros; Mollo, Giovanna; Bernasconi, Neda; Bernasconi, Andrea; Hartley, Tom; Smallwood, Jonathan
2017-05-15
The hippocampus contributes to episodic, spatial and semantic aspects of memory, yet individual differences within and between these functions are not well-understood. In 136 healthy individuals, we investigated whether these differences reflect variation in the strength of connections between functionally-specialised segments of the hippocampus and diverse cortical regions that participate in different aspects of memory. Better topographical memory was associated with stronger connectivity between lingual gyrus and left anterior, rather than posterior, hippocampus. Better semantic memory was associated with increased connectivity between the intracalcarine/cuneus and left, rather than right, posterior hippocampus. Notably, we observed a double dissociation between semantic and topographical memory: better semantic memory was associated with stronger connectivity between left temporoparietal cortex and left anterior hippocampus, while better topographic memory was linked to stronger connectivity with right anterior hippocampus. Together these data support a division-of-labour account of hippocampal functioning: at the population level, differences in connectivity across the hippocampus reflect functional specialisation for different facets of memory, while variation in these connectivity patterns across individuals is associated with differences in the capacity to retrieve different types of information. In particular, within-hemisphere connectivity between hippocampus and left temporoparietal cortex supports conceptual processing at the expense of spatial ability. Copyright © 2017. Published by Elsevier Inc.
Role of autobiographical memory in social problem solving and depression.
Goddard, L; Dritschel, B; Burton, A
1996-11-01
Depressed patients frequently exhibit deficiencies in social problem solving (SPS). A possible cause of this deficit is an impairment in patients' ability to retrieve specific autobiographical memories. A clinically depressed group and a hospital control group performed the Means-End Problem-Solving (MEPS; J. J. Platt & G. Spivack, 1975a) task, during which they were required to attend to the memories retrieved during solution generation. Memories were categorized according to whether they were specific, categoric, or extended and whether the valence of the memories was positive or negative. Results support the general hypothesis that SPS skill is a function of autobiographical memory retrieval as measured by a cuing task and by the types of memories retrieved during the MEPS. However, the dysfunctional nature of categoric memories in SPS, rather than the importance of specific memories, was highlighted in the depressed group. Valence proved to be an unimportant variable in SPS ability. The cyclical links among autobiographical memory retrieval, SPS skills, and depression are discussed.
Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee
2012-09-19
Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases.
Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan
2013-11-01
Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple start arms. The CA3 and CA1 activation during remote memory recall is consistent with the interpretation that an older memory might require increased pattern completion and/or relearning after longer time intervals. Irrespective of whether the hippocampus is required for remote memory recall, the hippocampus might engage in computations that either support recall of remote memories or that update remote memories. Copyright © 2013 Elsevier Inc. All rights reserved.
Prefrontal and medial temporal contributions to episodic memory-based reasoning.
Suzuki, Chisato; Tsukiura, Takashi; Mochizuki-Kawai, Hiroko; Shigemune, Yayoi; Iijima, Toshio
2009-03-01
Episodic memory retrieval and reasoning are fundamental psychological components of our daily lives. Although previous studies have investigated the brain regions associated with these processes separately, the neural mechanisms of reasoning based on episodic memory retrieval are largely unknown. Here, we investigated the neural correlates underlying episodic memory-based reasoning using functional magnetic resonance imaging (fMRI). During fMRI scanning, subjects performed three tasks: reasoning, episodic memory retrieval, and episodic memory-based reasoning. We identified dissociable activations related to reasoning, episodic memory retrieval, and linking processes between the two. Regions related to reasoning were identified in the left ventral prefrontal cortices (PFC), and those related to episodic memory retrieval were found in the right medial temporal lobe (MTL) regions. In addition, activations predominant in the linking process between the two were found in the left dorsal and right ventral PFC. These findings suggest that episodic memory-based reasoning is composed of at least three processes, i.e., reasoning, episodic memory retrieval, and linking processes between the two, and that activation of both the PFC and MTL is crucial in episodic memory-based reasoning. These findings are the first to demonstrate that PFC and MTL regions contribute differentially to each process in episodic memory-based reasoning.
Storm, Benjamin C; Bui, Dung C
2016-11-01
Retrieving a subset of items from memory can cause forgetting of other items in memory, a phenomenon referred to as retrieval-induced forgetting (RIF). Individuals who exhibit greater amounts of RIF have been shown to also exhibit superior working memory capacity (WMC) and faster stop-signal reaction times (SSRTs), results which have been interpreted as suggesting that RIF reflects an inhibitory process that is mediated by the processes of executive control. Across four experiments, we sought to further elucidate this issue by manipulating the way in which participants retrieved items during retrieval practice and examining how the resulting effects of forgetting correlated with WMC (Experiments 1-3) and SSRT (Experiment 4). Significant correlations were observed when participants retrieved items from an earlier study phase (within-list retrieval practice), but not when participants generated items from semantic memory (extra-list retrieval practice). These results provide important new insight into the role of executive-control processes in RIF.
Working memory capacity predicts the beneficial effect of selective memory retrieval.
Schlichting, Andreas; Aslan, Alp; Holterman, Christoph; Bäuml, Karl-Heinz T
2015-01-01
Selective retrieval of some studied items can both impair and improve recall of the other items. This study examined the role of working memory capacity (WMC) for the two effects of memory retrieval. Participants studied an item list consisting of predefined target and nontarget items. After study of the list, half of the participants performed an imagination task supposed to induce a change in mental context, whereas the other half performed a counting task which does not induce such context change. Following presentation of a second list, memory for the original list's target items was tested, either with or without preceding retrieval of the list's nontarget items. Consistent with previous work, preceding nontarget retrieval impaired target recall in the absence of the context change, but improved target recall in its presence. In particular, there was a positive relationship between WMC and the beneficial, but not the detrimental effect of memory retrieval. On the basis of the view that the beneficial effect of memory retrieval reflects context-reactivation processes, the results indicate that individuals with higher WMC are better able to capitalise on retrieval-induced context reactivation than individuals with lower WMC.
Schoch, Sarah F; Cordi, Maren J; Rasch, Björn
2017-11-01
Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a "selective" benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this "selective" benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test. Copyright © 2017 Elsevier Inc. All rights reserved.
Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment.
Hota, Sunil Kumar; Barhwal, Kalpana; Baitharu, Iswar; Prasad, Dipti; Singh, Shashi Bala; Ilavazhagan, Govindasamy
2009-04-01
Hypobaric hypoxia induced memory impairment has been attributed to several factors including increased oxidative stress, depleted mitochondrial bioenergetics, altered neurotransmission and apoptosis. This multifactorial response of the brain to hypobaric hypoxia limits the use of therapeutic agents that target individual pathways for ameliorating hypobaric hypoxia induced memory impairment. The present study aimed at exploring the therapeutic potential of a bacoside rich leaf extract of Bacopa monniera in improving the memory functions in hypobaric conditions. The learning ability was evaluated in male Sprague Dawley rats along with memory retrieval following exposure to hypobaric conditions simulating an altitude of 25,000 ft for different durations. The effect of bacoside administration on apoptosis, cytochrome c oxidase activity, ATP levels, and oxidative stress markers and on plasma corticosterone levels was investigated. Expression of NR1 subunit of N-methyl-d-aspartate receptors, neuronal cell adhesion molecules and was also studied along with CREB phosphorylation to elucidate the molecular mechanisms of bacoside action. Bacoside administration was seen to enhance learning ability in rats along with augmentation in memory retrieval and prevention of dendritic atrophy following hypoxic exposure. In addition, it decreased oxidative stress, plasma corticosterone levels and neuronal degeneration. Bacoside administration also increased cytochrome c oxidase activity along with a concomitant increase in ATP levels. Hence, administration of bacosides could be a useful therapeutic strategy in ameliorating hypobaric hypoxia induced cognitive dysfunctions and other related neurological disorders.
ERIC Educational Resources Information Center
Mei, Hao; Logothetis, Nikos K.; Eschenko, Oxana
2018-01-01
Spatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and…
Greenberg, Jonathan; Meiran, Nachshon
2014-01-01
Background: Retrieval of opposite mood autobiographical memories serves emotion regulation, yet the factors influencing this ability are poorly understood. Methods: Three studies examined the effect of mood valence (sad vs. happy) and degree of emotional engagement on fluency of mood incongruent retrieval by manipulating emotional engagement and examining the effect of emotional film clips on the Fluency of Autobiographical Memory task. Results: Following both sad and happy film clips, participants who received emotionally engaging instructions exhibited a greater recall latency of the first opposite mood memory, and had generated less such memories than those receiving emotionally disengaging instructions (Studies 1 and 2). A happy mood induction resulted in recollection of fewer mood incongruent memories compared to a sad mood induction. Providing emotionally engaging instructions was found to specifically hinder mood incongruent retrieval, without impairing mood congruent retrieval (Study 3). Conclusion: High emotional engagement seems to impair the retrieval of mood incongruent memories. Being in a happy mood may also partially impair such retrieval. Implications regarding emotional regulation are discussed. PMID:24570671
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment. PMID:23907403
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.
Sestieri, Carlo; Corbetta, Maurizio; Romani, Gian Luca; Shulman, Gordon L
2011-03-23
The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g., episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative "default" processes such as episodic memory retrieval. Using functional magnetic resonance imaging, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting-state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in postretrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. Whereas angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval.
Autobiographical Memory Performance in Alzheimer's Disease Depends on Retrieval Frequency.
Müller, Stephan; Mychajliw, Christian; Reichert, Carolin; Melcher, Tobias; Leyhe, Thomas
2016-04-18
Alzheimer's disease (AD) is characterized by memory disturbances primarily caused by pathogenic mechanisms affecting medial temporal lobe structures. As proposed by current theories of memory formation, this decrease is mediated by the age of the acquired knowledge. However, they cannot fully explain specific patterns of retrograde amnesia in AD. In the current study we examined an alternative approach and investigated whether the extent and severity of retrograde amnesia in AD is mediated by the frequency of memory retrieval or whether it depends on the mere age of knowledge. We compared recall of autobiographical incidents from three life periods in patients with amnestic mild cognitive impairment (aMCI), patients with early dementia of Alzheimer type (eDAT), and healthy control (HC) individuals using the Autobiographical Memory Interview. Retrieval frequency was operationalized by a paired comparison analysis. In contrast to HC individuals, recall of autobiographical incidents was impaired in patients with aMCI and eDAT following Ribot's gradient, with a reduced memory loss for remote compared to more recent life events. However, there was a strong effect of retrieval frequency on memory performance with frequently retrieved incidents memorized in more detail than less frequently retrieved episodes. Remote memories were recalled more often than recent ones. These findings suggest that more frequently retrieved autobiographical memories generally become more independent of the hippocampal complex and might thus be better protected against early hippocampal damage related to AD. Hence, the extent of retrograde amnesia in AD appears mainly mediated by the frequency of memory retrieval, which could plausibly explain why cognitive activity can effectively delay the onset of memory decline in AD.
Arousal-But Not Valence-Reduces False Memories at Retrieval.
Mirandola, Chiara; Toffalini, Enrico
2016-01-01
Mood affects both memory accuracy and memory distortions. However, some aspects of this relation are still poorly understood: (1) whether valence and arousal equally affect false memory production, and (2) whether retrieval-related processes matter; the extant literature typically shows that mood influences memory performance when it is induced before encoding, leaving unsolved whether mood induced before retrieval also impacts memory. We examined how negative, positive, and neutral mood induced before retrieval affected inferential false memories and related subjective memory experiences. A recognition-memory paradigm for photographs depicting script-like events was employed. Results showed that individuals in both negative and positive moods-similar in arousal levels-correctly recognized more target events and endorsed fewer false memories (and these errors were linked to remember responses less frequently), compared to individuals in neutral mood. This suggests that arousal (but not valence) predicted memory performance; furthermore, we found that arousal ratings provided by participants were more adequate predictors of memory performance than their actual belonging to either positive, negative or neutral mood groups. These findings suggest that arousal has a primary role in affecting memory, and that mood exerts its power on true and false memory even when induced at retrieval.
Arousal—But Not Valence—Reduces False Memories at Retrieval
Mirandola, Chiara; Toffalini, Enrico
2016-01-01
Mood affects both memory accuracy and memory distortions. However, some aspects of this relation are still poorly understood: (1) whether valence and arousal equally affect false memory production, and (2) whether retrieval-related processes matter; the extant literature typically shows that mood influences memory performance when it is induced before encoding, leaving unsolved whether mood induced before retrieval also impacts memory. We examined how negative, positive, and neutral mood induced before retrieval affected inferential false memories and related subjective memory experiences. A recognition-memory paradigm for photographs depicting script-like events was employed. Results showed that individuals in both negative and positive moods–similar in arousal levels–correctly recognized more target events and endorsed fewer false memories (and these errors were linked to remember responses less frequently), compared to individuals in neutral mood. This suggests that arousal (but not valence) predicted memory performance; furthermore, we found that arousal ratings provided by participants were more adequate predictors of memory performance than their actual belonging to either positive, negative or neutral mood groups. These findings suggest that arousal has a primary role in affecting memory, and that mood exerts its power on true and false memory even when induced at retrieval. PMID:26938737
Effect of tobacco craving cues on memory encoding and retrieval in smokers.
Heishman, Stephen J; Boas, Zachary P; Hager, Marguerite C; Taylor, Richard C; Singleton, Edward G; Moolchan, Eric T
2006-07-01
Previous studies have shown that cue-elicited tobacco craving disrupted performance on cognitive tasks; however, no study has examined directly the effect of cue-elicited craving on memory encoding and retrieval. A distinction between encoding and retireval has been reported such that memory is more impaired when attention is divided at encoding than at retrieval. This study tested the hypothesis that active imagery of smoking situations would impair encoding processes, but have little effect on retrieval. Imagery scripts (cigarette craving and neutral content) were presented either before presentation of a word list (encoding trials) or before word recall (retrieval trials). A working memory task at encoding and free recall of words were assessed. Results indicated that active imagery disrupted working memory on encoding trials, but not on retrieval trials. There was a trend toward impaired working memory following craving scripts compared with neutral scripts. These data support the hypothesis that the cognitive underpinnings of encoding and retrieval processes are distinct.
Individual Differences in the Effects of Retrieval from Long-Term Memory
ERIC Educational Resources Information Center
Brewer, Gene A.; Unsworth, Nash
2012-01-01
The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…
Alcohol and Memory: Retrieval Processes
ERIC Educational Resources Information Center
Birnbaum, Isabel M.; And Others
1978-01-01
The influence of alcohol intoxication on the retrieval of information from memory was investigated in nonalcoholic subjects Intoxicated subjects recalled fewer categories and words within categories. The retrieval stage of memory did not appear to be affected by alcohol. (SW)
A requirement for memory retrieval during and after long-term extinction learning
Ouyang, Ming; Thomas, Steven A.
2005-01-01
Current learning theories are based on the idea that learning is driven by the difference between expectations and experience (the delta rule). In extinction, one learns that certain expectations no longer apply. Here, we test the potential validity of the delta rule by manipulating memory retrieval (and thus expectations) during extinction learning. Adrenergic signaling is critical for the time-limited retrieval (but not acquisition or consolidation) of contextual fear. Using genetic and pharmacologic approaches to manipulate adrenergic signaling, we find that long-term extinction requires memory retrieval but not conditioned responding. Identical manipulations of the adrenergic system that do not affect memory retrieval do not alter extinction. The results provide substantial support for the delta rule of learning theory. In addition, the timing over which extinction is sensitive to adrenergic manipulation suggests a model whereby memory retrieval occurs during, and several hours after, extinction learning to consolidate long-term extinction memory. PMID:15947076
Célérier, Aurélie; Piérard, Christophe; Rachbauer, Dagmar; Sarrieau, Alain; Béracochéa, Daniel
2004-01-01
The present study was aimed at simultaneously determining on the same subject, the effects of stress on retrieval of flexible (contextual or temporal) or stable (spatial) information. Three behavioral paradigms carried out in a four-hole board were designed as follows: (1) Simple Discrimination (SD), in which mice learned a single discrimination; (2) Contextual and Serial Discriminations (CSD), in which mice learned two successive discriminations on two different internal contexts; (3) Spatial Serial Discriminations (SSD), in which mice learned two successive discriminations on an identical internal context. The stressor (three inescapable electric footshocks) was delivered 5 min before retention, occurring 5 min or 24 h after acquisition. Results showed that this stressor increased plasmatic corticosterone levels and fear reactivity in an elevated-plus-maze, as compared with nonstressed mice. The stressor reversed the normal pattern of retrieval observed in nonstressed controls in the CSD task, this effect being context dependent, as it was not observed in the SSD task. Overall, our study shows that stress affected the retrieval of flexible and old information, but spared the retrieval of stable or recent ones. Therefore, these behavioral paradigms allow us to study simultaneously, on the same animal, the effects of stress on distinct forms of memory retrieval. PMID:15054135
Yu, Sarah S; Johnson, Jeffrey D; Rugg, Michael D
2012-06-01
It has been proposed that the hippocampus selectively supports retrieval of contextual associations, but an alternative view holds that the hippocampus supports strong memories regardless of whether they contain contextual information. We employed a memory test that combined the 'Remember/Know' and source memory procedures, which allowed test items to be segregated both by memory strength (recognition accuracy) and, separately, by the quality of the contextual information that could be retrieved (indexed by the accuracy/confidence of a source memory judgment). As measured by fMRI, retrieval-related hippocampal activity tracked the quality of retrieved contextual information and not memory strength. These findings are consistent with the proposal that the hippocampus supports contextual recollection rather than recognition memory more generally. Copyright © 2011 Wiley Periodicals, Inc.
