Brunyé, Tad T; Taylor, Holly A
2008-02-01
Spatial descriptions symbolically represent environmental information through language and are written in two primary perspectives: survey, analogous to viewing a map, and route, analogous to navigation. Readers of survey or route descriptions form abstracted perspective flexible representations of the described environment, or spatial mental models. The present two experiments investigated the maintenance of perspective in spatial mental models as a function of description perspective and experience (operationalized through repetition), and as reflected in self-paced reading times. Experiment 1 involved studying survey and route descriptions either once or three times, then completing map drawing and true/false statement verification. Results demonstrated that spatial mental models are readily formed with survey descriptions, but require relatively more experience with route descriptions; further, some limited evidence suggests perspective dependence in spatial mental models, even following extended experience. Experiment 2 measured self-paced reading during three successive description presentations. Average reading times over the three presentations reduced more for survey relative to route descriptions, and there was no evidence for perspective specificity in resulting spatial mental models. This supports Experiment 1 findings demonstrating the relatively time-consuming nature of acquiring spatial mental models from route, but not survey descriptions. Results are discussed with regard to developmental, discourse processing, and spatial mental model theory.
ERIC Educational Resources Information Center
Noordzij, Matthijs L.; Zuidhoek, Sander; Postma, Albert
2006-01-01
The purpose of the present study is twofold: the first objective is to evaluate the importance of visual experience for the ability to form a spatial representation (spatial mental model) of fairly elaborate spatial descriptions. Secondly, we examine whether blind people exhibit the same preferences (i.e. level of performance on spatial tasks) as…
Spatio-temporal models of mental processes from fMRI.
Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos
2011-07-15
Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.
Chaix, Basile; Leyland, Alastair H; Sabel, Clive E; Chauvin, Pierre; Råstam, Lennart; Kristersson, Håkan; Merlo, Juan
2006-01-01
Study objective Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects. Design Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders. Participants All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence. Main results The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale. Conclusions Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders. PMID:16614334
The importance of spatial ability and mental models in learning anatomy
NASA Astrophysics Data System (ADS)
Chatterjee, Allison K.
As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)
Modeling Mental Spatial Reasoning about Cardinal Directions
ERIC Educational Resources Information Center
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas
2014-01-01
This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…
ERIC Educational Resources Information Center
Yurt, Eyup; Sunbul, Ali Murat
2012-01-01
In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…
Scanning of speechless comics changes spatial biases in mental model construction.
Román, Antonio; Flumini, Andrea; Santiago, Julio
2018-08-05
The mental representation of both time and number shows lateral spatial biases, which can be affected by habitual reading and writing direction. However, this effect is in place before children begin to read. One potential early cause is the experiences of looking at picture books together with a carer, as those images also follow the directionality of the script. What is the underlying mechanism for this effect? In the present study, we test the possibility that such experiences induce spatial biases in mental model construction, a mechanism which is a good candidate to induce the biases observed with numbers and times. We presented a speechless comic in either standard (left-to-right) or mirror-reversed (right-to-left) form to adult Spanish participants. We then asked them to draw the scene depicted by sentences like 'the square is between the cross and the circle'. The position of the lateral objects in these drawings reveals the spatial biases at work when building mental models in working memory. Under conditions of highly consistent directionality, the mirror comic changed pre-existing lateral biases. Processes of mental model construction in working memory stand as a potential mechanism for the generation of spatial biases for time and number.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'. © 2018 The Author(s).
A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka
2011-01-01
Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.
2013-01-01
The purpose of the current study was to examine the nature of the relationship between learners' distrust of scientific models that represent unseen entities and phenomena, their spatial ability, and the vividness of their mental images. The sample consisted of 302 tenth grade students in the Sultanate of Oman. Three measures were used for this…
Spatial path models with multiple indicators and multiple causes: mental health in US counties.
Congdon, Peter
2011-06-01
This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.
The Role of Visuo-Spatial Abilities in Recall of Spatial Descriptions: A Mediation Model
ERIC Educational Resources Information Center
Meneghetti, Chiara; De Beni, Rossana; Pazzaglia, Francesca; Gyselinck, Valerie
2011-01-01
This research investigates how visuo-spatial abilities (such as mental rotation--MR--and visuo-spatial working memory--VSWM--) work together to influence the recall of environmental descriptions. We tested a mediation model in which VSWM was assumed to mediate the relationship between MR and spatial text recall. First, 120 participants were…
Computer Games versus Maps before Reading Stories: Priming Readers' Spatial Situation Models
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Majchrzak, Dan; Hayes, Shelley; Drobisz, Jack
2011-01-01
The current study investigated how computer games and maps compare as preparation for readers to comprehend and retain spatial relations in text narratives. Readers create situation models of five dimensions: spatial, temporal, causal, goal, and protagonist (Zwaan, Langston, & Graesser 1995). Of these five, readers mentally model the spatial…
Preferred mental models in reasoning about spatial relations.
Jahn, Georg; Knauff, Markus; Johnson-Laird, P N
2007-12-01
The theory of mental models postulates that individuals infer that a spatial description is consistent only if they can construct a model in which all the assertions in the description are true. Individuals prefer a parsimonious representation, and so, when a description is consistent with more than one possible layout of entities on the left-right dimension, individuals in our culture prefer to construct models working from left to right. They also prefer to locate entities referred to in the same assertion as adjacent to one another in a model. And, if possible, they tend to chunk entities into a single unit in order to capture several possibilities in a single model. We report four experiments corroborating these predictions. The results shed light on the integration of relational assertions, and they show that participants exploit implicit constraints in building models of spatial relations.
Perlman, Christopher
2018-01-01
Mental Health has been known to vary geographically. Different rates of utilization of mental health services in local areas reflect geographic variation of mental health and complexity of health care. Variations and inequalities in how the health care system addresses risks are two critical issues for addressing population mental health. This study examines these issues by analyzing the utilization of mental health services in Toronto at the neighbourhood level. We adopted a shared component spatial modeling approach that allows simultaneous analysis of two main health service utilizations: doctor visits and hospitalizations related to mental health conditions. Our results reflect a geographic variation of both types of mental health service utilization across neighbourhoods in Toronto. We identified hot and cold spots of mental health risks that are common to both or specific to only one type of health service utilization. Based on the evidence found, we discuss intervention strategies, focusing on the hotspots and provision of health services about doctors and hospitals, to improve mental health for the neighbourhoods. Limitations of the study and further research directions are also discussed. PMID:29587426
ERIC Educational Resources Information Center
Uttal, David H.; Fisher, Joan A.; Taylor, Holly A.
2006-01-01
People acquire spatial information from many sources, including maps, verbal descriptions, and navigating in the environment. The different sources present spatial information in different ways. For example, maps can show many spatial relations simultaneously, but in a description, each spatial relation must be presented sequentially. The present…
Rectangular Array Model Supporting Students' Spatial Structuring in Learning Multiplication
ERIC Educational Resources Information Center
Shanty, Nenden Octavarulia; Wijaya, Surya
2012-01-01
We examine how rectangular array model can support students' spatial structuring in learning multiplication. To begin, we define what we mean by spatial structuring as the mental operation of constructing an organization or form for an object or set of objects. For that reason, the eggs problem was chosen as the starting point in which the…
Spatial representations in blind people: the role of strategies and mobility skills.
Schmidt, Susanna; Tinti, Carla; Fantino, Micaela; Mammarella, Irene C; Cornoldi, Cesare
2013-01-01
The role of vision in the construction of spatial representations has been the object of numerous studies and heated debate. The core question of whether visual experience is necessary to form spatial representations has found different, often contradictory answers. The present paper examines mental images generated from verbal descriptions of spatial environments. Previous evidence had shown that blind individuals have difficulty remembering information about spatial environments. By testing a group of congenitally blind people, we replicated this result and found that it is also present when the overall mental model of the environment is assessed. This was not always the case, however, but appeared to correlate with some blind participants' lower use of a mental imagery strategy and preference for a verbal rehearsal strategy, which was adopted particularly by blind people with more limited mobility skills. The more independent blind people who used a mental imagery strategy performed as well as sighted participants, suggesting that the difficulty blind people may have in processing spatial descriptions is not due to the absence of vision per se, but could be the consequence of both, their using less efficient verbal strategies and having poor mobility skills. Copyright © 2012 Elsevier B.V. All rights reserved.
Envisioning: Mental Rotation-based Semi-reactive Robot Control
2012-01-01
particular, the role of mental rotations acting on transient spatial representations de- rived from optic flow serves as our primary approach . Bio...mental mapping approach in which a model is mentally rotated to match one of several potential target configurations. The second approach is a...to mental mapping and rotation [Lourenco and Huttenlocher 07]. While this second approach is less likely to be subject to the time delays that are
Modeling the Round Earth through Diagrams
NASA Astrophysics Data System (ADS)
Padalkar, Shamin; Ramadas, Jayashree
Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.
Hodgkiss, Alex; Gilligan, Katie A; Tolmie, Andrew K; Thomas, Michael S C; Farran, Emily K
2018-01-22
Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. This study examined the relationship between primary-school children's spatial skills and their science achievement. Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group. © 2018 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie
2017-05-01
This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.
Spatial transformation abilities and their relation to later mathematics performance.
Frick, Andrea
2018-04-10
Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.
A Computational Model of Spatial Development
NASA Astrophysics Data System (ADS)
Hiraki, Kazuo; Sashima, Akio; Phillips, Steven
Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.
Who Benefits from Learning with 3D Models?: The Case of Spatial Ability
ERIC Educational Resources Information Center
Huk, T.
2006-01-01
Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…
Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.
2014-01-01
Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376
Factors associated with persons with disability employment in India: a cross-sectional study.
Naraharisetti, Ramya; Castro, Marcia C
2016-10-07
Over twenty million persons with disability in India are increasingly being offered poverty alleviation strategies, including employment programs. This study employs a spatial analytic approach to identify correlates of employment among persons with disability in India, considering sight, speech, hearing, movement, and mental disabilities. Based on 2001 Census data, this study utilizes linear regression and spatial autoregressive models to identify factors associated with the proportion employed among persons with disability at the district level. Models stratified by rural and urban areas were also considered. Spatial autoregressive models revealed that different factors contribute to employment of persons with disability in rural and urban areas. In rural areas, having mental disability decreased the likelihood of employment, while being female and having movement, or sight impairment (compared to other disabilities) increased the likelihood of employment. In urban areas, being female and illiterate decreased the likelihood of employment but having sight, mental and movement impairment (compared to other disabilities) increased the likelihood of employment. Poverty alleviation programs designed for persons with disability in India should account for differences in employment by disability types and should be spatially targeted. Since persons with disability in rural and urban areas have different factors contributing to their employment, it is vital that government and service-planning organizations account for these differences when creating programs aimed at livelihood development.
Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick
2018-05-01
This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.
Pannebakker, Merel M; Jolicœur, Pierre; van Dam, Wessel O; Band, Guido P H; Ridderinkhof, K Richard; Hommel, Bernhard
2011-09-01
Dual tasks and their associated delays have often been used to examine the boundaries of processing in the brain. We used the dual-task procedure and recorded event-related potentials (ERPs) to investigate how mental rotation of a first stimulus (S1) influences the shifting of visual-spatial attention to a second stimulus (S2). Visual-spatial attention was monitored by using the N2pc component of the ERP. In addition, we examined the sustained posterior contralateral negativity (SPCN) believed to index the retention of information in visual short-term memory. We found modulations of both the N2pc and the SPCN, suggesting that engaging mechanisms of mental rotation impairs the deployment of visual-spatial attention and delays the passage of a representation of S2 into visual short-term memory. Both results suggest interactions between mental rotation and visual-spatial attention in capacity-limited processing mechanisms indicating that response selection is not pivotal in dual-task delays and all three processes are likely to share a common resource like executive control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial cognition and navigation
NASA Technical Reports Server (NTRS)
Aretz, Anthony J.
1989-01-01
An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.
Resnick, Ilyse; Shipley, Thomas F
2013-05-01
The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.
Using Mental Transformation Strategies for Spatial Scaling: Evidence from a Discrimination Task
ERIC Educational Resources Information Center
Möhring, Wenke; Newcombe, Nora S.; Frick, Andrea
2016-01-01
Spatial scaling, or an understanding of how distances in different-sized spaces relate to each other, is fundamental for many spatial tasks and relevant for success in numerous professions. Previous research has suggested that adults use mental transformation strategies to mentally scale spatial input, as indicated by linear increases in response…
Visual and Spatial Modes in Science Learning
ERIC Educational Resources Information Center
Ramadas, Jayashree
2009-01-01
This paper surveys some major trends from research on visual and spatial thinking coming from cognitive science, developmental psychology, science literacy, and science studies. It explores the role of visualisation in creativity, in building mental models, and in the communication of scientific ideas, in order to place these findings in the…
Hoffman, Kate; Aschengrau, Ann; Webster, Thomas F; Bartell, Scott M; Vieira, Verónica M
2015-07-21
Mental health disorders impact approximately one in four US adults. While their causes are likely multifactorial, prior research has linked the risk of certain mental health disorders to prenatal and early childhood environmental exposures, motivating a spatial analysis to determine whether risk varies by birth location. We investigated the spatial associations between residence at birth and odds of depression, bipolar disorder, and post-traumatic stress disorder (PTSD) in a retrospective cohort (Cape Cod, Massachusetts, 1969-1983) using generalized additive models to simultaneously smooth location and adjust for confounders. Birth location served as a surrogate for prenatal exposure to the combination of social and environmental factors related to the development of mental illness. We predicted crude and adjusted odds ratios (aOR) for each outcome across the study area. The results were mapped to identify areas of increased risk. We observed spatial variation in the crude odds ratios of depression that was still present even after accounting for spatial confounding due to geographic differences in the distribution of known risk factors (aOR range: 0.61-3.07, P = 0.03). Similar geographic patterns were seen for the crude odds of PTSD; however, these patterns were no longer present in the adjusted analysis (aOR range: 0.49-1.36, P = 0.79), with family history of mental illness most notably influencing the geographic patterns. Analyses of the odds of bipolar disorder did not show any meaningful spatial variation (aOR range: 0.58-1.17, P = 0.82). Spatial associations exist between residence at birth and odds of PTSD and depression, but much of this variation can be explained by the geographic distributions of available risk factors. However, these risk factors did not account for all the variation observed with depression, suggesting that other social and environmental factors within our study area need further investigation.
Spatial and Climate Literacy: Connecting Urban and Rural Students
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Mandryk, C.; Gorokhovich, Y.
2013-12-01
Through a collaboration between the University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, four independent but linked modules were developed and piloted in courses offered at Brooklyn College and UNL simultaneously. Module content includes climate change science and literacy principles, using geospatial technologies (GIS, GPS and remote sensing) as a vehicle to explore issues associated with global, regional, and local climate change in a concrete, quantitative and visual way using Internet resources available through NASA, NOAA, USGS, and a variety of universities and organizations. The materials take an Earth system approach and incorporate sustainability, resilience, water and watersheds, weather and climate, and food security topics throughout the semester. The research component of the project focuses on understanding the role of spatial literacy and authentic inquiry based experiences in climate change understanding and improving confidence in teaching science. In particular, engaging learners in both climate change science and GIS simultaneously provides opportunities to examine questions about the role that data manipulation, mental representation, and spatial literacy plays in students' abilities to understand the consequences and impacts of climate change. Pre and post surveys were designed to discern relationships between spatial cognitive processes and effective acquisition of climate change science concepts in virtual learning environments as well as alignment of teacher's mental models of nature of science and climate system dynamics to scientific models. The courses will again be offered simultaneously in Spring 2014 at Brooklyn College and UNL. Evaluation research will continue to examine the connections between spatial and climate literacy and teacher's mental models (via qualitative textual analysis using MAXQDA text analysis, and UCINET social network analysis programs) as well as how urban-rural learning interactions may influence climate literacy.
Loureiro, Adriana; Costa, Cláudia; Almendra, Ricardo; Freitas, Ângela; Santana, Paula
2015-11-01
This study's aims are: (i) identifying spatial patterns for the risk of hospitalization due to mental illness and for the potential risk resulting from contextual factors with influence on mental health; and (ii) analyzing the spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors in the metropolitan areas of Lisbon and Porto, Portugal. A cross-sectional ecological study was conducted by applying statistical methods for assessing spatial dependency and heterogeneity. Results reveal a spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors with a statistical relevance of moderate intensity. 20% of the population under study lives in areas with a simultaneously high potential risk resulting from contextual factors and risk of hospitalization due to mental illness. Porto Metropolitan Area show the highest percentage of population living in parishes with a significantly high risk of hospitalization due to mental health, which puts forward the need for interventions on territory-adjusted contextual factors influencing mental health.
Visualizing Compound Rotations with Virtual Reality
ERIC Educational Resources Information Center
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
The Importance of Spatial Ability and Mental Models in Learning Anatomy
ERIC Educational Resources Information Center
Chatterjee, Allison K.
2011-01-01
As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing…
Habacha, Hamdi; Molinaro, Corinne; Dosseville, Fabrice
2014-01-01
Mental rotation is one of the main spatial abilities necessary in the spatial transformation of mental images and the manipulation of spatial parameters. Researchers have shown that mental rotation abilities differ between populations depending on several variables. This study uses a mental rotation task to investigate effects of several factors on the spatial abilities of 277 volunteers. The results demonstrate that high and low imagers performed equally well on this tasks. Athletes outperformed nonathletes regardless of their discipline, and athletes with greater expertise outperformed those with less experience. The results replicate the previously reported finding that men exhibit better spatial abilities than women. However, with high amounts of practice, the women in the current study were able to perform as well as men.
Using eye movements to explore mental representations of space.
Fourtassi, Maryam; Rode, Gilles; Pisella, Laure
2017-06-01
Visual mental imagery is a cognitive experience characterised by the activation of the mental representation of an object or scene in the absence of the corresponding stimulus. According to the analogical theory, mental representations have a pictorial nature that preserves the spatial characteristics of the environment that is mentally represented. This cognitive experience shares many similarities with the experience of visual perception, including eye movements. The mental visualisation of a scene is accompanied by eye movements that reflect the spatial content of the mental image, and which can mirror the deformations of this mental image with respect to the real image, such as asymmetries or size reduction. The present article offers a concise overview of the main theories explaining the interactions between eye movements and mental representations, with some examples of the studies supporting them. It also aims to explain how ocular-tracking could be a useful tool in exploring the dynamics of spatial mental representations, especially in pathological situations where these representations can be altered, for instance in unilateral spatial neglect. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim
2016-08-01
Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.
Shakeshaft, Nicholas G.; Rimfeld, Kaili; Schofield, Kerry L.; Selzam, Saskia; Malanchini, Margherita; Rodic, Maja; Kovas, Yulia; Plomin, Robert
2016-01-01
Spatial abilities–defined broadly as the capacity to manipulate mental representations of objects and the relations between them–have been studied widely, but with little agreement reached concerning their nature or structure. Two major putative spatial abilities are “mental rotation” (rotating mental models) and “visualisation” (complex manipulations, such as identifying objects from incomplete information), but inconsistent findings have been presented regarding their relationship to one another. Similarly inconsistent findings have been reported for the relationship between two- and three-dimensional stimuli. Behavioural genetic methods offer a largely untapped means to investigate such relationships. 1,265 twin pairs from the Twins Early Development Study completed the novel “Bricks” test battery, designed to tap these abilities in isolation. The results suggest substantial genetic influence unique to spatial ability as a whole, but indicate that dissociations between the more specific constructs (rotation and visualisation, in 2D and 3D) disappear when tested under identical conditions: they are highly correlated phenotypically, perfectly correlated genetically (indicating that the same genetic influences underpin performance), and are related similarly to other abilities. This has important implications for the structure of spatial ability, suggesting that the proliferation of apparent sub-domains may sometimes reflect idiosyncratic tasks rather than meaningful dissociations. PMID:27476554
Beyond the Mental Number Line: A Neural Network Model of Number-Space Interactions
ERIC Educational Resources Information Center
Chen, Qi; Verguts, Tom
2010-01-01
It is commonly assumed that there is an interaction between the representations of number and space (e.g., [Dehaene et al., 1993] and [Walsh, 2003]), typically ascribed to a mental number line. The exact nature of this interaction has remained elusive, however. Here we propose that spatial aspects are not inherent to number representations, but…
Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano
2015-01-01
Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.
ERIC Educational Resources Information Center
Goodwin, Geoffrey P.; Johnson-Laird, P. N.
2005-01-01
Inferences about spatial, temporal, and other relations are ubiquitous. This article presents a novel model-based theory of such reasoning. The theory depends on 5 principles. (a) The structure of mental models is iconic as far as possible. (b) The logical consequences of relations emerge from models constructed from the meanings of the relations…
Uncovering the cognitive processes underlying mental rotation: an eye-movement study.
Xue, Jiguo; Li, Chunyong; Quan, Cheng; Lu, Yiming; Yue, Jingwei; Zhang, Chenggang
2017-08-30
Mental rotation is an important paradigm for spatial ability. Mental-rotation tasks are assumed to involve five or three sequential cognitive-processing states, though this has not been demonstrated experimentally. Here, we investigated how processing states alternate during mental-rotation tasks. Inference was carried out using an advanced statistical modelling and data-driven approach - a discriminative hidden Markov model (dHMM) trained using eye-movement data obtained from an experiment consisting of two different strategies: (I) mentally rotate the right-side figure to be aligned with the left-side figure and (II) mentally rotate the left-side figure to be aligned with the right-side figure. Eye movements were found to contain the necessary information for determining the processing strategy, and the dHMM that best fit our data segmented the mental-rotation process into three hidden states, which we termed encoding and searching, comparison, and searching on one-side pair. Additionally, we applied three classification methods, logistic regression, support vector model and dHMM, of which dHMM predicted the strategies with the highest accuracy (76.8%). Our study did confirm that there are differences in processing states between these two of mental-rotation strategies, and were consistent with the previous suggestion that mental rotation is discrete process that is accomplished in a piecemeal fashion.
Information Processing and Human Abilities
ERIC Educational Resources Information Center
Kirby, John R.; Das, J. P.
1978-01-01
The simultaneous and successive processing model of cognitive abilities was compared to a traditional primary mental abilities model. Simultaneous processing was found to be primarily related to spatial ability; and to a lesser extent, to memory and inductive reasoning. Subjects were 104 fourth-grade urban males. (Author/GD C)
Mental rotation training: transfer and maintenance effects on spatial abilities.
Meneghetti, Chiara; Borella, Erika; Pazzaglia, Francesca
2016-01-01
One of the aims of research in spatial cognition is to examine whether spatial skills can be enhanced. The goal of the present study was thus to assess the benefit and maintenance effects of mental rotation training in young adults. Forty-eight females took part in the study: 16 were randomly assigned to receive the mental rotation training (based on comparing pairs of 2D or 3D objects and rotation games), 16 served as active controls (performing parallel non-spatial activities), and 16 as passive controls. Transfer effects to both untrained spatial tasks (testing both object rotation and perspective taking) and visual and verbal tasks were examined. Across the training sessions, the group given mental rotation training revealed benefits in the time it took to make judgments when comparing 3D and 2D objects, but their mental rotation speed did not improve. When compared with the other groups, the mental rotation training group did show transfer effects, however, in tasks other than those practiced (i.e., in object rotation and perspective-taking tasks), and these benefits persisted after 1 month. The training had no effect on visual or verbal tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.
Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert
2007-07-15
Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Spatial anxiety relates to spatial abilities as a function of working memory in children.
Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2012-01-01
Spatial ability is a strong predictor of students' pursuit of higher education in science and mathematics. However, very little is known about the affective factors that influence individual differences in spatial ability, particularly at a young age. We examine the role of spatial anxiety in young children's performance on a mental rotation task. We show that even at a young age, children report experiencing feelings of nervousness at the prospect of engaging in spatial activities. Moreover, we show that these feelings are associated with reduced mental rotation ability among students with high but not low working memory (WM). Interestingly, this WM × spatial anxiety interaction was only found among girls. We discuss these patterns of results in terms of the problem-solving strategies that boys versus girls use in solving mental rotation problems.
ERIC Educational Resources Information Center
Kaufman, Scott Barry
2007-01-01
Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…
Schultheis, Eric; Glasmeier, Amy
2015-09-01
Over the last decade, demand for services from military treatment facilities (MTFs) has frequently exceeded capacity resulting in increased usage of off-base civilian Tricare providers (OCTP). This capacity shortage has been particularly acute for mental health care. At many installations, OCTPs are the main source of mental health care for military personnel and their families. Utilizing data on the location of mental health OCTPs and demographic data, we examine the spatial accessibility of mental health OCTPs around five military installations. Variation exists in the spatial accessibility of mental health OCTPs depending on the geographic context of an installation. There is a mild correlation between the number of mental health OTCPs proximate to a base and the beneficiaries enrolled in an MTF. There is a strong correlation between the size of the general population proximate to an installation and the number of mental health OCTMPs present. Installations located in densely populated areas had high ratios of mental health OCTPs to the MTF beneficiary population but not when the civilian demand on these providers was accounted for. This study's findings open several avenues for future research and policy aimed at increasing the effectiveness of the mental health OCTP network. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
No inherent left and right side in human 'mental number line': evidence from right brain damage.
Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio
2012-08-01
Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial, imagery or object-centred neglect and that it rather depends on disruption of an abstract non-spatial representation of small numerical magnitudes.
Examining Enjoyment of Casual Videogames.
Shafer, Daniel M; Carbonara, Corey P
2015-12-01
This study investigated the processes leading to enjoyment of casual videogames on both mobile devices and console systems. Building upon a foundation in mental models theory and the psychology of play, the study focuses on how performance and experience-based variables impact enjoyment of casual videogames played on mobile devices and console devices. The grounding assumption of this research is that playing videogames produces enjoyment that contributes to mental health in the form of a brief distraction from the stress of daily life, social connections with family and friends through casual gameplay, and, in some cases, a compelling reason to engage in physical activity. A student sample of players (n=363) played a variety of casual games on mobile (iPad(®) or iPod(®) Touch(®) [Apple, Cupertino, CA]) or console (Wii™ [Nintendo, Japan], Xbox(®) 360 Kinect(®) [Microsoft, Redmond, WA], or PS3™ Move [Sony, Tokyo, Japan]) platforms. They then answered a questionnaire assessing their evaluations of the game's interactivity level, their sense of spatial presence in the game, their perception of the game's realism, and, most importantly, their enjoyment. Path analysis demonstrated the interrelationships among these variables. The results show that spatial presence is a powerful predictor of videogame enjoyment for both console- and mobile-based casual games. Patterns of prediction for games on each platform, as demonstrated using path analysis, were similar and aligned with predictions based on mental models and the psychology of play. The psychological theory of play and the mental models perspective offer firm theoretical grounds for understanding how enjoyment is wrought in the process of playing casual games. The relationships among interactivity, spatial presence, perceived reality, and enjoyment hold for games played on handheld or console devices. Furthermore, this study is one of the first to demonstrate these relationships and test them simultaneously, breaking new ground in research on game enjoyment.
Mental maps and travel behaviour: meanings and models
NASA Astrophysics Data System (ADS)
Hannes, Els; Kusumastuti, Diana; Espinosa, Maikel León; Janssens, Davy; Vanhoof, Koen; Wets, Geert
2012-04-01
In this paper, the " mental map" concept is positioned with regard to individual travel behaviour to start with. Based on Ogden and Richards' triangle of meaning (The meaning of meaning: a study of the influence of language upon thought and of the science of symbolism. International library of psychology, philosophy and scientific method. Routledge and Kegan Paul, London, 1966) distinct thoughts, referents and symbols originating from different scientific disciplines are identified and explained in order to clear up the notion's fuzziness. Next, the use of this concept in two major areas of research relevant to travel demand modelling is indicated and discussed in detail: spatial cognition and decision-making. The relevance of these constructs to understand and model individual travel behaviour is explained and current research efforts to implement these concepts in travel demand models are addressed. Furthermore, these mental map notions are specified in two types of computational models, i.e. a Bayesian Inference Network (BIN) and a Fuzzy Cognitive Map (FCM). Both models are explained, and a numerical and a real-life example are provided. Both approaches yield a detailed quantitative representation of the mental map of decision-making problems in travel behaviour.
The Metrics of Spatial Distance Traversed During Mental Imagery
ERIC Educational Resources Information Center
Rinck, Mike; Denis, Michel
2004-01-01
The authors conducted 2 experiments to study the metrics of spatial distance in a mental imagery task. In both experiments, participants first memorized the layout of a building containing 10 rooms with 24 objects. Participants then received mental imagery instructions and imagined how they walked through the building from one room to another. The…
Relationship between Spatial Abilities, Mental Rotation and Functional Anatomy Learning
ERIC Educational Resources Information Center
Guillot, Aymeric; Champely, Stephane; Batier, Christophe; Thiriet, Patrice; Collet, Christian
2007-01-01
This study investigated the relationship between visuo-spatial representation, mental rotation (MR) and functional anatomy examination results. A total of 184 students completed the Group Embedded Figures Test (GEFT), Mental Rotation Test (MRT) and Gordon Test of Visual Imagery Control. The time spent on personal assignment was also considered.…
Presaghi, Fabio; Rullo, Marika
2018-01-01
Social categorization is the differentiation between the self and others and between one's own group and other groups and it is such a natural and spontaneous process that often we are not aware of it. The way in which the brain organizes social categorization remains an unresolved issue. We present three experiments investigating the hypothesis that social categories are mentally ordered from left to right on an ingroup-outgroup continuum when membership is salient. To substantiate our hypothesis, we consider empirical evidence from two areas of psychology: research on differences in processing of ingroups and outgroups and research on the effects of spatial biases on processing of quantitative information (e.g., time; numbers) which appears to be arranged from left to right on a small-large continuum, an effect known as the spatial-numerical association of response codes (SNARC). In Experiments 1 and 2 we tested the hypothesis that when membership of a social category is activated, people implicitly locate ingroup categories to the left of a mental line whereas outgroup categories are located on the far right of the same mental line. This spatial organization persists even when stimuli are presented on one of the two sides of the screen and their (explicit) position is spatially incompatible with the implicit mental spatial organization of social categories (Experiment 3). Overall the results indicate that ingroups and outgroups are processed differently. The results are discussed with respect to social categorization theory, spatial agency bias, i.e., the effect observed in Western cultures whereby the agent of an action is mentally represented on the left and the recipient on the right, and the SNARC effect.