Plastic modulation of episodic memory networks in the aging brain with cognitive decline.
Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun
2016-07-15
Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.
Wiener, J M; Ehbauer, N N; Mallot, H A
2009-09-01
For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.
Autobiographical memory specificity in response to verbal and pictorial cues in clinical depression.
Ridout, Nathan; Dritschel, Barbara; Matthews, Keith; O'Carroll, Ronan
2016-06-01
Depressed individuals have been consistently shown to exhibit problems in accessing specific memories of events from their past and instead tend to retrieve categorical summaries of events. The majority of studies examining autobiographical memory changes associated with psychopathology have tended to use word cues, but only one study to date has used images (with PTSD patients). to determine if using images to cue autobiographical memories would reduce the memory specificity deficit exhibited by patients with depression in comparison to healthy controls. Twenty-five clinically depressed patients and twenty-five healthy controls were assessed on two versions of the autobiographical memory test; cued with emotional words and images. Depressed patients retrieved significantly fewer specific memories, and a greater number of categorical, than did the controls. Controls retrieved a greater proportion of specific memories to images compared to words, whereas depressed patients retrieved a similar proportion of specific memories to both images and words. no information about the presence and severity of past trauma was collected. results suggest that the overgeneral memory style in depression generalises from verbal to pictorial cues. This is important because retrieval to images may provide a more ecologically valid test of everyday memory experiences than word-cued retrieval.. Copyright © 2016 Elsevier Ltd. All rights reserved.
A theory of working memory without consciousness or sustained activity
Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas
2017-01-01
Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763
Emotion Causes Targeted Forgetting of Established Memories
Strange, Bryan A.; Kroes, Marijn C. W.; Fan, Judith E.; Dolan, Raymond J.
2010-01-01
Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval. PMID:21191439
Emotion causes targeted forgetting of established memories.
Strange, Bryan A; Kroes, Marijn C W; Fan, Judith E; Dolan, Raymond J
2010-01-01
Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval.
Biologically-inspired robust and adaptive multi-sensor fusion and active control
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.
Levitan, David; Fortis-Santiago, Yaihara; Figueroa, Joshua A; Reid, Emily E; Yoshida, Takashi; Barry, Nicholas C; Russo, Abigail; Katz, Donald B
2016-10-12
In neuroscientists' attempts to understand the long-term storage of memory, topics of particular importance and interest are the cellular and system mechanisms of maintenance (e.g., those sensitive to ζ-inhibitory peptide, ZIP) and those induced by memory retrieval (i.e., reconsolidation). Much is known about each of these processes in isolation, but less is known concerning how they interact. It is known that ZIP sensitivity and memory retrieval share at least some molecular targets (e.g., recycling α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA, receptors to the plasma membrane); conversely, the fact that sensitivity to ZIP emerges only after consolidation ends suggests that consolidation (and by extension reconsolidation) and maintenance might be mutually exclusive processes, the onset of one canceling the other. Here, we use conditioned taste aversion (CTA) in rats, a cortically dependent learning paradigm, to test this hypothesis. First, we demonstrate that ZIP infusions into gustatory cortex begin interfering with CTA memory 43-45 h after memory acquisition-after consolidation ends. Next, we show that a retrieval trial administered after this time point interrupts the ability of ZIP to induce amnesia and that ZIP's ability to induce amnesia is reengaged only 45 h after retrieval. This pattern of results suggests that memory retrieval and ZIP-sensitive maintenance mechanisms are mutually exclusive and that the progression from one to the other are similar after acquisition and retrieval. They also reveal concrete differences between ZIP-sensitive mechanisms induced by acquisition and retrieval: the latency with which ZIP-sensitive mechanisms are expressed differ for the two processes. Memory retrieval and the molecular mechanisms that are sensitive to ζ-inhibitory peptide (ZIP) are the few manipulations that have been shown to effect memory maintenance. Although much is known about their effect on maintenance separately, it is unknown how they interact. Here, we describe a model for the interaction between memory retrieval and ZIP-sensitive mechanisms, showing that retrieval trials briefly (i.e., for 45 h) interrupt these mechanisms. ZIP sensitivity emerges across a similar time window after memory acquisition and retrieval; the maintenance mechanisms that follow acquisition and retrieval differ, however, in the latency with which the impact of ZIP is expressed. Copyright © 2016 the authors 0270-6474/16/3610654-09$15.00/0.
Evolution of costly explicit memory and cumulative culture.
Nakamaru, Mayuko
2016-06-21
Humans can acquire new information and modify it (cumulative culture) based on their learning and memory abilities, especially explicit memory, through the processes of encoding, consolidation, storage, and retrieval. Explicit memory is categorized into semantic and episodic memories. Animals have semantic memory, while episodic memory is unique to humans and essential for innovation and the evolution of culture. As both episodic and semantic memory are needed for innovation, the evolution of explicit memory influences the evolution of culture. However, previous theoretical studies have shown that environmental fluctuations influence the evolution of imitation (social learning) and innovation (individual learning) and assume that memory is not an evolutionary trait. If individuals can store and retrieve acquired information properly, they can modify it and innovate new information. Therefore, being able to store and retrieve information is essential from the perspective of cultural evolution. However, if both storage and retrieval were too costly, forgetting and relearning would have an advantage over storing and retrieving acquired information. In this study, using mathematical analysis and individual-based simulations, we investigate whether cumulative culture can promote the coevolution of costly memory and social and individual learning, assuming that cumulative culture improves the fitness of each individual. The conclusions are: (1) without cumulative culture, a social learning cost is essential for the evolution of storage-retrieval. Costly storage-retrieval can evolve with individual learning but costly social learning does not evolve. When low-cost social learning evolves, the repetition of forgetting and learning is favored more than the evolution of costly storage-retrieval, even though a cultural trait improves the fitness. (2) When cumulative culture exists and improves fitness, storage-retrieval can evolve with social and/or individual learning, which is not influenced by the degree of the social learning cost. Whether individuals socially learn a low level of culture from observing a high or the low level of culture influences the evolution of memory and learning, especially individual learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Division of attention as a function of the number of steps, visual shifts, and memory load
NASA Technical Reports Server (NTRS)
Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.
1986-01-01
The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.
Markers of preparatory attention predict visual short-term memory performance.
Murray, Alexandra M; Nobre, Anna C; Stokes, Mark G
2011-05-01
Visual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d'). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability. Copyright © 2011. Published by Elsevier Ltd.
Autobiographical memory in Parkinson's disease: a retrieval deficit.
Souchay, Celine; Smith, Sarah Jane
2013-09-01
This study examined the effects of providing cues to facilitate autobiographical memory retrieval in Parkinson's disease. Previous findings have shown that individuals with Parkinson's disease retrieve fewer specific autobiographical memories than older adult controls. These findings are clinically significant since the quality of autobiographical memory is linked to identity and sense of self. In the current study, 16 older adults with Parkinson's disease without dementia and 16 matched older adult controls were given 3 min in which to recall autobiographical memories associated with five different time periods and to give each memory a short title. Participants were later asked to retrieve the memories in three phases: firstly in a free recall phase; secondly in response to general cues (time periods) and finally in response to specific cues (the short titles previously given). The number of memories and the quality of the memory (general or specific) was recorded in each condition. Compared with matched older adult controls, the Parkinson's disease group was impaired in retrieving the memories that they had previously given in the free recall phase and in response to general cues. The performance of the group with Parkinson's disease was only equivalent to the older adults when they retrieved memories in response to self-generated cues. The findings are discussed in relation to theories of autobiographical memory and the neuropsychology of Parkinson's disease. © 2013 The British Psychological Society.
The dynamic interplay between acute psychosocial stress, emotion and autobiographical memory.
Sheldon, Signy; Chu, Sonja; Nitschke, Jonas P; Pruessner, Jens C; Bartz, Jennifer A
2018-06-06
Although acute psychosocial stress can impact autobiographical memory retrieval, the nature of this effect is not entirely clear. One reason for this ambiguity is because stress can have opposing effects on the different stages of autobiographical memory retrieval. We addressed this issue by testing how acute stress affects three stages of the autobiographical memory retrieval - accessing, recollecting and reconsolidating a memory. We also investigate the influence of emotion valence on this effect. In a between-subjects design, participants were first exposed to an acute psychosocial stressor or a control task. Next, the participants were shown positive, negative or neutral retrieval cues and asked to access and describe autobiographical memories. After a three to four day delay, participants returned for a second session in which they described these autobiographical memories. During initial retrieval, stressed participants were slower to access memories than were control participants; moreover, cortisol levels were positively associated with response times to access positively-cued memories. There were no effects of stress on the amount of details used to describe memories during initial retrieval, but stress did influence memory detail during session two. During session two, stressed participants recovered significantly more details, particularly emotional ones, from the remembered events than control participants. Our results indicate that the presence of stress impairs the ability to access consolidated autobiographical memories; moreover, although stress has no effect on memory recollection, stress alters how recollected experiences are reconsolidated back into memory traces.
Examining Object Location and Object Recognition Memory in Mice
Vogel-Ciernia, Annie; Wood, Marcelo A.
2014-01-01
Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location and object identity can be used to evaluate a wide variety of mouse models and treatments. PMID:25297693
Positive emotion can protect against source memory impairment.
MacKenzie, Graham; Powell, Tim F; Donaldson, David I
2015-01-01
Despite widespread belief that memory is enhanced by emotion, evidence also suggests that emotion can impair memory. Here we test predictions inspired by object-based binding theory, which states that memory enhancement or impairment depends on the nature of the information to be retrieved. We investigated emotional memory in the context of source retrieval, using images of scenes that were negative, neutral or positive in valence. At study each scene was paired with a colour and during retrieval participants reported the source colour for recognised scenes. Critically, we isolated effects of valence by equating stimulus arousal across conditions. In Experiment 1 colour borders surrounded scenes at study: memory impairment was found for both negative and positive scenes. Experiment 2 used colours superimposed over scenes at study: valence affected source retrieval, with memory impairment for negative scenes only. These findings challenge current theories of emotional memory by showing that emotion can impair memory for both intrinsic and extrinsic source information, even when arousal is equated between emotional and neutral stimuli, and by dissociating the effects of positive and negative emotion on episodic memory retrieval.
Bonk, William J; Healy, Alice F
2010-01-01
A serial reproduction of order with distractors task was developed to make it possible to observe successive snapshots of the learning process at each serial position. The new task was used to explore the effect of several variables on serial memory performance: stimulus content (words, blanks, and pictures), presentation condition (spatial information vs. none), semantically categorized item clustering (grouped vs. ungrouped), and number of distractors relative to targets (none, equal, double). These encoding and retrieval variables, along with learning attempt number, affected both overall performance levels and the shape of the serial position function, although a large and extensive primacy advantage and a small 1-item recency advantage were found in each case. These results were explained well by a version of the scale-independent memory, perception, and learning model that accounted for improved performance by increasing the value of only a single parameter that reflects reduced interference from distant items.
Object-location memory in adults with autism spectrum disorder.
Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M
2015-10-01
This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Santoyo-Zedillo, Marianela; Rodriguez-Ortiz, Carlos J.; Chavez-Marchetta, Gianfranco; Bermudez-Rattoni, Federico; Balderas, Israela
2014-01-01
Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have…
Overlap in the functional neural systems involved in semantic and episodic memory retrieval.
Rajah, M N; McIntosh, A R
2005-03-01
Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.
Neural mechanism underlying autobiographical memory modulated by remoteness and emotion
NASA Astrophysics Data System (ADS)
Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying
2012-03-01
Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.
Vaughn, Kalif E; Rawson, Katherine A; Pyc, Mary A
2013-12-01
A wealth of previous research has established that retrieval practice promotes memory, particularly when retrieval is successful. Although successful retrieval promotes memory, it remains unclear whether successful retrieval promotes memory equally well for items of varying difficulty. Will easy items still outperform difficult items on a final test if all items have been correctly recalled equal numbers of times during practice? In two experiments, normatively difficult and easy Lithuanian-English word pairs were learned via test-restudy practice until each item had been correctly recalled a preassigned number of times (from 1 to 11 correct recalls). Despite equating the numbers of successful recalls during practice, performance on a delayed final cued-recall test was lower for difficult than for easy items. Experiment 2 was designed to diagnose whether the disadvantage for difficult items was due to deficits in cue memory, target memory, and/or associative memory. The results revealed a disadvantage for the difficult versus the easy items only on the associative recognition test, with no differences on cue recognition, and even an advantage on target recognition. Although successful retrieval enhanced memory for both difficult and easy items, equating retrieval success during practice did not eliminate normative item difficulty differences.
Plaçais, Pierre-Yves; Trannoy, Séverine; Friedrich, Anja B; Tanimoto, Hiromu; Preat, Thomas
2013-11-14
One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.
Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A
2013-07-01
We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.
Source accuracy data reveal the thresholded nature of human episodic memory.
Harlow, Iain M; Donaldson, David I
2013-04-01
Episodic recollection supports conscious retrieval of past events. It is unknown why recollected memories are often vivid, but at other times we struggle to remember. Such experiences might reflect a recollection threshold: Either the threshold is exceeded and information is retrieved, or recollection fails completely. Alternatively, retrieval failure could reflect weak memory: Recollection could behave as a continuous signal, always yielding some variable degree of information. Here we reconcile these views, using a novel source memory task that measures retrieval accuracy directly. We show that recollection is thresholded, such that retrieval sometimes simply fails. Our technique clarifies a fundamental property of memory and allows responses to be accurately measured, without recourse to subjective introspection. These findings raise new questions about how successful retrieval is determined and why it declines with age and disease.
Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza
2017-11-01
The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.
Sheldon, Signy; Moscovitch, Morris
2012-06-01
Recent investigations have shown that the medial temporal lobe (MTL), a region thought to be exclusive to episodic memory, can also influence performance on tests of semantic memory. The present study examined further the nature of MTL contributions to semantic memory tasks by tracking MTL activation as participants performed category fluency, a traditional test of semantic retrieval. For categories that were inherently autobiographical (e.g. names of friends), the MTLs were activated throughout the time period in which items were generated, consistent with the MTLs role in retrieving autobiographical memories. For categories that could not benefit from autobiographical or spatial/context information (e.g. governmental offices), the MTL was not implicated at any time point. For categories for which both prototypical and episodically-related information exists (e.g. kitchen utensils), there was more robust MTL activity for the open-ended, late generation periods compared with the more well-defined, early item generation time periods. We interpret these results as suggesting that early in the generation phase, responses are based on well-rehearsed prototypical knowledge whereas later performance relies more on open-ended strategies, such as deriving exemplars from personally relevant contextual information (e.g. imagining one's own kitchen). These findings and interpretation were consistent with the results of an initial, separate behavioral study (Expt 1), that used the distinctiveness of responses as a measure of open-endedness across the generation phase: Response distinctiveness corresponded to the predicted open-endedness of the various tasks at early and late phases. Overall, this is consistent with the view that as generation of semantic information becomes open-ended, it recruits processes from other domains, such as episodic memory, to support performance. Copyright © 2011 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Hanczakowski, Maciej; Mazzoni, Giuliana
2013-01-01
Retrieval-induced forgetting (RIF) is the finding of impaired memory performance for information stored in long-term memory due to retrieval of a related set of information. This phenomenon is often assigned to operations of a specialized mechanism recruited to resolve interference during retrieval by deactivating competing memory representations.…
Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T
2008-11-01
Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.