Presaghi, Fabio; Rullo, Marika
2018-01-01
Social categorization is the differentiation between the self and others and between one’s own group and other groups and it is such a natural and spontaneous process that often we are not aware of it. The way in which the brain organizes social categorization remains an unresolved issue. We present three experiments investigating the hypothesis that social categories are mentally ordered from left to right on an ingroup–outgroup continuum when membership is salient. To substantiate our hypothesis, we consider empirical evidence from two areas of psychology: research on differences in processing of ingroups and outgroups and research on the effects of spatial biases on processing of quantitative information (e.g., time; numbers) which appears to be arranged from left to right on a small–large continuum, an effect known as the spatial-numerical association of response codes (SNARC). In Experiments 1 and 2 we tested the hypothesis that when membership of a social category is activated, people implicitly locate ingroup categories to the left of a mental line whereas outgroup categories are located on the far right of the same mental line. This spatial organization persists even when stimuli are presented on one of the two sides of the screen and their (explicit) position is spatially incompatible with the implicit mental spatial organization of social categories (Experiment 3). Overall the results indicate that ingroups and outgroups are processed differently. The results are discussed with respect to social categorization theory, spatial agency bias, i.e., the effect observed in Western cultures whereby the agent of an action is mentally represented on the left and the recipient on the right, and the SNARC effect. PMID:29497393
ERIC Educational Resources Information Center
Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-01-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…
Bien, Nina; Sack, Alexander T
2014-07-01
In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.
Visualisierungen im Lehr-Lern-Process (Visualizations in the Process of Teaching and Learning).
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Zink, Thomas; Pfeiffer, Michael
1996-01-01
Discusses the role of visualization of information in learning. Theorizes that the comprehension of visualizations is a process of structure mapping between a visuo-spatial configuration and a mental model. Tests the model and finds differences in the use of text and picture information to answer different kinds of text questions. (DSK)
Individual differences in mental rotation: what does gesture tell us?
Göksun, Tilbe; Goldin-Meadow, Susan; Newcombe, Nora; Shipley, Thomas
2013-05-01
Gestures are common when people convey spatial information, for example, when they give directions or describe motion in space. Here, we examine the gestures speakers produce when they explain how they solved mental rotation problems (Shepard and Meltzer in Science 171:701-703, 1971). We asked whether speakers gesture differently while describing their problems as a function of their spatial abilities. We found that low-spatial individuals (as assessed by a standard paper-and-pencil measure) gestured more to explain their solutions than high-spatial individuals. While this finding may seem surprising, finer-grained analyses showed that low-spatial participants used gestures more often than high-spatial participants to convey "static only" information but less often than high-spatial participants to convey dynamic information. Furthermore, the groups differed in the types of gestures used to convey static information: high-spatial individuals were more likely than low-spatial individuals to use gestures that captured the internal structure of the block forms. Our gesture findings thus suggest that encoding block structure may be as important as rotating the blocks in mental spatial transformation.
SimAlba: A Spatial Microsimulation Approach to the Analysis of Health Inequalities
Campbell, Malcolm; Ballas, Dimitris
2016-01-01
This paper presents applied geographical research based on a spatial microsimulation model, SimAlba, aimed at estimating geographically sensitive health variables in Scotland. SimAlba has been developed in order to answer a variety of “what-if” policy questions pertaining to health policy in Scotland. Using the SimAlba model, it is possible to simulate the distributions of previously unknown variables at the small area level such as smoking, alcohol consumption, mental well-being, and obesity. The SimAlba microdataset has been created by combining Scottish Health Survey and Census data using a deterministic reweighting spatial microsimulation algorithm developed for this purpose. The paper presents SimAlba outputs for Scotland’s largest city, Glasgow, and examines the spatial distribution of the simulated variables for small geographical areas in Glasgow as well as the effects on individuals of different policy scenario outcomes. In simulating previously unknown spatial data, a wealth of new perspectives can be examined and explored. This paper explores a small set of those potential avenues of research and shows the power of spatial microsimulation modeling in an urban context. PMID:27818989
Time Limits in Testing: An Analysis of Eye Movements and Visual Attention in Spatial Problem Solving
ERIC Educational Resources Information Center
Roach, Victoria A.; Fraser, Graham M.; Kryklywy, James H.; Mitchell, Derek G. V.; Wilson, Timothy D.
2017-01-01
Individuals with an aptitude for interpreting spatial information (high mental rotation ability: HMRA) typically master anatomy with more ease, and more quickly, than those with low mental rotation ability (LMRA). This article explores how visual attention differs with time limits on spatial reasoning tests. Participants were assorted to two…
ERIC Educational Resources Information Center
Möhring, Wenke; Newcombe, Nora S.; Frick, Andrea
2014-01-01
Spatial scaling is an important prerequisite for many spatial tasks and involves an understanding of how distances in different-sized spaces correspond. Previous studies have found evidence for such an understanding in preschoolers; however, the mental processes involved remain unclear. In the present study, we investigated whether children and…
ERIC Educational Resources Information Center
Crescentini, Cristiano; Fabbro, Franco; Urgesi, Cosimo
2014-01-01
Despite the large body of knowledge on adults suggesting that 2 basic types of mental spatial transformation--namely, object-based and egocentric perspective transformations--are dissociable and specialized for different situations, there is much less research investigating the developmental aspects of such spatial transformation systems. Here, an…
Real three-dimensional objects: effects on mental rotation.
Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I
2011-08-01
The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.
A novel surveillance approach for disaster mental health
Shankardass, Ketan; Subramanian, S. V.; Galea, Sandro
2017-01-01
Background Disasters have substantial consequences for population mental health. Social media data present an opportunity for mental health surveillance after disasters to help identify areas of mental health needs. We aimed to 1) identify specific basic emotions from Twitter for the greater New York City area during Hurricane Sandy, which made landfall on October 29, 2012, and to 2) detect and map spatial temporal clusters representing excess risk of these emotions. Methods We applied an advanced sentiment analysis on 344,957 Twitter tweets in the study area over eleven days, from October 22 to November 1, 2012, to extract basic emotions, a space-time scan statistic (SaTScan) and a geographic information system (QGIS) to detect and map excess risk of these emotions. Results Sadness and disgust were among the most prominent emotions identified. Furthermore, we noted 24 spatial clusters of excess risk of basic emotions over time: Four for anger, one for confusion, three for disgust, five for fear, five for sadness, and six for surprise. Of these, anger, confusion, disgust and fear clusters appeared pre disaster, a cluster of surprise was found peri disaster, and a cluster of sadness emerged post disaster. Conclusions We proposed a novel syndromic surveillance approach for mental health based on social media data that may support conventional approaches by providing useful additional information in the context of disaster. We showed that excess risk of multiple basic emotions could be mapped in space and time as a step towards anticipating acute stress in the population and identifying community mental health need rapidly and efficiently in the aftermath of disaster. More studies are needed to better control for bias, identify associations with reliable and valid instruments measuring mental health, and to explore computational methods for continued model-fitting, causal relationships, and ongoing evaluation. Our study may be a starting point also for more fully elaborated models that can either prospectively detect mental health risk using real-time social media data or detect excess risk of emotional reactions in areas that lack efficient infrastructure during and after disasters. As such, social media data may be used for mental health surveillance after large scale disasters to help identify areas of mental health needs and to guide us in our knowledge where we may most effectively intervene to reduce the mental health consequences of disasters. PMID:28723959
A novel surveillance approach for disaster mental health.
Gruebner, Oliver; Lowe, Sarah R; Sykora, Martin; Shankardass, Ketan; Subramanian, S V; Galea, Sandro
2017-01-01
Disasters have substantial consequences for population mental health. Social media data present an opportunity for mental health surveillance after disasters to help identify areas of mental health needs. We aimed to 1) identify specific basic emotions from Twitter for the greater New York City area during Hurricane Sandy, which made landfall on October 29, 2012, and to 2) detect and map spatial temporal clusters representing excess risk of these emotions. We applied an advanced sentiment analysis on 344,957 Twitter tweets in the study area over eleven days, from October 22 to November 1, 2012, to extract basic emotions, a space-time scan statistic (SaTScan) and a geographic information system (QGIS) to detect and map excess risk of these emotions. Sadness and disgust were among the most prominent emotions identified. Furthermore, we noted 24 spatial clusters of excess risk of basic emotions over time: Four for anger, one for confusion, three for disgust, five for fear, five for sadness, and six for surprise. Of these, anger, confusion, disgust and fear clusters appeared pre disaster, a cluster of surprise was found peri disaster, and a cluster of sadness emerged post disaster. We proposed a novel syndromic surveillance approach for mental health based on social media data that may support conventional approaches by providing useful additional information in the context of disaster. We showed that excess risk of multiple basic emotions could be mapped in space and time as a step towards anticipating acute stress in the population and identifying community mental health need rapidly and efficiently in the aftermath of disaster. More studies are needed to better control for bias, identify associations with reliable and valid instruments measuring mental health, and to explore computational methods for continued model-fitting, causal relationships, and ongoing evaluation. Our study may be a starting point also for more fully elaborated models that can either prospectively detect mental health risk using real-time social media data or detect excess risk of emotional reactions in areas that lack efficient infrastructure during and after disasters. As such, social media data may be used for mental health surveillance after large scale disasters to help identify areas of mental health needs and to guide us in our knowledge where we may most effectively intervene to reduce the mental health consequences of disasters.
Ginn, Sheryl R; Pickens, Stefanie J
2005-06-01
Previous results suggested that female college students' scores on the Mental Rotations Test might be related to their prior experience with spatial tasks. For example, women who played video games scored better on the test than their non-game-playing peers, whereas playing video games was not related to men's scores. The present study examined whether participation in different types of spatial activities would be related to women's performance on the Mental Rotations Test. 31 men and 59 women enrolled at a small, private church-affiliated university and majoring in art or music as well as students who participated in intercollegiate athletics completed the Mental Rotations Test. Women's scores on the Mental Rotations Test benefitted from experience with spatial activities; the more types of experience the women had, the better their scores. Thus women who were athletes, musicians, or artists scored better than those women who had no experience with these activities. The opposite results were found for the men. Efforts are currently underway to assess how length of experience and which types of experience are related to scores.
Explaining sex differences in mental rotation: role of spatial activity experience.
Nazareth, Alina; Herrera, Asiel; Pruden, Shannon M
2013-05-01
Males consistently outperform females on mental rotation tasks, such as the Vandenberg and Kuse (1978) Perceptual and Motor Skills, 47(2), 599-604, mental rotation test (MRT; e.g. Voyer et al. 1995) in Psychological Bulletin, 117, 250-265. The present study investigates whether these sex differences in MRT scores can be explained in part by early spatial activity experience, particularly those spatial activities that have been sex-typed as masculine/male-oriented. Utilizing an online survey, 571 ethnically diverse adult university students completed a brief demographic survey, an 81-item spatial activity survey, and the MRT. Results suggest that the significant relation between sex of the participant and MRT score is partially mediated by the number of masculine spatial activities participants had engaged in as youth. Closing the gap between males and females in spatial ability, a skill linked to science, technology, engineering, and mathematics success, may be accomplished in part by encouraging female youth to engage in more particular kinds of spatial activities.
Gruebner, Oliver; Lowe, Sarah R; Tracy, Melissa; Cerdá, Magdalena; Joshi, Spruha; Norris, Fran H; Galea, Sandro
2016-04-01
To demonstrate a spatial epidemiologic approach that could be used in the aftermath of disasters to (1) detect spatial clusters and (2) explore geographic heterogeneity in predictors for mental health and general wellness. We used a cohort study of Hurricane Ike survivors (n=508) to assess the spatial distribution of postdisaster mental health wellness (most likely resilience trajectory for posttraumatic stress symptoms [PTSS] and depression) and general wellness (most likely resilience trajectory for PTSS, depression, functional impairment, and days of poor health) in Galveston, Texas. We applied the spatial scan statistic (SaTScan) and geographically weighted regression. We found spatial clusters of high likelihood wellness in areas north of Texas City and spatial concentrations of low likelihood wellness in Galveston Island. Geographic variation was found in predictors of wellness, showing increasing associations with both forms of wellness the closer respondents were located to Galveston City in Galveston Island. Predictors for postdisaster wellness may manifest differently across geographic space with concentrations of lower likelihood wellness and increased associations with predictors in areas of higher exposure. Our approach could be used to inform geographically targeted interventions to promote mental health and general wellness in disaster-affected communities.
ERIC Educational Resources Information Center
Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate
2013-01-01
Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…
Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.
Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan
2013-03-01
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.
A lateralization of function approach to sex differences in spatial ability: a reexamination.
Rilea, Stacy L
2008-07-01
The current study assessed the lateralization of function hypothesis (Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56, 332-343) which suggested that it was the interaction of brain organization and the type of spatial task that led to sex differences in spatial ability. A second purpose was to evaluate explanations for their unexpected findings on the mental rotation task. In Experiment 1, participants completed the Water Level, Paper Folding, and mental rotation tasks (using an object-based or self-based perspective), presented bilaterally. Sex differences were only observed on the Water Level Task; a right hemisphere advantage was observed on Water Level and mental rotation tasks. In Experiment 2, a human stick figure or a polygon was mentally rotated. Men outperformed women when rotating polygons, but not when rotating stick figures. Men demonstrated a right hemisphere advantage when rotating polygons; women showed no hemisphere differences for either stimulus. Thus, hemisphere processing, task complexity, and stimulus type may influence performance for men and women across different spatial measures.
Mental object rotation in Parkinson's disease.
Crucian, Gregory P; Barrett, Anna M; Burks, David W; Riestra, Alonso R; Roth, Heidi L; Schwartz, Ronald L; Triggs, William J; Bowers, Dawn; Friedman, William; Greer, Melvin; Heilman, Kenneth M
2003-11-01
Deficits in visual-spatial ability can be associated with Parkinson's disease (PD), and there are several possible reasons for these deficits. Dysfunction in frontal-striatal and/or frontal-parietal systems, associated with dopamine deficiency, might disrupt cognitive processes either supporting (e.g., working memory) or subserving visual-spatial computations. The goal of this study was to assess visual-spatial orientation ability in individuals with PD using the Mental Rotations Test (MRT), along with other measures of cognitive function. Non-demented men with PD were significantly less accurate on this test than matched control men. In contrast, women with PD performed similarly to matched control women, but both groups of women did not perform much better than chance. Further, mental rotation accuracy in men correlated with their executive skills involving mental processing and psychomotor speed. In women with PD, however, mental rotation accuracy correlated negatively with verbal memory, indicating that higher mental rotation performance was associated with lower ability in verbal memory. These results indicate that PD is associated with visual-spatial orientation deficits in men. Women with PD and control women both performed poorly on the MRT, possibly reflecting a floor effect. Although men and women with PD appear to engage different cognitive processes in this task, the reason for the sex difference remains to be elucidated.
Titrating decision processes in the mental rotation task.
Provost, Alexander; Heathcote, Andrew
2015-10-01
Shepard and Metzler's (1971) seminal mental-rotation task-which requires participants to decide if 1 object is a rotated version of another or its mirror image-has played a central role in the study of spatial cognition. We provide the first quantitative model of behavior in this task that is comprehensive in the sense of simultaneously providing an account of both error rates and the full distribution of response times. We used Brown and Heathcote's (2008) model of choice processing to separate out the contributions of mental rotation and decision stages. This model-based titration process was applied to data from a paradigm where converging evidence supported performance being based on rotation rather than other strategies. Stimuli were similar to Shepard and Metzler's block figures except a long major axis made rotation angle well defined for mirror stimuli, enabling comprehensive modeling of both mirror and normal responses. Results supported a mental rotation stage based on Larsen's (2014) model, where rotation takes a variable amount of time with a mean and variance that increase linearly with rotation angle. Differences in response threshold differences were largely responsible for mirror responses being slowed, and for errors increasing with rotation angle for some participants. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Mental simulation of routes during navigation involves adaptive temporal compression
Arnold, Aiden E.G.F.; Iaria, Giuseppe; Ekstrom, Arne D.
2016-01-01
Mental simulation is a hallmark feature of human cognition, allowing features from memories to be flexibly used during prospection. While past studies demonstrate the preservation of real-world features such as size and distance during mental simulation, their temporal dynamics remains unknown. Here, we compare mental simulations to navigation of routes in a large-scale spatial environment to test the hypothesis that such simulations are temporally compressed in an adaptive manner. Our results show that simulations occurred at 2.39x the speed it took to navigate a route, increasing in compression (3.57x) for slower movement speeds. Participant self-reports of vividness and spatial coherence of simulations also correlated strongly with simulation duration, providing an important link between subjective experiences of simulated events and how spatial representations are combined during prospection. These findings suggest that simulation of spatial events involve adaptive temporal mechanisms, mediated partly by the fidelity of memories used to generate the simulation. PMID:27568586
Spatial forms and mental imagery.
Price, Mark C
2009-01-01
Four studies investigated how general mental imagery might be involved in mediating the phenomenon of 'synaesthetic' spatial forms - i.e., the experience that sequences such as months or numbers have spatial locations. In Study 1, people with spatial forms scored higher than controls on visual imagery self-report scales. This is consistent with the suggestion that strong general imagery is at least a necessary condition to experience spatial forms. However self-reported spatial imagery did not differ between groups, suggesting either that the spatial nature of forms is mediated by special synaesthetic mechanisms, or that forms are depictive visual images rather than explicit spatial models. A methodological implication of Study 1 was that a general tendency for people with spatial forms to use imagery strategies might account for some of their previously-reported behavioural differences with control groups. This concern was supported by Studies 2-4. Normal participants were encouraged to visually image the months in various spatial layouts, and spatial associations for months were tested using left/right key presses to classify month names as belonging to the first or second half of the year (Studies 2-3) or as odd/even (Study 4). Reaction times showed month-SNARC (Spatial Numerical Association of Response Codes) effects of similar magnitude to previously-reported data from spatial form participants (Price and Mentzoni, 2008). Additionally, reversing the spatial associations within instructed images was sufficient to reverse the direction of observed month-SNARC effects (i.e., positive vs negative slope), just as different spatial forms were previously shown to modulate the direction of effects (ibid.). Results challenge whether previously observed behavioural differences between spatial form and control groups need to be explained in terms of special synaesthetic mechanisms rather than intentional imagery strategies. It is argued that usually strong general imagery processes should complement synaesthetic mechanisms as possible explanations of spatial forms.
Borst, Gregoire; Niven, Elaine; Logie, Robert H
2012-04-01
Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.
A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.
Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
Moriya, Jun
2017-01-01
According to cognitive theories, verbal processing attenuates emotional processing, whereas visual imagery enhances emotional processing and contributes to the maintenance of social anxiety. Individuals with social anxiety report negative mental images in social situations. However, the general ability of visual mental imagery of neutral scenes in individuals with social anxiety is still unclear. The present study investigated the general ability of non-emotional mental imagery (vividness, preferences for imagery vs. verbal processing, and object or spatial imagery) and the moderating role of effortful control in attenuating social anxiety. The participants ( N = 231) completed five questionnaires. The results showed that social anxiety was not necessarily associated with all aspects of mental imagery. As suggested by theories, social anxiety was not associated with a preference for verbal processing. However, social anxiety was positively correlated with the visual imagery scale, especially the object imagery scale, which concerns the ability to construct pictorial images of individual objects. Further, it was negatively correlated with the spatial imagery scale, which concerns the ability to process information about spatial relations between objects. Although object imagery and spatial imagery positively and negatively predicted the degree of social anxiety, respectively, these effects were attenuated when socially anxious individuals had high effortful control. Specifically, in individuals with high effortful control, both object and spatial imagery were not associated with social anxiety. Socially anxious individuals might prefer to construct pictorial images of individual objects in natural scenes through object imagery. However, even in individuals who exhibit these features of mental imagery, effortful control could inhibit the increase in social anxiety.
[Reflections on physical spaces and mental spaces].
Chen, Hung-Yi
2013-08-01
This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.
ERIC Educational Resources Information Center
de Castell, Suzanne; Larios, Hector; Jenson, Jennifer
2017-01-01
We report here a study of spatial learning and action videogame play based on Feng et al.'s (2007) finding that 10 hours spent playing an action videogame significantly improved selective attention and mental rotation. Students with above-average scores on measures of spatial abilities, such as mental rotation, prove more successful in Science,…
Common Spatial Organization of Number and Emotional Expression: A Mental Magnitude Line
ERIC Educational Resources Information Center
Holmes, Kevin J.; Lourenco, Stella F.
2011-01-01
Converging behavioral and neural evidence suggests that numerical representations are mentally organized in left-to-right orientation. Here we show that this format of spatial organization extends to emotional expression. In Experiment 1, right-side responses became increasingly faster as number (represented by Arabic numerals) or happiness…
Gutierrez, J Claudio; Chigerwe, Munashe; Ilkiw, Jan E; Youngblood, Patricia; Holladay, Steven D; Srivastava, Sakti
Spatial visualization ability refers to the human cognitive ability to form, retrieve, and manipulate mental models of spatial nature. Visual reasoning ability has been linked to spatial ability. There is currently limited information about how entry-level spatial and visual reasoning abilities may predict veterinary anatomy performance or may be enhanced with progression through the veterinary anatomy content in an integrated curriculum. The present study made use of two tests that measure spatial ability and one test that measures visual reasoning ability in veterinary students: Guay's Visualization of Views Test, adapted version (GVVT), the Mental Rotations Test (MRT), and Raven's Advanced Progressive Matrices Test, short form (RavenT). The tests were given to the entering class of veterinary students during their orientation week and at week 32 in the veterinary medical curriculum. Mean score on the MRT significantly increased from 15.2 to 20.1, and on the RavenT significantly increased from 7.5 to 8.8. When females only were evaluated, results were similar to the total class outcome; however, all three tests showed significant increases in mean scores. A positive correlation between the pre- and post-test scores was found for all three tests. The present results should be considered preliminary at best for associating anatomic learning in an integrated curriculum with spatial and visual reasoning abilities. Other components of the curriculum, for instance histology or physiology, could also influence the improved spatial visualization and visual reasoning test scores at week 32.
Playing an action video game reduces gender differences in spatial cognition.
Feng, Jing; Spence, Ian; Pratt, Jay
2007-10-01
We demonstrate a previously unknown gender difference in the distribution of spatial attention, a basic capacity that supports higher-level spatial cognition. More remarkably, we found that playing an action video game can virtually eliminate this gender difference in spatial attention and simultaneously decrease the gender disparity in mental rotation ability, a higher-level process in spatial cognition. After only 10 hr of training with an action video game, subjects realized substantial gains in both spatial attention and mental rotation, with women benefiting more than men. Control subjects who played a non-action game showed no improvement. Given that superior spatial skills are important in the mathematical and engineering sciences, these findings have practical implications for attracting men and women to these fields.
Spatial abilities across the adult life span.
Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana
2014-02-01
The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed nonlinear age-related effects for spatial visualization and perspective taking but linear effects for mental rotation; few or no age-related effects were found for spatial self-assessments. Working memory accounted for only a small proportion of the variance in all spatial tasks and had no effect on spatial self-assessments. Overall, our findings suggest that the influence of age on spatial skills across the adult life span is considerable, but the effects of age change as a function of the spatial task considered, and the effect on spatial self-assessment is more marginal.
Spatial Processes in Linear Ordering
ERIC Educational Resources Information Center
von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud
2016-01-01
Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A -- B -- C -- D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial…
The Architecture, Dynamics, and Development of Mental Processing: Greek, Chinese, or Universal?
ERIC Educational Resources Information Center
Demetriou, A.; Kui, Z.X.; Spanoudis, G.; Christou, C.; Kyriakides, L.; Platsidou, M.
2005-01-01
This study compared Greeks with Chinese, from 8 to 14 years of age, on measures of processing efficiency, working memory, and reasoning. All processes were addressed through three domains of relations: verbal/propositional, quantitative, and visuo/spatial. Structural equations modelling and rating scale analysis showed that the architecture and…
Wong, Wang I
2017-06-01
Spatial abilities are pertinent to mathematical competence, but evidence of the space-math link has largely been confined to older samples and intrinsic spatial abilities (e.g., mental transformation). The roles of gender and affective factors are also unclear. This study examined the correlations between counting ability, mental transformation, and targeting accuracy in 182 Hong Kong preschoolers, and whether these relationships were weaker at higher spatial anxiety levels. Both spatial abilities related with counting similarly for boys and girls. Targeting accuracy also mediated the male advantage in counting. Interestingly, spatial anxiety moderated the space-math links, but differently for boys and girls. For boys, spatial abilities were irrelevant to counting at high anxiety levels; for girls, the role of anxiety on the space-math link is less clear. Results extend the evidence base of the space-math link to include an extrinsic spatial ability (targeting accuracy) and have implications for intervention programmes. Statement of contribution What is already known on this subject? Much evidence of a space-math link in adolescent and adult samples and for intrinsic spatial abilities. What does this study add? Extended the space-math link to include both intrinsic and extrinsic spatial abilities in a preschool sample. Showed how spatial anxiety moderated the space-math link differently for boys and girls. © 2016 The British Psychological Society.
Cognitive issues in searching images with visual queries
NASA Astrophysics Data System (ADS)
Yu, ByungGu; Evens, Martha W.
1999-01-01
In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.
Lin, Yu-Hsiu; McLain, Alexander C; Probst, Janice C; Bennett, Kevin J; Qureshi, Zaina P; Eberth, Jan M
2017-01-01
The purpose of this study was to develop county-level estimates of poor health-related quality of life (HRQOL) among aged 65 years and older U.S. adults and to identify spatial clusters of poor HRQOL using a multilevel, poststratification approach. Multilevel, random-intercept models were fit to HRQOL data (two domains: physical health and mental health) from the 2011-2012 Behavioral Risk Factor Surveillance System. Using a poststratification, small area estimation approach, we generated county-level probabilities of having poor HRQOL for each domain in U.S. adults aged 65 and older, and validated our model-based estimates against state and county direct estimates. County-level estimates of poor HRQOL in the United States ranged from 18.07% to 44.81% for physical health and 14.77% to 37.86% for mental health. Correlations between model-based and direct estimates were higher for physical than mental HRQOL. Counties located in the Arkansas, Kentucky, and Mississippi exhibited the worst physical HRQOL scores, but this pattern did not hold for mental HRQOL, which had the highest probability of mentally unhealthy days in Illinois, Indiana, and Vermont. Substantial geographic variation in physical and mental HRQOL scores exists among older U.S. adults. State and local policy makers should consider these local conditions in targeting interventions and policies to counties with high levels of poor HRQOL scores. Copyright © 2016 Elsevier Inc. All rights reserved.
Non-spatial neglect for the mental number line.
van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Doricchi, Fabrizio; Fias, Wim
2011-07-01
Several psychophysical investigations, expanding the classical introspective observations by Galton, have suggested that the mental representation of numbers takes the form of a number line along which magnitude is positioned in ascending order according to reading habits, i.e. from left to right in Western cultures. In keeping with the evidence, pathological rightward deviations in the bisection of number intervals due to right brain damage are generally interpreted as originating from a purely spatial-attentional deficit in the processing of the left side of number intervals. However, consistent double dissociations between defective processing of the left side of physical and mental number space have called into question the universality of this interpretation. Recent evidence suggests a link between rightward deviations in number space and defective memory for both spatial and non-spatial sequences of items. Here we describe the case of a left brain-damaged patient exhibiting right-sided neglect for extrapersonal and representational space, and left-sided neglect on the mental number line. Accurate neuropsychological examination revealed that the apparent left-sided neglect in the bisection of number intervals had a purely non-spatial origin and was based on mnemonic difficulties for the initial items of verbal sequences presented visually at an identical spatial position. These findings show that effective position-based verbal working memory might be crucial for numerical tasks that are usually considered to involve purely spatial representation of numerical magnitudes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial Training Improves Children's Mathematics Ability
ERIC Educational Resources Information Center
Cheng, Yi-Ling; Mix, Kelly S.
2014-01-01
We tested whether mental rotation training improved math performance in 6- to 8-year-olds. Children were pretested on a range of number and math skills. Then one group received a single session of mental rotation training using an object completion task that had previously improved spatial ability in children this age (Ehrlich, Levine, &…
Spatial Training Improves Children's Mathematics Ability
ERIC Educational Resources Information Center
Cheng, Yi-Ling; Mix, Kelly S.