Liu, Dengtang; Ji, Chengfeng; Zhuo, Kaiming; Song, Zhenhua; Wang, Yingchan; Mei, Li; Zhu, Dianming; Xiang, Qiong; Chen, Tianyi; Yang, Zhilei; Zhu, Guang; Wang, Ya; Cheung, Eric Fc; Xiang, Yu-Tao; Fan, Xiaoduo; Chan, Raymond Ck; Xu, Yifeng; Jiang, Kaida
2017-03-01
Schizophrenia is associated with impairment in prospective memory, the ability to remember to carry out an intended action in the future. It has been established that cue identification (detection of the cue event signaling that an intended action should be performed) and intention retrieval (retrieval of an intention from long-term memory following the recognition of a prospective cue) are two important processes underlying prospective memory. The purpose of this study was to examine prospective memory deficit and underlying cognitive processes in patients with first-episode schizophrenia. This study examined cue identification and intention retrieval components of event-based prospective memory using a dual-task paradigm in 30 patients with first-episode schizophrenia and 30 healthy controls. All participants were also administered a set of tests assessing working memory and retrospective memory. Both cue identification and intention retrieval were impaired in patients with first-episode schizophrenia compared with healthy controls ( ps < 0.05), with a large effect size for cue identification (Cohen's d = 0.98) and a medium effect size for intention retrieval (Cohen's d = 0.62). After controlling for working memory and retrospective memory, the difference in cue identification between patients and healthy controls remained significant. However, the difference in intention retrieval between the two groups was no longer significant. In addition, there was a significant inverse relationship between cue identification and negative symptoms ( r = -0.446, p = 0.013) in the patient group. These findings suggest that both cue identification and intention retrieval in event-based prospective memory are impaired in patients with first-episode schizophrenia. Cue identification and intention retrieval could be potentially used as biomarkers for early detection and treatment prognosis of schizophrenia. In addition, addressing cue identification deficit through cognitive enhancement training may potentially improve negative symptoms as well.
Left Posterior Parietal Cortex Participates in Both Task Preparation and Episodic Retrieval
Phillips, Jeffrey S.; Velanova, Katerina; Wolk, David A.; Wheeler, Mark E.
2012-01-01
Optimal memory retrieval depends not only on the fidelity of stored information, but also on the attentional state of the subject. Factors such as mental preparedness to engage in stimulus processing can facilitate or hinder memory retrieval. The current study used functional magnetic resonance imaging (fMRI) to distinguish preparatory brain activity before episodic and semantic retrieval tasks from activity associated with retrieval itself. A catch-trial imaging paradigm permitted separation of neural responses to preparatory task cues and memory probes. Episodic and semantic task preparation engaged a common set of brain regions, including the bilateral intraparietal sulcus (IPS), left fusiform gyrus (FG), and the pre-supplementary motor area (pre-SMA). In the subsequent retrieval phase, the left IPS was among a set of frontoparietal regions that responded differently to old and new stimuli. In contrast, the right IPS responded to preparatory cues with little modulation during memory retrieval. The findings support a strong left-lateralization of retrieval success effects in left parietal cortex, and further indicate that left IPS performs operations that are common to both task preparation and memory retrieval. Such operations may be related to attentional control, monitoring of stimulus relevance, or retrieval. PMID:19285142
Parker, Andrew; Parkin, Adam; Dagnall, Neil
2013-01-01
Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.
Effects of Saccadic Bilateral Eye Movements on Episodic and Semantic Autobiographical Memory Fluency
Parker, Andrew; Parkin, Adam; Dagnall, Neil
2013-01-01
Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance. PMID:24133435
Spatial part-set cuing facilitation.
Kelley, Matthew R; Parasiuk, Yuri; Salgado-Benz, Jennifer; Crocco, Megan
2016-07-01
Cole, Reysen, and Kelley [2013. Part-set cuing facilitation for spatial information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 1615-1620] reported robust part-set cuing facilitation for spatial information using snap circuits (a colour-coded electronics kit designed for children to create rudimentary circuit boards). In contrast, Drinkwater, Dagnall, and Parker [2006. Effects of part-set cuing on experienced and novice chess players' reconstruction of a typical chess midgame position. Perceptual and Motor Skills, 102(3), 645-653] and Watkins, Schwartz, and Lane [1984. Does part-set cuing test for memory organization? Evidence from reconstructions of chess positions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 38(3), 498-503] showed no influence of part-set cuing for spatial information when using chess boards. One key difference between the two procedures was that the snap circuit stimuli were explicitly connected to one another, whereas chess pieces were not. Two experiments examined the effects of connection type (connected vs. unconnected) and cue type (cued vs. uncued) on memory for spatial information. Using chess boards (Experiment 1) and snap circuits (Experiment 2), part-set cuing facilitation only occurred when the stimuli were explicitly connected; there was no influence of cuing with unconnected stimuli. These results are potentially consistent with the retrieval strategy disruption hypothesis, as well as the two- and three-mechanism accounts of part-set cuing.
Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-05-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Prospective memory: effects of divided attention on spontaneous retrieval.
Harrison, Tyler L; Mullet, Hillary G; Whiffen, Katie N; Ousterhout, Hunter; Einstein, Gilles O
2014-02-01
We examined the effects of divided attention on the spontaneous retrieval of a prospective memory intention. Participants performed an ongoing lexical decision task with an embedded prospective memory demand, and also performed a divided-attention task during some segments of lexical decision trials. In all experiments, monitoring was highly discouraged, and we observed no evidence that participants engaged monitoring processes. In Experiment 1, performing a moderately demanding divided-attention task (a digit detection task) did not affect prospective memory performance. In Experiment 2, performing a more challenging divided-attention task (random number generation) impaired prospective memory. Experiment 3 showed that this impairment was eliminated when the prospective memory cue was perceptually salient. Taken together, the results indicate that spontaneous retrieval is not automatic and that challenging divided-attention tasks interfere with spontaneous retrieval and not with the execution of a retrieved intention.
Rapid formation and flexible expression of memories of subliminal word pairs.
Reber, Thomas P; Henke, Katharina
2011-01-01
Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory - rapid encoding and flexible expression of associations - can operate outside consciousness.
Multivariate quantum memory as controllable delayed multi-port beamsplitter
NASA Astrophysics Data System (ADS)
Vetlugin, A. N.; Sokolov, I. V.
2016-03-01
The addressability of parallel spatially multimode quantum memory for light allows one to control independent collective spin waves within the same cold atomic ensemble. Generally speaking, there are transverse and longitudinal degrees of freedom of the memory that one can address by a proper choice of the pump (control) field spatial pattern. Here we concentrate on the mutual evolution and transformation of quantum states of the longitudinal modes of collective spin coherence in the cavity-based memory scheme. We assume that these modes are coherently controlled by the pump waves of the on-demand transverse profile, that is, by the superpositions of waves propagating in the directions close to orthogonal to the cavity axis. By the write-in, this allows one to couple a time sequence of the incoming quantized signals to a given set of superpositions of orthogonal spin waves. By the readout, one can retrieve quantum states of the collective spin waves that are controllable superpositions of the initial ones and are coupled on demand to the output signal sequence. In a general case, the memory is able to operate as a controllable delayed multi-port beamsplitter, capable of transformation of the delays, the durations and time shapes of signals in the sequence. We elaborate the theory of such light-matter interface for the spatially multivariate cavity-based off-resonant Raman-type quantum memory. Since, in order to speed up the manipulation of complex signals in multivariate memories, it might be of interest to store relatively short light pulses of a given time shape, we also address some issues of the cavity-based memory operation beyond the bad cavity limit.
Setting a disordered password on a photonic memory
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te
2017-06-01
An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.
Cassel, Raphaelle; Kelche, Christian; Lecourtier, Lucas; Cassel, Jean-Christophe
2012-05-01
Animals can perform goal-directed tasks by using response cues or place cues. The underlying memory systems are occasionally presented as competing. Using the double-H maze test (Pol-Bodetto et al.), we trained rats for response learning and, 24 h later, tested their memory in a 60-s probe trial using a new start place. A modest shift of the start place (translation: 60-cm to the left) provided a high misleading potential, whereas a marked shift (180° rotation; shift to the opposite) provided a low misleading potential. We analyzed each rat's first arm choice (to assess response vs. place memory retrieval) and its subsequent search for the former platform location (to assess the persistence in place memory or the shift from response to place memory). After the translation, response memory-based behavior was found in more than 90% rats (24/26). After the rotation, place memory-based behavior was observed in 50% rats, the others showing response memory or failing. Rats starting to use response cues were nevertheless able to subsequently shift to place ones. A posteriori behavioral analyses showed more and longer stops in rats starting their probe trial on the basis of place (vs. response) cues. These observations qualify the idea of competing memory systems for responses and places and are compatible with that of a cooperation between both systems according to principles of match/mismatch computation (at the start of a probe trial) and of error-driven adjustment (during the ongoing probe trial). Copyright © 2012 Elsevier B.V. All rights reserved.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco
2015-01-01
The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E. J.; Re, Marta; Esposito, Fabrizio; Sack, Alexander T.; Salle, Francesco Di
2015-01-01
Introduction The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. Methods To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. Results We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks. Conclusions Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network. PMID:25848951
Gao, Chuanji; Rosburg, Timm; Hou, Mingzhu; Li, Bingbing; Xiao, Xin; Guo, Chunyan
2016-12-01
The effectiveness of retrieval practice for aiding long-term memory, referred to as the testing effect, has been widely demonstrated. However, the specific neurocognitive mechanisms underlying this phenomenon remain unclear. In the present study, we sought to explore the role of pre-retrieval processes at initial testing on later recognition performance by using event-related potentials (ERPs). Subjects studied two lists of words (Chinese characters) and then performed a recognition task or a source memory task, or restudied the word lists. At the end of the experiment, subjects received a final recognition test based on the remember-know paradigm. Behaviorally, initial testing (active retrieval) enhanced memory retention relative to restudying (passive retrieval). The retrieval mode at initial testing was indexed by more positive-going ERPs for unstudied items in the active-retrieval tasks than in passive retrieval from 300 to 900 ms. Follow-up analyses showed that the magnitude of the early ERP retrieval mode effect (300-500 ms) was predictive of the behavioral testing effect later on. In addition, the ERPs for correctly rejected new items during initial testing differed between the two active-retrieval tasks from 500 to 900 ms, and this ERP retrieval orientation effect predicted differential behavioral testing gains between the two active-retrieval conditions. Our findings confirm that initial testing promotes later retrieval relative to restudying, and they further suggest that adopting pre-retrieval processing in the forms of retrieval mode and retrieval orientation might contribute to these memory enhancements.
Nelissen, Ellis; Prickaerts, Jos; Blokland, Arjan
2018-06-01
It is well known that stress affects memory performance. However, there still appears to be inconstancy in literature about how acute stress affects the different stages of memory: acquisition, consolidation and retrieval. In this study, we exposed rats to acute stress and measured the effect on memory performance in the object recognition task as a measure for episodic memory. Stress was induced 30 min prior to the learning phase to affect acquisition, directly after the learning phase to affect consolidation, or 30 min before the retrieval phase to affect retrieval. Additionally, we induced stress both 30 min prior to the learning phase and 30 min prior to the retrieval phase to test whether the effects were related to state-dependency. As expected, we found that acute stress did not affect acquisition but had a negative impact on retrieval. To our knowledge, we are the first to show that early consolidation was negatively affected by acute stress. We also show that stress does not have a state-dependent effect on memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro
2017-07-01
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.
González-Salinas, Sofía; Medina, Andrea C; Alvarado-Ortiz, Eduardo; Antaramian, Anaid; Quirarte, Gina L; Prado-Alcalá, Roberto A
2018-07-01
Similar to the hippocampus and amygdala, the dorsal striatum is involved in memory retrieval of inhibitory avoidance, a task commonly used to study memory processes. It has been reported that memory retrieval of fear conditioning regulates gene expression of arc and zif268 in the amygdala and the hippocampus, and it is surprising that only limited effort has been made to study the molecular events caused by retrieval in the striatum. To further explore the involvement of immediate early genes in retrieval, we used real-time PCR to analyze arc and zif268 transcription in dorsal striatum, dorsal hippocampus, and amygdala at different time intervals after retrieval of step-through inhibitory avoidance memory. We found that arc expression in the striatum increased 30 min after retrieval while no changes were observed in zif268 in this region. Expression of arc and zif268 also increased in the dorsal hippocampus but the changes were attributed to context re-exposure. Control procedures indicated that in the amygdala, arc and zif268 expression was not dependent on retrieval. Our data indicate that memory retrieval of inhibitory avoidance induces arc gene expression in the dorsal striatum, caused, very likely, by the instrumental component of the task. Striatal arc expression after retrieval may induce structural and functional changes in the neurons involved in this process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bäuml, Karl-Heinz T.; Dobler, Ina M.
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas…
Echterhoff, Gerald; Hirst, William
2006-06-01
Extant research shows that people use retrieval ease, a feeling-based cue, to judge how well they remember life periods. Extending this approach, we investigated the role of retrieval ease in memory judgments for single events. In Experiment 1, participants who were asked to recall many memories of an everyday event (New Year's Eve) rated retrieval as more difficult and judged their memory as worse than did participants asked to recall only a few memories. In Experiment 2, this ease-of-retrieval effect was found to interact with the shocking character of the remembered event: There was no effect when the event was highly shocking (i.e., learning about the attacks of September 11, 2001), whereas an effect was found when the event was experienced as less shocking (due either to increased distance to "9/11" or to the nonshocking nature of the event itself). Memory vividness accounted for additional variance in memory judgments, indicating an independent contribution of content-based cues in judgments of event memories.
Webb, Christina E.; Turney, Indira C.; Dennis, Nancy A.
2017-01-01
The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. PMID:27697593
Webb, Christina E; Turney, Indira C; Dennis, Nancy A
2016-12-01
The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval.
Xiao, Xiaoqian; Dong, Qi; Gao, Jiahong; Men, Weiwei; Poldrack, Russell A; Xue, Gui
2017-03-15
Contemporary models of episodic memory posit that remembering involves the reenactment of encoding processes. Although encoding-retrieval similarity has been consistently reported and linked to memory success, the nature of neural pattern reinstatement is poorly understood. Using high-resolution fMRI on human subjects, our results obtained clear evidence for item-specific pattern reinstatement in the frontoparietal cortex, even when the encoding-retrieval pairs shared no perceptual similarity. No item-specific pattern reinstatement was found in the ventral visual cortex. Importantly, the brain regions and voxels carrying item-specific representation differed significantly between encoding and retrieval, and the item specificity for encoding-retrieval similarity was smaller than that for encoding or retrieval, suggesting different nature of representations between encoding and retrieval. Moreover, cross-region representational similarity analysis suggests that the encoded representation in the ventral visual cortex was reinstated in the frontoparietal cortex during retrieval. Together, these results suggest that, in addition to reinstatement of the originally encoded pattern in the brain regions that perform encoding processes, retrieval may also involve the reinstatement of a transformed representation of the encoded information. These results emphasize the constructive nature of memory retrieval that helps to serve important adaptive functions. SIGNIFICANCE STATEMENT Episodic memory enables humans to vividly reexperience past events, yet how this is achieved at the neural level is barely understood. A long-standing hypothesis posits that memory retrieval involves the faithful reinstatement of encoding-related activity. We tested this hypothesis by comparing the neural representations during encoding and retrieval. We found strong pattern reinstatement in the frontoparietal cortex, but not in the ventral visual cortex, that represents visual details. Critically, even within the same brain regions, the nature of representation during retrieval was qualitatively different from that during encoding. These results suggest that memory retrieval is not a faithful replay of past event but rather involves additional constructive processes to serve adaptive functions. Copyright © 2017 the authors 0270-6474/17/372986-13$15.00/0.
McKinnon, Margaret C; Black, Sandra E; Miller, Bruce; Moscovitch, Morris; Levine, Brian
2006-01-01
We examined autobiographical memory performance in two patients with semantic dementia using a novel measure, the Autobiographical Interview [Levine, Svoboda, Hay, Winocur, & Moscovitch (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689], that is capable of dissociating episodic and personal semantic recall under varying levels of retrieval support. Earlier reports indicated that patients with semantic dementia demonstrate autobiographical episodic memory loss following a "reverse gradient" by which recent memories are preserved relative to remote memories. We found limited evidence for this pattern at conditions of low retrieval support. When structured probing was provided, patients' autobiographical memory performance was similar to that of controls. Retesting of one patient after 1 year indicated that retrieval support was insufficient to bolster performance following progressive prefrontal volume loss, as documented with quantified structural neuroimaging. These findings are discussed in relation to theories of limbic-neocortical interaction in autobiographical memory.
Contextualization: Memory Formation and Retrieval in a Nested Environment
NASA Astrophysics Data System (ADS)
Piefke, Martina; Markowitsch, Hans J.
Episodic memory functions are highly context-dependent. This is true for both experimental and autobiographical episodic memory. We here review neuropsychological and neuroimaging evidence for effects of differential encoding and retrieval contexts on episodic memory performance as well as the underlying neurofunctional mechanisms. In studies of laboratory episodic memory, the influence of context parameters can be assessed by experimental manipulations. Such experiments suggest that contextual variables mainly affect prefrontal functions supporting executive processes involved in episodic learning and retrieval. Context parameters affecting episodic autobiographical memory are far more complex and cannot easily be controlled. Data support the view that not only prefrontal, but also further medial temporal and posterior parietal regions mediating the re-experience and emotional evaluation of personal memories are highly influenced by changing contextual variables of memory encoding and retrieval. Based on our review of available data, we thus suggest that experimental and autobiographical episodic memories are influenced by both overlapping and differential context parameters.
Knowledge supports memory retrieval through familiarity, not recollection.
Wang, Wei-Chun; Brashier, Nadia M; Wing, Erik A; Marsh, Elizabeth J; Cabeza, Roberto
2018-05-01
Semantic memory, or general knowledge of the world, guides learning and supports the formation and retrieval of new episodic memories. Behavioral evidence suggests that this knowledge effect is supported by recollection-a more controlled form of memory retrieval generally accompanied by contextual details-to a greater degree than familiarity-a more automatic form of memory retrieval generally absent of contextual details. In the current study, we used functional magnetic resonance imaging (fMRI) to investigate the role that regions associated with recollection and familiarity play in retrieving recent instances of known (e.g., The Summer Olympic Games are held four years apart) and unknown (e.g., A flaky deposit found in port bottles is beeswing) statements. Our results revealed a surprising pattern: Episodic retrieval of known statements recruited regions associated with familiarity, but not recollection. Instead, retrieval of unknown statements recruited regions associated with recollection. These data, in combination with quicker reaction times for the retrieval of known than unknown statements, suggest that known statements can be successfully retrieved on the basis of familiarity, whereas unknown statements were retrieved on the basis of recollection. Our results provide insight into how knowledge influences episodic retrieval and demonstrate the role of neuroimaging in providing insights into cognitive processes in the absence of explicit behavioral responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rashidy-Pour, Ali; Vafaei, Abbas Ali; Taherian, Abbas Ali; Miladi-Gorji, Hossein; Sadeghi, Hassan; Fathollahi, Yaghoub; Bandegi, Ahmad Reza
2009-10-12
This study was designed to investigate an interaction between acute restraint stress and corticosterone with verapamil, a blocker of L-type voltage-dependent calcium (VDC) channels on retrieval of long-term memory. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On retention test given 48 h after training, the latency to re-enter dark compartment of the apparatus was recorded. In Experiment 1, verapamil pretreatment (5, 10, or 20 mg/kg) enhanced the impairing effects of acute stress (which was applied for 10 min in a Plexiglass tube 30 min before the retention test) on memory retrieval. The applied stress increased circulating corticosterone levels as assessed immediately after the retention test, indicating that stress-induced impairment of memory retrieval is mediated, in part, by increased plasma levels of glucocorticoids. Verapamil did not change this response. In Experiment 2, pretreatment of an intermediate dose of verapamil also enhanced corticosterone-induced impairment of memory retrieval. In Experiments 3 and 4, acute stress or corticosterone did not change motor activity with or without prior treatment of verapamil, suggesting that stress or glucocorticoid-induced impairment of memory retrieval is not due to any gross disturbances in motor performance of animals. These findings indicate that blockade of L-type VDC channels enhances stress or glucocorticoid-induced impairment of memory retrieval, and provide evidence for the existence of an interaction between glucocorticoids and L-type VDC channels on memory retrieval.
The differential contributions of visual imagery constructs on autobiographical thinking.
Aydin, Cagla
2018-02-01
There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.
Gimbel, Sarah I; Brewer, James B
2014-01-01
Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.
Gimbel, Sarah I.; Brewer, James B.
2014-01-01
Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength. PMID:24586492
Takatsu-Coleman, André L; Zanin, Karina A; Patti, Camilla L; Zager, Adriano; Lopes-Silva, Leonardo B; Longo, Beatriz M; Tufik, Sergio; Andersen, Monica L; Frussa-Filho, Roberto
2013-10-01
While the effects of sleep deprivation (SD) on the acquisition and consolidation phases of memory have been extensively characterized, its effects on memory retrieval remain overlooked. SD alone is a stressor, and stress-activated glucocorticoids promote bimodal effects on memory. Because we have recently demonstrated that 72h SD impairs memory retrieval in the plus-maze discriminative avoidance task (PM-DAT) in mice, this study investigated whether shorter SD periods would facilitate retrieval. In Experiment I, the temporal forgetting curve of the PM-DAT was determined and an interval between training/testing in which retrieval was no longer present was used in all subsequent experiments. In Experiments II and III, retrieval performance and corticosterone concentration, respectively, were quantified in mice that were sleep deprived for 12 or 24h before testing. In Experiments IV and V, the effects of the corticosterone synthesis inhibitor metyrapone were evaluated on 12h SD-induced retrieval reinstatement and corticosterone concentration enhancement, respectively. Experiment VI determined whether pre-test acute administration of exogenous corticosterone would mimic the facilitatory effects of 12h SD on retrieval. Thirty days after training, mice presented poor performance of the task; however, SD for 12h (but not for 24) before testing reinstated memory retrieval. This facilitatory effect was accompanied by increased corticosterone concentration, abolished by metyrapone, and mimicked by pre-test acute corticosterone administration. Collectively, short-term SD can facilitate memory retrieval by enhancing corticosterone secretion. This facilitatory effect is abolished by longer periods of SD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Memory under pressure: secondary-task effects on contextual cueing of visual search.
Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas
2013-11-04
Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.
Kiasalari, Zahra; Khalili, Mohsen; Shafiee, Samaneh; Roghani, Mehrdad
2016-01-01
Since temporal lobe epilepsy (TLE) is associated with learning and memory impairment, we investigated the beneficial effect of Vitamin E on the impaired learning and memory in the intrahippocampal kainate model of TLE in rats. Rats were divided into sham, Vitamin E-treated sham, kainate, and Vitamin E-treated kainate. Intrahippocampal kainate was used for induction of epilepsy. Vitamin E was injected intraperitoneal (i.p.) at a dose of 200 mg/kg/day started 1 week before surgery until 1 h presurgery. Initial and step-through latencies in the passive avoidance test and alternation behavior percentage in Y-maze were finally determined in addition to measurement of some oxidative stress markers. Kainate injection caused a higher severity and rate of seizures and deteriorated learning and memory performance in passive avoidance paradigm and spontaneous alternation as an index of spatial recognition memory in Y-maze task. Intrahippocampal kainate also led to the elevation of malondialdehyde (MDA) and nitrite and reduced activity of superoxide dismutase (SOD). Vitamin E pretreatment significantly attenuated severity and incidence rate of seizures, significantly improved retrieval and recall in passive avoidance, did not ameliorate spatial memory deficit in Y-maze, and lowered MDA and enhanced SOD activity. Vitamin E improves passive avoidance learning and memory and part of its beneficial effect is due to its potential to mitigate hippocampal oxidative stress.
Retrieval of Emotional Memories
ERIC Educational Resources Information Center
Buchanan, Tony W.
2007-01-01
Long-term memories are influenced by the emotion experienced during learning as well as by the emotion experienced during memory retrieval. The present article reviews the literature addressing the effects of emotion on retrieval, focusing on the cognitive and neurological mechanisms that have been revealed. The reviewed research suggests that the…
Attentional Limits in Memory Retrieval--Revisited
ERIC Educational Resources Information Center
Green, Collin; Johnston, James C.; Ruthruff, Eric
2011-01-01
Carrier and Pashler (1995) concluded--based on locus-of-slack dual-task methodology--that memory retrieval was subject to a central bottleneck. However, this conclusion conflicts with evidence from other lines of research suggesting that memory retrieval proceeds autonomously, in parallel with many other mental processes. In the present…
Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.
Cabeza, Roberto
2008-01-01
Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.
Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval
Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin
2016-01-01
Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. PMID:27194327
Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval.
Bonnici, Heidi M; Richter, Franziska R; Yazar, Yasemin; Simons, Jon S
2016-05-18
Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. Copyright © 2016 Bonnici, Richter, et al.
Furman, Orit; Mendelsohn, Avi; Dudai, Yadin
2012-11-15
We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after months. In contrast, BOLD activity in a retrieval-related set of brain areas during correctly remembered events was similar after hours and weeks but significantly declined after months. Despite this reduction, BOLD activity in retrieval-related regions was positively correlated with recognition accuracy only after months. Hippocampal engagement during retrieval remained similar over time during recall but decreased in recognition. Our results are in line with the hypothesis that hippocampus subserves retrieval of real-life episodic memory long after encoding, its engagement being dependent on retrieval demands. Furthermore, our findings suggest that over time episodic engrams are transformed into a parsimonious form capable of supporting accurate retrieval of the crux of events, arguably a critical goal of memory, with only minimal network activation.
Benefits and Costs of Context Reinstatement in Episodic Memory: An ERP Study.
Bramão, Inês; Johansson, Mikael
2017-01-01
This study investigated context-dependent episodic memory retrieval. An influential idea in the memory literature is that performance benefits when the retrieval context overlaps with the original encoding context. However, such memory facilitation may not be driven by the encoding-retrieval overlap per se but by the presence of diagnostic features in the reinstated context that discriminate the target episode from competing episodes. To test this prediction, the encoding-retrieval overlap and the diagnostic value of the context were manipulated in a novel associative recognition memory task. Participants were asked to memorize word pairs presented together with diagnostic (unique) and nondiagnostic (shared) background scenes. At test, participants recognized the word pairs in the presence and absence of the previously encoded contexts. Behavioral data show facilitated memory performance in the presence of the original context but, importantly, only when the context was diagnostic of the target episode. The electrophysiological data reveal an early anterior ERP encoding-retrieval overlap effect that tracks the cost associated with having nondiagnostic contexts present at retrieval, that is, shared by multiple previous episodes, and a later posterior encoding-retrieval overlap effect that reflects facilitated access to the target episode during retrieval in diagnostic contexts. Taken together, our results underscore the importance of the diagnostic value of the context and suggest that context-dependent episodic memory effects are multiple determined.
McDonough, Ian M; Bui, Dung C; Friedman, Michael C; Castel, Alan D
2015-10-01
The perceived value of information can influence one's motivation to successfully remember that information. This study investigated how information value can affect memory search and evaluation processes (i.e., retrieval monitoring). In Experiment 1, participants studied unrelated words associated with low, medium, or high values. Subsequent memory tests required participants to selectively monitor retrieval for different values. False memory effects were smaller when searching memory for high-value than low-value words, suggesting that people more effectively monitored more important information. In Experiment 2, participants studied semantically-related words, and the need for retrieval monitoring was reduced at test by using inclusion instructions (i.e., endorsement of any word related to the studied words) compared with standard instructions. Inclusion instructions led to increases in false recognition for low-value, but not for high-value words, suggesting that under standard-instruction conditions retrieval monitoring was less likely to occur for important information. Experiment 3 showed that words retrieved with lower confidence were associated with more effective retrieval monitoring, suggesting that the quality of the retrieved memory influenced the degree and effectiveness of monitoring processes. Ironically, unless encouraged to do so, people were less likely to carefully monitor important information, even though people want to remember important memories most accurately. Copyright © 2015 Elsevier B.V. All rights reserved.
Similar patterns of neural activity predict memory function during encoding and retrieval.
Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J
2017-07-15
Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.
Bäuml, Karl-Heinz T; Dobler, Ina M
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas recall specificity of the beneficial effect has not been examined to date. Addressing the issue, we compared in 2 experiments the effects of retrieval and restudy on recall of other items, when access to the study context was (largely) maintained and when access to the study context was impaired (in Experiment 1 by using the listwise directed-forgetting task, in Experiment 2 by using a prolonged retention interval). In both experiments, selective retrieval but not restudy induced forgetting of other items when context access was maintained, which replicates prior work. In contrast, when context access was impaired, both selective retrieval and restudy induced beneficial effects on other memories. These findings suggest that the detrimental but not the beneficial effect of selective memory retrieval is recall specific. The results are consistent with a recent 2-factor account of selective memory retrieval that attributes the detrimental effect to inhibition or blocking but the beneficial effect to context reactivation processes. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Flasbeck, Vera; Atucha, Erika; Nakamura, Nozomu H; Yoshida, Motoharu; Sauvage, Magdalena M
2018-07-16
For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory. Copyright © 2018. Published by Elsevier B.V.
Genetic neuroscience of mammalian learning and memory.
Tonegawa, Susumu; Nakazawa, Kazu; Wilson, Matthew A
2003-01-01
Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice. PMID:12740125
Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion
2014-12-15
Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut
2010-09-01
Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.
Binding among select episodic elements is altered via active short-term retrieval.
Bridge, Donna J; Voss, Joel L
2015-08-01
Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. © 2015 Bridge and Voss; Published by Cold Spring Harbor Laboratory Press.
Rapid Formation and Flexible Expression of Memories of Subliminal Word Pairs
Reber, Thomas P.; Henke, Katharina
2011-01-01
Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory – rapid encoding and flexible expression of associations – can operate outside consciousness. PMID:22125545
The contribution of the human posterior parietal cortex to episodic memory.
Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio
2017-02-17
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.
The contribution of the human posterior parietal cortex to episodic memory
Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio
2017-01-01
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval — for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions. PMID:28209980
Initial retrieval shields against retrieval-induced forgetting.
Racsmány, Mihály; Keresztes, Attila
2015-01-01
Testing, as a form of retrieval, can enhance learning but it can also induce forgetting of related memories, a phenomenon known as retrieval-induced forgetting (RIF). In four experiments we explored whether selective retrieval and selective restudy of target memories induce forgetting of related memories with or without initial retrieval of the entire learning set. In Experiment 1, subjects studied category-exemplar associations, some of which were then either restudied or retrieved. RIF occurred on a delayed final test only when memories were retrieved and not when they were restudied. In Experiment 2, following the study phase of category-exemplar associations, subjects attempted to recall all category-exemplar associations, then they selectively retrieved or restudied some of the exemplars. We found that, despite the huge impact on practiced items, selective retrieval/restudy caused no decrease in final recall of related items. In Experiment 3, we replicated the main result of Experiment 2 by manipulating initial retrieval as a within-subject variable. In Experiment 4 we replicated the main results of the previous experiments with non-practiced (Nrp) baseline items. These findings suggest that initial retrieval of the learning set shields against the forgetting effect of later selective retrieval. Together, our results support the context shift theory of RIF.
Age Differences in Memory Retrieval Shift: Governed by Feeling-of-Knowing?
Hertzog, Christopher; Touron, Dayna R.
2010-01-01
The noun-pair lookup (NP) task was used to evaluate strategic shift from visual scanning to retrieval. We investigated whether age differences in feeling-of-knowing (FOK) account for older adults' delayed retrieval shift. Participants were randomly assigned to one of three conditions: (1) standard NP learning, (2) fast binary FOK judgments, or (3) Choice, where participants had to choose in advance whether to see the look-up table or respond from memory. We found small age differences in FOK magnitudes, but major age differences in memory retrieval choices that mirrored retrieval use in the standard NP task. Older adults showed lower resolution in their confidence judgments (CJs) for recognition memory tests on the NP items, and this difference appeared to influence rates of retrieval shift, given that retrieval use was correlated with CJ magnitudes in both age groups. Older adults had particular difficulty with accuracy and confidence for rearranged pairs, relative to intact pairs. Older adults' slowed retrieval shift appears to be due to (a) impaired associative learning early in practice, not just a lower FOK; but also (b) retrieval reluctance later in practice after the degree of associative learning would afford memory-based responding. PMID:21401263
Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval.
Yassa, Michael A; Reagh, Zachariah M
2013-01-01
Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being "recontextualization," or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate.
Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval
Yassa, Michael A.; Reagh, Zachariah M.
2013-01-01
Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being “recontextualization,” or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate. PMID:23964216
Liu, Cao; Sun, Xue; Wang, Zhilin; Le, Qiumin; Liu, Peipei; Jiang, Changyou; Wang, Feifei; Ma, Lan
2018-01-01
Abstract Background Memory retrieval refers to reexposure to information previously encoded and stored in the brain. Following retrieval, a once-consolidated memory destabilizes and undergoes reconsolidation, during which gene expression changes to restabilize memory. Investigating epigenetic regulation during reconsolidation could provide insights into normal memory formation and pathological memory associated with psychiatric disorders. Methods We used cocaine-induced conditioned place preference to assess the cocaine-associated memory of mice and used chemogenetic methods to manipulate the activity of the pyramidal neurons in the dorsal hippocampus. We isolated the ribosome-associated transcripts from the excitatory neurons in the dorsal hippocampus by RiboTag purification to identify the potential epigenetic regulators, and we specifically knocked down gene expression in pyramidal neurons with a Cre-dependent lentivirus. Results Chemogenetically silencing the activity of the pyramidal neurons in the dorsal hippocampus immediately after memory retrieval markedly impaired memory reconsolidation, and the ribosome-associated mRNA level of the ten-eleven translocation (Tet) family methylcytosine dioxygenase Tet3, but not Tet1 or Tet2, was dramatically upregulated 10 minutes after memory retrieval. The protein level of Tet3 in the dorsal hippocampus but not in the anterior cingulate cortex was dramatically increased 1 hour after memory retrieval. Specifically, knockdown of Tet3 in pyramidal neurons in the dorsal hippocampus decreased the activation of pyramidal neurons and impaired the reconsolidation of cocaine-associated memory. Conclusions Our findings highlight the new function of the DNA demethylation regulator Tet3 in pyramidal neurons of the dorsal hippocampus in regulating the reconsolidation of cocaine-associated memory. PMID:29106571
Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect
Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto
2013-01-01
Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search). PMID:23607935
Representational Complexity and Memory Retrieval in Language Comprehension
ERIC Educational Resources Information Center
Hofmeister, Philip
2011-01-01
Mental representations formed from words or phrases may vary considerably in their feature-based complexity. Modern theories of retrieval in sentence comprehension do not indicate how this variation and the role of encoding processes should influence memory performance. Here, memory retrieval in language comprehension is shown to be influenced by…
Post-Retrieval Late Process Contributes to Persistence of Reactivated Fear Memory
ERIC Educational Resources Information Center
Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi
2013-01-01
Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated…
Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang
2017-04-15
Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABA A -receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade. Copyright © 2017 Elsevier B.V. All rights reserved.