2014-01-01
We tested whether mental rotation training improved math performance in 6- to 8-year-olds. Children were pretested on a range of number and math skills. Then one group received a single session of mental rotation training using an object completion task that had previously improved spatial ability in children this age (Ehrlich, Levine, &…
Preservice elementary teachers learning of astronomy
NASA Astrophysics Data System (ADS)
Fidler, Chuck Gary
The dissertation presents a new approach for the study of preservice elementary teacher astronomy education. The approach suggests that learning astronomical concepts are facilitated by greater sophistication in scale perception and spatial-aptitude. This dissertation is underscored by the national call for elementary science education reform efforts and suggests certain strategies shown more effective for the development of accurate astronomical comprehension. The present research study describes how preservice elementary teachers conceptualize and communicate ideas about Space. Instead of assuming a universal mental conception of cosmic orientations and relationships, the dissertation claims that the perception of Space related dimensions vary among preservice elementary teachers. Furthermore, the dissertation suggests individual perceptions of the scale sizes and orientations of celestial systems have direct influences on mental models used to organize and communicate astronomical information. The development of inaccurate mental models of the scaled dimensions of Space may perpetuate the teacher-student cycle of misconception and naive-theory generation among children in elementary education settings. The ability to conceptualize the vast cosmos is facilitated by the minds ability to think about vast scales and orientations of celestial objects. The Earth-based perspective of astronomy education compels the learner to think about astronomical principles within imaginary frames of reference and across unfamiliar scaled dimensions. Therefore, mental astronomical model building is underscored by the perception of scale and cosmic spatiality. This study suggests these cognitive skill sets are interconnected and facilitate the learning of accurate astronomy principles; as well as play an important role when designing an astronomy education program for preservice elementary teachers. This research study is comprised of three separate standalone articles designed and formatted for journal submission. Chapter 1 outlines the intent, rationale, and design of the overall dissertation process and format. Chapter 2 describes an in-depth review of the specific astronomy curricula used for comparison by subsequent chapters and is not intended as a standalone article, but rather as an informative outline of events and activities to help the reader understand the differences of instruction between the two sections of sample populations. Chapter 3 uses qualitative interviews to explore the cosmic dimensions associated with learning of astronomy and finds diverse perceptions of astronomical scales may influence preservice teachers' mental organization of astronomical information. Chapter 4 further analyzes cosmic dimensions using quantitative analyses and specifically examines preservice teachers perceptions of scale and spatiality within the context of astronomy education. Findings from Chapter 4 show that perceptions of scale and spatiality are an interconnected set of learning skills which may greatly enhance the learning of astronomy. Chapter 5 describes how concepts of scale and spatiality may be operationalized within a secondary school science classroom in order to better understand the scaled distances of stars though an inquiry-based three-dimensional modeling activity. Chapter 6 briefly concludes the dissertation work. Due to the nature of this dissertation design, the conclusions chapter is quite succinct as previous chapters are designed with conclusions sections embedded within the body of the text as outlined by specific journal submission guidelines. These dissertation ideas are presented in a formal setting so that the various research undertakings can be studied and analyzed. Qualitative and quantitative analyses of research data are present to support the claims made in this study. The results of this research combine with features of previous research in order to advance our understanding of how preservice elementary teachers think about and learn astronomy.
An fMRI Study of the Impact of Block Building and Board Games on Spatial Ability
Newman, Sharlene D.; Hansen, Mitchell T.; Gutierrez, Arianna
2016-01-01
Previous studies have found that block play, board games, and puzzles result in better spatial ability. This study focused on examining the differential impact of structured block play and board games on spatial processing. Two groups of 8-year-old children were studied. One group participated in a five session block play training paradigm and the second group had a similar training protocol but played a word/spelling board game. A mental rotation task was assessed before and after training. The mental rotation task was performed during fMRI to observe the neural changes associated with the two play protocols. Only the block play group showed effects of training for both behavioral measures and fMRI measured brain activation. Behaviorally, the block play group showed improvements in both reaction time and accuracy. Additionally, the block play group showed increased involvement of regions that have been linked to spatial working memory and spatial processing after training. The board game group showed non-significant improvements in mental rotation performance, likely related to practice effects, and no training related brain activation differences. While the current study is preliminary, it does suggest that different “spatial” play activities have differential impacts on spatial processing with structured block play but not board games showing a significant impact on mental rotation performance. PMID:27621714
Motor expertise and performance in spatial tasks: A meta-analysis.
Voyer, Daniel; Jansen, Petra
2017-08-01
The present study aimed to provide a summary of findings relevant to the influence of motor expertise on performance in spatial tasks and to examine potential moderators of this effect. Studies of relevance were those in which individuals involved in activities presumed to require motor expertise were compared to non-experts in such activities. A final set of 62 effect sizes from 33 samples was included in a multilevel meta-analysis. The results showed an overall advantage in favor of motor experts in spatial tasks (d=0.38). However, the magnitude of that effect was moderated by expert type (athlete, open skills/ball sports, runner/cyclist, gymnast/dancers, musicians), stimulus type (2D, blocks, bodies, others), test category (mental rotation, spatial perception, spatial visualization), specific test (Mental Rotations Test, generic mental rotation, disembedding, rod-and-frame test, other), and publication status. These findings are discussed in the context of embodied cognition and the potential role of activities requiring motor expertise in promoting good spatial performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca
2016-11-01
Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. Copyright © 2016 Elsevier B.V. All rights reserved.
Mental map and spatial thinking
NASA Astrophysics Data System (ADS)
Vanzella Castellar, Sonia Maria; Cristiane Strina Juliasz, Paula
2018-05-01
The spatial thinking is a central concept in our researches at the Faculty of Education of University of São Paulo (FE-USP). The cartography is fundamental to this kind of thinking, because it contributes to the development of the representation of space. The spatial representations are the drawings - mental maps - maps, chart, aerial photos, satellite images, graphics and diagrams. To think spatially - including the contents and concepts geographical and their representations - also corresponds to reason, defined by the skills the individual develops to understand the structure, function of a space, and describe your organization and relation to other spaces. The aim of this paper is to analyze the role of mental maps in the development of concepts of city and landscape - structuring concepts for school geography. The purpose is to analyze how students in Geography and Pedagogy - future teachers - and young children in Early Childhood Education think, feel, and appropriate these concepts. The analys is indicates the importance of developing mental map in activities with pedagogy and geography graduate student to know that students at school can be producers of maps. Cartography is a language and allows the student to develop the spatial and temporal relationships and notions such as orientation, distance and location, learning the concepts of geographical science. Mental maps present the basic features of the location such as the conditions - the features verified in one place - and the connections that is to understand how this place connects to other places.
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
Spatial analysis to identify hotspots of prevalence of schizophrenia.
Moreno, Berta; García-Alonso, Carlos R; Negrín Hernández, Miguel A; Torres-González, Francisco; Salvador-Carulla, Luis
2008-10-01
The geographical distribution of mental health disorders is useful information for epidemiological research and health services planning. To determine the existence of geographical hotspots with a high prevalence of schizophrenia in a mental health area in Spain. The study included 774 patients with schizophrenia who were users of the community mental health care service in the area of South Granada. Spatial analysis (Kernel estimation) and Bayesian relative risks were used to locate potential hotspots. Availability and accessibility were both rated in each zone and spatial algebra was applied to identify hotspots in a particular zone. The age-corrected prevalence rate of schizophrenia was 2.86 per 1,000 population in the South Granada area. Bayesian analysis showed a relative risk varying from 0.43 to 2.33. The area analysed had a non-uniform spatial distribution of schizophrenia, with one main hotspot (zone S2). This zone had poor accessibility to and availability of mental health services. A municipality-based variation exists in the prevalence of schizophrenia and related disorders in the study area. Spatial analysis techniques are useful tools to analyse the heterogeneous distribution of a variable and to explain genetic/environmental factors in hotspots related with a lack of easy availability of and accessibility to adequate health care services.
Time Is Not Space: Core Computations and Domain-Specific Networks for Mental Travels.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-11-23
Humans can consciously project themselves in the future and imagine themselves at different places. Do mental time travel and mental space navigation abilities share common cognitive and neural mechanisms? To test this, we recorded fMRI while participants mentally projected themselves in time or in space (e.g., 9 years ago, in Paris) and ordered historical events from their mental perspective. Behavioral patterns were comparable for mental time and space and shaped by self-projection and by the distance of historical events to the mental position of the self, suggesting the existence of egocentric mapping in both dimensions. Nonetheless, self-projection in space engaged the medial and lateral parietal cortices, whereas self-projection in time engaged a widespread parietofrontal network. Moreover, while a large distributed network was found for spatial distances, temporal distances specifically engaged the right inferior parietal cortex and the anterior insula. Across these networks, a robust overlap was only found in a small region of the inferior parietal lobe, adding evidence for its role in domain-general egocentric mapping. Our findings suggest that mental travel in time or space capitalizes on egocentric remapping and on distance computation, which are implemented in distinct dimension-specific cortical networks converging in inferior parietal lobe. As humans, we can consciously imagine ourselves at a different time (mental time travel) or at a different place (mental space navigation). Are such abilities domain-general, or are the temporal and spatial dimensions of our conscious experience separable? Here, we tested the hypothesis that mental time travel and mental space navigation required the egocentric remapping of events, including the estimation of their distances to the self. We report that, although both remapping and distance computation are foundational for the processing of the temporal and spatial dimensions of our conscious experience, their neuroanatomical implementations were clearly dissociable and engaged distinct parietal and parietofrontal networks for mental space navigation and mental time travel, respectively. Copyright © 2016 the authors 0270-6474/16/3611891-13$15.00/0.
The link between mental rotation ability and basic numerical representations
Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi
2013-01-01
Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002
NASA Astrophysics Data System (ADS)
Meier, Sebastian; Glinka, Katrin
2018-05-01
Personal and subjective perceptions of urban space have been a focus of various research projects in the area of cartography, geography, and related fields such as urban planning. This paper illustrates how personal georeferenced activity data can be used in algorithmic modelling of certain aspects of mental maps and customised spatial visualisations. The technical implementation of the algorithm is accompanied by a preliminary study which evaluates the performance of the algorithm. As a linking element between personal perception, interpretation, and depiction of space and the field of cartography and geography, we include perspectives from artistic practice and cultural theory. By developing novel visualisation concepts based on personal data, the paper in part mitigates the challenges presented by user modelling that is, amongst others, used in LBS applications.
ERIC Educational Resources Information Center
Samsudin, Khairulanuar; Rafi, Ahmad; Hanif, Abd Samad
2011-01-01
This paper reports the findings from an experimental study based on the pretest posttest research design that studied mental rotation (MR) and spatial visualization (SV) training outcomes and their impact on orthographic drawing performance. The sample of the study comprised 98 secondary school students (36 girls, 62 boys, Mage = 15.5 years, age…
Think Spatial: The Representation in Mental Rotation Is Nonvisual
ERIC Educational Resources Information Center
Liesefeld, Heinrich R.; Zimmer, Hubert D.
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information…
Mental Models of Invisible Logical Networks
NASA Technical Reports Server (NTRS)
Sanderson, P.
1984-01-01
Subjects were required to discover the structure of a logical network whose links were invisible. Network structure had to be inferred from the behavior of the components after a failure. It was hypothesized that since such failure diagnosis tasks often draw on spatial processes, a good deal of spatial complexity in the network should affect network discovery. Results show that the ability to discover the linkages in the network is directly related to the spatial complexity of the pathway described by the linkages. This effect was generally independent of the amount of evidence available to subjects about the existence of the link. These results raise the question of whether inferences about spatially complex pathways were simply not made, or whether they were made but not retained because of a high load on memory resources.
Event Processing in the Visual World: Projected Motion Paths during Spoken Sentence Comprehension
ERIC Educational Resources Information Center
Kamide, Yuki; Lindsay, Shane; Scheepers, Christoph; Kukona, Anuenue
2016-01-01
Motion events in language describe the movement of an entity to another location along a path. In 2 eye-tracking experiments, we found that comprehension of motion events involves the online construction of a spatial mental model that integrates language with the visual world. In Experiment 1, participants listened to sentences describing the…
Confidence mediates the sex difference in mental rotation performance.
Estes, Zachary; Felker, Sydney
2012-06-01
On tasks that require the mental rotation of 3-dimensional figures, males typically exhibit higher accuracy than females. Using the most common measure of mental rotation (i.e., the Mental Rotations Test), we investigated whether individual variability in confidence mediates this sex difference in mental rotation performance. In each of four experiments, the sex difference was reliably elicited and eliminated by controlling or manipulating participants' confidence. Specifically, confidence predicted performance within and between sexes (Experiment 1), rendering confidence irrelevant to the task reliably eliminated the sex difference in performance (Experiments 2 and 3), and manipulating confidence significantly affected performance (Experiment 4). Thus, confidence mediates the sex difference in mental rotation performance and hence the sex difference appears to be a difference of performance rather than ability. Results are discussed in relation to other potential mediators and mechanisms, such as gender roles, sex stereotypes, spatial experience, rotation strategies, working memory, and spatial attention.
Patt, Virginie M; Thomas, Michael L; Minassian, Arpi; Geyer, Mark A; Brown, Gregory G; Perry, William
2014-01-01
The neurocognitive processes involved during classic spatial working memory (SWM) assessment were investigated by examining naturally preferred eye movement strategies. Cognitively healthy adult volunteers were tested in a computerized version of the Corsi Block-Tapping Task--a spatial span task requiring the short term maintenance of a series of locations presented in a specific order--coupled with eye tracking. Modeling analysis was developed to characterize eye-tracking patterns across all task phases, including encoding, retention, and recall. Results revealed a natural preference for local gaze maintenance during both encoding and retention, with fewer than 40% fixated targets. These findings contrasted with the stimulus retracing pattern expected during recall as a result of task demands, with 80% fixated targets. Along with participants' self-reported strategies of mentally "making shapes," these results suggest the involvement of covert attention shifts and higher order cognitive Gestalt processes during spatial span tasks, challenging instrument validity as a single measure of SWM storage capacity.
Cognitive mapping in mental time travel and mental space navigation.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-09-01
The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.
Predicting space telerobotic operator training performance from human spatial ability assessment
NASA Astrophysics Data System (ADS)
Liu, Andrew M.; Oman, Charles M.; Galvan, Raquel; Natapoff, Alan
2013-11-01
Our goal was to determine whether existing tests of spatial ability can predict an astronaut's qualification test performance after robotic training. Because training astronauts to be qualified robotics operators is so long and expensive, NASA is interested in tools that can predict robotics performance before training begins. Currently, the Astronaut Office does not have a validated tool to predict robotics ability as part of its astronaut selection or training process. Commonly used tests of human spatial ability may provide such a tool to predict robotics ability. We tested the spatial ability of 50 active astronauts who had completed at least one robotics training course, then used logistic regression models to analyze the correlation between spatial ability test scores and the astronauts' performance in their evaluation test at the end of the training course. The fit of the logistic function to our data is statistically significant for several spatial tests. However, the prediction performance of the logistic model depends on the criterion threshold assumed. To clarify the critical selection issues, we show how the probability of correct classification vs. misclassification varies as a function of the mental rotation test criterion level. Since the costs of misclassification are low, the logistic models of spatial ability and robotic performance are reliable enough only to be used to customize regular and remedial training. We suggest several changes in tracking performance throughout robotics training that could improve the range and reliability of predictive models.
Spatial representations elicit dual-coding effects in mental imagery.
Verges, Michelle; Duffy, Sean
2009-08-01
Spatial aspects of words are associated with their canonical locations in the real world. Yet little research has tested whether spatial associations denoted in language comprehension generalize to their corresponding images. We directly tested the spatial aspects of mental imagery in picture and word processing (Experiment 1). We also tested whether spatial representations of motion words produce similar perceptual-interference effects as demonstrated by object words (Experiment 2). Findings revealed that words denoting an upward spatial location produced slower responses to targets appearing at the top of the display, whereas words denoting a downward spatial location produced slower responses to targets appearing at the bottom of the display. Perceptual-interference effects did not obtain for pictures or for words lacking a spatial relation. These findings provide greater empirical support for the perceptual-symbols system theory (Barsalou, 1999, 2008). Copyright © 2009 Cognitive Science Society, Inc.
Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian
2013-01-01
Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available “cached” value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated “Value of Information” exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus – ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation. PMID:23459512
Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian
2013-01-01
Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available "cached" value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated "Value of Information" exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus - ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation.
Life space and mental health: a study of older community-dwelling persons in Australia.
Byles, Julie E; Leigh, Lucy; Vo, Kha; Forder, Peta; Curryer, Cassie
2015-01-01
The ability of older people to mobilise within and outside their community is dependent on a number of factors. This study explored the relationship between spatial mobility and psychological health among older adults living in Australia. The survey sample consisted of 260 community-dwelling men and women aged 75-80 years, who returned a postal survey measuring spatial mobility (using the Life Space Questionnaire) and psychological health (using the SF36 Health Related Quality of Life Profile). From the Life Space Questionnaire, participants were given a life-space score and multinomial regression was used to explore the potential effect of mental health on life-space score. The study found a significant association between mental health and life space. However, gender, physical functioning, and ability to drive were most strongly associated with the extent of life space and spatial mobility. Compared to men, older women are more likely to experience less spatial mobility and restricted life space, and hence are more vulnerable to social isolation. Mental health and life space were associated for the older people in this study. These findings have important implications for health policy and highlight the need to support older persons to maintain independence and social networks, and to successfully age in place within their community. This study also highlights the utility of the Life Space Questionnaire in terms of identifying older persons at risk of poorer mental health.
ERIC Educational Resources Information Center
Branoff, Ted
1998-01-01
Reports on a study to determine whether the presence of coordinate axes in a test of spatial-visualization ability affects scores and response times on a mental-rotations task for students enrolled in undergraduate introductory graphic communications classes. Based on Pavios's dual-coding theory. Contains 36 references. (DDR)
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Coll, Richard Kevin
2013-01-01
The current study compared different learners' static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific entities and…
Modeling Being "Lost": Imperfect Situation Awareness
NASA Technical Reports Server (NTRS)
Middleton, Victor E.
2011-01-01
Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.
Morgan, Geoffrey G.; Jalaludin, Bin B.; Bauman, Adrian E.
2018-01-01
Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed “disease maps” for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress. PMID:29415461
Mayne, Darren J; Morgan, Geoffrey G; Jalaludin, Bin B; Bauman, Adrian E
2018-02-06
Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed "disease maps" for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress.
Think spatial: the representation in mental rotation is nonvisual.
Liesefeld, Heinrich R; Zimmer, Hubert D
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
The Role of Gesture in Supporting Mental Representations: The Case of Mental Abacus Arithmetic
ERIC Educational Resources Information Center
Brooks, Neon B.; Barner, David; Frank, Michael; Goldin-Meadow, Susan
2018-01-01
People frequently gesture when problem-solving, particularly on tasks that require spatial transformation. Gesture often facilitates task performance by interacting with internal mental representations, but how this process works is not well understood. We investigated this question by exploring the case of mental abacus (MA), a technique in which…
Guida, Alessandro; Megreya, Ahmed M; Lavielle-Guida, Magali; Noël, Yvonnick; Mathy, Fabien; van Dijck, Jean-Philippe; Abrahamse, Elger
2018-06-01
The ability to maintain arbitrary sequences of items in the mind contributes to major cognitive faculties, such as language, reasoning, and episodic memory. Previous research suggests that serial order working memory is grounded in the brain's spatial attention system. In the present study, we show that the spatially defined mental organization of novel item sequences is related to literacy and varies as a function of reading/writing direction. Specifically, three groups (left-to-right Western readers, right-to-left Arabic readers, and Arabic-speaking illiterates) were asked to memorize random (and non-spatial) sequences of color patches and determine whether a subsequent probe was part of the memorized sequence (e.g., press left key) or not (e.g., press right key). The results showed that Western readers mentally organized the sequences from left to right, Arabic readers spontaneously used the opposite direction, and Arabic-speaking illiterates showed no systematic spatial organization. This finding suggests that cultural conventions shape one of the most "fluid" aspects of human cognition, namely, the spontaneous mental organization of novel non-spatial information. Copyright © 2018 Elsevier B.V. All rights reserved.
Training spatial skills in men and women.
Cherney, Isabelle D; Bersted, Kyle; Smetter, Joseph
2014-08-01
Recent studies suggest that even short-term video game training may transfer to other cognitive tasks. With the popularity of the Nintendo Wii with women, more of them might be exposed to the games that will increase their mental rotation skills. Because performance on mental rotation tests (MRT) has been linked to math performance in women, and thus may ultimately contribute to the under representation of women in STEM fields, it is important to continue to explore ways to decrease or eliminate the robust sex difference in mental rotation. The present study of 30 men and 30 women provides additional evidence that women may benefit from short-term (1 hour) training on either a Nintendo Wii™ or GameCube console to increase their mental rotation skills. One hour of video game training not only increased women's MRT scores to a level similar to men's scores, but also produced greater average improvement for women, even when controlling for experiential factors such as spatial and masculine childhood activities that could contribute to the sex difference in spatial ability.
Mental object rotation and the planning of hand movements.
Wohlschläger, A
2001-05-01
Recently, we showed that the simultaneous execution of rotational hand movements interferes with mental object rotation, provided that the axes of rotation coincide in space. We hypothesized that mental object rotation and the programming of rotational hand movements share a common process presumably involved in action planning. Two experiments are reported here that show that the mere planning of a rotational hand movement is sufficient to cause interference with mental object rotation. Subjects had to plan different spatially directed hand movements that they were asked to execute only after they had solved a mental object rotation task. Experiment 1 showed that mental object rotation was slower if hand movements were planned in a direction opposite to the presumed mental rotation direction, but only if the axes of hand rotation and mental object rotation were parallel in space. Experiment 2 showed that this interference occurred independent of the preparatory hand movements observed in Experiment 1. Thus, it is the planning of hand movements and not their preparation or execution that interferes with mental object rotation. This finding underlines the idea that mental object rotation is an imagined (covert) action, rather than a pure visual-spatial imagery task, and that the interference between mental object rotation and rotational hand movements is an interference between goals of actions.
Ruotolo, Francesco; Ruggiero, Gennaro; Vinciguerra, Michela; Iachini, Tina
2012-02-01
The aim of this research is to assess whether the crucial factor in determining the characteristics of blind people's spatial mental images is concerned with the visual impairment per se or the processing style that the dominant perceptual modalities used to acquire spatial information impose, i.e. simultaneous (vision) vs sequential (kinaesthesis). Participants were asked to learn six positions in a large parking area via movement alone (congenitally blind, adventitiously blind, blindfolded sighted) or with vision plus movement (simultaneous sighted, sequential sighted), and then to mentally scan between positions in the path. The crucial manipulation concerned the sequential sighted group. Their visual exploration was made sequential by putting visual obstacles within the pathway in such a way that they could not see simultaneously the positions along the pathway. The results revealed a significant time/distance linear relation in all tested groups. However, the linear component was lower in sequential sighted and blind participants, especially congenital. Sequential sighted and congenitally blind participants showed an almost overlapping performance. Differences between groups became evident when mentally scanning farther distances (more than 5m). This threshold effect could be revealing of processing limitations due to the need of integrating and updating spatial information. Overall, the results suggest that the characteristics of the processing style rather than the visual impairment per se affect blind people's spatial mental images. Copyright © 2011 Elsevier B.V. All rights reserved.
Gruebner, Oliver; Lowe, Sarah R; Sampson, Laura; Galea, Sandro
2015-06-10
Only very few studies have investigated the geographic distribution of psychological resilience and associated mental health outcomes after natural or man made disasters. Such information is crucial for location-based interventions that aim to promote recovery in the aftermath of disasters. The purpose of this study therefore was to investigate geographic variability of (1) posttraumatic stress (PTS) and depression in a Hurricane Sandy affected population in NYC and (2) psychological vulnerability and resilience factors among affected areas in NYC boroughs. Cross-sectional telephone survey data were collected 13 to 16 months post-disaster from household residents (N = 418 adults) in NYC communities that were most heavily affected by the hurricane. The Posttraumatic Stress Checklist for DSM-5 (PCL-5) was applied for measuring posttraumatic stress and the nine-item Patient Health Questionnaire (PHQ-9) was used for measuring depression. We applied spatial autocorrelation and spatial regimes regression analyses, to test for spatial clusters of mental health outcomes and to explore whether associations between vulnerability and resilience factors and mental health differed among New York City's five boroughs. Mental health problems clustered predominantly in neighborhoods that are geographically more exposed towards the ocean indicating a spatial variation of risk within and across the boroughs. We further found significant variation in associations between vulnerability and resilience factors and mental health. Race/ethnicity (being Asian or non-Hispanic black) and disaster-related stressors were vulnerability factors for mental health symptoms in Queens, and being employed and married were resilience factors for these symptoms in Manhattan and Staten Island. In addition, parental status was a vulnerability factor in Brooklyn and a resilience factor in the Bronx. We conclude that explanatory characteristics may manifest as psychological vulnerability and resilience factors differently across different regional contexts. Our spatial epidemiological approach is transferable to other regions around the globe and, in the light of a changing climate, could be used to strengthen the psychosocial resources of demographic groups at greatest risk of adverse outcomes pre-disaster. In the aftermath of a disaster, the approach can be used to identify survivors at greatest risk and to plan for targeted interventions to reach them.
ERIC Educational Resources Information Center
Ropeter, Anna; Pauen, Sabina
2013-01-01
This study examines the relationship between various basic mental processing abilities in infancy. Two groups of 7-month-olds received the same delayed-response task to assess visuo-spatial working memory, but two different habituation-dishabituation tasks to assess processing speed and recognition memory. The single-stimulus group ("N"…
ERIC Educational Resources Information Center
Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert
2014-01-01
Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…
Disparities in the Geography of Mental Health: Implications for Social Work
ERIC Educational Resources Information Center
Hudson, Christopher G.
2012-01-01
This article reviews recent theory and research on geographic disparities in mental health and their implications for social work. It focuses on work emerging from the fields of mental health geography, psychiatric epidemiology, and social work, arguing that a wide range of spatial disparities in mental health are important to understand but that…
Spatial but not object memory impairments in children with fetal alcohol syndrome.
Uecker, A; Nadel, L
1998-07-01
Behavioral dissociations on tests of cognitive abilities are powerful tools that can help define the neuropsychology of developmentally disabling conditions. Animals gestationally exposed to alcohol demonstrate spatial (place) but not object (cue) memory impairments. Whether children with fetal alcohol syndrome demonstrate a similar dissociation has received little attention. In this experiment, 30 Native American children, 15 previously identified with fetal alcohol syndrome and 15 control children, were asked to recall places and objects in a task previously shown to be sensitive to memory skills in individuals with and without mental retardation. As in animal models, children with fetal alcohol syndrome demonstrated a spatial but not an object memory impairment. A possible role for the hippocampus was discussed.
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
Social priming of hemispatial neglect affects spatial coding: Evidence from the Simon task.
Arend, Isabel; Aisenberg, Daniela; Henik, Avishai
2016-10-01
In the Simon effect (SE), choice reactions are fast if the location of the stimulus and the response correspond when stimulus location is task-irrelevant; therefore, the SE reflects the automatic processing of space. Priming of social concepts was found to affect automatic processing in the Stroop effect. We investigated whether spatial coding measured by the SE can be affected by the observer's mental state. We used two social priming manipulations of impairments: one involving spatial processing - hemispatial neglect (HN) and another involving color perception - achromatopsia (ACHM). In two experiments the SE was reduced in the "neglected" visual field (VF) under the HN, but not under the ACHM manipulation. Our results show that spatial coding is sensitive to spatial representations that are not derived from task-relevant parameters, but from the observer's cognitive state. These findings dispute stimulus-response interference models grounded on the idea of the automaticity of spatial processing. Copyright © 2016. Published by Elsevier Inc.
Spatial Skill Profile of Mathematics Pre-Service Teachers
NASA Astrophysics Data System (ADS)
Putri, R. O. E.
2018-01-01
This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.
[Influence of mental rotation of objects on psychophysiological functions of women].
Chikina, L V; Fedorchuk, S V; Trushina, V A; Ianchuk, P I; Makarchuk, M Iu
2012-01-01
An integral part of activity of modern human beings is an involvement to work with the computer systems which, in turn, produces a nervous - emotional tension. Hence, a problem of control of the psychophysiological state of workmen with the purpose of health preservation and success of their activity and the problem of application of rehabilitational actions are actual. At present it is known that the efficiency of rehabilitational procedures rises following application of the complex of regenerative programs. Previously performed by us investigation showed that mental rotation is capable to compensate the consequences of a nervous - emotional tension. Therefore, in the present work we investigated how the complex of spatial tasks developed by us influences psychophysiological performances of tested women for which the psycho-emotional tension with the usage of computer technologies is more essential, and the procedure of mental rotation is more complex task for them, than for men. The complex of spatial tasks applied in the given work included: mental rotation of simple objects (letters and digits), mental rotation of complex objects (geometrical figures) and mental rotation of complex objects with the usage of a short-term memory. Execution of the complex of spatial tasks reduces the time of simple and complex sensomotor response, raises parameters of a short-term memory, brain work capacity and improves nervous processes. Collectively, mental rotation of objects can be recommended as a rehabilitational resource for compensation of consequences of any psycho-emotional strain, both for men, and for women.
Spatially distributed effects of mental exhaustion on resting-state FMRI networks.
Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer
2014-01-01
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.
Enhancing the visuo-spatial aptitude of students
NASA Astrophysics Data System (ADS)
Lord, Thomas R.
Research to date has not been able to agree whether visuo-spatial ability can be influenced through practice. Many have concluded that spatial awareness is an innate phenomena and cannot be learned. Others contend that an individual's visuo-spatial potentials are acquired through interactions with the environment. Many of these theorists believe that spatial thinking can be developed through interactive exercises devised to encourage mental image formation and manipulation. To help alleviate the confusion surrounding this question the following study was undertaken. Eighty-four college undergraduates were randomly placed into control and experimental sections. Student records were examined to assure that the groups did not differ significantly in their verbal or math proficiency and pertinent pretests were given to ascertain spatial levels. The groups were also similar on their male and female ratios. During the semester the experimental section was treated to a 30-minute interaction each week. These sessions involved spatial exercises that required the participants to mentally bisect three-dimensional geometric figures and to envision the shape of the two-dimensional surface formed by the bisection. The subjects drew their mental image of this surface on a sheet of paper. Fourteen weeks later both groups were post tested with a second comparable version of the pretest. Statistical t tests were performed on the group means to see if significant differences developed between the sections. The results indicate that statistical improvement in visuo-spatial cognition did occur for the experimental group in spatial visualization, and spatial orientation. This finding suggests that the weekly intervention sessions had a positive effect on the students' visuo-spatial awareness. These results, therefore, tend to support those researchers that claim visuo-spatial aptitude can be enhanced through teaching.