Shaikhouni, Ammar
2017-01-01
Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62–100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. PMID:28336569
Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories.
Balconi, Michela; Ferrari, Chiara
2012-09-01
A suggestive hypothesis proposed that the lateral prefrontal cortex (LPFC) may be identified as the site of emotion-memory integration, since it was shown to be sensitive to the encoding and retrieval of emotional content. In the present research we explored the role of the dorsolateral prefrontal cortex (DLPFC) in memory retrieval of positive vs. negative emotional stimuli. This effect was analyzed by using an rTMS paradigm that induced a cortical activation of the left DLPFC. Subjects were required to perform a task consisting of two experimental phases: an encoding phase, where some lists composed by positive and negative emotional words were presented to the subjects; a retrieval phase, where the old stimuli and the new stimuli were presented for a recognition performance. The rTMS stimulation was provided during the retrieval phase over the left DLPFC. We found that the rTMS stimulation over this area affects the memory retrieval of positive emotional material, with higher memory efficiency (reduced RTs). This result suggested that left DLPFC activation promotes the memory retrieval of emotional information. Secondly, the valence model of emotional cue processing may explain decreasing of RTs, by pointing out the distinct role the left hemisphere has in positive emotional cue processing.
Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo
2016-05-01
The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.
Retrieval and phenomenology of autobiographical memories in blind individuals.
Tekcan, Ali Í; Yılmaz, Engin; Kızılöz, Burcu Kaya; Karadöller, Dilay Z; Mutafoğlu, Merve; Erciyes, Aslı Aktan
2015-01-01
Although visual imagery is argued to be an essential component of autobiographical memory, there have been surprisingly few studies on autobiographical memory processes in blind individuals, who have had no or limited visual input. The purpose of the present study was to investigate how blindness affects retrieval and phenomenology of autobiographical memories. We asked 48 congenital/early blind and 48 sighted participants to recall autobiographical memories in response to six cue words, and to fill out the Autobiographical Memory Questionnaire measuring a number of variables including imagery, belief and recollective experience associated with each memory. Blind participants retrieved fewer memories and reported higher auditory imagery at retrieval than sighted participants. Moreover, within the blind group, participants with total blindness reported higher auditory imagery than those with some light perception. Blind participants also assigned higher importance, belief and recollection ratings to their memories than sighted participants. Importantly, these group differences remained the same for recent as well as childhood memories.
Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan
2013-01-01
Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation. PMID:23303058
Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan
2013-04-01
Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.
Memory retrieval of everyday information under stress.
Stock, Lisa-Marie; Merz, Christian J
2018-07-01
Psychosocial stress is known to crucially influence learning and memory processes. Several studies have already shown an impairing effect of elevated cortisol concentrations on memory retrieval. These studies mainly used learning material consisting of stimuli with a limited ecological validity. When using material with a social contextual component or with educational relevant material both impairing and enhancing stress effects on memory retrieval could be observed. In line with these latter studies, the present experiment also used material with a higher ecological validity (a coherent text consisting of daily relevant numeric, figural and verbal information). After encoding, retrieval took place 24 h later after exposure to psychosocial stress or a control procedure (20 healthy men per group). The stress group was further subdivided into cortisol responders and non-responders. Results showed a significantly impaired retrieval of everyday information in non-responders compared to responders and controls. Altogether, the present findings indicate the need of an appropriate cortisol response for the successful memory retrieval of everyday information. Thus, the present findings suggest that cortisol increases - contrary to a stressful experience per se - seem to play a protective role for retrieving everyday information. Additionally, it could be speculated that the previously reported impairing stress effects on memory retrieval might depend on the used learning material. Copyright © 2018 Elsevier Inc. All rights reserved.
Persson, Bjorn M; Ainge, James A; O'Connor, Akira R
2016-07-01
Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. Copyright © 2016 Elsevier Inc. All rights reserved.
Prior parity positively regulates learning and memory in young and middle-aged rats.
Zimberknopf, Erica; Xavier, Gilberto F; Kinsley, Craig H; Felicio, Luciano F
2011-08-01
Reproductive experience in female rats modifies acquired behaviors, induces long-lasting functional neuroadaptations and can also modify spatial learning and memory. The present study supports and expands this knowledge base by employing the Morris water maze, which measures spatial memory. Age-matched young adult (YNG) nulliparous (NULL; nonmated) and primiparous (PRIM; one pregnancy and lactation) female rats were tested 15 d after the litter's weaning. In addition, corresponding middle-aged (AGD) PRIM (mated in young adulthood so that pregnancy, parturition, and lactation occurred at the same age as in YNG PRIM) and NULL female rats were tested at 18 mo of age. Behavioral evaluation included: 1) acquisition of reference memory (platform location was fixed for 14 to 19 d of testing); 2) retrieval of this information associated with extinction of the acquired response (probe test involving removal of the platform 24 h after the last training session); and 3) performance in a working memory version of the task (platform presented in a novel location every day for 13 d, and maintained in a fixed location within each day). YNG PRIM outperformed NULL rats and showed different behavioral strategies. These results may be related to changes in locomotor, mnemonic, and cognitive processes. In addition, YNG PRIM exhibited less anxiety-like behavior. Compared with YNG rats, AGD rats showed less behavioral flexibility but stronger memory consolidation. These data, which were obtained by using a well-documented spatial task, demonstrate long lasting modifications of behavioral strategies in both YNG and AGD rats associated with a single reproductive experience.
Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.
2013-01-01
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600
Dynamic switching between semantic and episodic memory systems.
Kompus, Kristiina; Olsson, Carl-Johan; Larsson, Anne; Nyberg, Lars
2009-09-01
It has been suggested that episodic and semantic long-term memory systems interact during retrieval. Here we examined the flexibility of memory retrieval in an associative task taxing memories of different strength, assumed to differentially engage episodic and semantic memory. Healthy volunteers were pre-trained on a set of 36 face-name pairs over a 6-week period. Another set of 36 items was shown only once during the same time period. About 3 months after the training period all items were presented in a randomly intermixed order in an event-related fMRI study of face-name memory. Once presented items differentially activated anterior cingulate cortex and a right prefrontal region that previously have been associated with episodic retrieval mode. High-familiar items were associated with stronger activation of posterior cortices and a left frontal region. These findings fit a model of memory retrieval by which early processes determine, on a trial-by-trial basis, if the task can be solved by the default semantic system. If not, there is a dynamic shift to cognitive control processes that guide retrieval from episodic memory.
Krüger, Markus; Jahn, Georg
2015-01-01
Children as young as 3 years can remember an object's location within an arrangement and can retrieve it from a novel viewpoint (Nardini et al., 2006). However, this ability is impaired if the arrangement is rotated to compensate for the novel viewpoint, or, if the arrangement is rotated and children stand still. There are two dominant explanations for this phenomenon: self-motion induces an automatic spatial updating process which is beneficial if children move around the arrangement, but misleading if the children's movement is matched by the arrangement and not activated if children stand still and only the arrangement is moved (see spatial updating; Simons and Wang, 1998). Another explanation concerns reference frames: spatial representations might depend on peripheral spatial relations concerning the surrounding room instead on proximal relations within the arrangement, even if these proximal relations are sufficient or more informative. To evaluate these possibilities, we rotated children (N = 120) aged between 3 and 6 years with an occluded arrangement. When the arrangement was in misalignment to the surrounding room, 3- and 4-year-olds' spatial memory was impaired and 5-year-olds' was lightly impaired suggesting that they relied on peripheral references of the surrounding room for retrieval. In contrast, 6-years-olds' spatial representation seemed robust against misalignment indicating a successful integration of spatial representations.
Krüger, Markus; Jahn, Georg
2015-01-01
Children as young as 3 years can remember an object’s location within an arrangement and can retrieve it from a novel viewpoint (Nardini et al., 2006). However, this ability is impaired if the arrangement is rotated to compensate for the novel viewpoint, or, if the arrangement is rotated and children stand still. There are two dominant explanations for this phenomenon: self-motion induces an automatic spatial updating process which is beneficial if children move around the arrangement, but misleading if the children’s movement is matched by the arrangement and not activated if children stand still and only the arrangement is moved (see spatial updating; Simons and Wang, 1998). Another explanation concerns reference frames: spatial representations might depend on peripheral spatial relations concerning the surrounding room instead on proximal relations within the arrangement, even if these proximal relations are sufficient or more informative. To evaluate these possibilities, we rotated children (N = 120) aged between 3 and 6 years with an occluded arrangement. When the arrangement was in misalignment to the surrounding room, 3- and 4-year-olds’ spatial memory was impaired and 5-year-olds’ was lightly impaired suggesting that they relied on peripheral references of the surrounding room for retrieval. In contrast, 6-years-olds’ spatial representation seemed robust against misalignment indicating a successful integration of spatial representations. PMID:26617537
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Working memory retrieval as a decision process
Pearson, Benjamin; Raškevičius, Julius; Bays, Paul M.; Pertzov, Yoni; Husain, Masud
2014-01-01
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation. PMID:24492597
Working memory retrieval as a decision process.
Pearson, Benjamin; Raskevicius, Julius; Bays, Paul M; Pertzov, Yoni; Husain, Masud
2014-02-03
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation.
Pierard, C; Dorey, R; Henkous, N; Mons, N; Béracochéa, D
2017-09-01
This study assessed the relative contributions of dorsal (dHPC) and ventral (vHPC) hippocampus regions in mediating the rapid effects of an acute stress on contextual memory retrieval. Indeed, we previously showed that an acute stress (3 electric footschocks; 0.9 mA each) delivered 15 min before the 24 h-test inversed the memory retrieval pattern in a contextual discrimination task. Specifically, mice learned in a four-hole board two successive discriminations (D1 and D2) varying by the color and texture of the floor. Twenty-four hours later, nonstressed animals remembered accurately D1 but not D2 whereas stressed mice showed an opposite memory retrieval pattern, D2 being more accurately remembered than D1. We showed here that, at the time of memory testing in that task, stressed animals exhibited no significant changes neither in pCREB activity nor in the time-course evolution of corticosterone into the vHPC; in contrast, a significant decrease in pCREB activity and a significant increase in corticosterone were observed in the dHPC as compared to nonstressed mice. Moreover, local infusion of the anesthetic lidocaine into the vHPC 15 min before the onset of the stressor did not modify the memory retrieval pattern in nonstress and stress conditions whereas lidocaine infusion into the dHPC induced in nonstressed mice an memory retrieval pattern similar to that observed in stressed animals. The overall set of data shows that memory retrieval in nonstress condition involved primarily the dHPC and that the inversion of memory retrieval pattern after stress is linked to a dHPC but not vHPC dysfunction. © 2017 Wiley Periodicals, Inc.
[Extinction and Reconsolidation of Memory].
Zuzina, A B; Balaban, P M
2015-01-01
Retrieval of memory followed by reconsolidation can strengthen a memory, while retrieval followed by extinction results in a decrease of memory performance due to weakening of existing memory or formation of a competing memory. In our study we analyzed the behavior and responses of identified neurons involved in the network underlying aversive learning in terrestrial snail Helix, and made an attempt to describe the conditions in which the retrieval of memory leads either to extinction or reconsolidation. In the network underlying the withdrawal behavior, sensory neurons, premotor interneurons, motor neurons, and modulatory for this network serotonergic neurons are identified and recordings from representatives of these groups were made before and after aversive learning. In the network underlying feeding behavior, the premotor modulatory serotonergic interneurons and motor neurons involved in motor program of feeding are identified. Analysis of changes in neural activity after aversive learning showed that modulatory neurons of feeding behavior do not demonstrate any changes (sometimes a decrease of responses to food was observed), while responses to food in withdrawal behavior premotor interneurons changed qualitatively, from under threshold EPSPs to spike discharges. Using a specific for serotonergic neurons neurotoxin 5,7-DiHT it was shown previously that the serotonergic system is necessary for the aversive learning, but is not necessary for maintenance and retrieval of this memory. These results suggest that the serotonergic neurons that are necessary as part of a reinforcement for developing the associative changes in the network may be not necessary for the retrieval of memory. The hypothesis presented in this review concerns the activity of the "reinforcement" serotonergic neurons that is suggested to be the gate condition for the choice between extinction/reconsolidation triggered by memory retrieval: if these serotonergic neurons do not respond during the retrieval due to adaptation, habituation, changes in environment, etc., then we will observe the extinction; while if these neurons respond to the CS during memory retrieval, we will observe the reconsolidation phenomenon.
Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli
2014-01-01
Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.
Fact Retrieval Processes in Human Memory. Psychology and Education Series Technical Report No. 252.
ERIC Educational Resources Information Center
Wescourt, Keith T.; Atkinson, Richard C.
A major contribution of information-processing theory to the psychology of remembering is the concept of memory or information retrieval. Several theories of the fact retrieval processes of the human memory, which constitute a substrate for any cognitive ability requiring stored information, have drawn heavily on certain data processing…
Long-Term Aftereffects of Response Inhibition: Memory Retrieval, Task Goals, and Cognitive Control
ERIC Educational Resources Information Center
Verbruggen, Frederick; Logan, Gordon D.
2008-01-01
Cognitive control theories attribute control to executive processes that adjust and control behavior online. Theories of automaticity attribute control to memory retrieval. In the present study, online adjustments and memory retrieval were examined, and their roles in controlling performance in the stop-signal paradigm were elucidated. There was…
Retrieval Constraints on the Front End Create Differences in Recollection on a Subsequent Test
ERIC Educational Resources Information Center
Marsh, Richard L.; Meeks, J. Thadeus; Cook, Gabriel I.; Clark-Foos, Arlo; Hicks, Jason L.; Brewer, Gene A.
2009-01-01
Four experiments were conducted to investigate how the cognitive control of memory retrieval selects particular qualitative characteristics as a consequence of instantiating a retrieval mode for recognition memory. Adapting the memory for foils paradigm from Jacoby, Shimizu, Daniels, and Rhodes (Jacoby, L. L., Shimizu, Y., Daniels, K. A., &…
ERIC Educational Resources Information Center
Tendolkar, Indira; Arnold, Jennifer; Petersson, Karl Magnus; Weis, Susanne; Brockhaus-Dumke, Anke; van Eijndhoven, Philip; Buitelaar, Jan; Fernandez, Guillen
2008-01-01
We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures…
A Neuroanatomical Model of Prefrontal Inhibitory Modulation of Memory Retrieval
Depue, Brendan E.
2012-01-01
Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: i) attending to other stimuli as a form of diversionary attention, ii) inhibiting the specific individual neural representation of the memory, and iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general. PMID:22374224
Küper, Kristina
2018-01-01
Episodic memory retrieval is assumed to be associated with the tonic cognitive state of retrieval mode. Despite extensive research into the neurophysiological correlates of retrieval mode, as of yet, relatively little is known about its functional significance. The present event-related potential (ERP) study was aimed at examining the impact of retrieval mode on the specificity of memory content retrieved in the course of familiarity and recollection processes. In two experiments, participants performed a recognition memory inclusion task in which they had to distinguish identically repeated and re-colored versions of study items from new items. In Experiment 1, participants had to alternate between the episodic memory task and a semantic task requiring a natural/artificial decision. In Experiment 2, the two tasks were instead performed in separate blocks. ERPs locked to the preparatory cues in the test phases indicated that participants did not establish retrieval mode on switch trials in Experiment 1. In the absence of retrieval mode, neither type of studied item elicited ERP correlates of familiarity-based retrieval (FN400). Recollection-related late positive complex (LPC) old/new effects emerged only for identically repeated but not for conceptually identical but perceptually changed versions of study items. With blocked retrieval in Experiment 2, both types of old items instead elicited equivalent FN400 and LPC old/new effects. The LPC data indicate that retrieval mode may play an important role in the successful recollection of conceptual stimulus information. The FN400 results additionally suggest that task switching may have a detrimental effect on familiarity-based memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Luck, David; Danion, Jean-Marie; Marrer, Corrine; Pham, Bich-Tuy; Gounot, Daniel; Foucher, Jack
2010-08-01
Alterations of binding in long-term memory in schizophrenia are well established and occur as a result of aberrant activity in the medial temporal lobe (MTL). In working memory (WM), such a deficit is less clear and the pathophysiological bases remain unstudied. Seventeen patients with schizophrenia and 17 matched healthy controls performed a WM binding task while undergoing functional magnetic resonance imaging. Binding was assessed by contrasting two conditions comprising an equal amount of verbal and spatial information (i.e., three letters and three spatial locations), but differing in the absence or presence of a link between them. In healthy controls, MTL activation was observed for encoding and maintenance of bound information but not for its retrieval. Between-group comparisons revealed that patients with schizophrenia showed MTL hypoactivation during the maintenance phase only. In addition, BOLD signals correlated with behavioral performance in controls but not in patients with schizophrenia. Our results confirm the major role that the MTL plays in the pathophysiology of schizophrenia. Short-term and long-term relational memory deficits in schizophrenia may share common cognitive and functional pathological bases. Our results provide additional information about the episodic buffer that represents an integrative interface between WM and long-term memory. Copyright 2009 Wiley-Liss, Inc.