Effects of microgravity on cognition: The case of mental imagery.
Grabherr, Luzia; Mast, Fred W
2010-01-01
Human cognitive performance is an important factor for the successful and safe outcome of commercial and non-commercial manned space missions. This article aims to provide a systematic review of studies investigating the effects of microgravity on the cognitive abilities of parabolic or space flight participants due to the absence of the gravito-inertial force. We will focus on mental imagery: one of the best studied cognitive functions. Mental imagery is closely connected to perception and motor behavior. It aids important processes such as perceptual anticipation, problem solving and motor simulation, all of which are critical for space travel. Thirteen studies were identified and classified into the following topics: spatial representations, mental image transformations and motor imagery. While research on spatial representation and mental image transformation continues to grow and specific differences in cognitive functioning between 1 g and 0 g have been observed, motor imagery has thus far received little attention.
How Visuo-Spatial Mental Imagery Develops: Image Generation and Maintenance
Wimmer, Marina C.; Maras, Katie L.; Robinson, Elizabeth J; Doherty, Martin J; Pugeault, Nicolas
2015-01-01
Two experiments examined the nature of visuo-spatial mental imagery generation and maintenance in 4-, 6-, 8-, 10-year old children and adults (N = 211). The key questions were how image generation and maintenance develop (Experiment 1) and how accurately children and adults coordinate mental and visually perceived images (Experiment 2). Experiment 1 indicated that basic image generation and maintenance abilities are present at 4 years of age but the precision with which images are generated and maintained improves particularly between 4 and 8 years. In addition to increased precision, Experiment 2 demonstrated that generated and maintained mental images become increasingly similar to visually perceived objects. Altogether, findings suggest that for simple tasks demanding image generation and maintenance, children attain adult-like precision younger than previously reported. This research also sheds new light on the ability to coordinate mental images with visual images in children and adults. PMID:26562296
ERIC Educational Resources Information Center
Chan, David W.
2007-01-01
Spatial ability based on measures of mental rotation, and spatial experience based on self-reported participation in visual-arts as well as spatial-orientation activities were assessed in a sample of 337 Chinese, gifted students. Consistent with past findings for the general population, there were gender differences in spatial ability favoring…
From Tesla to Tetris: Mental Rotation, Vocation, and Gifted Education
ERIC Educational Resources Information Center
von Károlyi, Catya
2013-01-01
Mental rotation ability is important for success in a number of academic and career fields, especially the science, technology, engineering, and mathematics (STEM) domains. Individual differences in intelligence, spatial ability, strategy selection biases, and gender are all associated with proficiency in mental rotation. Interventions and…
Mental fatigue detection based on the functional near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xu, Fenggang; Yang, Hanjun; Jiang, Jin; Cao, Yong; Jiao, Xuejun
2017-02-01
Mental fatigue can be induced by long time mental work, mental fatigue caused worse performance and accidents. As a non-invasive technique, functional near-infrared spectroscopy (fNIRS) can measure blood oxygen activity in the cerebral cortex which reflect the cognitive function of brain indirectly. Aiming at investigating whether fNIRS can measure the mental fatigue and study the spatial pattern of hemodynamic response for mental fatigue, we used three sessions of verbal 2-back working memory task for a total of 120 minutes to induce mental fatigue, 15 healthy subjects were recruited and 30 channels including prefrontal cortex (PFC) and motor cortex (MC) were measured by fNIRS. The mean oxyhemoglobin feature for 20s was extracted as well as subjective fatigue level and performance. The results showed significant increase of subjected fatigue level as well as significant decrease performance from session one to three task. With the increased level of fatigue, oxyhemoglobin in PFC increase significantly and the spatial pattern of hemodynamic response in the all 30 channels varied with task duration as well. These findings indicated the potential of fNIRS measured hemodynamic as a mental fatigue indicator.
Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B
2014-01-01
For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.
Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.
2014-01-01
For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690
ERIC Educational Resources Information Center
Rodríguez-Villagra, Odir Antonio; Göthe, Katrin; Oberauer, Klaus; Kliegl, Reinhold
2013-01-01
We tested the limits of working-memory capacity (WMC) of young adults, old adults, and children with a memory-updating task. The task consisted of mentally shifting spatial positions within a grid according to arrows, their color signaling either only go (control) or go/no-go conditions. The interference model (IM) of Oberauer and Kliegl (2006)…
Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu
2015-01-01
Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed.
Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu
2015-01-01
Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed. PMID:26236252
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
When Numbers Get Heavy: Is the Mental Number Line Exclusively Numerical?
Holmes, Kevin J.; Lourenco, Stella F.
2013-01-01
The mental number line, with its left-to-right orientation of increasing numerical values, is often regarded as evidence for a unique connection between space and number. Yet left-to-right orientation has been shown to extend to other dimensions, consistent with a general magnitude system wherein different magnitudes share neural and conceptual resources. Such observations raise a fundamental, yet relatively unexplored, question about spatial-numerical associations: What is the nature of the information represented along the mental number line? Here we show that this information is not exclusive to number, simultaneously accommodating numerical and non-numerical magnitudes. Participants completed the classic SNARC (Spatial-Numerical Association of Response Codes) task while sometimes wearing wrist weights. Weighting the left wrist–thereby linking less and more weight to right and left, respectively–worked against left-to-right orientation of number, leaving no behavioral trace of the mental number line. Our findings point to the dynamic integration of magnitude dimensions, with spatial organization instantiating representational currency (i.e., more/less relations) shared across magnitudes. PMID:23484023
Mental Rotation and Diagrammatic Reasoning in Science
ERIC Educational Resources Information Center
Stieff, M.
2007-01-01
This article presents 3 studies that examine how students and experts employ mental rotation and a learned heuristic to solve chemistry tasks that involve spatial information. Results from Study 1 indicate that despite instruction in analytical strategies, students choose to employ mental rotation on canonical assessment tasks. In Study 2, experts…
The Mental Manipulation of Cognitive Maps in Children and Adults.
ERIC Educational Resources Information Center
Hardwick, Douglas A.; McIntyre, Curtis W.
Two experiments compared the cognitive maps (mental representations of the spatial environment) of first graders, fifth graders and college students, and investigated developmental changes in the ability to manipulate cognitive maps mentally. In the first experiment, subjects were asked to move from stationpoint to stationpoint and at each, to…
Hsieh, Yu-Chin; Apostolopoulos, Yorghos; Hatzudis, Kiki; Sönmez, Sevil
2016-06-01
Grounded in ecosocial theory, this paper discusses the mental health disparities of working-class Latinas from multiple perspectives. An overview of working-class Latinas' prevalent mental health disorders, barriers to care and suggestions for interventions and future studies are provided.
ERIC Educational Resources Information Center
Ramful, Ajay; Lowrie, Thomas; Logan, Tracy
2017-01-01
This article describes the development and validation of a newly designed instrument for measuring the spatial ability of middle school students (11-13 years old). The design of the Spatial Reasoning Instrument (SRI) is based on three constructs (mental rotation, spatial orientation, and spatial visualization) and is aligned to the type of spatial…
Role of strategies and prior exposure in mental rotation.
Cherney, Isabelle D; Neff, Nicole L
2004-06-01
The purpose of these two studies was to examine sex differences in strategy use and the effect of prior exposure on the performance on Vandenberg and Kuse's 1978 Mental Rotation Test. A total of 152 participants completed the spatial task and self-reported their strategy use. Consistent with previous studies, men outperformed women. Strategy usage did not account for these differences, although guessing did. Previous exposure to the Mental Rotation Test, American College Test scores and frequent computer or video game play predicted performance on the test. These results suggest that prior exposure to spatial tasks may provide cues to improve participants' performance.
Assessing the mental frame syncing in the elderly: a virtual reality protocol.
Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe
2014-01-01
Decline in spatial memory in the elderly is often underestimated, and it is crucial to fully investigate the cognitive underpinnings of early spatial impairment. A virtual reality-based procedure was developed to assess deficit in the "mental frame syncing", namely the cognitive ability that allows an effective orientation by synchronizing the allocentric view-point independent representation with the allocentric view-point dependent representation. A pilot study was carried out to evaluate abilities in the mental frame syncing in a sample of 16 elderly participants. Preliminary results indicated that the general cognitive functioning was associated with the ability in the synchronization between these two allocentric references frames.
Spatial Abilities across the Adult Life Span
ERIC Educational Resources Information Center
Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana
2014-01-01
The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed…
ERIC Educational Resources Information Center
La Pierre, Sharon D.; Fellenz, Robert A.
This monograph contains two studies in which the notion of intelligence as one general basic ability is rejected and in its place is posited the existence of a specific type of mental ability described as "spatial intelligence.""Spatial Reasoning and Its Measurement" investigates the process of spatial reasoning in the adult through an analysis of…
Spatial Thinking in Atmospheric Science Education
NASA Astrophysics Data System (ADS)
McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.
2016-12-01
Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple educational pipelines are affected including university meteorology courses for majors and non-majors, military weather forecaster preparation and professional training for operational meteorologists, thus improving student learning and the continued development of the current and future workforce.
Hyatt, Christopher J; Calhoun, Vince D; Pearlson, Godfrey D; Assaf, Michal
2015-08-01
The ability to attribute mental states to others, or "mentalizing," is posited to involve specific subnetworks within the overall default mode network (DMN), but this question needs clarification. To determine which default mode (DM) subnetworks are engaged by mentalizing processes, we assessed task-related recruitment of DM subnetworks. Spatial independent component analysis (sICA) applied to fMRI data using relatively high-order model (75 components). Healthy participants (n = 53, ages 17-60) performed two fMRI tasks: an interactive game involving mentalizing (Domino), a semantic memory task (SORT), and a resting state fMRI scan. sICA of the two tasks split the DMN into 10 subnetworks located in three core regions: medial prefrontal cortex (mPFC; five subnetworks), posterior cingulate/precuneus (PCC/PrC; three subnetworks), and bilateral temporoparietal junction (TPJ). Mentalizing events increased recruitment in five of 10 DM subnetworks, located in all three core DMN regions. In addition, three of these five DM subnetworks, one dmPFC subnetwork, one PCC/PrC subnetwork, and the right TPJ subnetwork, showed reduced recruitment by semantic memory task events. The opposing modulation by the two tasks suggests that these three DM subnetworks are specifically engaged in mentalizing. Our findings, therefore, suggest the unique involvement of mentalizing processes in only three of 10 DM subnetworks, and support the importance of the dmPFC, PCC/PrC, and right TPJ in mentalizing as described in prior studies. © 2015 Wiley Periodicals, Inc.
Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K
2012-04-01
(1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.
Spatial task performance, sex differences, and motion sickness susceptibility.
Levine, Max E; Stern, Robert M
2002-10-01
There are substantial individual differences in susceptibility to motion sickness, yet little is known about what mediates these differences. Spatial ability and sex have been suggested as possible factors in this relationship. 89 participants (57 women) were administered a Motion Sickness Questionnaire that assesses motion sickness susceptibility, a Water-level Task that gauges sensitivity to gravitational upright, and a Mental Rotation Task that tests an individual's awareness of how objects typically move in space. Significant sex differences were observed in performance of both the Water-level Task (p<.01), and the Mental Rotation Task (p<.005), with women performing less accurately than men. Women also had significantly higher scores on the Motion Sickness Questionnaire (p<.005). Among men, but not women, significant negative relationships were observed between Water-level Task performance and Motion Sickness Questionnaire score (p<.001) and between Mental Rotation Task performance and Motion Sickness Questionnaire score (p<.005). In conclusion, women performed significantly more poorly than men did on the spatial ability tasks and reported significantly more bouts of motion sickness. In addition, men showed a significant negative relationship between spatial ability and motion sickness susceptibility.
Exceptional visuospatial imagery in schizophrenia; implications for madness and creativity
Benson, Taylor L.; Park, Sohee
2013-01-01
Biographical and historical accounts suggest a link between scientific creativity and schizophrenia. Longitudinal studies of gifted children indicate that visuospatial imagery plays a pivotal role in exceptional achievements in science and mathematics. We asked whether visuospatial imagery is enhanced in individuals with schizophrenia (SZ). We compared SZ and matched healthy controls (HC) on five visuospatial tasks tapping parietal and frontoparietal functions. Two aspects of visuospatial transformation, spatial location and mental imagery manipulation were examined with Paper Folding Test (PFT) and jigsaw puzzle task (JPT), respectively. Visuospatial intelligence was assessed with Ravens Progressive Matrices, which is associated with frontoparietal network activity. Hemispatial inattention implicating parietal function was assessed with line bisection (LB) task. Mediated by prefrontal cortex, spatial delayed response task (DRT) was used to index working memory maintenance, which was impaired in SZ compared to HC. In contrast, SZ showed intact visuospatial intelligence and transformation of location. Further, SZ performed significantly better than HC on JPT indicating enhanced mental imagery manipulation. Spatial working memory (SWM) maintenance and mental imagery manipulation were strongly associated in HC but dissociated in SZ. Thus, we observed enhanced mental imagery manipulation in SZ but the dissociation of mental imagery from working memory suggests a disrupted frontoparietal network. Finally, while HC showed the expected leftward pseudoneglect, SZ showed increased rightward LB bias implicating left hemispatial inattention and impaired right parietal control of spatial attention. The current results chart a unique profile of impaired, spared and enhanced parietal-mediated visuospatial functions implicating parietal abnormalities as a biobehavioral marker for SZ. We discuss these results in relation to creative cognition. PMID:24273503
Level 2 Perspective Taking Entails Two Processes: Evidence from PRP Experiments
ERIC Educational Resources Information Center
Janczyk, Markus
2013-01-01
In many situations people need to mentally adopt the (spatial) perspective of other persons, an ability that is referred to as "Level 2 perspective taking." Its underlying processes have been ascribed to mental self-rotation that can be dissociated from mental object-rotation. Recent findings suggest that perspective taking/self-rotation…
Students’ Spatial Performance: Cognitive Style and Sex Differences
NASA Astrophysics Data System (ADS)
Hanifah, U.; Juniati, D.; Siswono, T. Y. E.
2018-01-01
This study aims at describing the students’ spatial abilities based on cognitive styles and sex differences. Spatial abilities in this study include 5 components, namely spatial perception, spatial visualization, mental rotation, spatial relations, and spatial orientation. This research is descriptive research with qualitative approach. The subjects in this research were 4 students of junior high school, there were 1 male FI, 1 male FD, 1 female FI, and 1 female FI. The results showed that there are differences in spatial abilities of the four subjects that are on the components of spatial visualization, mental rotation, and spatial relations. The differences in spatial abilities were found in methods / strategies used by each subject to solve each component problem. The differences in cognitive styles and sex suggested different choice of strategies used to solve problems. The male students imagined the figures but female students needed the media to solve the problem. Besides sex, the cognitive style differences also have an effect on solving a problem. In addition, FI students were not affected by distracting information but FD students could be affected by distracting information. This research was expected to contribute knowledge and insight to the readers, especially for math teachers in terms of the spatial ability of the students so that they can optimize their students’ spatial ability.
1984-09-01
10). Barratt (1953) also found variation in strategies in a number of spatial tests, particularly for more difficult items. Thus, there is likely to...J. R. Arguments concerning representations for mental imagery. Psychological Review, 1978, §5, 249-277. Barratt , E. S. An analysis of verbal reports...Naval Education and Training Liason Office I Dr. NiIliaa L. Malay t21 Air Force Human Resource Laboratory Chief of Naval Education and Traininc
Spatial-Sequential and Spatial-Simultaneous Working Memory in Individuals with Williams Syndrome
ERIC Educational Resources Information Center
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C.; Carretti, Barbara; Vianello, Renzo
2015-01-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control…
Spatial ability of slow learners based on Hubert Maier theory
NASA Astrophysics Data System (ADS)
Permatasari, I.; Pramudya, I.; Kusmayadi, T. A.
2018-03-01
Slow learners are children who have low learning achievement (under the average of normal children) in one or all of the academic field, but they are not classified as a mentally retarded children. Spatial ability developed according to age and level of knowledge possessed, both from the neighborhood and formal education. Analyzing the spatial ability of students is important for teachers, as an effort to improve the quality of learning for slow learners. Especially on the implementation of inclusion school which is developing in Indonesia. This research used a qualitative method and involved slow learner students as the subject. Based on the data analysis it was found the spatial ability of slow learners, there were: spatial perception, students were able to describe the other shape of object when its position changed; spatial visualisation, students were able to describe the materials that construct an object; mental rotation, students cannot describe the object being rotated; spatial relation, students cannot describe the relations of same objects; spatial orientation, students were able to describe object from the others perspective.
“Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927
"Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.
Effects of spatial attention on mental time travel in patients with neglect.
Anelli, Filomena; Avanzi, Stefano; Arzy, Shahar; Mancuso, Mauro; Frassinetti, Francesca
2018-04-01
Numerous studies agree that time is represented in spatial terms in the brain. Here we investigate how a deficit in orienting attention in space influences the ability to mentally travel in time, that is to recall the past and anticipate the future. Right brain-damaged patients, with (RBD-N+) and without neglect (RBD-N-), and healthy controls (HC) were subjected to a Mental Time Travel (MTT) task. Participants were asked to project themselves in time to past, present or future (i.e., self-projection) and, for each self-projection, to judge whether events were located relatively in the past or the future (i.e., self-reference). The MTT-task was performed before and after a manipulation, through prismatic adaptation (PA), inducing a leftward shift of spatial attention. Before PA, RBD-N+ were slower for future than for past events, whereas RBD-N- and HC responded similarly to past and future events. A leftward shift of spatial attention by PA reduced the difference in past/future processing in RBD-N+ and fastened RBD-N- and HC's response to past events. Assuming that time concepts, such as past/future, are coded with a left-to-right order on a mental time line (MTL), a recursive search of future-events can explain neglect patients' performance. Improvement of the spatial deficit following PA reduces the recursive search of future events on the rightmost part of the MTL, facilitating exploration of past events on the leftmost part of the MTL, finally favoring the correct location of past and future events. In addition, the study of the anatomical correlates of the temporal deficit in mental time travel through voxel-based lesion-symptom mapping showed a correlation with a lesion located in the insula and in the thalamus. These findings provide new insights about the inter-relations of space and time, and can pave the way to a procedure to rehabilitate a deficit in these cognitive domains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Krause, Florian; Lindemann, Oliver; Toni, Ivan; Bekkering, Harold
2014-04-01
A dominant hypothesis on how the brain processes numerical size proposes a spatial representation of numbers as positions on a "mental number line." An alternative hypothesis considers numbers as elements of a generalized representation of sensorimotor-related magnitude, which is not obligatorily spatial. Here we show that individuals' relative use of spatial and nonspatial representations has a cerebral counterpart in the structural organization of the posterior parietal cortex. Interindividual variability in the linkage between numbers and spatial responses (faster left responses to small numbers and right responses to large numbers; spatial-numerical association of response codes effect) correlated with variations in gray matter volume around the right precuneus. Conversely, differences in the disposition to link numbers to force production (faster soft responses to small numbers and hard responses to large numbers) were related to gray matter volume in the left angular gyrus. This finding suggests that numerical cognition relies on multiple mental representations of analogue magnitude using different neural implementations that are linked to individual traits.
Different Mental Rotation Performance in Students of Music, Sport and Education
ERIC Educational Resources Information Center
Pietsch, Stefanie; Jansen, Petra
2012-01-01
In this study the effect of long-term physical and musical activity on spatial cognitive performance, measured by mental rotation performance, is investigated in detail. Mental rotation performance is the ability to rotate a three-dimensional object using the imagination. Three groups, each consisting of 40 students, and divided by the subjects,…
ERIC Educational Resources Information Center
Moreau, David
2012-01-01
An extensive body of literature has explored the involvement of motor processes in mental rotation, yet underlying individual differences are less documented and remain to be fully understood. We propose that sensorimotor experience shapes spatial abilities such as assessed in mental rotation tasks. Elite wrestlers' and non-athletes' mental…
Clark, Caron A C; Fernandez, Fabian; Sakhon, Stella; Spanò, Goffredina; Edgin, Jamie O
2017-06-01
Recent studies have highlighted the dentate gyrus as a region of increased vulnerability in mouse models of Down syndrome (DS). It is unclear to what extent these findings are reflected in the memory profile of people with the condition. We developed a series of novel tasks to probe distinct medial temporal functions in children and young adults with DS, including object, spatial, and temporal order memory. Relative to mental age-matched controls (n = 45), individuals with DS (n = 28) were unimpaired on subtests involving short-term object or configural recall that was divorced from spatial or temporal contexts. By contrast, the DS group had difficulty recalling spatial locations when contextual information was salient and recalling the order in which objects were serially presented. Results are consistent with dysfunction of spatial and temporal contextual pattern separation abilities in individuals with DS, mediated by the hippocampus, including the dentate gyrus. Amidst increasing calls to bridge human and animal work, the memory profile demonstrated here in humans with DS is strikingly similar to that of the Ts65Dn mouse model of DS. The study highlights the trisynaptic circuit as a potentially fruitful intervention target to mitigate cognitive impairments associated with DS. © 2017 Wiley Periodicals, Inc.
Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro
2011-01-01
Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837
ERIC Educational Resources Information Center
Meneghetti, Chiara; De Beni, Rossana; Gyselinck, Valerie; Pazzaglia, Francesca
2013-01-01
The present study investigates the joint role of spatial ability, imagery strategy and visuospatial working memory (VSWM) in spatial text processing. A set of 180 participants, half of them trained on the use of imagery strategy (training vs no-training groups), was further divided according to participants' high or low mental rotation ability…
Institutions, Politics, and Mental Health Parity
Hernandez, Elaine M.; Uggen, Christopher
2013-01-01
Mental health parity laws require insurers to extend comparable benefits for mental and physical health care. Proponents argue that by placing mental health services alongside physical health services, such laws can help ensure needed treatment and destigmatize mental illness. Opponents counter that such mandates are costly or unnecessary. The authors offer a sociological account of the diffusion and spatial distribution of state mental health parity laws. An event history analysis identifies four factors as especially important: diffusion of law, political ideology, the stability of mental health advocacy organizations and the relative health of state economies. Mental health parity is least likely to be established during times of high state unemployment and under the leadership of conservative state legislatures. PMID:24353902
An investigation of immune system disorder as a "marker" for anomalous dominance.
Rich, D A; McKeever, W F
1990-01-01
Geschwind and Galaburda (1987) proposed that immune disorder (ID) susceptibility, along with left handedness and familial sinistrality (FS), is a "marker" for anomalous dominance. The theory predicts lesser left lateralization for language processes, lessened left hemisphere abilities, and enhanced right hemisphere abilities. We assessed language laterality (dichotic consonant vowel task) and performances on spatial and verbal tasks. Subjects were 128 college students. The factors of handedness, sex, FS, and immune disorder history (negative or positive) were perfectly counterbalanced. Left-handers were significantly less lateralized for language and scored lower than right-handers on the spatial tasks. Females scored lower on mental rotation than males, but performed comparably to males on the spatial relations task. The only effect of ID was by way of interaction with FS on both spatial tasks--subjects who were either negative or positive on both FS and ID status factors scored significantly higher than subjects negative for one but positive for the other factor. A speculative explanatory model for this interaction was proposed. The model incorporates the notion that FS and ID factors are comparably correlated, but in opposite directions, with hormonal factors implicated by other research as relevant for spatial ability differences. Finally, no support for the "anomalous dominance" hypothesis predictions was found.
The amusic brain: lost in music, but not in space.
Tillmann, Barbara; Jolicoeur, Pierre; Ishihara, Masami; Gosselin, Nathalie; Bertrand, Olivier; Rossetti, Yves; Peretz, Isabelle
2010-04-21
Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.
NASA Astrophysics Data System (ADS)
Armstrong-Hall, Judy Gail
The purpose of this study was to apply the Hunter-Gatherer Theory of sex spatial skills to responses to individual questions by eighth grade students on the Science component of the Michigan Educational Assessment Program (MEAP) to determine if sex bias was inherent in the test. The Hunter-Gatherer Theory on Spatial Sex Differences, an original theory, that suggested a spatial dimorphism concept with female spatial skill of pattern recall of unconnected items and male spatial skills requiring mental movement. This is the first attempt to apply the Hunter-Gatherer Theory on Spatial Sex Differences to a standardized test. An overall hypothesis suggested that the Hunter-Gatherer Theory of Spatial Sex Differences could predict that males would perform better on problems involving mental movement and females would do better on problems involving the pattern recall of unconnected items. Responses to questions on the 1994-95 MEAP requiring the use of male spatial skills and female spatial skills were analyzed for 5,155 eighth grade students. A panel composed of five educators and a theory developer determined which test items involved the use of male and female spatial skills. A MANOVA, using a random sample of 20% of the 5,155 students to compare male and female correct scores, was statistically significant, with males having higher scores on male spatial skills items and females having higher scores on female spatial skills items. Pearson product moment correlation analyses produced a positive correlation for both male and female performance on both types of spatial skills. The Hunter-Gatherer Theory of Spatial Sex Differences appears to be able to predict that males could perform better on the problems involving mental movement and females could perform better on problems involving the pattern recall of unconnected items. Recommendations for further research included: examination of male/female spatial skill differences at early elementary and high school levels to determine impact of gender on difficulties in solving spatial problems; investigation of the relationship between dominant female spatial skills for students diagnosed with ADHD; study effects of teaching male spatial skills to female students starting in early elementary school to determine the effect on standardized testing.
Filter bank common spatial patterns in mental workload estimation.
Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H
2015-01-01
EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.
Remembering the past and imagining the future
Byrne, Patrick; Becker, Suzanna; Burgess, Neil
2009-01-01
The neural mechanisms underlying spatial cognition are modelled, integrating neuronal, systems and behavioural data, and addressing the relationships between long-term memory, short-term memory and imagery, and between egocentric and allocentric and visual and idiothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory as egocentric parietal representations driven by perception, retrieval and imagery, and modulated by directed attention. Both encoding and retrieval/ imagery require translation between egocentric and allocentric representations, mediated by posterior parietal and retrosplenial areas and utilizing head direction representations in Papez’s circuit. Thus hippocampus effectively indexes information by real or imagined location, while Papez’s circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows “spatial updating” of representations, while prefrontal simulated motor efference allows mental exploration. The alternating temporo-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs. PMID:17500630
Understanding mental retardation in Down's syndrome using trisomy 16 mouse models.
Galdzicki, Z; Siarey, R J
2003-06-01
Mental retardation in Down's syndrome, human trisomy 21, is characterized by developmental delays, language and memory deficits and other cognitive abnormalities. Neurophysiological and functional information is needed to understand the mechanisms of mental retardation in Down's syndrome. The trisomy mouse models provide windows into the molecular and developmental effects associated with abnormal chromosome numbers. The distal segment of mouse chromosome 16 is homologous to nearly the entire long arm of human chromosome 21. Therefore, mice with full or segmental trisomy 16 (Ts65Dn) are considered reliable animal models of Down's syndrome. Ts65Dn mice demonstrate impaired learning in spatial tests and abnormalities in hippocampal synaptic plasticity. We hypothesize that the physiological impairments in the Ts65Dn mouse hippocampus can model the suboptimal brain function occuring at various levels of Down's syndrome brain hierarchy, starting at a single neuron, and then affecting simple and complex neuronal networks. Once these elements create the gross brain structure, their dysfunctional activity cannot be overcome by extensive plasticity and redundancy, and therefore, at the end of the maturation period the mind inside this brain remains deficient and delayed in its capabilities. The complicated interactions that govern this aberrant developmental process cannot be rescued through existing compensatory mechanisms. In summary, overexpression of genes from chromosome 21 shifts biological homeostasis in the Down's syndrome brain to a new less functional state.
Do Potential Past and Future Events Activate the Left-Right Mental Timeline?
ERIC Educational Resources Information Center
Aguirre, Roberto; Santiago, Julio
2017-01-01
Current evidence provides support for the idea that time is mentally represented by spatial means, i.e., a left-right mental timeline. However, available studies have tested only factual events, i.e., those which have occurred in the past or can be predicted to occur in the future. In the present study we tested whether past and future potential…
ERIC Educational Resources Information Center
Li, Yingli; O'Boyle, Michael W.
2008-01-01
Eighty college students mentally rotated 3-D shapes while maintaining a concurrent verbal or spatial memory load to investigate how sex, native language, and college major relate to the cognitive strategies employed during mental rotation (MR). Males were significantly better than females at MR, whereas native language was not related to MR…
Neural and Behavioral Evidence for the Role of Mental Simulation in Meaning in Life
Waytz, Adam; Hershfield, Hal E; Tamir, Diana I
2014-01-01
Mental simulation, the process of self-projection into alternate temporal, spatial, social, or hypothetical realities is a distinctively human capacity. Numerous lines of research also suggest that the tendency for mental simulation is associated with enhanced meaning. The present research tests this association specifically examining the relationship between two forms of simulation (temporal and spatial) and meaning in life. Study 1 uses neuroimaging to demonstrate that enhanced connectivity in the medial temporal lobe network, a subnetwork of the brain’s default network implicated in prospection and retrospection, correlates with self-reported meaning in life. Study 2 demonstrates that experimentally inducing people to think about the past or future versus the present enhances self-reported meaning in life, through the generation of more meaningful events. Study 3 demonstrates that experimentally inducing people to think specifically versus generally about the past or future enhances self-reported meaning in life. Study 4 turns to spatial simulation to demonstrate that experimentally inducing people to think specifically about an alternate spatial location (from the present) increases meaning derived from this simulation compared to thinking generally about another location or specifically about one’s present location. Study 5 demonstrates that experimentally inducing people to think about an alternate spatial location versus one’s present location enhances meaning in life, through meaning derived from this simulation. Study 6 demonstrates that simply asking people to imagine completing a measure of meaning in life in an alternate location compared to asking them to do so in their present location enhances reports of meaning. This research sheds light on an important determinant of meaning in life and suggests that undirected mental simulation benefits psychological well-being. PMID:25603379
Spatial ability mediates the gender difference in middle school students' science performance.