A Temporal Ratio Model of Memory
ERIC Educational Resources Information Center
Brown, Gordon D. A.; Neath, Ian; Chater, Nick
2007-01-01
A model of memory retrieval is described. The model embodies four main claims: (a) temporal memory--traces of items are represented in memory partly in terms of their temporal distance from the present; (b) scale-similarity--similar mechanisms govern retrieval from memory over many different timescales; (c) local distinctiveness--performance on a…
Organization and Memory in Adulthood.
ERIC Educational Resources Information Center
Hultsch, David F.
This paper discusses organizational processes and memory in general and organizational processes and adult age differences in memory in particular. The simplest analysis of memory is to divide the process into two parts: storage and retrieval. Studies show that the limitation of memory lies primarily in retrieval rather than storage. Organization…
Selective effects of emotion on the phenomenal characteristics of autobiographical memories.
Schaefer, Alexandre; Philippot, Pierre
2005-02-01
The present study investigates the emotional determinants of the phenomenal characteristics of autobiographical memories. A total of 84 participants completed the Memory Characteristics Questionnaire (MCQ, Johnson, Foley, Suengas, & Raye, 1988) after retrieving and orally describing a negative, a positive, and a neutral autobiographical memory. In addition, self-report and physiological measures of emotional state at retrieval were recorded. Results suggest that recall of perceptual, sensory, and semantic elements is better for emotional memories than for neutral ones. This difference is not significant for contextual and temporal aspects, suggesting that emotional memories are more vivid but no more specific than are neutral ones. In addition, positive memories yielded higher MCQ ratings than did negative memories for sensory, temporal, and contextual aspects. Finally, correlations suggest a positive relation between emotional state at retrieval and level of phenomenal detail of retrieved memories. Results are interpreted in terms of multilevel models of emotion and of Conway and Pleydell-Pearce's (2000) model.
Retrograde Amnesia for Episodic and Semantic Memories in Amnestic Mild Cognitive Impairment.
De Simone, Maria Stefania; Fadda, Lucia; Perri, Roberta; De Tollis, Massimo; Aloisi, Marta; Caltagirone, Carlo; Carlesimo, Giovanni Augusto
2017-01-01
Retrograde amnesia (RA), which includes loss of memory for past personal events (autobiographical RA) and for acquired knowledge (semantic RA), has been largely documented in patients with amnestic mild cognitive impairment (aMCI). However, previous studies have produced controversial results particularly concerning the temporal extent of memory impairment. Here we investigated whether, with the onset of hippocampal pathology, age of memory acquisition and retrieval frequency play different roles in modulating the progressive loss of semantic and episodic contents of retrograde memory respectively. For this purpose, aMCI patients and healthy controls were tested for the ability to recall semantic and autobiographical information related to famous public events as a function of both age of acquisition and retrieval frequency. In aMCI patients, we found that the impairment in recollecting past personal incidents was modulated by the combined action of memory age and retrieval frequency, because older and more frequently retrieved episodes are less susceptible to loss than more recent and less frequently retrieved ones. On the other side, we found that the loss of semantic information depended only on memory age, because the remoteness of the trace allows for better preservation of the memory. Our results provide evidence that the loss of the two components of retrograde memory is regulated by different mechanisms. This supports the view that diverse neural mechanisms are involved in episodic and semantic memory trace storage and retrieval, as postulated by the Multiple Trace Theory.
Effects of Divided Attention at Retrieval on Conceptual Implicit Memory
Prull, Matthew W.; Lawless, Courtney; Marshall, Helen M.; Sherman, Annabella T. K.
2016-01-01
This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes. PMID:26834678
Effects of Divided Attention at Retrieval on Conceptual Implicit Memory.
Prull, Matthew W; Lawless, Courtney; Marshall, Helen M; Sherman, Annabella T K
2016-01-01
This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes.
Müller, Stephan; Mychajliw, Christian; Hautzinger, Martin; Fallgatter, Andreas J; Saur, Ralf; Leyhe, Thomas
2014-01-01
Alzheimer's disease (AD) is characterized by retrograde memory deficits primarily caused by dysfunction of the hippocampal complex. Unresolved questions exist concerning the time course of hippocampal involvement in conscious recollection of declarative knowledge, as reports of temporal gradients of retrograde amnesia have been inconclusive. The aim of this study was to examine whether the extent and severity of retrograde amnesia is mediated by retrieval frequency or, in contrast, whether it depends on the age of the memory according to the assumptions of the main current theories of memory formation. We compared recall of past public events in patients with AD and healthy control (HC) individuals using the Historic Events Test (HET). The HET assesses knowledge about famous public events of the past 60 years divided into four time segments and consists of subjective memory rating, dating accuracy, and contextual memory tasks. Although memory for public events was impaired in AD patients, there was a strong effect of retrieval frequency across all time segments and both groups. As AD and HC groups derived similar benefits from greater retrieval frequency, cortical structures other than the hippocampal complex may mediate memory retrieval. These findings suggest that more frequently retrieved events and facts become more independent of the hippocampal complex and thus better protected against early damage of AD. This could explain why cognitive activity may delay the onset of memory decline in persons who develop AD.
Liu, Cao; Sun, Xue; Wang, Zhilin; Le, Qiumin; Liu, Peipei; Jiang, Changyou; Wang, Feifei; Ma, Lan
2018-03-01
Memory retrieval refers to reexposure to information previously encoded and stored in the brain. Following retrieval, a once-consolidated memory destabilizes and undergoes reconsolidation, during which gene expression changes to restabilize memory. Investigating epigenetic regulation during reconsolidation could provide insights into normal memory formation and pathological memory associated with psychiatric disorders. We used cocaine-induced conditioned place preference to assess the cocaine-associated memory of mice and used chemogenetic methods to manipulate the activity of the pyramidal neurons in the dorsal hippocampus. We isolated the ribosome-associated transcripts from the excitatory neurons in the dorsal hippocampus by RiboTag purification to identify the potential epigenetic regulators, and we specifically knocked down gene expression in pyramidal neurons with a Cre-dependent lentivirus. Chemogenetically silencing the activity of the pyramidal neurons in the dorsal hippocampus immediately after memory retrieval markedly impaired memory reconsolidation, and the ribosome-associated mRNA level of the ten-eleven translocation (Tet) family methylcytosine dioxygenase Tet3, but not Tet1 or Tet2, was dramatically upregulated 10 minutes after memory retrieval. The protein level of Tet3 in the dorsal hippocampus but not in the anterior cingulate cortex was dramatically increased 1 hour after memory retrieval. Specifically, knockdown of Tet3 in pyramidal neurons in the dorsal hippocampus decreased the activation of pyramidal neurons and impaired the reconsolidation of cocaine-associated memory. Our findings highlight the new function of the DNA demethylation regulator Tet3 in pyramidal neurons of the dorsal hippocampus in regulating the reconsolidation of cocaine-associated memory. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Sutin, Angelina R.; Gillath, Omri
2009-01-01
In two studies, the present research tested the phenomenology and content of autobiographical memory as distinct mediators between attachment avoidance and anxiety and depressive symptoms. In Study 1, participants (N = 454) completed measures of attachment and depressive symptoms in one session, and retrieved and rated two self-defining memories of romantic relationships in a separate session. In Study 2, participants (N = 534) were primed with attachment security, attachment insecurity, or a control prime and then retrieved and rated a self-defining relationship memory. Memory phenomenology, specifically memory coherence and emotional intensity, mediated the association between attachment avoidance and depressive symptoms, whereas the negative affective content of the memory mediated the association between attachment anxiety and depressive symptoms. Priming attachment security led to retrieval of a more coherent relationship memory, whereas insecurity led to the retrieval of a more incoherent relationship memory. Discussion focuses on the construction and recollection of memories as underlying mechanisms of adult attachment and psychological distress, the importance of memory coherence, and the implications for counseling research and practice. PMID:20706555
Association between exposure to work stressors and cognitive performance.
Vuori, Marko; Akila, Ritva; Kalakoski, Virpi; Pentti, Jaana; Kivimäki, Mika; Vahtera, Jussi; Härmä, Mikko; Puttonen, Sampsa
2014-04-01
To examine the association between work stress and cognitive performance. Cognitive performance of a total of 99 women (mean age = 47.3 years) working in hospital wards at either the top or bottom quartiles of job strain was assessed using validated tests that measured learning, short-term memory, and speed of memory retrieval. The high job strain group (n = 43) had lower performance than the low job strain group (n = 56) in learning (P = 0.025), short-term memory (P = 0.027), and speed of memory retrieval (P = 0.003). After controlling for education level, only the difference in speed of memory retrieval remained statistically significant (P = 0.010). The association found between job strain and speed of memory retrieval might be one important factor explaining the effect of stress on work performance.
Individual Differences in Working Memory Capacity Predict Retrieval-Induced Forgetting
ERIC Educational Resources Information Center
Aslan, Alp; Bauml, Karl-Heinz T.
2011-01-01
Selectively retrieving a subset of previously studied information enhances memory for the retrieved information but causes forgetting of related, nonretrieved information. Such retrieval-induced forgetting (RIF) has often been attributed to inhibitory executive-control processes that supposedly suppress the nonretrieved items' memory…
Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars
2015-07-01
Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.
Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.
Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas
2017-04-01
Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.
Initial retrieval shields against retrieval-induced forgetting
Racsmány, Mihály; Keresztes, Attila
2015-01-01
Testing, as a form of retrieval, can enhance learning but it can also induce forgetting of related memories, a phenomenon known as retrieval-induced forgetting (RIF). In four experiments we explored whether selective retrieval and selective restudy of target memories induce forgetting of related memories with or without initial retrieval of the entire learning set. In Experiment 1, subjects studied category-exemplar associations, some of which were then either restudied or retrieved. RIF occurred on a delayed final test only when memories were retrieved and not when they were restudied. In Experiment 2, following the study phase of category-exemplar associations, subjects attempted to recall all category-exemplar associations, then they selectively retrieved or restudied some of the exemplars. We found that, despite the huge impact on practiced items, selective retrieval/restudy caused no decrease in final recall of related items. In Experiment 3, we replicated the main result of Experiment 2 by manipulating initial retrieval as a within-subject variable. In Experiment 4 we replicated the main results of the previous experiments with non-practiced (Nrp) baseline items. These findings suggest that initial retrieval of the learning set shields against the forgetting effect of later selective retrieval. Together, our results support the context shift theory of RIF. PMID:26052293
Parietal Activation During Retrieval of Abstract and Concrete Auditory Information
Klostermann, Ellen C.; Kane, Ari J.M.; Shimamura, Arthur P.
2008-01-01
Successful memory retrieval has been associated with a neural circuit that involves prefrontal, precuneus, and posterior parietal regions. Specifically, these regions are active during recognition memory tests when items correctly identified as “old” are compared with items correctly identified as “new.” Yet, as nearly all previous fMRI studies have used visual stimuli, it is unclear whether activations in posterior regions are specifically associated with memory retrieval or if they reflect visuospatial processing. We focus on the status of parietal activations during recognition performance by testing memory for abstract and concrete nouns presented in the auditory modality with eyes closed. Successful retrieval of both concrete and abstract words was associated with increased activation in left inferior parietal regions (BA 40), similar to those observed with visual stimuli. These results demonstrate that activations in the posterior parietal cortex during retrieval cannot be attributed to bottom-up visuospatial processes but instead have a more direct relationship to memory retrieval processes. PMID:18243736
Human memory retrieval as Lévy foraging
NASA Astrophysics Data System (ADS)
Rhodes, Theo; Turvey, Michael T.
2007-11-01
When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.
Yaffe, Robert B; Shaikhouni, Ammar; Arai, Jennifer; Inati, Sara K; Zaghloul, Kareem A
2017-04-26
Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62-100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. Copyright © 2017 the authors 0270-6474/17/374472-09$15.00/0.
Johnson, Jeffrey D; McGhee, Anna K
2015-11-01
For over a century, memory researchers have extensively studied the differences between retrieving memories that were encoded in the remote past as opposed to recently. Although this work has largely focused on the changes that these memory traces undergo over time, an unexplored issue is whether retrieval attempts and other strategic processes might be differentially oriented in order to effectively access memories of different ages. The current study addressed this issue by instructing participants to retrieve words that were encoded either one week (remote) or about 30 minutes earlier (recent). To maximize the possibility that participants adopted distinct retrieval orientations, separate blocks of the memory test employed exclusion task procedures in which the words from only one encoding period were targeted at a given time, in the face of distractors from the other period. Event-related potentials (ERPs) elicited by correctly-rejected new items were contrasted to minimize confounding effects of retrieval success. The new-item ERPs revealed differences according to the targeted week, such that the ERPs over posterior scalp were more positive-going for the recent compared to remote blocks. Furthermore, using multiple methods, these ERP effects were dissociated from differences in difficulty across the two conditions. The findings provide novel evidence that knowledge about when a memory was initially encoded leads to differences in the adoption of retrieval processing strategies. Copyright © 2015 Elsevier Inc. All rights reserved.
Age-related changes in parietal lobe activation during an episodic memory retrieval task.
Oedekoven, Christiane S H; Jansen, Andreas; Kircher, Tilo T; Leube, Dirk T
2013-05-01
The crucial role of lateral parietal regions in episodic memory has been confirmed in previous studies. While aging has an influence on retrieval of episodic memory, it remains to be examined how the involvement of lateral parietal regions in episodic memory changes with age. We investigated episodic memory retrieval in two age groups, using faces as stimuli and retrieval success as a measure of episodic memory. Young and elderly participants showed activation within a similar network, including lateral and medial parietal as well as prefrontal regions, but elderly showed a higher level of brain activation regardless of condition. Furthermore, we examined functional connectivity in the two age groups and found a more extensive network in the young group, including correlations of parietal and prefrontal regions. In the elderly, the overall stronger activation related to memory performance may indicate a compensatory process for a less extensive functional network.
Willander, Johan; Sikström, Sverker; Karlsson, Kristina
2015-01-01
Previous studies on autobiographical memory have focused on unimodal retrieval cues (i.e., cues pertaining to one modality). However, from an ecological perspective multimodal cues (i.e., cues pertaining to several modalities) are highly important to investigate. In the present study we investigated age distributions and experiential ratings of autobiographical memories retrieved with unimodal and multimodal cues. Sixty-two participants were randomized to one of four cue-conditions: visual, olfactory, auditory, or multimodal. The results showed that the peak of the distributions depends on the modality of the retrieval cue. The results indicated that multimodal retrieval seemed to be driven by visual and auditory information to a larger extent and to a lesser extent by olfactory information. Finally, no differences were observed in the number of retrieved memories or experiential ratings across the four cue-conditions.
Retrieval Effort Improves Memory and Metamemory in the Face of Misinformation
ERIC Educational Resources Information Center
Bulevich, John B.; Thomas, Ayanna K.
2012-01-01
Retrieval demand, as implemented through test format and retrieval instructions, was varied across two misinformation experiments. Our goal was to examine whether increasing retrieval demand would improve the relationship between confidence and memory performance, and thereby reduce misinformation susceptibility. We hypothesized that improving the…
Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice.
Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel
2004-07-01
Lesion studies have demonstrated the prominent role of the hippocampus in spatial and contextual learning. To better understand how contextual information is processed in the CA3 region during learning, we focused on the CA3 autoassociative network hypothesis. We took advantage of a particularity of the mossy fibre (MF) synapses, i.e. their high zinc concentration, to reversibly disrupt the afferent MF pathway by microinfusions of an intracellular (DEDTC) or an extracellular (CaEDTA) zinc chelator into the CA3 area of the dorsal hippocampus of mice. Disruption of the CA3 network significantly impaired the acquisition and the consolidation of contextual fear conditioning, whereas contextual retrieval was unaffected. These results also suggest a heterogeneity between the cognitive processes underlying spatial and contextual memory that might be linked to the specific involvement of free zinc in contextual information processing.
Differentiation of subsequent memory effects between retrieval practice and elaborative study.
Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan
2017-07-01
Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by Elsevier B.V.
A Neural Network Model of Retrieval-Induced Forgetting
ERIC Educational Resources Information Center
Norman, Kenneth A.; Newman, Ehren L.; Detre, Greg
2007-01-01
Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent recall of related memories. Here, the authors present a new model of how the brain gives rise to RIF in both semantic and episodic memory. The core of the model is a recently developed neural network learning algorithm that leverages regular…
ERIC Educational Resources Information Center
Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.
2013-01-01
Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…
Nonspecific verbal cues alleviate forgetting by young children.