Ganley, Colleen M; Vasilyeva, Marina; Dulaney, Alana
2014-01-01
Prior research has demonstrated a male advantage in spatial skills and science achievement. The present research integrated these findings by testing the potential role of spatial skills in gender differences in the science performance of eighth-grade students (13-15 years old). In (N = 113), the findings showed that mental rotation ability mediated gender differences in physical science and technology/engineering test scores. In (N = 73,245), science performance was examined in a state population of eighth-grade students. As in , the results revealed larger gender differences on items that showed higher correlations with mental rotation. These findings underscore the importance of considering spatial training interventions aimed at reducing gender differences in the science performance of school-aged children. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
ERIC Educational Resources Information Center
Pearson, Jane L.; Ferguson, Lucy Rau
1989-01-01
Explored relationships among three measures of spatial ability--Embedded Figures Test, Mental Rotations Test, and Differential Aptitude Spatial Relations subtest--an environmental cognition task, American College Testing mathematics and English achievement in undergraduates (N=282). Interpreted results as substantiating sex role socialization…
Age-related similarities and differences in monitoring spatial cognition.
Ariel, Robert; Moffat, Scott D
2018-05-01
Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.
Gender effects on mental rotation in pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Trivelloni, Pierandrea; Guariglia, Cecilia; Tomao, Enrico
2013-07-01
Mental rotation ability has an important role in human navigation and, together with other cognitive abilities such as processing speed, working memory, and attention, is crucial for aircraft navigation. In the human performance literature, mental rotation tasks have consistently yielded reports of gender differences favoring men. The aim of this study was to compare the gender difference measured in a specialized population of aviators vs. a matched population of nonpilots. : Studied were 41 pilots (20 men and 21 women) and 38 nonpilots (20 men and 18 women) matched for age and education. Pilots were stratified for flying hours. Participants performed a mental rotation task (MRT) in which accuracy and response time were recorded, and also completed sense-of-direction (SOD) and spatial cognitive styles self-evaluation scales. Men had significantly smaller response time in the MRT (men 279.6 +/- 147.0 s, women 401.6 +/- 361.3) and greater SOD (men's score 49.1 +/- 8.6, women's score 46.6 +/- 7.8), but these differences were absent among pilots. A positive relationship was also identified between pilots' response times and their flight hours. These data suggest that the effect of gender on the speed of cognitive spatial processing is absent in a population with aviation experience. Gender effects may be associated with a low spatial cognitive style, whereas in groups such as aviators, who are expected to have high spatial cognitive style, other factors such as experience may come into play.
ERIC Educational Resources Information Center
Swarlis, Linda L.
2008-01-01
The test scores of spatial ability for women lag behind those of men in many spatial tests. On the Mental Rotations Test (MRT), a significant gender gap has existed for over 20 years and continues to exist. High spatial ability has been linked to efficiencies in typical computing tasks including Web and database searching, text editing, and…
Models of conceptual understanding in human respiration and strategies for instruction
NASA Astrophysics Data System (ADS)
Rea-Ramirez, Mary Anne
Prior research has indicated that students of all ages show little understanding of respiration beyond breathing in and out and the need for air to survive. This occurs even after instruction with alternative conceptions persisting into adulthood. Whether this is due to specific educational strategies or to the level of difficulty in understanding a complex system is an important question. The purpose of this study was to obtain a deeper understanding of middle school students' development of mental models of human respiration. The study was composed of two major parts, one concerned with documenting and analyzing how students learn, and one concerned with measuring the effect of teaching strategies. This was carried out through a pre-test, "learning aloud" case studies in which students engaged in one-on-one tutoring interviews with the researcher, and a post-test. Transcript data from the intervention and post-test indicates that all students in this study were successful in constructing mental models of a complex concept, respiration, and in successfully applying these mental models to transfer problems. Differences in the pretest and posttest means were on the order of two standard deviations in size. While findings were uncovered in the use of a variety of strategies, possibly most interesting are the new views of analogies as an instructional strategy. Some analogies appear to be effective in supporting construction of visual/spatial features. Providing multiple, simple analogies that allow the student to construct new models in small steps, using student generated analogies, and using analogies to determine prior knowledge may also increase the effectiveness of analogies. Evidence suggested that students were able to extend the dynamic properties of certain analogies to the dynamics of the target conception and that this, in turn, allowed students to use the new models to explain causal relationships and give new function to models. This suggests that construction of causal, dynamic mental models is supported by the use of analogies containing dynamic and causal relationships.
Visuo-spatial Ability in Individuals with Down Syndrome: Is it Really a Strength?
Yang, Yingying; Conners, Frances A.; Merrill, Edward C.
2014-01-01
Down syndrome (DS) is associated with extreme difficulty in verbal skills and relatively better visuo-spatial skills. Indeed, visuo-spatial ability is often considered a strength in DS. However, it is not clear whether this strength is only relative to the poor verbal skills, or, more impressively, relative to cognitive ability in general. To answer this question, we conducted an extensive literature review of studies on visuo-spatial abilities in people with Down syndrome from January 1987 to May 2013. Based on a general taxonomy of spatial abilities patterned after Lohman, Pellegrino, Alderton, and Regian (1987) and Carroll (1993) and existing studies of DS, we included five different domains of spatial abilities – visuo-spatial memory, visuo-spatial construction, mental rotation, closure, and wayfinding. We evaluated a total of 49 studies including 127 different comparisons. Most comparisons involved a group with DS vs. a group with typical development matched on mental age and compared on a task measuring one of the five visuo-spatial abilities. Although further research is needed for firm conclusions on some visuo-spatial abilities, there was no evidence that visuo-spatial ability is a strength in DS relative to general cognitive ability. Rather, the review suggests an uneven profile of visuo-spatial abilities in DS in which some abilities are commensurate with general cognitive ability level, and others are below. PMID:24755229
Primate-inspired vehicle navigation using optic flow and mental rotations
NASA Astrophysics Data System (ADS)
Arkin, Ronald C.; Dellaert, Frank; Srinivasan, Natesh; Kerwin, Ryan
2013-05-01
Robot navigation already has many relatively efficient solutions: reactive control, simultaneous localization and mapping (SLAM), Rapidly-Exploring Random Trees (RRTs), etc. But many primates possess an additional inherent spatial reasoning capability: mental rotation. Our research addresses the question of what role, if any, mental rotations can play in enhancing existing robot navigational capabilities. To answer this question we explore the use of optical flow as a basis for extracting abstract representations of the world, comparing these representations with a goal state of similar format and then iteratively providing a control signal to a robot to allow it to move in a direction consistent with achieving that goal state. We study a range of transformation methods to implement the mental rotation component of the architecture, including correlation and matching based on cognitive studies. We also include a discussion of how mental rotations may play a key role in understanding spatial advice giving, particularly from other members of the species, whether in map-based format, gestures, or other means of communication. Results to date are presented on our robotic platform.
Hier, D. B.; Jao, C. S.; Brint, S. U.
1994-01-01
The mental status examination is the most difficult and time-consuming portion of the neurological examination. A complete mental status examination requires the examiner to assess alertness, memory, language, praxis, gnosis, attention, and visual-spatial functions. Findings of the mental status need to be interpreted in terms of severity of deficits, nature of the deficits, likely etiology, and likely area of corresponding brain injury. The performance of an accurate, complete, and detailed mental status examination is a daunting task for the medical student or resident in training. Traditional mental status examinations show considerable inter-examiner variability for items administered and for interpretation of abnormalities. Even in academic settings, mental status examinations have little educational content. PMID:7949891
The politics of methodology in 'post-medical geography': mental health research and the interview.
Parr, H
1998-12-01
This paper argues that emerging 'post-medical geographies' require attention to the methodological in order to fully appreciate how different geographical knowledges are produced and contextualized within the politics of research relationships. 'Geographies of mental health and illness' are focused upon in order to argue that the 'peopling' of health research should also be accompanied by debate about what sorts of methodologies we employ in accessing these minds/bodies and voices. The research interview is a primary focus here. A critique of psychoanalytic approaches to geographical research argues that such 'models' of interpretation and management can mean that participants or research 'subjects' can be framed in almost diagnostic categories of behaviour. Empirical examples of mental health research in Nottingham are used to argue that more flexible approaches which pay attention to perceived dualisms (such as 'sanity' and 'insanity'), negotiation, embodiment, socio-spatial contexts and content within the interview situation may aid in understanding the politics which encompass geographical health research.
Cui, Dongmei; Wilson, Timothy D; Rockhold, Robin W; Lehman, Michael N; Lynch, James C
2017-01-01
The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three-dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not been previously studied in detail. This study investigated whether 3D stereoscopic models created from computed tomographic angiography (CTA) data were efficacious teaching tools for the head and neck vascular anatomy. The test subjects were first year medical students at the University of Mississippi Medical Center. The assessment tools included: anatomy knowledge tests (prelearning session knowledge test and postlearning session knowledge test), mental rotation tests (spatial ability; presession MRT and postsession MRT), and a satisfaction survey. Results were analyzed using a Wilcoxon rank-sum test and linear regression analysis. A total of 39 first year medical students participated in the study. The results indicated that all students who were exposed to the stereoscopic 3D vascular models in 3D learning sessions increased their ability to correctly identify the head and neck vascular anatomy. Most importantly, for students with low-spatial ability, 3D learning sessions improved postsession knowledge scores to a level comparable to that demonstrated by students with high-spatial ability indicating that the use of 3D stereoscopic models may be particularly valuable to these students with low-spatial ability. Anat Sci Educ 10: 34-45. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Spatial Abilities during the Circalunar Cycle in Both Sexes
ERIC Educational Resources Information Center
Ostatnikova, Daniela; Hodosy, Julius; Skoknova, Martina; Putz, Zdenek; Kudela, Matus; Celec, Peter
2010-01-01
Spatial abilities vary during the menstrual cycle. The effects of a similar rhythm in men are unknown. Mental rotation and spatial visualization of young healthy volunteers (29 females and 31 males) were tested during the menstrual and periovulatory phase of the menstrual cycle in women, and during the low-testosterone and high-testosterone phases…
Spatial Associations for Musical Stimuli: A Piano in the Head?
ERIC Educational Resources Information Center
Lidji, Pascale; Kolinsky, Regine; Lochy, Aliette; Morais, Jose
2007-01-01
This study was aimed at examining whether pitch height and pitch change are mentally represented along spatial axes. A series of experiments explored, for isolated tones and 2-note intervals, the occurrence of effects analogous to the spatial numerical association of response codes (SNARC) effect. Response device orientation (horizontal vs.…
ERIC Educational Resources Information Center
Xu, Chang; LeFevre, Jo-Anne
2016-01-01
Are there differential benefits of training sequential number knowledge versus spatial skills for children's numerical and spatial performance? Three- to five-year-old children (N = 84) participated in 1 session of either sequential training (e.g., what comes before and after the number 5?) or non-numerical spatial training (i.e., decomposition of…
Dabaghian, Y
2016-06-01
Place cells in the rat hippocampus play a key role in creating the animal's internal representation of the world. During active navigation, these cells spike only in discrete locations, together encoding a map of the environment. Electrophysiological recordings have shown that the animal can revisit this map mentally during both sleep and awake states, reactivating the place cells that fired during its exploration in the same sequence in which they were originally activated. Although consistency of place cell activity during active navigation is arguably enforced by sensory and proprioceptive inputs, it remains unclear how a consistent representation of space can be maintained during spontaneous replay. We propose a model that can account for this phenomenon and suggest that a spatially consistent replay requires a number of constraints on the hippocampal network that affect its synaptic architecture and the statistics of synaptic connection strengths.
Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1
Dierssen, Mara; Arqué, Gloria; McDonald, Jerome; Andreu, Nuria; Martínez-Cué, Carmen; Flórez, Jesús; Fillat, Cristina
2011-01-01
DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term. PMID:21364922
Exploratory study of the relations between spatial ability and drawing from memory.
Czarnolewski, Mark Y; Eliot, John
2012-04-01
Test scores of 119 students, attending either a public four-year college or a technical school, were related to their proportionality and detail drawing scores on the Memory for Designs Test. In regression models, the ETS Maze Tracing, Eliot-Price Mental Rotations, and Bender-Gestalt tests were consistent predictors of proportionality scores, with the latter two tests uniquely related to these. The ETS Shapes Memory Test and the Form Board Test were the strongest predictors for detail accuracy scores. The Shapes test predicted proportionality when the CTY Visual Memory Test BB was excluded. The models then provided support for the hypothesis that drawing designs from memory, a critical skill in drawing, regardless of whether one focuses on accuracy for proportionality scores or for detail scores, is jointly related to the measures of recognition, production, and traditional spatial ability measures. This study identified multifaceted skills in drawing from memory.
On the Emergence of Mental Space in Psychology: Interview With Lucas Albert Charles Derks
Derks, Lucas Albert Charles; Manea, Alexandru Ioan
2016-01-01
In this interview we have the chance to talk with Lucas Albert Charles Derks, founder of the International Laboratory for Mental Space Research and of the Society for Mental Space Psychology and the creator of the Social Panorama approach, about the paradigm that evolved in the last 25 years, entitled Mental Space Psychology, with roots from Cognitive Linguistics, Spatial Cognition and Neuroscience. Today we shall explore the psychotherapeutic approaches which use the Mental Space Psychology, their applicability and their limitations, with a special focus on his own approach, entitled Social Panorama. PMID:27298638
On the Emergence of Mental Space in Psychology: Interview With Lucas Albert Charles Derks.
Derks, Lucas Albert Charles; Manea, Alexandru Ioan
2016-05-01
In this interview we have the chance to talk with Lucas Albert Charles Derks, founder of the International Laboratory for Mental Space Research and of the Society for Mental Space Psychology and the creator of the Social Panorama approach, about the paradigm that evolved in the last 25 years, entitled Mental Space Psychology, with roots from Cognitive Linguistics, Spatial Cognition and Neuroscience. Today we shall explore the psychotherapeutic approaches which use the Mental Space Psychology, their applicability and their limitations, with a special focus on his own approach, entitled Social Panorama.
Cerebral asymmetry for mental rotation: effects of response hand, handedness and gender.
Johnson, Blake W; McKenzie, Kirsten J; Hamm, Jeff P
2002-10-28
We assessed lateralization of brain function during mental rotation, measuring the scalp distribution of a 400-600 ms latency event-related potential (ERP) with 128 recording electrodes. Twenty-four subjects, consisting of equal numbers of dextral and sinistral males and females, performed a mental rotation task under two response conditions (dominant non-dominant hand). For males, ERPs showed a right parietal bias regardless of response hand. For females, the parietal ERPs were slightly left-lateralized when making dominant hand responses, but strongly right-lateralized when making non-dominant hand responses. These results support the notion that visuo-spatial processing is more bilaterally organized in females. However, left hemisphere resources may be allocated to response preparation when using the non-dominant hand, forcing visuo-spatial processing to the right hemisphere.
Martarelli, Corinna S; Mast, Fred W; Hartmann, Matthias
2017-01-01
Time is grounded in various ways, and previous studies point to a "mental time line" with past associated with the left, and future with the right side. In this study, we investigated whether spontaneous eye movements on a blank screen would follow a mental timeline during encoding, free recall, and recognition of past and future items. In all three stages of processing, gaze position was more rightward during future items compared to past items. Moreover, horizontal gaze position during encoding predicted horizontal gaze position during free recall and recognition. We conclude that mental time line and the stored gaze position during encoding assist memory retrieval of past versus future items. Our findings highlight the spatial nature of temporal representations.
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Are Places Concepts? Familarity and Expertise Effects in Neighborhood Cognition
NASA Astrophysics Data System (ADS)
Davies, Clare
Named urban neighborhoods (localities) are often examples of vague place extents. These are compared with current knowledge of vagueness in concepts and categories within semantic memory, implying graded membership and typicality. If places are mentally constructed and used like concepts, this might account for their cognitive variability, and help us choose suitable geospatial (GIS) data models. An initial within-subjects study with expert geographic surveyors tested specific predictions about the role of central tendency, ideals, context specificity, familiarity and expertise in location judgements - theoretically equivalent to categorization. Implications for spatial data models and a further research agenda are suggested.
Spatial Reasoning and Understanding the Particulate Nature of Matter: A Middle School Perspective
NASA Astrophysics Data System (ADS)
Cole, Merryn L.
This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students' or in-service middle school teachers' understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between scores on the PSVT and the ParNoMA was observed. Teachers who used consistent reasoning in providing definitions and examples for matter and chemistry tended to have higher spatial abilities than those teachers who used inconsistent reasoning on the same questions. This is the first study to explore the relationship between spatial reasoning and understanding of chemistry concepts at the middle school level. Though we are unable to infer cause and effect relationship from correlational data, these results illustrate a need to further investigate this relationship as well as identify the relationship between different spatial abilities (not just mental rotation) and other chemistry concepts.
Peters, Michael; Battista, Christian
2008-04-01
The 3D cube figures used by Shepard and Metzler [Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703] have been applied in a broad range of studies on mental rotation. This note provides a brief background on these figures, their general use in cognitive psychology and their role in studying spatial behavior. In particular, it is pointed out that large sex differences with the 3D mental rotation figures tend to be observed only in particular tasks, such as the Vandenberg and Kuse test [Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599-604] that involve multiple figures within a single problem. In contrast, pairwise presentation of the same 3D figures yields either small or no significant sex differences. In the context of the very broad range of ongoing research done with 3D figures, and the desirability of uniformity in the stimulus material used, we introduce a library of 16 cube mental rotation figures, each presented in orientations ranging from 0 to 360 degr in 5 degr steps, and with its mirror image, for a total of 2336 figures. This library, freely available to researchers, will help in the creation of mental rotation tasks both for presentation on the computer screen and for pencil and paper applications.
Eye movements during mental time travel follow a diagonal line.
Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt
2014-11-01
Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. Copyright © 2014 Elsevier Inc. All rights reserved.
The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction
NASA Astrophysics Data System (ADS)
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa
It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.
ERIC Educational Resources Information Center
Gurny, Helen Graham
This study tested whether mental rotation performance of 186 high school students (80 males and 106 females) in grades 9 through 12 in art and nonart classes on Vandenbergs Mental Rotations test (S. Vandenberg and Kuse, 1978) was affected by gender, visual-spatial activities, strategies used while performing the test, and the ease of test taking.…
Amanpour, Behzad; Erfanian, Abbas
2013-01-01
An important issue in designing a practical brain-computer interface (BCI) is the selection of mental tasks to be imagined. Different types of mental tasks have been used in BCI including left, right, foot, and tongue motor imageries. However, the mental tasks are different from the actions to be controlled by the BCI. It is desirable to select a mental task to be consistent with the desired action to be performed by BCI. In this paper, we investigated the detecting the imagination of the hand grasping, hand opening, and hand reaching in one hand using electroencephalographic (EEG) signals. The results show that the ERD/ERS patterns, associated with the imagination of hand grasping, opening, and reaching are different. For classification of brain signals associated with these mental tasks and feature extraction, a method based on wavelet packet, regularized common spatial pattern (CSP), and mutual information is proposed. The results of an offline analysis on five subjects show that the two-class mental tasks can be classified with an average accuracy of 77.6% using proposed method. In addition, we examine the proposed method on datasets IVa from BCI Competition III and IIa from BCI Competition IV.
Psychology of knowledge representation.
Grimm, Lisa R
2014-05-01
Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.
Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura
2015-01-01
Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.
Stocker, Kurt
2012-04-01
This article provides the first comprehensive conceptual account for the imagistic mental machinery that allows us to travel through time--for the time machine in our mind. It is argued that language reveals this imagistic machine and how we use it. Findings from a range of cognitive fields are theoretically unified and a recent proposal about spatialized mental time travel is elaborated on. The following novel distinctions are offered: external versus internal viewing of time; ''watching" time versus projective ''travel" through time; optional versus obligatory mental time travel; mental time travel into anteriority or posteriority versus mental time travel into the past or future; single mental time travel versus nested dual mental time travel; mental time travel in episodic memory versus mental time travel in semantic memory; and ''seeing" versus ''sensing" mental imagery. Theoretical, empirical, and applied implications are discussed. Copyright © 2012 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Waller, David; Lippa, Yvonne; Richardson, Adam
2008-01-01
Several lines of research have suggested the importance of egocentric reference systems for determining how the spatial properties of one's environment are mentally organized. Yet relatively little is known about the bases for egocentric reference systems in human spatial memory. In three experiments, we examine the relative importance of…
Effect of Visual-Spatial Ability on Medical Students' Performance in a Gross Anatomy Course
ERIC Educational Resources Information Center
Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.
2012-01-01
The ability to mentally manipulate objects in three dimensions is essential to the practice of many clinical medical specialties. The relationship between this type of visual-spatial ability and performance in preclinical courses such as medical gross anatomy is poorly understood. This study determined if visual-spatial ability is associated with…
ERIC Educational Resources Information Center
Tretter, Thomas R.; Jones, M. Gail; Minogue, James
2006-01-01
The use of unifying themes that span the various branches of science is recommended to enhance curricular coherence in science instruction. Conceptions of spatial scale are one such unifying theme. This research explored the accuracy of spatial scale conceptions of science phenomena across a spectrum of 215 participants: fifth grade, seventh…
Body-Specific Representations of Spatial Location
ERIC Educational Resources Information Center
Brunye, Tad T.; Gardony, Aaron; Mahoney, Caroline R.; Taylor, Holly A.
2012-01-01
The body specificity hypothesis (Casasanto, 2009) posits that the way in which people interact with the world affects their mental representation of information. For instance, right- versus left-handedness affects the mental representation of affective valence, with right-handers categorically associating good with rightward areas and bad with…
Feature Masking in Computer Game Promotes Visual Imagery
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Morey, Jim; Tjoe, Edwin
2007-01-01
Can learning of mental imagery skills for visualizing shapes be accelerated with feature masking? Chemistry, physics fine arts, military tactics, and laparoscopic surgery often depend on mentally visualizing shapes in their absence. Does working with "spatial feature-masks" (skeletal shapes, missing key identifying portions) encourage people to…
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
Cona, G; Marino, G; Semenza, C
2017-02-01
In the present study we applied online transcranial magnetic stimulation (TMS) bursts at 10Hz to the supplementary motor area (SMA) and primary motor cortex to test whether these regions are causally involved in mental rotation. Furthermore, in order to investigate what is the specific role played by SMA and primary motor cortex, two mental rotation tasks were used, which included pictures of hands and abstract objects, respectively. While primary motor cortex stimulation did not affect mental rotation performance, SMA stimulation improved the performance in the task with object stimuli, and only for the pairs of stimuli that had higher angular disparity between each other (i.e., 100° and 150°). The finding that the effect of SMA stimulation was modulated by the amount of spatial orientation information indicates that SMA is causally involved in the very act of mental rotation. More specifically, we propose that SMA mediates domain-general sequence processes, likely required to accumulate and integrate information that are, in this context, spatial. The possible physiological mechanisms underlying the facilitation of performance due to SMA stimulation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Cognitive Development of Severely and Profoundly Mentally Retarded Individuals.
ERIC Educational Resources Information Center
Silverstein, A. B.; And Others
1982-01-01
H. Corman and S. Escalona's scales for object permanence and spatial relationships were readministered to 71 severely and profoundly mentally retarded individuals (mean age 19 years) five years after the last previous administration of the scales. Gains in mean scores were small but statistically significant for both scales. (Author)
Wijnveld, Anne-Marie; Crowe, Marie
2010-05-01
The aim of this study was to use a phenomenological methodology to examine mental health nurses' experiences of administering medications to patients who were non-adherent in an acute inpatient service. There is a large body of literature focused on exploring the issue of non-adherence to prescribed medication, but there is very little examining this from mental health nurses' perspectives. Many of the medications prescribed for patients diagnosed with a psychiatric disorder have serious side effects and limited efficacy. Mental health nurses in acute inpatient environments are regularly confronted with the difficulties inherent in the conflicting roles associated with the need to maintain therapeutic relationships and the expectation that they ensure patients take their medications. This is a qualitative study exploring mental health nurses' descriptions of managing medication adherence in an acute inpatient unit. The interpretive phenomenological methodology of Van Manen (Researching Lived Experience: Human Science for an Action Sensitive Pedagogy, 1990) was used in this study to capture the experiences of a group of nurses. This research process involves a dynamic interplay between the following six research activities: (1) turning to the nature of the lived experience; (2) investigating the experience as we live it; (3) reflecting on essential themes; (4) a description of the phenomenon through the art of writing and rewriting; (5) maintaining a strong and oriented pedagogical relation to the phenomenon; and (6) balancing the research context by considering parts and whole. Four themes emerged from the existential analysis that described the mental health nurses' experiences: doing the job for doctors (relationality); stopping and listening (temporality); stepping in (corporeality); and walking a fine line (spatiality). It is proposed that models of therapeutic interventions offering alternative or conjunctive treatment to medications could be incorporated into acute inpatient care and provide an enhanced therapeutic model. Nurses in many areas struggle to manage the tensions between a medical model and a nursing model of care. This study describes how one group of nurses manage these tensions and suggests a more patient-centred model of care.
NASA Astrophysics Data System (ADS)
McConnell, William J.
Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study's findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented.
Differential involvement of the posterior temporal cortex in mentalizing but not perspective taking
Aumann, Carolin; Santos, Natacha S.; Bewernick, Bettina H.; Eickhoff, Simon B.; Newen, Albert; Shah, N. Jon; Fink, Gereon R.; Vogeley, Kai
2008-01-01
Understanding and predicting other people's mental states and behavior are important prerequisites for social interactions. The capacity to attribute mental states such as desires, thoughts or intentions to oneself or others is referred to as mentalizing. The right posterior temporal cortex at the temporal–parietal junction has been associated with mentalizing but also with taking someone else's spatial perspective onto the world—possibly an important prerequisite for mentalizing. Here, we directly compared the neural correlates of mentalizing and perspective taking using the same stimulus material. We found significantly increased neural activity in the right posterior segment of the superior temporal sulcus only during mentalizing but not perspective taking. Our data further clarify the role of the posterior temporal cortex in social cognition by showing that it is involved in processing information from socially salient visual cues in situations that require the inference about other people's mental states. PMID:19015120
Mattheys, K; Bambra, C; Warren, J; Kasim, A; Akhter, N
2016-12-01
Since 2010, the UK has pursued a policy of austerity characterised by public spending cuts and welfare changes. There has been speculation - but little actual research - about the effects of this policy on health inequalities. This paper reports on a case study of local health inequalities in the local authority of Stockton-on-Tees in the North East of England, an area characterised by high spatial and socio-economic inequalities. The paper presents baseline findings from a prospective cohort study of inequalities in mental health and mental wellbeing between the most and least deprived areas of Stockton-on-Tees. This is the first quantitative study to explore local mental health inequalities during the current period of austerity and the first UK study to empirically examine the relative contributions of material, psychosocial and behavioural determinants in explaining the gap. Using a stratified random sampling technique, the data was analysed using multi-level models that explore the gap in mental health and wellbeing between people from the most and least deprived areas of the local authority, and the relative contributions of material, psychosocial and behavioural factors to this gap. The main findings indicate that there is a significant gap in mental health between the two areas, and that material and psychosocial factors appear to underpin this gap. The findings are discussed in relation to the context of the continuing programme of welfare changes and public spending cuts in the UK.
Place and provision: mapping mental health advocacy services in London.
Foley, Ronan; Platzer, Hazel
2007-02-01
The National Health Service (NHS) Executive for London carried out an investigation in 2002 as part of their wider mental health strategy to establish whether existing mental health advocacy provision in the city was meeting need. The project took a two-part approach, with an emphasis on, (a) mapping the provision of advocacy services and, (b) cartographic mapping of service location and catchments. Data were collected through a detailed questionnaire with service providers in collaboration with the Greater London Mental Health Advocacy Network (GLMHAN) and additional health and government sources. The service mapping identified some key statistics on funding, caseloads and models of service provision with an additional emphasis on coverage, capacity, and funding stability. The questionnaire was augmented by interviews and focus groups with commissioners, service providers and service users and identified differing perspectives and problems, which informed the different perspectives of each of these groups. The cartographic mapping exercise demonstrated a spatially-even provision of mental health advocacy services across the city with each borough being served by at least one local service as well as by London wide specialist schemes. However, at local level, no one borough had the full range of specialist provision to match local demographic need. Ultimately the research assisted the Advisory Group in providing commissioning agencies with clear information on the current status of city-wide mental health advocacy services, and on gaps in existing advocacy provision alongside previously unconsidered geographical and service dimensions of that provision.
Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112
Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.
Visualization in Science and the Arts.
ERIC Educational Resources Information Center
Roth, Susan King
Visualization as a factor of intelligence includes the mental manipulation of spatial configurations and has been associated with spatial abilities, creative thinking, and conceptual problem solving. There are numerous reports of scientists and mathematicians using visualization to anticipate transformation of the external world. Artists and…
Building Bridges to Spatial Reasoning
ERIC Educational Resources Information Center
Shumway, Jessica F.
2013-01-01
Spatial reasoning, which involves "building and manipulating mental representations of two-and three-dimensional objects and perceiving an object from different perspectives" is a critical aspect of geometric thinking and reasoning. Through building, drawing, and analyzing two-and three-dimensional shapes, students develop a foundation…
ERIC Educational Resources Information Center
Clem, Douglas Wayne
2012-01-01
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and…
ERIC Educational Resources Information Center
Harris, Justin; Newcombe, Nora S.; Hirsh-Pasek, Kathy
2013-01-01
The relation of spatial skills to academic success in areas such as math and science has sparked discussion in early education around how spatial thinking skills might be included in early schooling. Planning and evaluating new curricula or interventions requires understanding these skills and having the means to assess them. Prior developmental…
The Importance of Gesture in Children's Spatial Reasoning
ERIC Educational Resources Information Center
Ehrlich, Stacy B.; Levine, Susan C.; Goldin-Meadow, Susan
2006-01-01
On average, men outperform women on mental rotation tasks. Even boys as young as 4 1/2 perform better than girls on simplified spatial transformation tasks. The goal of our study was to explore ways of improving 5-year-olds' performance on a spatial transformation task and to examine the strategies children use to solve this task. We found that…
Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards
ERIC Educational Resources Information Center
Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.
2011-01-01
This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…
Proulx, Michael J.; Todorov, Orlin S.; Taylor Aiken, Amanda; de Sousa, Alexandra A.
2016-01-01
Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners. PMID:26903893
Multiple reference frames in haptic spatial processing
NASA Astrophysics Data System (ADS)
Volčič, R.
2008-08-01
The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.
Mental Maps: A new instrument for teaching-learning-evaluation of engineering students
NASA Astrophysics Data System (ADS)
Oleschko, K.
2009-04-01
The use of interactive mind maps for teaching-learning-evaluation of postgraduate students is still not very common in Geosciences. Notwithstanding, these maps allow students to organize the huge volumes of information and data they are faced with (www.spinscape.com) for efficient research project elaboration and for understanding of basic anzatz and conjectures (Singer, 2009). The elaboration of mind maps is introduced as a principle teaching-learning-evaluation instrument (Cruza and Fierros, 2006) in my Research Methodology Seminar. Each student should to construct three types of multiscale mind maps before to write the formal proposal (Curiel and Radvansky, 2004; Zimmer, 2004). The main goal is to show how useful is to manage the physical, mathematical and linguistic information on the same structured way (Montibeller and Belton, 2009; Chu et al., 2009). The mental representation of the spatially and time organized physical world (physical map) is combined with the design of hierarchical tree of mathematical models used to describe it in mathematical terms (the map composed only by mathematical symbols), visualizing this tree branches by corresponding images inside the third map consisting on images. This three-faced representation of each research project helps the participant to perceive the complex nature of studied systems and visualize their features of universality and scale invariance. The maṕs elaboration is considered to be finished when any student of other specialties become able to present it in acceptable scientific way. Some examples of recent mental maps elaborated by the master degree students of Queretaro University, Mexico will be presented and discussed. Based on my experience I recommend this education technique in order to pass from sustainable engineer teaching to educate the engineers of Sustainability. References 1. Chu, H.-Ch., Chen, M.-Y., Chen, Y.-M., 2009. A semantic-based approach to content abstraction and annotation for content management. Expert Systems and Applications, 36: 2360-2376. 2. Cruza, N.S. and Fierros, L.E., 2006. Utility of conceptual schemes and mental maps on the teaching-learning process of residents in pediatrics. Gac. Med. Mex., 146 (6):457-465. 3. Curiel, J.M. and Radvansky, G.A., 2004. The accuracy of spatial information from temporally and spatially organized mental maps. Psychon. Bull. Rev., 11 (2):314-319. 4. Montibeller, G. and Belton, V. , 2009. Qualitative operators for reasoning maps: Evaluating multi-criteria options with networks of reasons. European J. of Operational Res., 195: 829-840. 5. Singer, F.M., 2009. The dynamic infrastructure of mind - A hypothesis and some of its applications. New ideas in Psychology, 27: 48-74. 6. http://www.spinscape.com 7. Zimmer, H.D. The construction of mental maps based on a fragmented view of physical maps. J. of Educational Psychology, 96 (3): 603-610.
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Aretz, Anthony; Harwood, Kelly
1989-01-01
Three experiments are reported that examine the difference between north-up and track-up maps for airborne navigation. The results of the first two experiments, conducted in a basic laboratory setting, identified the cost associated with mental rotation, when a north-up map is used. However, the data suggest that these costs are neither large nor consistent. The third experiment examined a range of tasks in a higher fidelity helicopter flight simulation, and associated the costs of north-up maps with a cognitive component related to orientation, and the costs of track-up maps with a cognitive component related to inconsistent landmark location. Different tasks are associated with different dependence on these components. The results are discussed in terms of their implications for map design, and for cognitive models of navigational processes.
Mental Fatigue and Spatial References Impair Soccer Players' Physical and Tactical Performances
Coutinho, Diogo; Gonçalves, Bruno; Travassos, Bruno; Wong, Del P.; Coutts, Aaron J.; Sampaio, Jaime E
2017-01-01
This study examined the effects of mental fatigue and additional corridor and pitch sector lines on players' physical and tactical performances during soccer small-sided games. Twelve youth players performed four Gk+6vs6+Gk small-sided games. Prior to the game, one team performed a motor coordination task to induce mental fatigue, while the other one performed a control task. A repeated measures design allowed to compare players' performances across four conditions: (a) with mental fatigue against opponents without mental fatigue in a normal pitch (MEN), (b) with mental fatigue on a pitch with additional reference lines (#MEN); (c) without mental fatigue against mentally fatigued opponents on a normal pitch (CTR); and (d) without mental fatigue on a pitch with reference lines (#CTR). Player's physical performance was assessed by the distance covered per minute and the number of accelerations and decelerations (0.5–3.0 m/s2; > −3.0 m/s2). Positional data was used to determine individual (spatial exploration index, time synchronized in longitudinal and lateral directions) and team-related variables (length, width, speed of dispersion and contraction). Unclear effects were found for the physical activity measures in most of the conditions. There was a small decrease in time spent laterally synchronized and a moderate decrease in the contraction speed when MEN compared to the CTR. Also, there was a small decrease in the time spent longitudinally synchronized during the #MEN condition compared to MEN. The results showed that mental fatigue affects the ability to use environmental information and players' positioning, while the additional reference lines may have enhanced the use of less relevant information to guide their actions during the #MEN condition. Overall, coaches could manipulate the mental fatigue and reference lines to induce variability and adaptation in young soccer players' behavior. PMID:28983273
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
Mitsuto Nagase, Asako; Onoda, Keiichi; Clifford Foo, Jerome; Haji, Tomoki; Akaishi, Rei; Yamaguchi, Shuhei; Sakai, Katsuyuki; Morita, Kenji
2018-02-05
Humans tend to avoid mental effort. Previous studies have demonstrated this tendency using various demand-selection tasks; participants generally avoid options associated with higher cognitive demand. However, it remains unclear whether humans avoid mental effort adaptively in uncertain and non-stationary environments, and if so, what neural mechanisms underlie this learned avoidance and whether they remain the same irrespective of cognitive-demand types. We addressed these issues by developing novel demand-selection tasks where associations between choice options and cognitive-demand levels change over time, with two variations using mental arithmetic and spatial reasoning problems (29:4 and 18:2 males:females). Most participants showed avoidance, and their choices depended on the demand experienced on multiple preceding trials. We assumed that participants updated the expected cost of mental effort through experience, and fitted their choices by reinforcement learning models, comparing several possibilities. Model-based fMRI analyses revealed that activity in the dorsomedial and lateral frontal cortices was positively correlated with the trial-by-trial expected cost for the chosen option commonly across the different types of cognitive demand, and also revealed a trend of negative correlation in the ventromedial prefrontal cortex. We further identified correlates of cost-prediction-error at time of problem-presentation or answering the problem, the latter of which partially overlapped with or were proximal to the correlates of expected cost at time of choice-cue in the dorsomedial frontal cortex. These results suggest that humans adaptively learn to avoid mental effort, having neural mechanisms to represent expected cost and cost-prediction-error, and the same mechanisms operate for various types of cognitive demand. SIGNIFICANCE STATEMENT In daily life, humans encounter various cognitive demands, and tend to avoid high-demand options. However, it remains unclear whether humans avoid mental effort adaptively under dynamically changing environments, and if so, what are the underlying neural mechanisms and whether they operate irrespective of cognitive-demand types. To address these issues, we developed novel tasks, where participants could learn to avoid high-demand options under uncertain and non-stationary environments. Through model-based fMRI analyses, we found regions whose activity was correlated with the expected mental effort cost, or cost-prediction-error, regardless of demand-type, with overlap or adjacence in the dorsomedial frontal cortex. This finding contributes to clarifying the mechanisms for cognitive-demand avoidance, and provides empirical building blocks for the emerging computational theory of mental effort. Copyright © 2018 the authors.
Beyond Conceptual Knowledge: The Impact of Children’s Theory-of-Mind on Dyadic Spatial Tasks
Viana, Karine M. P.; Zambrana, Imac M.; Karevold, Evalill B.; Pons, Francisco
2016-01-01
Recent studies show that Theory of Mind (ToM) has implications for children’s social competences and psychological well-being. Nevertheless, although it is well documented that children overall take advantage when they have to resolve cognitive problems together with a partner, whether individual difference in ToM is one of the mechanisms that could explain cognitive performances produced in social interaction has received little attention. This study examines to what extent ToM explains children’s spatial performances in a dyadic situation. The sample includes 66 boys and girls between the ages of 5–9 years, who were tested for their ToM and for their competence to resolve a Spatial task involving mental rotation and spatial perspective taking, first individually and then in a dyadic condition. Results showed, in accordance with previous research, that children performed better on the Spatial task when they resolved it with a partner. Specifically, children’s ToM was a better predictor of their spatial performances in the dyadic condition than their age, gender, and spatial performances in the individual setting. The findings are discussed in terms of the relation between having a conceptual understanding of the mind and the practical implications of this knowledge for cognitive performances in social interaction regarding mental rotation and spatial perspective taking. PMID:27812344
Sex differences in spatial ability: a lateralization of function approach.
Rilea, Stacy L; Roskos-Ewoldsen, Beverly; Boles, David
2004-12-01
The current study was designed to examine whether the extent of the male advantage in performance on a spatial task was determined by the extent to which the task was right-hemisphere dependent. Participants included 108 right-handed men and women who completed the mental rotation, waterlevel, and paperfolding tasks, all of which were presented bilaterally. The results partially supported the hypothesis. On the mental rotation task, men showed a right-hemisphere advantage, whereas women showed no hemispheric differences; however, no overall sex differences were observed. On the waterlevel task, men outperformed women, and both men and women showed a right-hemisphere advantage. On the paperfolding task, no sex or hemispheric differences were observed. Although the findings of the current study were mixed, the study provides a framework for examining sex differences across different types of spatial ability.
Visual Cues Generated during Action Facilitate 14-Month-Old Infants' Mental Rotation
ERIC Educational Resources Information Center
Antrilli, Nick K.; Wang, Su-hua
2016-01-01
Although action experience has been shown to enhance the development of spatial cognition, the mechanism underlying the effects of action is still unclear. The present research examined the role of visual cues generated during action in promoting infants' mental rotation. We sought to clarify the underlying mechanism by decoupling different…
Sex Differences in Spatial Performance as Related to Cerebral Lateralization.
ERIC Educational Resources Information Center
Freedman, Rita Jackaway; And Others
The extent to which sex differences on a mental rotation test were related to ocular dominance, handedness, and familial handedness was explored. The Vandenberg revision of the Shepard-Metzlar mental rotation test was administered to 206 college students. The test consisted of 20 criterion figures, each followed by two correct and two incorrect…
ERIC Educational Resources Information Center
Moe, Angelica
2012-01-01
The fear of underperforming owing to stereotype threat affects women's performance in tasks such as mathematics, chess, and spatial reasoning. The present research considered mental rotation and explored effects on performance and on regulatory focus of instructions pointing to different explanations for gender differences. Two hundred and one…
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
Grid-cell representations in mental simulation
Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F
2016-01-01
Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056
Structural geology practice and learning, from the perspective of cognitive science
NASA Astrophysics Data System (ADS)
Shipley, Thomas F.; Tikoff, Basil; Ormand, Carol; Manduca, Cathy
2013-09-01
Spatial ability is required by practitioners and students of structural geology and so, considering spatial skills in the context of cognitive science has the potential to improve structural geology teaching and practice. Spatial thinking skills may be organized using three dichotomies, which can be linked to structural geology practice. First, a distinction is made between separating (attending to part of a whole) and combining (linking together aspects of the whole). While everyone has a basic ability to separate and combine, experts attend to differences guided by experiences of rock properties in context. Second, a distinction is made between seeing the relations among multiple objects as separate items or the relations within a single object with multiple parts. Experts can flexibly consider relations among or between objects to optimally reason about different types of spatial problems. Third, a distinction is made between reasoning about stationary and moving objects. Experts recognize static configurations that encode a movement history, and create mental models of the processes that led to the static state. The observations and inferences made by a geologist leading a field trip are compared with the corresponding observations and inferences made by a cognitive psychologist interested in spatial learning. The presented framework provides a vocabulary for discussing spatial skills both within and between the fields of structural geology and cognitive psychology.
Triple-aspect monism: physiological, mental unconscious and conscious aspects of brain activity.
Pereira, Alfredo
2014-06-01
Brain activity contains three fundamental aspects: (a) The physiological aspect, covering all kinds of processes that involve matter and/or energy; (b) the mental unconscious aspect, consisting of dynamical patterns (i.e., frequency, amplitude and phase-modulated waves) embodied in neural activity. These patterns are variously operated (transmitted, stored, combined, matched, amplified, erased, etc), forming cognitive and emotional unconscious processes and (c) the mental conscious aspect, consisting of feelings experienced in the first-person perspective and cognitive functions grounded in feelings, as memory formation, selection of the focus of attention, voluntary behavior, aesthetical appraisal and ethical judgment. Triple-aspect monism (TAM) is a philosophical theory that provides a model of the relation of the three aspects. Spatially distributed neuronal dendritic potentials generate amplitude-modulated waveforms transmitted to the extracellular medium and adjacent astrocytes, prompting the formation of large waves in the astrocyte network, which are claimed to both integrate distributed information and instantiate feelings. According to the valence of the feeling, the large wave feeds back on neuronal synapses, modulating (reinforcing or depressing) cognitive and behavioral functions.
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
Mechanisms for Human Spatial Competence
2007-01-01
Published as Lecture Note: Gunzelmann, G., & Lyon, D. R. (2007). Mechanisms of human spatial competence. In M . K. T. Barkowsky, G. Ligozat, & D...the ACT-R community. References 1. Richardson, A., Montello, D., Hegarty, M .: Spatial Knowledge Acquisition from Maps, and from Navigation in Real...Rotation of Three-Dimensional Objects. Science 171, 701–703 (1971) 7. Just, M ., Carpenter, P.: Cognitive Coordinate Systems: Accounts of Mental
ERIC Educational Resources Information Center
Maeda, Yukiko; Yoon, So Yoon
2016-01-01
We investigated the extent to which the observed gender differences in mental rotation ability among the 2,468 freshmen studying engineering at a Midwest public university attributed to the gender bias of a test. The Revised Purdue Spatial Visualization Tests: Visualization of Rotations (Revised PSVT:R) is a spatial test frequently used to measure…
Serino, Silvia; Pedroli, Elisa; Tuena, Cosimo; De Leo, Gianluca; Stramba-Badiale, Marco; Goulene, Karine; Mariotti, Noemi G; Riva, Giuseppe
2017-01-01
A growing body of evidence suggests that people with Alzheimer's Disease (AD) show compromised spatial abilities. In addition, there exists from the earliest stages of AD a specific impairment in "mental frame syncing," which is the ability to synchronize an allocentric viewpoint-independent representation (including object-to-object information) with an egocentric one by computing the bearing of each relevant "object" in the environment in relation to the stored heading in space (i.e., information about our viewpoint contained in the allocentric viewpoint-dependent representation). The main objective of this development-of-concept trial was to evaluate the efficacy of a novel VR-based training protocol focused on the enhancement of the "mental frame syncing" of the different spatial representations in subjects with AD. We recruited 20 individuals with AD who were randomly assigned to either "VR-based training" or "Control Group." Moreover, eight cognitively healthy elderly individuals were recruited to participate in the VR-based training in order to have a different comparison group. Based on a neuropsychological assessment, our results indicated a significant improvement in long-term spatial memory after the VR-based training for patients with AD; this means that transference of improvements from the VR-based training to more general aspects of spatial cognition was observed. Interestingly, there was also a significant effect of VR-based training on executive functioning for cognitively healthy elderly individuals. In sum, VR could be considered as an advanced embodied tool suitable for treating spatial recall impairments.
NASA Astrophysics Data System (ADS)
Wang, Li-Qun; Saito, Masao
We used 1.5T functional magnetic resonance imaging (fMRI) to explore that which brain areas contribute uniquely to numeric computation. The BOLD effect activation pattern of metal arithmetic task (successive subtraction: actual calculation task) was compared with multiplication tables repetition task (rote verbal arithmetic memory task) response. The activation found in right parietal lobule during metal arithmetic task suggested that quantitative cognition or numeric computation may need the assistance of sensuous convert, such as spatial imagination and spatial sensuous convert. In addition, this mechanism may be an ’analog algorithm’ in the simple mental arithmetic processing.
Learning Anatomy Enhances Spatial Ability
ERIC Educational Resources Information Center
Vorstenbosch, Marc A. T. M.; Klaassen, Tim P. F. M.; Donders, A. R. T.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.
2013-01-01
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT-score. Five hundred first year students of medicine ("n" = 242, intervention) and…
Influence of mental imagery on spatial presence and enjoyment assessed in different types of media.
Weibel, David; Wissmath, Bartholomäus; Mast, Fred W
2011-10-01
Previous research studies on spatial presence point out that the users' imagery abilities are of importance. However, this influence has not yet been tested for different media. This is surprising because theoretical considerations suggest that mental imagery comes into play when a mediated environment lacks vividness. The aim of this study was to clarify the influence mental imagery abilities can have on the sensation of presence and enjoyment in different mediated environments. We presented the participants (n = 60) a narrative text, a movie sequence, and a computer game. Across all media, no effect of mental imagery abilities on presence and enjoyment was found, but imagery abilities marginally interacted with the mediated environment. Individuals with high imagery abilities experienced more presence and enjoyment in the text condition. The results were different for the film condition: here, individuals with poor imagery abilities reported marginally higher enjoyment ratings, whereas the presence ratings did not differ between the two groups. Imagery abilities had no influence on presence and enjoyment within the computer game condition. The results suggest that good imagery abilities contribute to the sensations of presence and enjoyment when reading a narrative text. The results for this study have an applied impact for media use because their effectiveness can depend on the individual mental imagery abilities.
Fear improves mental rotation of low-spatial-frequency visual representation.
Borst, Grégoire
2013-10-01
Previous studies have demonstrated that the brief presentation of a fearful face improves not only low-level visual processing such as contrast and orientation sensitivity but also improves visuospatial processing. In the present study, we investigated whether fear improves mental rotation efficiency (i.e., the mental rotation rate) because of the effect of fear on the sensitivity of magnocellular neurons. We asked 2 groups of participants to perform a mental rotation task with either low-pass or high-pass filtered 3-dimensional objects. Following the presentation of a fearful face, participants mentally rotated objects faster compared with when a neutral face was presented but only for low-pass filtered objects. The results suggest that fear improves mental rotation efficiency by increasing sensitivity to motion-related visual information within the magnocellular pathway.
Uncertain relational reasoning in the parietal cortex.
Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus
2016-04-01
The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.
Proposal of Interactive Applications to Enhance Student's Spatial Perception
ERIC Educational Resources Information Center
Moran, Samuel; Rubio, Ramon; Gallego, Ramon; Suarez, Javier; Martin, Santiago
2008-01-01
The aim of this series of applications is to enhance students' spatial perception capacity by means of exercises that require the student to concentrate on mentally recreating the figures represented. Each application is designed with an increasing level of difficulty, designed to increase the students' concentration and train their spatial…
The Fleeting Nature of Sex Differences in Spatial Ability.
ERIC Educational Resources Information Center
Alderton, David L.
Gender differences were examined on three computer-administered spatial processing tasks: (1) the Intercept task, requiring processing dynamic or moving figures; (2) the mental rotation test, employing rotated asymmetric polygons; and (3) the integrating details test, in which subjects performed a complex visual synthesis. Participants were about…
Testing Based on Understanding: Implications from Studies of Spatial Ability.
ERIC Educational Resources Information Center
Egan, Dennis E.
1979-01-01
The information-processing approach and results of research on spatial ability are analyzed. Performance consists of a sequence of distinct mental operations that seem general across subjects, and can be individually measured. New interpretations for some classical concepts in psychological testing and procedures for abilities are suggested.…
NASA Astrophysics Data System (ADS)
Skaza, Heather Jean
Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was developed for students to express their mental models related to these 14 Central Concepts. The assessment was reviewed and tested by experts related to the project's content, as well as students from the target population for assessment delivery. It was revised based on feedback and data collect from these groups. Here I describe my findings, that students are more proficient at modeling simple spatial relationships, one at a time, than modeling more complex relationships; that students understand human-scale spatial relationships related to enhanced greenhouse effect better than very small or very large ones; and that students can associate and correlate spatially distributed features and phenomena to describe enhanced greenhouse effect. Finally, I describe the ways in which student and expert feedback has informed not only revisions of this assessment specifically, but also to the assessment development process, for better assessment design, when spatial thinking assessments related to other environmental problems are developed in the future.
Following the Instructions! Effects of Gender Beliefs in Mental Rotation
ERIC Educational Resources Information Center
Moe, Angelica; Pazzaglia, Francesca
2006-01-01
Research has widely demonstrated male superiority in the Mental Rotation Test (MRT). Various explanations have been put forward to account for these differences. We considered gender beliefs and argued that women may fare less well than men partly because they are considered unable to perform this kind of task. Beliefs about spatial ability were…
Time in the Mind: Using Space to Think about Time
ERIC Educational Resources Information Center
Casasanto, Daniel; Boroditsky, Lera
2008-01-01
How do we construct abstract ideas like justice, mathematics, or time-travel? In this paper we investigate whether mental representations that result from physical experience underlie people's more abstract mental representations, using the domains of space and time as a testbed. People often talk about time using spatial language (e.g., a "long"…
Using concept maps to describe undergraduate students’ mental model in microbiology course
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2018-05-01
The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.
Moran, Mika R; Eizenberg, Efrat; Plaut, Pnina
2017-06-06
The literature on environmental walkability to date has mainly focused on walking and related health outcomes. While previous studies suggest associations between walking and spatial knowledge, the associations between environmental walkability and spatial knowledge is yet to be explored. The current study addresses this lacuna in research by exploring children's mental representations of their home-school (h-s) route, vis.
Pang, E W; Sedge, P; Grodecki, R; Robertson, A; MacDonald, M J; Jetly, R; Shek, P N; Taylor, M J
2014-08-05
Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.
Cerebellar contribution to mental rotation: a cTBS study.
Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura
2013-12-01
A cerebellar role in spatial information processing has been advanced even in the absence of physical manipulation, as occurring in mental rotation. The present study was aimed at investigating the specific involvement of left and right cerebellar hemispheres in two tasks of mental rotation. We used continuous theta burst stimulation to downregulate cerebellar hemisphere excitability in healthy adult subjects performing two mental rotation tasks: an Embodied Mental Rotation (EMR) task, entailing an egocentric strategy, and an Abstract Mental Rotation (AMR) task entailing an allocentric strategy. Following downregulation of left cerebellar hemisphere, reaction times were slower in comparison to sham stimulation in both EMR and AMR tasks. Conversely, identical reaction times were obtained in both tasks following right cerebellar hemisphere and sham stimulations. No effect of cerebellar stimulation side was found on response accuracy. The present findings document a specialization of the left cerebellar hemisphere in mental rotation regardless of the kind of stimulus to be rotated.
The Arrow of Time and the Action of the Mind at the Molecular Level
NASA Astrophysics Data System (ADS)
Burns, Jean E.
2006-10-01
A new event is defined as an intervention in the time reversible dynamical trajectories of particles in a system. New events are then assumed to be quantum fluctuations in the spatial and momentum coordinates, and mental action is assumed to work by ordering such fluctuations. It is shown that when the cumulative values of such fluctuations in a mean free path of a molecule are magnified by molecular interaction at the end of that path, the momentum of a molecule can be changed from its original direction to any other direction. In this way mental action can produce effects through the ordering of thermal motions. Examples are given which show that the ordering of 104-105 molecules is sufficient to (a) produce detectible PK results and (b) open sufficient ion channels in the brain to initiate a physical action. The relationship of the above model to the arrow of time is discussed.
Event processing in the visual world: Projected motion paths during spoken sentence comprehension.
Kamide, Yuki; Lindsay, Shane; Scheepers, Christoph; Kukona, Anuenue
2016-05-01
Motion events in language describe the movement of an entity to another location along a path. In 2 eye-tracking experiments, we found that comprehension of motion events involves the online construction of a spatial mental model that integrates language with the visual world. In Experiment 1, participants listened to sentences describing the movement of an agent to a goal while viewing visual scenes depicting the agent, goal, and empty space in between. Crucially, verbs suggested either upward (e.g., jump) or downward (e.g., crawl) paths. We found that in the rare event of fixating the empty space between the agent and goal, visual attention was biased upward or downward in line with the verb. In Experiment 2, visual scenes depicted a central obstruction, which imposed further constraints on the paths and increased the likelihood of fixating the empty space between the agent and goal. The results from this experiment corroborated and refined the previous findings. Specifically, eye-movement effects started immediately after hearing the verb and were in line with data from an additional mouse-tracking task that encouraged a more explicit spatial reenactment of the motion event. In revealing how event comprehension operates in the visual world, these findings suggest a mental simulation process whereby spatial details of motion events are mapped onto the world through visual attention. The strength and detectability of such effects in overt eye-movements is constrained by the visual world and the fact that perceivers rarely fixate regions of empty space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Orienting numbers in mental space: horizontal organization trumps vertical.
Holmes, Kevin J; Lourenco, Stella F
2012-01-01
While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.
Serino, Silvia; Pedroli, Elisa; Tuena, Cosimo; De Leo, Gianluca; Stramba-Badiale, Marco; Goulene, Karine; Mariotti, Noemi G.; Riva, Giuseppe
2017-01-01
A growing body of evidence suggests that people with Alzheimer's Disease (AD) show compromised spatial abilities. In addition, there exists from the earliest stages of AD a specific impairment in “mental frame syncing,” which is the ability to synchronize an allocentric viewpoint-independent representation (including object-to-object information) with an egocentric one by computing the bearing of each relevant “object” in the environment in relation to the stored heading in space (i.e., information about our viewpoint contained in the allocentric viewpoint-dependent representation). The main objective of this development-of-concept trial was to evaluate the efficacy of a novel VR-based training protocol focused on the enhancement of the “mental frame syncing” of the different spatial representations in subjects with AD. We recruited 20 individuals with AD who were randomly assigned to either “VR-based training” or “Control Group.” Moreover, eight cognitively healthy elderly individuals were recruited to participate in the VR-based training in order to have a different comparison group. Based on a neuropsychological assessment, our results indicated a significant improvement in long-term spatial memory after the VR-based training for patients with AD; this means that transference of improvements from the VR-based training to more general aspects of spatial cognition was observed. Interestingly, there was also a significant effect of VR-based training on executive functioning for cognitively healthy elderly individuals. In sum, VR could be considered as an advanced embodied tool suitable for treating spatial recall impairments. PMID:28798682
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network. PMID:27199694
A computerized multidimensional measurement of mental workload via handwriting analysis.
Luria, Gil; Rosenblum, Sara
2012-06-01
The goal of this study was to test the effect of mental workload on handwriting behavior and to identify characteristics of low versus high mental workload in handwriting. We hypothesized differences between handwriting under three different load conditions and tried to establish a profile that integrated these indicators. Fifty-six participants wrote three numerical progressions of varying difficulty on a digitizer attached to a computer so that we could evaluate their handwriting behavior. Differences were found in temporal, spatial, and angular velocity handwriting measures, but no significant differences were found for pressure measures. Using data reduction, we identified three clusters of handwriting, two of which differentiated well according to the three mental workload conditions. We concluded that handwriting behavior is affected by mental workload and that each measure provides distinct information, so that they present a comprehensive indicator of mental workload.
Spatial memory and integration processes in congenital blindness.
Vecchi, Tomaso; Tinti, Carla; Cornoldi, Cesare
2004-12-22
The paper tests the hypothesis that difficulties met by the blind in spatial processing are due to the simultaneous treatment of independent spatial representations. Results showed that lack of vision does not impede the ability to process and transform mental images; however, blind people are significantly poorer in the recall of more than a single spatial pattern at a time than in the recall of the corresponding material integrated into a single pattern. It is concluded that the simultaneous maintenance of different spatial information is affected by congenital blindness, while cognitive processes that may involve sequential manipulation are not.
The Spatial Pattern of Intelligence in a Small Town.
ERIC Educational Resources Information Center
Bailey, William H.
The document measures the spatial patterns of mental abilities of 94 seventh-grade students within a small town by correlating and mapping four variables--IQ test scores, achievement test scores, neighborhood quality as seen by town officials, and creativity test scores from the Torrance Tests of Creative Thinking. Objectives were to ascertain the…
Mathematical Skills in Ninth-graders: Relationship with Visuo-spatial Abilities and Working Memory.
ERIC Educational Resources Information Center
Reuhkala, Minna
2001-01-01
Investigates the relationship between working memory (WM) capacity (particularly visuo-spatial working memory (VSWM)), the ability to mentally rotate three-dimensional objects, and mathematical skills. Explains that in experiment 1, VSWM was examined; and in experiment 2, contributions of other WM components to mathematical skills was examined.…
Fluctuation in Spatial Ability Scores during the Menstrual Cycle.
ERIC Educational Resources Information Center
Moody, M. Suzanne
Whether or not fluctuations in spatial ability as measured by S. G. Vandenberg's Mental Rotations Test occur during the menstrual cycle was studied with 133 female students from 9 undergraduate educational psychology and nursing classes. For comparison, 28 male students also took the test. Scores from 55 females fell into the relevant menstrual…
Students' Spatial Structuring of 2D Arrays of Squares.