Morgan, Kirstie; Hayne, Harlene
2007-11-01
Verbal reminders play a pervasive role in memory retrieval by human adults. In fact, relatively nonspecific verbal information (e.g. 'Remember the last time we ate at that restaurant?') will often cue vivid recollections of a past event even when presented outside the original encoding context. Although research has shown that memory retrieval by young children can be initiated by physical cues and by highly specific verbal cues, the effect of less specific verbal cues is not known. Using a Visual Recognition Memory (VRM) procedure, we examined the effect of nonspecific verbal cues on memory retrieval by 4-year-old children. Our findings showed that nonspecific verbal cues were as effective as highly specific nonverbal cues in facilitating memory retrieval after a 2-week delay. We conclude that, at least by 4 years of age, children are able to use nonspecific verbal reminders to cue memory retrieval, and that the VRM paradigm may be particularly valuable in examining the age at which this initially occurs.
Acute stress does not impair long-term memory retrieval in older people.
Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia
2013-09-01
Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people. Copyright © 2013 Elsevier Inc. All rights reserved.
Retrieval dynamics in self-terminated memory search.
Hussey, Erika K; Dougherty, Michael R; Harbison, J Isaiah; Davelaar, Eddy J
2014-02-01
Most free-recall experiments employ a paradigm in which participants are given a preset amount of time to retrieve items from a list. While much has been learned using this paradigm, it ignores an important component of many real-world retrieval tasks: the decision to terminate memory search. The present study examines the temporal characteristics underlying memory search by comparing within subjects a standard retrieval paradigm with a finite, preset amount of time (closed interval) to a design that allows participants to terminate memory search on their own (open interval). Calling on the results of several presented simulations, we anticipated that the threshold for number of retrieval failures varied as a function of the nature of the recall paradigm, such that open intervals should result in lower thresholds than closed intervals. Moreover, this effect was expected to manifest in interretrieval times (IRTs). Although retrieval-interval type did not significantly impact the number of items recalled or error rates, IRTs were sensitive to the manipulation. Specifically, the final IRTs in the closed-interval paradigm were longer than those of the open-interval paradigm. This pattern suggests that providing participants with a preset retrieval interval not only masks an important component of the retrieval process (the memory search termination decision), but also alters temporal retrieval dynamics. Task demands may compel people to strategically control aspects of their retrieval by implementing different stopping rules.
Kizilirmak, Jasmin M; Rösler, Frank; Khader, Patrick H
2014-10-01
How do we control the successive retrieval of behaviorally relevant information from long-term memory (LTM) without being distracted by other potential retrieval targets associated to the same retrieval cues? Here, we approach this question by investigating the nature of trial-by-trial dynamics of selective LTM retrieval, i.e., in how far retrieval in one trial has detrimental or facilitatory effects on selective retrieval in the following trial. Participants first learned associations between retrieval cues and targets, with one cue always being linked to three targets, forming small associative networks. In successive trials, participants had to access either the same or a different target belonging to either the same or a different cue. We found that retrieval times were faster for targets that had already been relevant in the previous trial, with this facilitatory effect being substantially weaker when the associative network changed in which the targets were embedded. Moreover, staying within the same network still had a facilitatory effect even if the target changed, which became evident in a relatively higher memory performance in comparison to a network change. Furthermore, event-related brain potentials (ERPs) showed topographically and temporally dissociable correlates of these effects, suggesting that they result from combined influences of distinct processes that aid memory retrieval when relevant and irrelevant targets change their status from trial to trial. Taken together, the present study provides insight into the different processing stages of memory retrieval when fast switches between retrieval targets are required. Copyright © 2014 Elsevier Inc. All rights reserved.
Advanced Compact Holographic Data Storage System
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Zhou, Hanying; Reyes, George
2000-01-01
JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Advanced Holographic Memory (AHM) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electro-optic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and highspeed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology to enhance mission capabilities for all NASA's Earth Science Mission. In this paper, recent technology progress in developing this CHDS at JPL will be presented.
Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.
Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon
2016-01-06
Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.
ERIC Educational Resources Information Center
Bucherelli, Corrado; Baldi, Elisabetta; Mariottini, Chiara; Passani, Maria Beatrice; Blandina, Patrizio
2006-01-01
Consolidation refers to item stabilization in long-term memory. Retrieval renders a consolidated memory sensitive, and a "reconsolidation" process has been hypothesized to keep the original memory persistent. Some authors could not detect this phenomenon. Here we show that retrieved contextual fear memory is vulnerable to amnesic treatments and…
ERIC Educational Resources Information Center
Ros, Laura; Latorre, José M.; Aguilar, M. José; Ricarte, Jorge J.; Castillo, Alejandro; Catena, Andrés; Fuentes, Luis J.
2017-01-01
Difficulty in retrieving specific autobiographical memories is known as overgeneral autobiographical memory (OGM). OGM has been related with clinical psychopathology (e.g., depression, schizophrenia, etc.). People presenting an OGM style usually recall more repetitive summary-type memories, so-called categoric memories, (e.g., "each time I…
Prospective memory in dynamic environments: effects of load, delay, and phonological rehearsal
NASA Technical Reports Server (NTRS)
Stone, M.; Dismukes, K.; Remington, R.
2001-01-01
A new paradigm was developed to examine prospective memory performance in a visual-spatial task that resembles some aspects of the work of air traffic controllers. Two experiments examined the role of workload (number of aeroplanes that participants directed), delay (between receipt of prospective instructions and execution), and phonological rehearsal. High workload increased prospective memory errors but increasing delay from 1-3 or 5 minutes had no effect. Shadowing aurally presented text reduced prospective memory performance, presumably because it prevented verbal rehearsal of the prospective instructions. However, performance on the foreground task of directing aeroplanes to routine destinations was affected only by workload and not by opportunity for rehearsal. Our results suggest that ability to maintain performance on a routine foreground task while performing a secondary task--perhaps analogous to conversation--does not predict ability to retrieve a prospective intention to deviate from the routine.
Prospective memory in dynamic environments: effects of load, delay, and phonological rehearsal.
Stone, M; Dismukes, K; Remington, R
2001-05-01
A new paradigm was developed to examine prospective memory performance in a visual-spatial task that resembles some aspects of the work of air traffic controllers. Two experiments examined the role of workload (number of aeroplanes that participants directed), delay (between receipt of prospective instructions and execution), and phonological rehearsal. High workload increased prospective memory errors but increasing delay from 1-3 or 5 minutes had no effect. Shadowing aurally presented text reduced prospective memory performance, presumably because it prevented verbal rehearsal of the prospective instructions. However, performance on the foreground task of directing aeroplanes to routine destinations was affected only by workload and not by opportunity for rehearsal. Our results suggest that ability to maintain performance on a routine foreground task while performing a secondary task--perhaps analogous to conversation--does not predict ability to retrieve a prospective intention to deviate from the routine.
"Good is up" is not always better: a memory advantage for words in metaphor-incompatible locations.
Crawford, L Elizabeth; Cohn, Stephanie M; Kim, Arnold B
2014-01-01
Four experiments examined whether memory for positive and negative words depended on word location and vertical hand movements. Cognitive processing is known to be facilitated when valenced stimuli are presented in locations that are congruent with the GOOD is UP conceptual metaphor, relative to when they are presented in incongruent locations. In both free recall and recognition tasks, we find a memory advantage for words that had been studied in metaphor incongruent locations (positive down, negative up). This incongruity advantage depends on the location of words during encoding, but no evidence was found to suggest that other spatial associations, such as the vertical position of the hand at encoding or word location during retrieval, affect memory. The results indicate that metaphors, like schemas, categories, and stereotypes, can influence cognition in complex ways, producing variable outcomes across different tasks.
Retrieval Demands Adaptively Change Striatal Old/New Signals and Boost Subsequent Long-Term Memory.
Herweg, Nora A; Sommer, Tobias; Bunzeck, Nico
2018-01-17
The striatum is a central part of the dopaminergic mesolimbic system and contributes both to the encoding and retrieval of long-term memories. In this regard, the co-occurrence of striatal novelty and retrieval success effects in independent studies underlines the structure's double duty and suggests dynamic contextual adaptation. To test this hypothesis and further investigate the underlying mechanisms of encoding and retrieval dynamics, human subjects viewed pre-familiarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task), while fMRI and eye tracking data were recorded. Subsequently, subjects performed a final recognition task. As hypothesized, striatal activity and pupil size reflected task-conditional salience of old and new stimuli, but, unexpectedly, this effect was not reflected in the substantia nigra and ventral tegmental area (SN/VTA), medial temporal lobe, or subsequent memory performance. Instead, subsequent memory generally benefitted from retrieval, an effect possibly driven by task difficulty and activity in a network including different parts of the striatum and SN/VTA. Our findings extend memory models of encoding and retrieval dynamics by pinpointing a specific contextual factor that differentially modulates the functional properties of the mesolimbic system. SIGNIFICANCE STATEMENT The mesolimbic system is involved in the encoding and retrieval of information but it is unclear how these two processes are achieved within the same network of brain regions. In particular, memory retrieval and novelty encoding were considered in independent studies, implying that novelty (new > old) and retrieval success (old > new) effects may co-occur in the striatum. Here, we used a common framework implicating the striatum, but not other parts of the mesolimbic system, in tracking context-dependent salience of old and new information. The current study, therefore, paves the way for a more comprehensive understanding of the functional properties of the mesolimbic system during memory encoding and retrieval. Copyright © 2018 the authors 0270-6474/18/380745-10$15.00/0.
2012-01-01
Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies. PMID:22827854
Straube, Benjamin
2012-07-24
Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies.
Memory Impairment in Multiple Sclerosis is Due to a Core Deficit in Initial Learning
DeLuca, John; Leavitt, Victoria M.; Chiaravalloti, Nancy; Wylie, Glenn
2013-01-01
Persons with multiple sclerosis (MS) suffer memory impairment, but research on the nature of MS-related memory problems is mixed. Some have argued for a core deficit in retrieval, while others have identified deficient initial learning as the core deficit. We used a selective reminding paradigm to determine whether deficient initial learning or delayed retrieval represents the primary memory deficit in 44 persons with MS. Brain atrophy was measured from high-resolution MRIs. Regression analyses examined the impact of brain atrophy on (a) initial learning and delayed retrieval separately, and then (b) delayed retrieval controlling for initial learning. Brain atrophy was negatively associated with both initial learning and delayed retrieval (ps < .01), but brain atrophy was unrelated to retrieval when controlling for initial learning (p > .05). In addition, brain atrophy was associated with inefficient learning across initial acquisition trials, and brain atrophy was unrelated to delayed recall among MS subjects who successfully acquired the word list (although such learning frequently required many exposures). Taken together, memory deficits in MS are a result of deficits in initial learning; moreover, initial learning mediates the relationship between brain atrophy and subsequent retrieval, thereby supporting the core learning-deficit hypothesis of memory impairment in MS. PMID:23832311
Dissociating word stem completion and cued recall as a function of divided attention at retrieval.
Clarke, A J Benjamin; Butler, Laurie T
2008-10-01
The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.
ERIC Educational Resources Information Center
Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee
2012-01-01
Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…
Motor Action and Emotional Memory
ERIC Educational Resources Information Center
Casasanto, Daniel; Dijkstra, Katinka
2010-01-01
Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction…
Retrieval Search and Strength Evoke Dissociable Brain Activity during Episodic Memory Recall
Reas, Emilie T.; Brewer, James B.
2014-01-01
Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks. PMID:23190328
Barak, Ohr; Vakil, Eli; Levy, Daniel A
2013-01-01
Contextual change or constancy between occasions of memory formation and retrieval are commonly assumed to affect retrieval success, yet such effects may be inconsistent, and the processes leading to the pattern of effects are still not well understood. We conducted a systematic investigation of environmental context effects on memory, using a range of materials (common objects, pictures of familiar and unfamiliar faces, words, and sentences), and four types of retrieval (free recall, cued recall, recognition, and order memory), all assessed within participants. Additionally, we examined the influence of mnemonic challenge on context effects by examining both healthy participants and a group of patients in rehabilitation following traumatic brain injury (TBI). We found no effects of contextual factors on tests of recognition for either group of participants, but effects did emerge for cued and free recall, with the most prominent effects being on memory for objects. Furthermore, while patients' memory abilities in general were impaired relative to the comparison group, they exhibited greater influences of contextual reinstatement on several recall tasks. These results support suggestions that environmental context effects on memory are dependent on retrieval mode and on the extent to which retrieval is challenging because of neurocognitive status. Additionally, findings of environmental context effects in memory-impaired TBI patients suggest that by harnessing such preserved indirect memory (e.g., using reminder technologies), it may be possible to ameliorate TBI patients' difficulties in explicit remembering.
Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén
2017-02-01
Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.
Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.
Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M
2015-11-01
Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.
Remember the source: dissociating frontal and parietal contributions to episodic memory.
Donaldson, David I; Wheeler, Mark E; Petersen, Steve E
2010-02-01
Event-related fMRI studies reveal that episodic memory retrieval modulates lateral and medial parietal cortices, dorsal middle frontal gyrus (MFG), and anterior PFC. These regions respond more for recognized old than correctly rejected new words, suggesting a neural correlate of retrieval success. Despite significant efforts examining retrieval success regions, their role in retrieval remains largely unknown. Here we asked the question, to what degree are the regions performing memory-specific operations? And if so, are they all equally sensitive to successful retrieval, or are other factors such as error detection also implicated? We investigated this question by testing whether activity in retrieval success regions was associated with task-specific contingencies (i.e., perceived targetness) or mnemonic relevance (e.g., retrieval of source context). To do this, we used a source memory task that required discrimination between remembered targets and remembered nontargets. For a given region, the modulation of neural activity by a situational factor such as target status would suggest a more domain-general role; similarly, modulations of activity linked to error detection would suggest a role in monitoring and control rather than the accumulation of evidence from memory per se. We found that parietal retrieval success regions exhibited greater activity for items receiving correct than incorrect source responses, whereas frontal retrieval success regions were most active on error trials, suggesting that posterior regions signal successful retrieval whereas frontal regions monitor retrieval outcome. In addition, perceived targetness failed to modulate fMRI activity in any retrieval success region, suggesting that these regions are retrieval specific. We discuss the different functions that these regions may support and propose an accumulator model that captures the different pattern of responses seen in frontal and parietal retrieval success regions.
Neural correlates of autobiographical memory retrieval in children and adults.
Bauer, Patricia J; Pathman, Thanujeni; Inman, Cory; Campanella, Carolina; Hamann, Stephan
2017-04-01
Autobiographical memory (AM) is a critically important form of memory for life events that undergoes substantial developmental changes from childhood to adulthood. Relatively little is known regarding the functional neural correlates of AM retrieval in children as assessed with fMRI, and how they may differ from adults. We investigated this question with 14 children ages 8-11 years and 14 adults ages 19-30 years, contrasting AM retrieval with semantic memory (SM) retrieval. During scanning, participants were cued by verbal prompts to retrieve previously selected recent AMs or to verify semantic properties of words. As predicted, both groups showed AM retrieval-related increased activation in regions implicated in prior studies, including bilateral hippocampus, and prefrontal, posterior cingulate, and parietal cortices. Adults showed greater activation in the hippocampal/parahippocampal region as well as prefrontal and parietal cortex, relative to children; age-related differences were most prominent in the first 8 sec versus the second 8 sec of AM retrieval and when AM retrieval was contrasted with semantic retrieval. This study is the first to characterise similarities and differences during AM retrieval in children and adults using fMRI.
Roesler, Rafael; Reolon, Gustavo K.; Maurmann, Natasha; Schwartsmann, Gilberto; Schröder, Nadja; Amaral, Olavo B.; Valvassori, Samira; Quevedo, João
2014-01-01
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall. PMID:24672454
Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice
Saraf, Manish Kumar; Prabhakar, Sudesh; Khanduja, Krishan Lal; Anand, Akshay
2011-01-01
Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi) is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease. PMID:21607013
Effects of retrieval practice on consumer memory for brand attributes.
Parker, Andrew; Dagnall, Neil
2007-08-01
The effect of retrieval practice on memory for brand attributes was examined. Participants were presented with advertisements for fictional products so each contained a number of brand attributes relating to the nature of the product and its qualities. Following this, participants practiced recalling a subset of those attributes either 3 or 6 times. The act of retrieving some brand information inhibited the recall of other brand information that was not practiced, but only when repeated retrieval practice took place 6 times. This is the first demonstration of inhibitory effects in consumers' memory using the retrieval practice paradigm.