ERIC Educational Resources Information Center
Battista, Michael T.; Clements, Douglas H.; Arnoff, Judy; Battista, Kathryn; Van Auken Borrow, Caroline
1998-01-01
Defines spatial structuring as the mental operation of constructing an organization or form for an object/set of objects. Examines in detail students' structuring and enumeration of two-dimensional rectangular arrays of squares. Concludes that many students do not see row-by-column structure. Describes various levels of sophistication in students'…
9 Is Always on Top: Assessing the Automaticity of Synaesthetic Number-Forms
ERIC Educational Resources Information Center
Jarick, Michelle; Dixon, Michael J.; Smilek, Daniel
2011-01-01
For number-form synaesthetes, digits occupy idiosyncratic spatial locations. Atypical to the mental number line that extends horizontally, the synaesthete (L) experiences the numbers 1-10 vertically. We used a spatial cueing task to demonstrate that L's attention could be automatically directed to locations within her number-space--being faster to…
A Longitudinal Evaluative Study of Student Difficulties with Engineering Graphics
ERIC Educational Resources Information Center
Potter, Charles; Van Der Merwe, Errol; Kaufman, Wendy; Delacour, Julie
2006-01-01
We have previously reported in this journal that spatial ability influences academic performance in engineering. We have also reported that spatial ability is trainable, and can be increased through instruction focused on using perception and mental imagery in three-dimensional representation. In this article, we present the results of a…
Rugani, Rosa; de Hevia, Maria-Dolores
2017-04-01
It is well known that humans describe and think of numbers as being represented in a spatial configuration, known as the 'mental number line'. The orientation of this representation appears to depend on the direction of writing and reading habits present in a given culture (e.g., left-to-right oriented in Western cultures), which makes this factor an ideal candidate to account for the origins of the spatial representation of numbers. However, a growing number of studies have demonstrated that non-verbal subjects (preverbal infants and non-human animals) spontaneously associate numbers and space. In this review, we discuss evidence showing that pre-verbal infants and non-human animals associate small numerical magnitudes with short spatial extents and left-sided space, and large numerical magnitudes with long spatial extents and right-sided space. Together this evidence supports the idea that a more biologically oriented view can account for the origins of the 'mental number line'. In this paper, we discuss this alternative view and elaborate on how culture can shape a core, fundamental, number-space association.
The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach
Viarouge, Arnaud; Hubbard, Edward M.; McCandliss, Bruce D.
2014-01-01
Access to mental representations of smaller vs. larger number symbols is associated with leftward vs. rightward spatial locations, as represented on a number line. The well-replicated SNARC effect (Spatial-Numerical Association of Response Codes) reveals that simple decisions about small numbers are facilitated when stimuli are presented on the left, and large numbers facilitated when on the right. We present novel evidence that the size of the SNARC effect is relatively stable within individuals over time. This enables us to take an individual differences approach to investigate how the SNARC effect is modulated by spatial and numerical cognition. Are number-space associations linked to spatial operations, such that those who have greater facility in spatial computations show the stronger SNARC effects, or are they linked to number semantics, such that those showing stronger influence of magnitude associations on number symbol decisions show stronger SNARC effects? Our results indicate a significant correlation between the SNARC effect and a 2D mental rotation task, suggesting that spatial operations are at play in the expression of this effect. We also uncover a significant correlation between the SNARC effect and the distance effect, suggesting that the SNARC is also related to access to number semantics. A multiple regression analysis reveals that the relative contributions of spatial cognition and distance effects represent significant, yet distinct, contributions in explaining variation in the size of the SNARC effect from one individual to the next. Overall, these results shed new light on how the spatial-numerical associations of response codes are influenced by both number semantics and spatial operations. PMID:24760048
ERIC Educational Resources Information Center
De Mulder, Hannah
2015-01-01
This longitudinal study involving 101 Dutch four- and five-year-olds charts indirect request (IR) and mental state term (MST) understanding and investigates the role that Theory of Mind (ToM) and general linguistic ability (vocabulary, syntax, and spatial language) play in this development. The results showed basic understanding of IR and MST in…
How Gender and College Chemistry Experience Influence Mental Rotation Ability.
ERIC Educational Resources Information Center
Brownlow, Sheila; Miderski, Carol Ann
Deficits in spatial abilities, particularly Mental Rotation (MR), may contribute to women's avoidance of areas of study (such as chemistry) that rely on MR. Those women who do succeed in chemistry may do so because they have MT skills that are on par with their male peers. We examined MR ability on 12 items from the Vandenberg and Kuse MR test…
ERIC Educational Resources Information Center
Schneider, Michael; Grabner, Roland H.; Paetsch, Jennifer
2009-01-01
As indicated by the distance effect and the spatial-numerical association of response codes (SNARC) effect, natural numbers are mentally represented on a number line. Purportedly, this number line underlies children's number sense, which supports the acquisition of more advanced mathematical competencies. In 3 studies with a total of 429 fifth and…
Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574
Chen, Juan; Chen, Shuo; Landry, Pierre F
2015-07-31
Along with the rapid urbanization in China, the state of mental health also receives growing attention. Empirical measures, however, have not been developed to assess the impact of urbanization on mental health and the dramatic spatial variations. Innovatively linking the 2010 Chinese Population Census with a 2011 national survey of urban residents, we first assess the impact of urbanization on depressive symptoms measured by the Center of Epidemiological Studies Depression Scale (CES-D) of 1288 survey respondents. We then retrieve county-level characteristics from the 2010 Chinese Population Census that match the individual characteristics in the survey, so as to create a profile of the "average person" for each of the 2869 counties or city districts, and predict a county-specific CES-D score. We use this county-specific CES-D score to compute the CES-D score for the urban population at the prefectural level, and to demonstrate the dramatic spatial variations in urbanization and mental health across China: highly populated cities along the eastern coast such as Shenyang and Shanghai show high CES-D scores, as do cities in western China with high population density and a high proportion of educated ethnic minorities.
Mapping concentrations of posttraumatic stress and depression trajectories following Hurricane Ike
Gruebner, Oliver; Lowe, Sarah R.; Tracy, Melissa; Joshi, Spruha; Cerdá, Magdalena; Norris, Fran H.; Subramanian, S. V.; Galea, Sandro
2016-01-01
We investigated geographic concentration in elevated risk for a range of postdisaster trajectories of chronic posttraumatic stress symptom (PTSS) and depression symptoms in a longitudinal study (N = 561) of a Hurricane Ike affected population in Galveston and Chambers counties, TX. Using an unadjusted spatial scan statistic, we detected clusters of elevated risk of PTSS trajectories, but not depression trajectories, on Galveston Island. We then tested for predictors of membership in each trajectory of PTSS and depression (e.g., demographic variables, trauma exposure, social support), not taking the geographic nature of the data into account. After adjusting for significant predictors in the spatial scan statistic, we noted that spatial clusters of PTSS persisted and additional clusters of depression trajectories emerged. This is the first study to show that longitudinal trajectories of postdisaster mental health problems may vary depending on the geographic location and the individual- and community-level factors present at these locations. Such knowledge is crucial to identifying vulnerable regions and populations within them, to provide guidance for early responders, and to mitigate mental health consequences through early detection of mental health needs in the population. As human-made disasters increase, our approach may be useful also in other regions in comparable settings worldwide. PMID:27558011
Mapping concentrations of posttraumatic stress and depression trajectories following Hurricane Ike.
Gruebner, Oliver; Lowe, Sarah R; Tracy, Melissa; Joshi, Spruha; Cerdá, Magdalena; Norris, Fran H; Subramanian, S V; Galea, Sandro
2016-08-25
We investigated geographic concentration in elevated risk for a range of postdisaster trajectories of chronic posttraumatic stress symptom (PTSS) and depression symptoms in a longitudinal study (N = 561) of a Hurricane Ike affected population in Galveston and Chambers counties, TX. Using an unadjusted spatial scan statistic, we detected clusters of elevated risk of PTSS trajectories, but not depression trajectories, on Galveston Island. We then tested for predictors of membership in each trajectory of PTSS and depression (e.g., demographic variables, trauma exposure, social support), not taking the geographic nature of the data into account. After adjusting for significant predictors in the spatial scan statistic, we noted that spatial clusters of PTSS persisted and additional clusters of depression trajectories emerged. This is the first study to show that longitudinal trajectories of postdisaster mental health problems may vary depending on the geographic location and the individual- and community-level factors present at these locations. Such knowledge is crucial to identifying vulnerable regions and populations within them, to provide guidance for early responders, and to mitigate mental health consequences through early detection of mental health needs in the population. As human-made disasters increase, our approach may be useful also in other regions in comparable settings worldwide.
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems
NASA Astrophysics Data System (ADS)
LaDue, Nicole D.; Shipley, Thomas F.
2018-06-01
Geoscience instructors depend upon photos, diagrams, and other visualizations to depict geologic structures and processes that occur over a wide range of temporal and spatial scales. This proof-of-concept study tests click-on-diagram (COD) questions, administered using a classroom response system (CRS), as a research tool for identifying spatial misconceptions. First, we propose a categorization of spatial conceptions associated with geoscience concepts. Second, we implemented the COD questions in an undergraduate introductory geology course. Each question was implemented three times: pre-instruction, post-instruction, and at the end of the course to evaluate the stability of students' conceptual understanding. We classified each instance as (1) a false belief that was easily remediated, (2) a flawed mental model that was not fully transformed, or (3) a robust misconception that persisted despite targeted instruction. Geographic Information System (GIS) software facilitated spatial analysis of students' answers. The COD data confirmed known misconceptions about Earth's structure, geologic time, and base level and revealed a novel robust misconception about hot spot formation. Questions with complex spatial attributes were less likely to change following instruction and more likely to be classified as a robust misconception. COD questions provided efficient access to students' conceptual understanding. CRS-administered COD questions present an opportunity to gather spatial conceptions with large groups of students, immediately, building the knowledge base about students' misconceptions and providing feedback to guide instruction.
Spatial navigation by congenitally blind individuals.
Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert
2016-01-01
Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.
Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne
2018-01-01
The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.
Development of virtual environments for training skills and reducing errors in laparoscopic surgery
NASA Astrophysics Data System (ADS)
Tendick, Frank; Downes, Michael S.; Cavusoglu, Murat C.; Gantert, Walter A.; Way, Lawrence W.
1998-06-01
In every surgical procedure there are key steps and skills that, if performed incorrectly, can lead to complications. In conjunction with efforts, based on task and error analysis, in the Videoscopic Training Center at UCSF to identify these key elements in laparoscopic surgical procedures, the authors are developing virtual environments and modeling methods to train the elements. Laparoscopic surgery is particularly demanding of the surgeon's spatial skills, requiring the ability to create 3D mental models and plans while viewing a 2D image. For example, operating a laparoscope with the objective lens angled from the scope axis is a skill that some surgeons have difficulty mastering, even after using the instrument in many procedures. Virtual environments are a promising medium for teaching spatial skills. A kinematically accurate model of an angled laparoscope in an environment of simple targets is being tested in courses for novice and experienced surgeons. Errors in surgery are often due to a misinterpretation of local anatomy compounded with inadequate procedural knowledge. Methods to avoid bile duct injuries in cholecystectomy are being integrated into a deformable environment consisting of the liver, gallbladder, and biliary tree. Novel deformable tissue modeling algorithms based on finite element methods will be used to improve the response of the anatomical models.
Wei, Wei; Chen, Chuansheng; Dong, Qi; Zhou, Xinlin
2016-01-01
Behavioral studies have reported that males perform better than females in 3-dimensional (3D) mental rotation. Given the important role of the hippocampus in spatial processing, the present study investigated whether structural differences in the hippocampus could explain the sex difference in 3D mental rotation. Results showed that after controlling for brain size, males had a larger anterior hippocampus, whereas females had a larger posterior hippocampus. Gray matter volume (GMV) of the right anterior hippocampus was significantly correlated with 3D mental rotation score. After controlling GMV of the right anterior hippocampus, sex difference in 3D mental rotation was no longer significant. These results suggest that the structural difference between males’ and females’ right anterior hippocampus was a neurobiological substrate for the sex difference in 3D mental rotation. PMID:27895570
Wandering tales: evolutionary origins of mental time travel and language
Corballis, Michael C.
2013-01-01
A central component of mind wandering is mental time travel, the calling to mind of remembered past events and of imagined future ones. Mental time travel may also be critical to the evolution of language, which enables us to communicate about the non-present, sharing memories, plans, and ideas. Mental time travel is indexed in humans by hippocampal activity, and studies also suggest that the hippocampus in rats is active when the animals replay or pre play activity in a spatial environment, such as a maze. Mental time travel may have ancient origins, contrary to the view that it is unique to humans. Since mental time travel is also thought to underlie language, these findings suggest that language evolved gradually from pre-existing cognitive capacities, contrary to the view of Chomsky and others that language and symbolic thought emerged abruptly, in a single step, within the past 100,000 years. PMID:23908641
An investigation of the mentalization-based model of borderline pathology in adolescents.
Quek, Jeremy; Bennett, Clair; Melvin, Glenn A; Saeedi, Naysun; Gordon, Michael S; Newman, Louise K
2018-07-01
According to mentalization-based theory, transgenerational transmission of mentalization from caregiver to offspring is implicated in the pathogenesis of borderline personality disorder (BPD). Recent research has demonstrated an association between hypermentalizing (excessive, inaccurate mental state reasoning) and BPD, indicating the particular relevance of this form of mentalizing dysfunction to the transgenerational mentalization-based model. As yet, no study has empirically assessed a transgenerational mentalization-based model of BPD. The current study sought firstly to test the mentalization-based model, and additionally, to determine the form of mentalizing dysfunction in caregivers (e.g., hypo- or hypermentalizing) most relevant to a hypermentalizing model of BPD. Participants were a mixed sample of adolescents with BPD and a sample of non-clinical adolescents, and their respective primary caregivers (n = 102; 51 dyads). Using an ecologically valid measure of mentalization, mediational analyses were conducted to examine the relationships between caregiver mentalizing, adolescent mentalizing, and adolescent borderline features. Findings demonstrated that adolescent mentalization mediated the effect of caregiver mentalization on adolescent borderline personality pathology. Furthermore, results indicated that hypomentalizing in caregivers was related to adolescent borderline personality pathology via an effect on adolescent hypermentalizing. Results provide empirical support for the mentalization-based model of BPD, and suggest the indirect influence of caregiver mentalization on adolescent borderline psychopathology. Results further indicate the relevance of caregiver hypomentalizing to a hypermentalizing model of BPD. Copyright © 2018 Elsevier Inc. All rights reserved.
Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.
A Comparison of Student Spatial Abilities Across STEM Fields
NASA Astrophysics Data System (ADS)
Loftis, Thad; Cid, Xiimena; Lopez, Ramon
2011-10-01
It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.
Imhoff, Roland; Lange, Jens; Germar, Markus
2018-02-22
Spatial cueing paradigms are popular tools to assess human attention to emotional stimuli, but different variants of these paradigms differ in what participants' primary task is. In one variant, participants indicate the location of the target (location task), whereas in the other they indicate the shape of the target (identification task). In the present paper we test the idea that although these two variants produce seemingly comparable cue validity effects on response times, they rest on different underlying processes. Across four studies (total N = 397; two in the supplement) using both variants and manipulating the motivational relevance of cue content, diffusion model analyses revealed that cue validity effects in location tasks are primarily driven by response biases, whereas the same effect rests on delay due to attention to the cue in identification tasks. Based on this, we predict and empirically support that a symmetrical distribution of valid and invalid cues would reduce cue validity effects in location tasks to a greater extent than in identification tasks. Across all variants of the task, we fail to replicate the effect of greater cue validity effects for arousing (vs. neutral) stimuli. We discuss the implications of these findings for best practice in spatial cueing research.
Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?
ERIC Educational Resources Information Center
Frank, David J.; Macnamara, Brooke N.
2017-01-01
Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…
Visuo-Spatial Performance in Autism: A Meta-Analysis
ERIC Educational Resources Information Center
Muth, Anne; Hönekopp, Johannes; Falter, Christine M.
2014-01-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large…
The Effects of Spatial Visualization Skill Training on Gender and Retention in Engineering.
ERIC Educational Resources Information Center
Devon, Richard; Engel, Renata; Turner, Geoffrey
1998-01-01
Engineering students were given a mental rotation test at the beginning and end of their first-year engineering course and again several years later to assess the relationship between spatial visualization skill and retention in engineering. No relationship was found between task scores and retention; however, a course in design and graphics…
Spatial Skills as a Predictor of First Grade Girls' Use of Higher Level Arithmetic Strategies
ERIC Educational Resources Information Center
Laski, Elida V.; Casey, Beth M.; Yu, Qingyi; Dulaney, Alana; Heyman, Miriam; Dearing, Eric
2013-01-01
Girls are more likely than boys to use counting strategies rather than higher-level mental strategies to solve arithmetic problems. Prior research suggests that dependence on counting strategies may have negative implications for girls' later math achievement. We investigated the relation between first-grade girls' verbal and spatial skills and…
ERIC Educational Resources Information Center
Frick, Andrea; Wang, Su-hua
2014-01-01
Infants' ability to mentally track the orientation of an object during a hidden rotation was investigated (N = 28 in each experiment). A toy on a turntable was fully covered and then rotated 90°. When revealed, the toy had turned with the turntable (probable event), remained at its starting orientation (improbable event in Experiment 1), or…
ERIC Educational Resources Information Center
Bergner, Sabine; Neubauer, Aljoscha C.
2011-01-01
A male advantage in spatial abilities is assumed to underlie their superior performance in complex mathematical problems. In this study we investigated whether sex differences in mental rotation (MR) tasks are related to female underachievement and whether training effects of a MR training can be generalized across achievers and underachievers.…
Diagnosing Students' Mental Models via the Web-Based Mental Models Diagnosis System
ERIC Educational Resources Information Center
Wang, Tzu-Hua; Chiu, Mei-Hung; Lin, Jing-Wen; Chou, Chin-Cheng
2013-01-01
Mental models play an important role in science education research. To extend the effectiveness of conceptual change research and to improve mental model identi?cation and diagnosis, the authors developed and tested the Web-Based Mental Models Diagnosis (WMMD) system. In this article, they describe their WMMD system, which goes beyond the…
Mealor, Andy D; Simner, Julia; Rothen, Nicolas; Carmichael, Duncan A; Ward, Jamie
2016-01-01
We developed the Sussex Cognitive Styles Questionnaire (SCSQ) to investigate visual and verbal processing preferences and incorporate global/local processing orientations and systemising into a single, comprehensive measure. In Study 1 (N = 1542), factor analysis revealed six reliable subscales to the final 60 item questionnaire: Imagery Ability (relating to the use of visual mental imagery in everyday life); Technical/Spatial (relating to spatial mental imagery, and numerical and technical cognition); Language & Word Forms; Need for Organisation; Global Bias; and Systemising Tendency. Thus, we replicate previous findings that visual and verbal styles are separable, and that types of imagery can be subdivided. We extend previous research by showing that spatial imagery clusters with other abstract cognitive skills, and demonstrate that global/local bias can be separated from systemising. Study 2 validated the Technical/Spatial and Language & Word Forms factors by showing that they affect performance on memory tasks. In Study 3, we validated Imagery Ability, Technical/Spatial, Language & Word Forms, Global Bias, and Systemising Tendency by issuing the SCSQ to a sample of synaesthetes (N = 121) who report atypical cognitive profiles on these subscales. Thus, the SCSQ consolidates research from traditionally disparate areas of cognitive science into a comprehensive cognitive style measure, which can be used in the general population, and special populations.
Mealor, Andy D.; Simner, Julia; Rothen, Nicolas; Carmichael, Duncan A.; Ward, Jamie
2016-01-01
We developed the Sussex Cognitive Styles Questionnaire (SCSQ) to investigate visual and verbal processing preferences and incorporate global/local processing orientations and systemising into a single, comprehensive measure. In Study 1 (N = 1542), factor analysis revealed six reliable subscales to the final 60 item questionnaire: Imagery Ability (relating to the use of visual mental imagery in everyday life); Technical/Spatial (relating to spatial mental imagery, and numerical and technical cognition); Language & Word Forms; Need for Organisation; Global Bias; and Systemising Tendency. Thus, we replicate previous findings that visual and verbal styles are separable, and that types of imagery can be subdivided. We extend previous research by showing that spatial imagery clusters with other abstract cognitive skills, and demonstrate that global/local bias can be separated from systemising. Study 2 validated the Technical/Spatial and Language & Word Forms factors by showing that they affect performance on memory tasks. In Study 3, we validated Imagery Ability, Technical/Spatial, Language & Word Forms, Global Bias, and Systemising Tendency by issuing the SCSQ to a sample of synaesthetes (N = 121) who report atypical cognitive profiles on these subscales. Thus, the SCSQ consolidates research from traditionally disparate areas of cognitive science into a comprehensive cognitive style measure, which can be used in the general population, and special populations. PMID:27191169
NASA Technical Reports Server (NTRS)
Payne, David G.; Gunther, Virginia A. L.
1988-01-01
Subjects performed short term memory tasks, involving both spatial and verbal components, and a visual monitoring task involving either analog or digital display formats. These two tasks (memory vs. monitoring) were performed both singly and in conjunction. Contrary to expectations derived from multiple resource theories of attentional processes, there was no evidence that when the two tasks involved the same cognitive codes (i.e., either both spatial or both verbal/linguistics) there was more of a dual task performance decrement than when the two tasks employed different cognitive codes/processes. These results are discussed in terms of their implications for theories of attentional processes and also for research in mental state estimation.
Kozhevnikov, Maria; Dhond, Rupali P.
2012-01-01
Most research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants’ performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI – anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking). In Experiment 2, we examined how the use of different backgrounds affected MR processes within the 3DI environment. In Experiment 3, we compared electroencephalogram data recorded while participants were mentally rotating visual-spatial images presented in 3DI vs. 2DNI environments. Overall, the findings of the three experiments suggest that visual-spatial processing is different in immersive and non-immersive environments, and that immersive environments may require different image encoding and transformation strategies than the two other non-immersive environments. Specifically, in a non-immersive environment, participants may utilize a scene-based frame of reference and allocentric encoding whereas immersive environments may encourage the use of a viewer-centered frame of reference and egocentric encoding. These findings also suggest that MR performed in laboratory conditions using a traditional 2D computer screen may not reflect spatial processing as it would occur in the real world. PMID:22908003
Montefinese, Maria; Semenza, Carlo
2018-05-17
It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants' performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants' performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.
Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.
Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261
Community Mental Health Model for Campus Mental Health Services.
ERIC Educational Resources Information Center
Banning, James H.
University and college mental health services have historically modeled themselves after a traditional clinic model. Few delivery systems have been influenced by the community mental health model. The major reason for this lack of influence appears to be the "in loco parentis" stance of colleges and universities. A campus mental health service…
Remembering spatial locations: effects of material and intelligence.
Zucco, G M; Tessari, A; Soresi, S
1995-04-01
The aim of the present work was to test some of the criteria for automaticity of spatial-location coding claimed by Hasher and Zacks, particularly individual differences (as intelligence invariance) and effortful encoding strategies. Two groups of subjects, 15 with mental retardation (Down Syndrome, mean chronological age, 20.9 yr.; mean mental age, 11.6 yr.) and 15 normal children (mean age, 11.5 yr.), were administered four kinds of stimuli (pictures, concrete words, nonsense pictures, and abstract words) at one location on a card. Subsequently, subjects were presented the items on the card's centre and were required to place the items in their original locations. Analysis indicated that those with Down Syndrome scored lower than normal children on the four tasks and that stimuli were better or worse remembered according to their characteristics, e.g., their imaginability. Results do not support some of the conditions claimed to be necessary criteria for automaticity in the recall of spatial locations as stated by Hasher and Zacks.
Visual and Spatial Mental Imagery: Dissociable Systems of Representation.
1987-08-07
identification of visual stimuli (the visual agnosias ) could occur independently of impairr-’e"s in their spatial localization (Potzl. 1928: Lange. 1936) Patients...of brain damage that is generally associated with visual "PIre - i’ e/ e~~ :S~ OF Visual and Spatial Imagery 1i agnosia . Details of L.H.’s medical...This approach is nowhere more called for than in the study of subjects with visual object agnosia . a condition that is both extremely rare and somewhat
Patients' mental models and adherence to outpatient physical therapy home exercise programs.
Rizzo, Jon
2015-05-01
Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.
Unconscious learning processes: mental integration of verbal and pictorial instructional materials.
Kuldas, Seffetullah; Ismail, Hairul Nizam; Hashim, Shahabuddin; Bakar, Zainudin Abu
2013-12-01
This review aims to provide an insight into human learning processes by examining the role of cognitive and emotional unconscious processing in mentally integrating visual and verbal instructional materials. Reviewed literature shows that conscious mental integration does not happen all the time, nor does it necessarily result in optimal learning. Students of all ages and levels of experience cannot always have conscious awareness, control, and the intention to learn or promptly and continually organize perceptual, cognitive, and emotional processes of learning. This review suggests considering the role of unconscious learning processes to enhance the understanding of how students form or activate mental associations between verbal and pictorial information. The understanding would assist in presenting students with spatially-integrated verbal and pictorial instructional materials as a way of facilitating mental integration and improving teaching and learning performance.
Are developments in mental scanning and mental rotation related?
Wimmer, Marina C.; Robinson, Elizabeth J.; Doherty, Martin J.
2017-01-01
The development and relation of mental scanning and mental rotation were examined in 4-, 6-, 8-, 10-year old children and adults (N = 102). Based on previous findings from adults and ageing populations, the key question was whether they develop as a set of related abilities and become increasingly differentiated or are unrelated abilities per se. Findings revealed that both mental scanning and rotation abilities develop between 4- and 6 years of age. Specifically, 4-year-olds showed no difference in accuracy of mental scanning and no scanning trials whereas all older children and adults made more errors in scanning trials. Additionally, the minority of 4-year-olds showed a linear increase in response time with increasing rotation angle difference of two stimuli in contrast to all older participants. Despite similar developmental trajectories, mental scanning and rotation performances were unrelated. Thus, adding to research findings from adults, mental scanning and rotation appear to develop as a set of unrelated abilities from the outset. Different underlying abilities such as visual working memory and spatial coding versus representing past and future events are discussed. PMID:28207810
ERIC Educational Resources Information Center
Bruce, Catherine D.; Hawes, Zachary
2015-01-01
The ability to mentally rotate objects in space has been singled out by cognitive scientists as a central metric of spatial reasoning (see Jansen, Schmelter, Quaiser-Pohl, Neuburger, & Heil, 2013; Shepard & Metzler, 1971 for example). However, this is a particularly undeveloped area of current mathematics curricula, especially in North…
Neurobiological differences in mental rotation and instrument interpretation in airline pilots.
Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian
2016-06-21
Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation.
Neurobiological differences in mental rotation and instrument interpretation in airline pilots
Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian
2016-01-01
Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation. PMID:27323913
Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.
Lauer, Jillian E; Lourenco, Stella F
2016-10-01
Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.
ERIC Educational Resources Information Center
Aheadi, Afshin; Dixon, Peter; Glover, Scott
2010-01-01
The "Mozart effect" occurs when performance on spatial cognitive tasks improves following exposure to Mozart. It is hypothesized that the Mozart effect arises because listening to complex music activates similar regions of the right cerebral hemisphere as are involved in spatial cognition. A counter-intuitive prediction of this hypothesis (and one…
ERIC Educational Resources Information Center
Shimi, Andria; Scerif, Gaia
2015-01-01
What cognitive processes influence how well we maintain information in visual short-term memory (VSTM)? We used a developmentally informed design to delve into the interplay of top-down spatial biases with the nature of the internal memory codes, motivated by documented changes for both factors over childhood. Seven-year-olds, 11-year-olds, and…
ERIC Educational Resources Information Center
Frelin, Anneli; Grannäs, Jan
2014-01-01
This article introduces a theoretical framework for studying school improvement processes such as making school environments safer. Using concepts from spatial theory, in which distinctions between mental, social and physical space are applied makes for a multidimensional analysis of processes of change. In a multilevel case study, these were…
Transitivity, Space, and Hand: The Spatial Grounding of Syntax
ERIC Educational Resources Information Center
Boiteau, Timothy W.; Almor, Amit
2017-01-01
Previous research has linked the concept of number and other ordinal series to space via a spatially oriented mental number line. In addition, it has been shown that in visual scene recognition and production, speakers of a language with a left-to-right orthography respond faster to and tend to draw images in which the agent of an action is…
Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.
Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608
Cognitive styles and mental rotation ability in map learning.
Pazzaglia, Francesca; Moè, Angelica
2013-11-01
In inspecting, learning and reproducing a map, a wide range of abilities is potentially involved. This study examined the role of mental rotation (MR) and verbal ability, together with that of cognitive styles in map learning. As regards cognitive styles, the traditional distinction between verbalizers and visualizers has been taken into account, together with a more recent distinction between two styles of visualization: spatial and object. One hundred and seven participants filled in two questionnaires on cognitive styles: the Verbalizer-Visualizer Questionnaire (Richardson in J Ment Imag 1:109-125, 1977) and the Object-Spatial Imagery Questionnaire (Blajenkova et al. in Appl Cogn Psych 20:239-263, 2006), performed MR and verbal tests, learned two maps, and were then tested for their recall. It was found that MR ability and cognitive styles played a role in predicting map learning, with some distinctions within cognitive styles: verbal style favoured learning of one of the two maps (the one rich in verbal labels), which in turn was disadvantaged by the adoption of spatial style. Conversely, spatial style predicted learning of the other map, rich in visual features. The discussion focuses on implications for cognitive psychology and everyday cognition.
Moving to Opportunity and Mental Health: Exploring the Spatial Context of Neighborhood Effects
Arcaya, Mariana C; Diez Roux, Ana V.