Stramaccia, Davide F; Penolazzi, Barbara; Altoè, Gianmarco; Galfano, Giovanni
2017-10-01
Retrieving information from episodic memory may result in later inaccessibility of related but task-irrelevant information. This phenomenon, known as retrieval-induced forgetting, is thought to represent a specific instance of broader cognitive control mechanisms, that would come into play during memory retrieval, whenever non-target competing memories interfere with recall of target items. Recent neuroimaging studies have shown an association between these mechanisms and the activity of the right Prefrontal Cortex. However, so far, few studies have attempted at establishing a causal relationship between this brain region and behavioural measures of cognitive control over memory. To address this missing link, we delivered transcranial Direct Current Stimulation (tDCS) over the right Inferior Frontal Gyrus (rIFG) during a standard retrieval-practice paradigm with category-exemplar word pairs. Across two experiments, tDCS abolished retrieval-induced forgetting to different degrees, compared to the sham control group whereas no effects of stimulation emerged in an ancillary measure of motor stopping ability. Moreover, influence analyses on specific subsets of the experimental material revealed diverging patterns of results, which depended upon the different categories employed in the retrieval-practice paradigm. Overall, the results support the view that rIFG has a causal role in the control of interference in memory retrieval and highlight the often underestimated role of stimulus material in affecting the effects. The present findings are therefore relevant in enriching our knowledge about memory functions from both a theoretical and methodological perspective. Copyright © 2017 Elsevier Inc. All rights reserved.
Holehonnur, Roopashri; Phensy, Aarron J; Kim, Lily J; Milivojevic, Milica; Vuong, Dat; Daison, Delvin K; Alex, Saira; Tiner, Michael; Jones, Lauren E; Kroener, Sven; Ploski, Jonathan E
2016-09-07
Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating. Copyright © 2016 the authors 0270-6474/16/369490-15$15.00/0.
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
ERIC Educational Resources Information Center
Voss, Joel L.; Galvan, Ashley; Gonsalves, Brian D.
2011-01-01
Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during…
ERIC Educational Resources Information Center
Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.
2014-01-01
The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…
Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L. K.
2015-01-01
Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370
The influence of retrieval practice on memory and comprehension of science texts
NASA Astrophysics Data System (ADS)
Hinze, Scott R.
The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not fill-in-the-blank tests, improved performance on new memory items. Experiment 2 manipulated test expectancy and extended cued recall benefits to inference items. Test expectancies established prior to retrieval altered processing to either be ineffective (when expecting a memory test) or effective (when expecting an inference test). In Experiment 3, the processing task engaged in during retrieval practice was manipulated. Explanation during retrieval practice led to more effective transfer than free recall instructions, especially when participants were compliant and effective in their explanations. These experiments demonstrate that some, but not all, processing during retrieval practice can influence both memory and understanding of science texts.
Task context and organization in free recall
Polyn, Sean M.; Norman, Kenneth A.; Kahana, Michael J.
2009-01-01
Prior work on organization in free recall has focused on the ways in which semantic and temporal information determine the order in which material is retrieved from memory. Tulving’s theory of ecphory suggests that these organizational effects arise from the interaction of a retrieval cue with the contents of memory. Using the continual-distraction free-recall paradigm (Bjork & Whitten, 1974) to minimize retrieval during the study period, we show that encoding task context can organize recall, suggesting that task-related information is part of the retrieval cue. We interpret these results in terms of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, in press), in which an internal contextual representation, containing semantic, temporal, and source-related information, serves as the retrieval cue and organizes the retrieval of information from memory. We discuss these results in terms of the guided activation theory (Miller & Cohen, 2001) of the role of prefrontal cortex in task performance, as well as the rich neuropsychological literature implicating prefrontal cortex in memory search (e.g, Schacter, 1987). PMID:19524086
The impact of threat of shock-induced anxiety on memory encoding and retrieval
Bolton, Sorcha
2017-01-01
Anxiety disorders are the most common mental health disorders, and daily transient feelings of anxiety (or “stress”) are ubiquitous. However, the precise impact of both transient and pathological anxiety on higher-order cognitive functions, including short- and long-term memory, is poorly understood. A clearer understanding of the anxiety–memory relationship is important as one of the core symptoms of anxiety, most prominently in post-traumatic stress disorder (PTSD), is intrusive reexperiencing of traumatic events in the form of vivid memories. This study therefore aimed to examine the impact of induced anxiety (threat of shock) on memory encoding and retrieval. Eighty-six healthy participants completed tasks assessing: visuospatial working memory, verbal recognition, face recognition, and associative memory. Critically, anxiety was manipulated within-subjects: information was both encoded and retrieved under threat of shock and safe (no shock) conditions. Results revealed that visuospatial working memory was enhanced when information was encoded and subsequently retrieved under threat, and that threat impaired the encoding of faces regardless of the condition in which it was retrieved. Episodic memory and verbal short-term recognition were, however, unimpaired. These findings indicate that transient anxiety in healthy individuals has domain-specific, rather than domain-general, impacts on memory. Future studies would benefit from expanding these findings into anxiety disorder patients to delineate the differences between adaptive and maladaptive responding. PMID:28916628
Does constraining memory maintenance reduce visual search efficiency?
Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R
2018-03-01
We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.
Retrieval per se is not sufficient to trigger reconsolidation of human fear memory.
Sevenster, Dieuwke; Beckers, Tom; Kindt, Merel
2012-03-01
Ample evidence suggests that consolidated memories, upon their retrieval, enter a labile state, in which they might be susceptible to change. It has been proposed that memory labilization allows for the integration of relevant information in the established memory trace (memory updating). Memory labilization and reconsolidation do not necessarily occur when a memory is being reactivated, but only when there is something to be learned during memory retrieval (prediction error). Thus, updating of a fear memory trace should not occur under retrieval conditions in which the outcome is fully predictable (no prediction error). Here, we addressed this issue, using a human differential fear conditioning procedure, by eliminating the very possibility of reinforcement of the reminder cue. A previously established fear memory (picture-shock pairings) was reactivated with shock-electrodes attached (Propranolol group, n=18) or unattached (Propranolol No-Shock Expectation group, n=19). We additionally tested a placebo-control group with the shock-electrodes attached (Placebo group, n=18). Reconsolidation was not triggered when nothing could be learned during the reminder trial, as noradrenergic blockade did not affect expression of the fear memory 24h later in the Propranolol No-Shock Expectation group. Only when the outcome of the retrieval cue was not fully predictable, propranolol, contrary to placebo, reduced the startle fear response and prevented the return of fear (reinstatement) the following day. In line with previous studies, skin conductance response and shock expectancies were not affected by propranolol. Remarkably, a double dissociation emerged between the emotional (startle response) and more cognitive expression (expectancies, SCR) of the fear memory. Our findings have important implications for reconsolidation blockade as treatment strategy for emotional disorders. First, fear reducing procedures that target the emotional component of fear memory do not necessarily affect the cognitive component and vice versa. Second, mere retrieval of the fear memory is not sufficient to induce its labilization and reconsolidation. Copyright © 2012 Elsevier Inc. All rights reserved.
Contextually Mediated Spontaneous Retrieval Is Specific to the Hippocampus
Long, Nicole M.; Sperling, Michael R.; Worrell, Gregory A.; Davis, Kathryn A.; Gross, Robert E.; Lega, Bradley C.; Jobst, Barbara C.; Sheth, Sameer A.; Zaghloul, Kareem; Stein, Joel M.; Kahana, Michael J.
2018-01-01
SUMMARY Although it is now well established that the hippocampus supports memory encoding [1, 2], little is known about hippocampal activity during spontaneous memory retrieval. Recent intracranial electroencephalographic (iEEG) work has shown that hippocampal activity during encoding predicts subsequent temporal organization of memories [3], supporting a role in contextual binding. It is an open question, however, whether the hippocampus similarly supports contextually mediated processes during retrieval. Here, we analyzed iEEG recordings obtained from 215 epilepsy patients as they performed a free recall task. To identify neural activity specifically associated with contextual retrieval, we compared correct recalls, intrusions (incorrect recall of either items from prior lists or items not previously studied), and deliberations (matched periods during recall when no items came to mind). Neural signals that differentiate correct recalls from both other retrieval classes reflect contextual retrieval, as correct recalls alone arise from the correct context. We found that in the hippocampus, high-frequency activity (HFA, 44–100 Hz), a proxy for neural activation [4], was greater prior to correct recalls relative to the other retrieval classes, with no differentiation between intrusions and deliberations. This pattern was not observed in other memory-related cortical regions, including DLPFC, thus supporting a specific hippocampal contribution to contextually mediated memory retrieval. PMID:28343962
Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.
Sinclair, Robert J; Dixit, Sachin; Burton, Harold
2011-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.
Recognition memory for vibrotactile rhythms: An fMRI study in blind and sighted individuals
SINCLAIR, ROBERT J.; DIXIT, SACHIN; BURTON, HAROLD
2014-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes. PMID:21846300
Explaining how brain stimulation can evoke memories.
Jacobs, Joshua; Lega, Bradley; Anderson, Christopher
2012-03-01
An unexplained phenomenon in neuroscience is the discovery that electrical stimulation in temporal neocortex can cause neurosurgical patients to spontaneously experience memory retrieval. Here we provide the first detailed examination of the neural basis of stimulation-induced memory retrieval by probing brain activity in a patient who reliably recalled memories of his high school (HS) after stimulation at a site in his left temporal lobe. After stimulation, this patient performed a customized memory task in which he was prompted to retrieve information from HS and non-HS topics. At the one site where stimulation evoked HS memories, remembering HS information caused a distinctive pattern of neural activity compared with retrieving non-HS information. Together, these findings suggest that the patient had a cluster of neurons in his temporal lobe that help represent the "high school-ness" of the current cognitive state. We believe that stimulation here evoked HS memories because it altered local neural activity in a way that partially mimicked the normal brain state for HS memories. More broadly, our findings suggest that brain stimulation can evoke memories by recreating neural patterns from normal cognition.
Mullet, Hillary G; Scullin, Michael K; Hess, Theodore J; Scullin, Rachel B; Arnold, Kathleen M; Einstein, Gilles O
2013-12-01
We examined whether normal aging spares or compromises cue-driven spontaneous retrieval processes that support prospective remembering. In Experiment 1, young and older adults performed prospective-memory tasks that required either strategic monitoring processes for retrieval (nonfocal) or for which participants relied on spontaneous retrieval processes (focal). We found age differences for nonfocal, but not focal, prospective-memory performance. Experiments 2 and 3 used an intention-interference paradigm in which participants were asked to perform a prospective-memory task (e.g., press "Q" when the word money appears) in the context of an image-rating task and were then told to suspend their prospective-memory intention until after completing an intervening lexical-decision task. During the lexical-decision task, we presented the exact prospective-memory cue (e.g., money; Experiments 2 and 3) or a semantically related lure (e.g., wallet; Experiment 3), and we inferred spontaneous retrieval from slowed lexical-decision responses to these items relative to matched control items. Young and older adults showed significant slowing when the exact prospective-memory cue was presented. Only young adults, however, showed significant slowing to the semantically related lure items. Collectively, these results partially support the multiprocess theory prediction that aging spares spontaneous retrieval processes. Spontaneous retrieval processes may become less sensitive with aging, such that older adults are less likely to respond to cues that do not exactly match their encoded targets. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan
2017-01-01
Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300-500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500-800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects.
Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan
2017-01-01
Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300–500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500–800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects. PMID:29066962
Electrophysiological correlates of competitor activation predict retrieval-induced forgetting.
Hellerstedt, Robin; Johansson, Mikael
2014-06-01
The very act of retrieval modifies the accessibility of memory for knowledge and past events and can also cause forgetting. A prominent theory of such retrieval-induced forgetting (RIF) holds that retrieval recruits inhibition to overcome interference from competing memories, rendering these memories inaccessible. The present study tested a fundamental tenet of the inhibitory-control account: The competition-dependence assumption. Event-related potentials (ERPs) were recorded while participants engaged in a competitive retrieval task. Competition levels were manipulated within the retrieval task by varying the cue-item associative strength of competing items. In order to temporally separate ERP correlates of competitor activation and target retrieval, memory was probed with the sequential presentation of 2 cues: A category cue, to reactivate competitors, and a target cue. As predicted by the inhibitory-control account, competitors with strong compared with weak cue-competitor association were more susceptible to forgetting. Furthermore, competition-sensitive ERP modulations, elicited by the category cue, were observed over anterior regions and reflected individual differences in ensuing forgetting. The present study demonstrates ERP correlates of the reactivation of tightly bound associated memories (the competitors) and provides support for the inhibitory-control account of RIF.
Zamorano, Cristina; Fernández-Albert, Jordi; Storm, Daniel R; Carné, Xavier; Sindreu, Carlos
2018-02-01
The hippocampus enables a range of behaviors through its intrinsic circuits and concerted actions with other brain regions. One such important function is the retrieval of episodic memories. How hippocampal cells support retrieval of contextual fear memory remains largely unclear. Here we monitored phospho-activation of extracellular-regulated kinase (Erk1/2) across neuronal populations of the hippocampus to find that CA1 pyramidal neurons, but not cells in CA3 or dentate gyrus, specifically respond to retrieval of an aversive context. In contrast, retrieval of a neutral context that fails to elicit a threat response did not activate Erk1/2. Moreover, retrieval preferentially re-activated Erk1/2 in the same set of CA1 neurons previously activated during conditioning in a context-specific manner. By confining drug inhibition within dorsal CA1, we established the crucial role for Erk1/2 activity in retrieval of long-term memory, as well as in amygdala activation associated with fear expression. These data provide functional evidence that Erk1/2 signaling in CA1 encodes a specific neural representation of contextual memory with emotional value. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Hanczakowski, Maciej; Mazzoni, Giuliana
2013-05-01
Retrieval-induced forgetting (RIF) is the finding of impaired memory performance for information stored in long-term memory due to retrieval of a related set of information. This phenomenon is often assigned to operations of a specialized mechanism recruited to resolve interference during retrieval by deactivating competing memory representations. This inhibitory account is supported by, among others, findings showing that RIF occurs with independent cues not used during retrieval practice. However, these findings are not always consistent. Recently, Norman, Newman, and Detre (2007) have proposed a model that aims at resolving discrepancies concerning cue-independence of RIF. The model predicts that RIF should be present with independent cues when episodic associations are created between independent cues and their targets in the same episodic context that is later used to cue memory during retrieval practice. In the present study we aimed to test this prediction. We associated studied items with semantically unrelated words during the main study phase of the retrieval practice paradigm, and we tested memory with both cues used during retrieval practice (Experiment 2) and episodic associates serving as independent cues (Experiments 3a and 3b). Although RIF was present when the same cues were used during retrieval practice and a final test, contrary to the prediction formulated by Norman et al., RIF failed to emerge when episodic associates were employed as independent cues.
Preparation breeds success: Brain activity predicts remembering.
Herron, Jane E; Evans, Lisa H
2018-05-09
Successful retrieval of episodic information is thought to involve the adoption of memory states that ensure that stimulus events are treated as episodic memory cues (retrieval mode) and which can bias retrieval toward specific memory contents (retrieval orientation). The neural correlates of these memory states have been identified in many neuroimaging studies, yet critically there is no direct evidence that they facilitate retrieval success. We cued participants before each test item to prepare to complete an episodic (retrieve the encoding task performed on the item at study) or a non-episodic task. Our design allowed us to separate event-related potentials (ERPs) elicited by the preparatory episodic cue according to the accuracy of the subsequent memory judgment. We predicted that a correlate of retrieval orientation should be larger in magnitude preceding correct source judgments than that preceding source errors. This hypothesis was confirmed. Preparatory ERPs at bilateral frontal sites were significantly more positive-going when preceding correct source judgments than when preceding source errors or correct responses in a non-episodic baseline task. Furthermore this effect was not evident prior to recognized items associated with incorrect source judgments. This pattern of results indicates a direct contribution of retrieval orientation to the recovery of task-relevant information and highlights the value of separating preparatory neural activity at retrieval according to subsequent memory accuracy. Moreover, at a more general level this work demonstrates the important role of pre-stimulus processing in ecphory, which has remained largely neglected to date. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tsukiura, Takashi; Cabeza, Roberto
2008-01-01
Memory processes can be enhanced by reward, and social signals such a smiling face can be rewarding to humans. Using event-related functional MRI (fMRI), we investigated the rewarding effect of a simple smile during the encoding and retrieval of face-name associations. During encoding, participants viewed smiling or neutral faces, each paired with a name, and during retrieval, only names were presented, and participants retrieved the associated facial expressions. Successful memory activity of face-name associations was identified by comparing remembered vs. forgotten trials during both encoding and retrieval, and the effect of a smile was identified by comparing successful memory trials for smiling vs. neutral faces. The study yielded three main findings. First, behavioral results showed that the retrieval of face-name associations was more accurate and faster for smiling than neutral faces. Second, the orbitofrontal cortex and the hippocampus showed successful encoding and retrieval activations, which were greater for smiling than neutral faces. Third, functional connectivity between the orbitofrontal cortex and the hippocampus during successful encoding and retrieval was stronger for smiling than neutral faces. As a part of the reward system, the orbitofrontal cortex may modulate memory processes of face-name associations mediated by the hippocampus. Interestingly, the effect of a smile during retrieval was found even though only names were presented as retrieval cues, suggesting that the effect was mediated by face imagery. Taken together, the results demonstrate how rewarding social signals from a smiling face can enhance relational memory for face-name associations.