2016-01-01
Studies of housing mobility and neighborhood effects on health often treat neighborhoods as if they were isolated islands. This paper argues that conceptualizing neighborhoods as part of the wider spatial context within which they are embedded may be key in advancing our understanding of the role of local context in the life of urban dwellers. Analyses are based on mental health and neighborhood context measurements taken on over 3,000 low-income families who participated in the Moving to Opportunity for Fair Housing Demonstration Program (MTO), a large field experiment in five major U.S. cities. Results from analyses of two survey waves combined with Census data at different geographic scales indicate that assignment to MTO's experimental condition of neighborhood poverty <10% significantly decreased average exposure to immediate and surrounding neighborhood disadvantage by 97% and 59% of a standard deviation, respectively, relative to the control group. Escaping concentrated disadvantage in either the immediate neighborhood or the surrounding neighborhood, but not both, was insufficient to make a difference for mental health. Instead, the results suggest that improving both the immediate and surrounding neighborhoods significantly benefits mental health. Compared to remaining in concentrated disadvantage in the immediate and surrounding neighborhood, escaping concentrated disadvantage in both the immediate and surrounding neighborhood on average over the study duration as a result of the intervention predicts an increase of 25% of a standard deviation in the composite mental health scores. PMID:27337349
Facilitating participatory multilevel decision-making by using interactive mental maps.
Pfeiffer, Constanze; Glaser, Stephanie; Vencatesan, Jayshree; Schliermann-Kraus, Elke; Drescher, Axel; Glaser, Rüdiger
2008-11-01
Participation of citizens in political, economic or social decisions is increasingly recognized as a precondition to foster sustainable development processes. Since spatial information is often important during planning and decision making, participatory mapping gains in popularity. However, little attention has been paid to the fact that information must be presented in a useful way to reach city planners and policy makers. Above all, the importance of visualisation tools to support collaboration, analytical reasoning, problem solving and decision-making in analysing and planning processes has been underestimated. In this paper, we describe how an interactive mental map tool has been developed in a highly interdisciplinary disaster management project in Chennai, India. We moved from a hand drawn mental maps approach to an interactive mental map tool. This was achieved by merging socio-economic and geospatial data on infrastructure, local perceptions, coping and adaptation strategies with remote sensing data and modern technology of map making. This newly developed interactive mapping tool allowed for insights into different locally-constructed realities and facilitated the communication of results to the wider public and respective policy makers. It proved to be useful in visualising information and promoting participatory decision-making processes. We argue that the tool bears potential also for health research projects. The interactive mental map can be used to spatially and temporally assess key health themes such as availability of, and accessibility to, existing health care services, breeding sites of disease vectors, collection and storage of water, waste disposal, location of public toilets or defecation sites.
NASA Astrophysics Data System (ADS)
Maantay, Juliana; Maroko, Andrew
2015-11-01
Using geospatial analytical methods, this study examines the association between one aspect of the built environment, namely, the concentration of vacant and derelict land (VDL), and the prevalence of mental health disorders (using the proxy variable of mental health medication prescription rates) in Glasgow, Scotland. This study builds on our previous research, which demonstrated the spatial correspondence between the locations of VDL in Glasgow and several physical health outcomes. Numerous studies of other locales have found similar correspondence between different elements of the built environment and various health outcomes. This is the first study of its kind to look at the spatial concentration of vacant and derelict land in relation to mental health, socio-economic indicators, environmental justice, and health inequities. The findings of this study demonstrate an inequity with respect to the distribution of vacant and derelict land, as confirmed by Pearson correlations between VDL density and deprivation (r = .521, p < .001). This suggests that many deprived communities are disproportionately burdened with environmental impacts and psycho-social stressors associated with this land use. Regression analyses show a significant positive association between the proportion of the population who were prescribed medication for anxiety, depression, or psychosis and the density of vacant and derelict land while adjusting for socio-demographic characteristics. This indicates that areas with higher VDL densities tend to exhibit higher rates of mental health issues. Based on these findings, strategies for constructive re-use of VDL are proposed.
ERIC Educational Resources Information Center
Franco, Creso; de Barros, Henrique Lins; Colinvaux, Dominique; Krapas, Sonia; Queiroz, Gloria; Alves, Fatima
1999-01-01
Argues for the need for theoretical work on mental models in the field of science education. Considers relationships between both models and theories, and mental models and conceptions in order to improve the notions of "model" and "mental model" used in the literature. Contains 20 references. (Author/WRM)
Koopmann, Till; Steggemann-Weinrich, Yvonne; Baumeister, Jochen; Krause, Daniel
2017-09-01
In sports games, coaches often use tactic boards to present tactical instructions during time-outs (e.g., 20 s to 60 s in basketball). Instructions should be presented in a way that enables fast and errorless information processing for the players. The aim of this study was to test the effect of different orientations of visual tactical displays on observation time and execution performance. High affordances in visual-spatial transformation (e.g., mental rotation processes) might impede information processing and might decrease execution performance with regard to the instructed playing patterns. In a within-subjects design with 1 factor, 10 novice students were instructed with visual tactical instructions of basketball playing patterns with different orientations either showing the playing pattern with low spatial disparity to the players' on-court perspective (basket on top) or upside down (basket on bottom). The self-chosen time for watching the pattern before execution was significantly shorter and spatial accuracy in pattern execution was significantly higher when the instructional perspective and the real perspective on the basketball court had a congruent orientation. The effects might be explained by interfering mental rotation processes that are necessary to transform the instructional perspective into the players' actual perspective while standing on the court or imagining themselves standing on the court. According to these results, coaches should align their tactic boards to their players' on-court viewing perspective.
Rotational wind indicator enhances control of rotated displays
NASA Technical Reports Server (NTRS)
Cunningham, H. A.; Pavel, Misha
1991-01-01
Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.
Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro
2012-11-01
Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gradient-based reliability maps for ACM-based segmentation of hippocampus.
Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos
2014-04-01
Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures' anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure's labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Mental Models for Mechanical Comprehension. A Review of Literature.
1986-06-01
the mental models that people use to understand and solve problems involving mechanics and motion. Method The existing psychological literature on...have been used to investigate mental models. The constructionist school is concerned with how mental models are formed. The information-processing...school uses the experimental methods of modern cognitive psychology to investigate mental structures. The componential approach attempts to meld the
NASA Astrophysics Data System (ADS)
Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.
2014-06-01
Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.
Toppi, J; Risetti, M; Quitadamo, L R; Petti, M; Bianchi, L; Salinari, S; Babiloni, F; Cincotti, F; Mattia, D; Astolfi, L
2014-06-01
It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.
Left-right compatibility in the processing of trading verbs.
Vicario, Carmelo M; Rumiati, Raffaella I
2014-01-01
The research investigating the nature of cognitive processes involved in the representation of economical outcomes is growing. Within this research, the mental accounting model proposes that individuals may well use cognitive operations to organize, evaluate, and keep track of their financial activities (Thaler, 1999). Here we wanted to test this hypothesis by asking to a group of participants to detect a syntax mistake of verbs indicating incoming and going out activities related to economical profit (trading verbs), swapping (swapping verbs) and thinking (thinking verbs). We reported a left-right compatibility for trading verbs (i.e., participants were faster with their right hand while detecting verb referring to a monetary gain with respect to a monetary loss; and faster with their left hand while detecting a monetary loss with respect to a monetary gain). However, this pattern of result was not reported while detecting swapping verbs. Results are discussed taking into account the mental accounting theory as well as to the spatial mapping of valence hypothesis.
Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701
The concept of territory in Mental Health.
Furtado, Juarez Pereira; Oda, Wagner Yoshizaki; Borysow, Igor da Costa; Kapp, Silke
2016-10-10
The term "territory" and its correlates have become commonplace in the field of Mental Health since the psychiatric reform, a potentially emancipatory milestone in non-hospital-centered ideals. However, in a previous empirical study, we found a lack of consistent concepts and practices (corresponding to the use of this term) in the territorial reinsertion of persons with mental illness. To clarify the term's various uses and its possible correlations in practice, we have conducted a systematic survey of scientific articles and official documents, comparing them to each other and with the concept of territory from Critical Geography. We conclude that in the Mental Health field in Brazil, despite numerous and repeated critical efforts, a functional notion of territory has prevailed, overlooking power relations and symbolic appropriations, increasing the tendency of subjecting the reinsertion of persons with mental illness to a given territory rather than favoring socio-spatial transformations for the coexistence of differences.
Mental Rotation Performance in Male Soccer Players
Jansen, Petra; Lehmann, Jennifer; Van Doren, Jessica
2012-01-01
It is the main goal of this study to investigate the visual-spatial cognition in male soccer players. Forty males (20 soccer players and 20 non-athletes) solved a chronometric mental rotation task with both cubed and embodied figures (human figures, body postures). The results confirm previous results that all participants had a lower mental rotation speed for cube figures compared to embodied figures and a higher error rate for cube figures, but only at angular disparities greater than 90°. It is a new finding that soccer–players showed a faster reaction time for embodied stimuli. Because rotation speed did not differ between soccer-players and non-athletes this finding cannot be attributed to the mental rotation process itself but instead to differences in one of the following processes which are involved in a mental rotation task: the encoding process, the maintanence of readiness, or the motor process. The results are discussed against the background of the influence on longterm physical activity on mental rotation and the context of embodied cognition. PMID:23119073
Constraining movement alters the recruitment of motor processes in mental rotation.
Moreau, David
2013-02-01
Does mental rotation depend on the readiness to act? Recent evidence indicates that the involvement of motor processes in mental rotation is experience-dependent, suggesting that different levels of expertise in sensorimotor interactions lead to different strategies to solve mental rotation problems. Specifically, experts in motor activities perceive spatial material as objects that can be acted upon, triggering covert simulation of rotations. Because action simulation depends on the readiness to act, movement restriction should therefore disrupt mental rotation performance in individuals favoring motor processes. In this experiment, wrestlers and non-athletes judged whether pairs of three-dimensional stimuli were identical or different, with their hands either constrained or unconstrained. Wrestlers showed higher performance than controls in the rotation of geometric stimuli, but this difference disappeared when their hands were constrained. However, movement restriction had similar consequences for both groups in the rotation of hands. These findings suggest that expert's advantage in mental rotation of abstract objects is based on the readiness to act, even when physical manipulation is impossible.
Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred
2013-08-01
When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation.
NASA Astrophysics Data System (ADS)
Sari, I. M.
2017-02-01
Teacher plays a crucial role in Education. Helping students construct scientifically mental model is one of obligation of Physics Education Department of Teacher Education Institute that produce physics teacher. Excavating students’ mental model is necessary to be done in physics education. This research was first to identify 23 physics students’ mental model of heat and heat conduction. A series of semi-structured interviews was conducted to excavate the students’ understanding of heat and mental models on heat conduction. The students who involved in this study come from different level from sophomore to master degree in Physics Education Department. This study adopted a constant comparison method to obtain the patterns of the participants’ responses through the students’ writing, drawing and verbal utterances. The framework for assessing mental model and the instruments were adopted and adapted from Chiou and Anderson (2010). We also compared the students’ understanding of heat and mental models on heat conduction. The result shows that Heat is treated as Intrinsic property, material substances, and caloric flow. None of students expressed heat as transfer of thermal energy. Moreover, there are two kinds of students’ fundamental component of mental model in heat conduction were found: medium and molecules. Students understanding of heat and fundamental components of mental model in heat conduction are not resulted from running mental model.
Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-05-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Embodied Spatial Transformations: "Body Analogy" for the Mental Rotation of Objects
ERIC Educational Resources Information Center
Amorim, Michel-Ange; Isableu, Brice; Jarraya, Mohamed
2006-01-01
The cognitive advantage of imagined spatial transformations of the human body over that of more unfamiliar objects (e.g., Shepard-Metzler [S-M] cubes) is an issue for validating motor theories of visual perception. In 6 experiments, the authors show that providing S-M cubes with body characteristics (e.g., by adding a head to S-M cubes to evoke a…
ERIC Educational Resources Information Center
Sauter, Megan; Uttal, David H.; Alman, Amanda Schaal; Goldin-Meadow, Susan; Levine, Susan C.
2012-01-01
This article examines two issues: the role of gesture in the communication of spatial information and the relation between communication and mental representation. Children (8-10 years) and adults walked through a space to learn the locations of six hidden toy animals and then explained the space to another person. In Study 1, older children and…
ERIC Educational Resources Information Center
De Sá Teixeira, Nuno; Oliveira, Armando Mónica
2014-01-01
The spatial memory for the last position occupied by a moving target is usually displaced forward in the direction of motion. Interpreted as a mental analogue of physical momentum, this phenomenon was coined "representational momentum" (RM). As momentum is given by the product of an object's velocity and mass, both these factors came to…
NASA Astrophysics Data System (ADS)
Jakeman, A. J.; Guillaume, J. H. A.; El Sawah, S.; Hamilton, S.
2014-12-01
Integrated modelling and assessment (IMA) is best regarded as a process that can support environmental decision-making when issues are strongly contested and uncertainties pervasive. To be most useful, the process must be multi-dimensional and phased. Principally, it must be tailored to the problem context to encompass diverse issues of concern, management settings and stakeholders. This in turn requires the integration of multiple processes and components of natural and human systems and their corresponding spatial and temporal scales. Modellers therefore need to be able to integrate multiple disciplines, methods, models, tools and data, and many sources and types of uncertainty. These dimensions are incorporated into iteration between the various phases of the IMA process, including scoping, problem framing and formulation, assessing options and communicating findings. Two case studies in Australia are employed to share the lessons of how integration can be achieved in these IMA phases using a mix of stakeholder participation processes and modelling tools. One case study aims to improve the relevance of modelling by incorporating stakeholder's views of irrigated viticulture and water management decision making. It used a novel methodology with the acronym ICTAM, consisting of Interviews to elicit mental models, Cognitive maps to represent and analyse individual and group mental models, Time-sequence diagrams to chronologically structure the decision making process, an All-encompassing conceptual model, and computational Models of stakeholder decision making. The second case uses a hydro-economic river network model to examine basin-wide impacts of water allocation cuts and adoption of farm innovations. The knowledge exchange approach used in each case was designed to integrate data and knowledge bearing in mind the contextual dimensions of the problem at hand, and the specific contributions that environmental modelling was thought to be able to make.
Hill, Rachel A; Klug, Maren; Kiss Von Soly, Szerenke; Binder, Michele D; Hannan, Anthony J; van den Buuse, Maarten
2014-10-01
Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Patkin, Dorit; Dayan, Ester
2013-03-01
This case study of one class versus a control group focused on the impact of an intervention unit, which is not part of the regular curriculum, on the improvement of spatial ability of high school students (forty-six 12th-graders, aged 17-18, both boys and girls) in general as well as from a gender perspective. The study explored three sub-abilities: mental rotation (MR), spatial visualization (VS) and spatial orientation (SO). Findings indicated that the spatial orientation of the experimental group students had considerably improved. The findings also illustrated a significant gender-based advantage in favour of the boys in some of the spatial abilities even before the implementation of the intervention unit. The hypothesis relating to the reduction of the gender differences was not corroborated.
Pearson, J L; Ferguson, L R
1989-01-01
Relationships were explored among three measures of spatial ability--the Embedded Figures Test (EFT), the Mental Rotations Test (MRT), and the Differential Aptitude Spatial Relations subtest (DAT)--an environmental cognition task (MAP), American College Testing (ACT) math and English achievement, and gender in a sample of 282 undergraduates. Variance attributable to gender among the spatial tasks ranged from 0.5% in the EFT to 12% in the MRT. Gender accounted for only 1% of the variance in the MAP task. Gender differences were noted in regression analyses; women's math and English achievement scores were both predictive of spatial ability, while for men, only math achievement was predictive of spatial ability. The results were interpreted as substantiating sex role socialization theory of cognitive abilities.
Khrennikov, Andrei
2011-09-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Mental Models: Understanding the Impact of Fantasy Violence on Children's Moral Reasoning.
ERIC Educational Resources Information Center
Krcmar, Marina; Curtis, Stephen
2003-01-01
Tests the efficacy of mental models in understanding the effect of exposure to fantasy violence on children's responses to and reasoning about moral dilemmas involving aggression. Offers a possible extension to mental models that is consistent with current theory in cognitive science. Suggests that the activation of mental models regarding…
Mental models of audit and feedback in primary care settings.
Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul
2018-05-30
Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.
Biology Students’ Initial Mental Model about Microorganism
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2017-02-01
The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.
Using mental rotation to evaluate the benefits of stereoscopic displays
NASA Astrophysics Data System (ADS)
Aitsiselmi, Y.; Holliman, N. S.
2009-02-01
Context: The idea behind stereoscopic displays is to create the illusion of depth and this concept could have many practical applications. A common spatial ability test involves mental rotation. Therefore a mental rotation task should be easier if being undertaken on a stereoscopic screen. Aim: The aim of this project is to evaluate stereoscopic displays (3D screen) and to assess whether they are better for performing a certain task than over a 2D display. A secondary aim was to perform a similar study but replicating the conditions of using a stereoscopic mobile phone screen. Method: We devised a spatial ability test involving a mental rotation task that participants were asked to complete on either a 3D or 2D screen. We also design a similar task to simulate the experience on a stereoscopic cell phone. The participants' error rate and response times were recorded. Using statistical analysis, we then compared the error rate and response times of the groups to see if there were any significant differences. Results: We found that the participants got better scores if they were doing the task on a stereoscopic screen as opposed to a 2D screen. However there was no statistically significant difference in the time it took them to complete the task. We also found similar results for 3D cell phone display condition. Conclusions: The results show that the extra depth information given by a stereoscopic display makes it easier to mentally rotate a shape as depth cues are readily available. These results could have many useful implications to certain industries.
NASA Astrophysics Data System (ADS)
Amalia, R.; Sari, I. M.; Sinaga, P.
2017-02-01
This research depended by previous studies that only to find out the misconceptions of students without figuring out the mechanism of the misconceptions. The mechanism of misconceptions can be studied more deeply with mental models. The purpose of this study was to find students ‘mental models of heat convection and its relation with students conception on heat and temperature. The method used in this study is exploratory mixed method design that implemented in one of the high schools in Bandung. The results showed that 7 mental models of heat convection in Chiou’s study (2013), only first model (diffusion-based convention), third model (evenly distributed convection) and fifth model (warmness topped convection II) were found and model hybrid convection as a new mental model. In addition, no specific relationship between mental models and categories of students’ conceptions on heat and temperature.
ERIC Educational Resources Information Center
Hawes, Zachary; LeFevre, Jo-Anne; Xu, Chang; Bruce, Catherine D.
2015-01-01
There is an emerging consensus that spatial thinking is fundamental to later success in math and science. The goals of this study were to design and evaluate a novel test of three-dimensional (3D) mental rotation for 4- to 8-year-old children (N?=?165) that uses tangible 3D objects. Results revealed that the measure was both valid and reliable and…
Emotional state and local versus global spatial memory.
Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A
2009-02-01
The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.
Britt, Rebecca C; Scerbo, Mark W; Montano, Michael; Kennedy, Rebecca A; Prytz, Erik; Stefanidis, Dimitrios
2015-11-01
A spatial secondary task developed by the authors was used to measure the mental workload of the participant when transferring suturing skills from a box simulator to more realistic surgical conditions using a fresh cadaver. We hypothesized that laparoscopic suturing on genuine bowel would be more challenging than on the Fundamentals of Laparoscopic Surgery (FLS)-simulated bowel as reflected in differences on both suturing and secondary task scores. We trained 14 surgical assistant students to FLS proficiency in intracorporeal suturing. Participants practiced suturing on the FLS box for 30 minutes and then were tested on both the FLS box and the bowel of a fresh cadaver using the spatial, secondary dual-task conditions developed by the authors. Suturing times increased by >333% when moving from the FLS platform to the cadaver F(1,13) = 44.04, P < .001. The increased completion times were accompanied by a 70% decrease in secondary task scores, F(1,13) = 21.21, P < .001. The mental workload associated with intracorporeal suturing increases dramatically when trainees transfer from the FLS platform to human tissue under more realistic conditions of suturing. The increase in mental workload is indexed by both an increase in suturing times and a decrease in the ability to attend to the secondary task. Copyright © 2015 Elsevier Inc. All rights reserved.
Improving working memory abilities in individuals with Down syndrome: a treatment case study
Costa, Hiwet Mariam; Purser, Harry R. M.; Passolunghi, Maria Chiara
2015-01-01
Working memory (WM) skills of individuals with Down’s syndrome (DS) tend to be very poor compared to typically developing children of similar mental age. In particular, research has found that in individuals with DS visuo-spatial WM is better preserved than verbal WM. This study investigated whether it is possible to train short-term memory (STM) and WM abilities in individuals with DS. The cases of two teenage children are reported: EH, 17 years and 3 months, and AS, 15 years and 11 months. A school-based treatment targeting visuo-spatial WM was given to EH and AS for six weeks. Both prior to and after the treatment, they completed a set of assessments to measure WM abilities and their performance was compared with younger typically developing non-verbal mental age controls. The results showed that the trained participants improved their performance in some of the trained and non-trained WM tasks proposed, especially with regard to the tasks assessing visuo-spatial WM abilities. These findings are discussed on the basis of their theoretical, educational, and clinical implications. PMID:26441713
Does participation in art classes influence performance on two different cognitive tasks?
Schindler, Manuel; Maihöfner, Christian; Bolwerk, Anne; Lang, Frieder R
2017-04-01
Effects of two mentally stimulating art interventions on processing speed and visuo-spatial cognition were compared in three samples. In a randomized 10-week art intervention study with a pre-post follow-up design, 113 adults (27 healthy older adults with subjective memory complaints, 50 healthy older adults and 36 healthy younger adults) were randomly assigned to one of two groups: visual art production or cognitive art evaluation, where the participants either produced or evaluated art. ANOVAs with repeated measures were computed to observe effects on the Symbol-Digit Test, and the Stick Test. Significant Time effects were found with regard to processing speed and visuo-spatial cognition. Additionally, there was found a significant Time × Sample interaction for processing speed. The effects proved robust after testing for education and adding sex as additional factor. Mental stimulation by participation in art classes leads to an improvement of processing speed and visuo-spatial cognition. Further investigation is required to improve understanding of the potential impact of art intervention on cognitive abilities across adulthood.
Mental health literacy as a mediator in use of mental health services among older korean adults.
Kim, Young Sun; Rhee, T Greg; Lee, Hee Yun; Park, Byung Hyun; Sharratt, Monica L
2017-02-01
Existing literature suggests that mental health literacy is positively associated with mental health services utilization. Despite an aging population that faces significant mental health concerns in Korea, the role of mental health literacy on mental health services utilization is not known among older adults in Korea. This study aimed to (1) identify whether mental health literacy mediates the association between population characteristics and mental health services utilization and (2) identify an optimal path model for mental health services utilization among Korean older adults. Using a cross-sectional survey with a quota sampling strategy, we collected and analyzed responses from 596 community-dwelling individuals ages 65 years and older. We used structural equation modeling (SEM) to estimate the effect of mental health literacy as a mediator. When controlling for other relevant covariates in the optimal path model, mental health literacy mediated the relationships between three socio-demographic factors (education, general literacy, and health status) and mental health services utilization. The model fit index shows that the SEM fits very well (CFI = 0.92, NFI = 0.90, RMSEA = 0.07). Efforts to improve mental health literacy through community-based education programs may need to particularly target Korean older adults with the relevant socio-demographic characteristics to enhance their utilization of appropriate mental health services.
Mental additions and verbal-domain interference in children with developmental dyscalculia.
Mammarella, Irene C; Caviola, Sara; Cornoldi, Cesare; Lucangeli, Daniela
2013-09-01
This study examined the involvement of verbal and visuo-spatial domains in solving addition problems with carrying in a sample of children diagnosed with developmental dyscalculia (DD) divided into two groups: (i) those with DD alone and (ii) those with DD and dyslexia. Age and stage matched typically developing (TD) children were also studied. The addition problems were presented horizontally or vertically and associated with verbal or visuo-spatial information. Study results showed that DD children's performance on mental calculation tasks was more impaired when they tackled horizontally presented addition problems compared to vertically presented ones that are associated to verbal domain involvement. The performance pattern in the two DD groups was found to be similar. The theoretical, clinical and educational implications of these findings are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lind, Sophie E.; Bowler, Dermot M.; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the “memory island” task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the “animations” task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed. PMID:25538661
Lind, Sophie E; Bowler, Dermot M; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Application of the PRECEDE model to understanding mental health promoting behaviors in Hong Kong.
Mo, Phoenix K H; Mak, Winnie W S
2008-08-01
The burdens related to mental illness have been increasingly recognized in many countries. Nevertheless, research in positive mental health behaviors remains scarce. This study utilizes the Predisposing, Reinforcing, and Enabling Causes in Education Diagnosis and Evaluation (PRECEDE) model to identify factors associated with mental health promoting behaviors and to examine the effects of these behaviors on mental well-being and quality of life among 941 adults in Hong Kong. Structural equation modeling shows that sense of coherence (predisposing factor), social support (reinforcing factor), and daily hassles (enabling factor) are significantly related to mental health promoting behaviors, which are associated with mental well-being and quality of life. Results of bootstrap analyses confirm the mediating role of mental health promoting behaviors on well-being and quality of life. The study supports the application of the PRECEDE model in understanding mental health promoting behaviors and demonstrates its relationships with well-being and quality of life.
Spatial-simultaneous working memory and selective interference in Down syndrome.
Lanfranchi, Silvia; Mammarella, Irene C; Carretti, Barbara
2015-01-01
Several studies have suggested that individuals with Down syndrome (DS) have impairments in some aspects of the visuospatial domain. It has been reported that they are particularly impaired in the spatial-simultaneous working memory (WM) even in advantageous conditions such as when information is grouped to form a configuration. This study aimed to assess the performance of individuals with DS carrying out a spatial-simultaneous WM task in single and dual selective interference conditions in order to better explore the characteristics of their impairment in this area. Groups of individuals with DS and mentally age-matched typically developing (TD) children were asked to carry out a spatial-simultaneous WM task in a single- and in two dual-task conditions. In the single condition, the participants were required to recall an increasing number of positions of red squares presented simultaneously in a matrix. In the dual-task conditions, together with the spatial-simultaneous WM task, the participants were asked to carry out an articulatory suppression task or a tapping task. As has already been shown in other studies, individuals with DS were found to be impaired in carrying out a spatial-simultaneous WM task and showed a worse performance with respect to the TD group in both the conditions. These findings indicate that individuals with DS use the same coding modality as TD children of the same mental age. Just as the TD children, they performed lower in the dual- than in the single-task condition and there was no difference between the verbal and visuospatial conditions.
Meneghetti, Chiara; Muffato, Veronica; Varotto, Diego; De Beni, Rossana
2017-03-01
Previous studies found mental representations of route descriptions north-up oriented when egocentric experience (given by the protagonist's initial view) was congruent with the global reference system. This study examines: (a) the development and maintenance of representations derived from descriptions when the egocentric and global reference systems are congruent or incongruent; and (b) how spatial abilities modulate these representations. Sixty participants (in two groups of 30) heard route descriptions of a protagonist's moves starting from the bottom of a layout and headed mainly northwards (SN description) in one group, and headed south from the top (NS description, the egocentric view facing in the opposite direction to the canonical north) in the other. Description recall was tested with map drawing (after hearing the description a first and second time; i.e. Time 1 and 2) and South-North (SN) or North-South (NS) pointing tasks; and spatial objective tasks were administered. The results showed that: (a) the drawings were more rotated in NS than in SN descriptions, and performed better at Time 2 than at Time 1 for both types of description; SN pointing was more accurate than NS pointing for the SN description, while SN and NS pointing accuracy did not differ for the NS description; (b) spatial (rotation) abilities were related to recall accuracy for both types of description, but were more so for the NS ones. Overall, our results showed that the way in which spatial information is conveyed (with/without congruence between the egocentric and global reference systems) and spatial abilities influence the development and maintenance of mental representations.
Bálint, Katalin; Nagy, Tamás; Csabai, Márta
2014-10-01
To examine how certain characteristics of film-presented practitioner role-models influence trainees' mentalization. In an experimental setting, psychology students watched four film clips presenting a patient-practitioner session; the clips varied in the practitioner's patient-centeredness (positive vs. negative) and gender. Participants commented on the practitioner's thoughts, emotions and intentions through the session. Analysis of 116 comments focused on the effect of patient-centeredness and gender variables on mentalization and judgment utterances. Negative role-models and female role-models induced higher levels of mentalization compared to positive and male role-models. There was no gender difference in the level of mentalization; however male participants gave more judgmental responses than female participants. The patient-centeredness had a larger effect on mentalization when trainees described the opposite gender role-model. In a systematic comparison, students' capacity for mentalization differed according to role-models' patient-centeredness and gender, as well as the gender-match of students with role-models. When working with film-presented role-models, educators should be aware of the differences in the level of mentalization elicited by positive and male role-models, as opposed to negative and female role-models. Educators should also consider the gender-match between trainees and role-models, therefore students should be exposed to both cross- and same-gender role-models. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
Akle, Veronica; Peña-Silva, Ricardo A; Valencia, Diego M; Rincón-Perez, Carlos W
2018-03-01
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a 3D-model from oil-based modeling clay affects learners' understanding of periventricular structures of the brain among undergraduate medical students in Colombia. Students were provided with an instructional video before building the models of the structures, and thereafter took a computer-based quiz. They then brought their clay models to class where they answered questions about the structures via interactive response cards. Their knowledge of periventricular structures was assessed with a paper-based quiz. Afterward, a focus group was conducted and a survey was distributed to understand students' perceptions of the activity, as well as the impact of the intervention on their understanding of anatomical structures in 3D. Quiz scores of students that constructed the models were significantly higher than those taught the material in a more traditional manner (P < 0.05). Moreover, the modeling activity reduced time spent studying the topic and increased understanding of spatial relationships between structures in the brain. The results demonstrated a significant difference between genders in their self-perception of their ability to contemplate and rotate structures mentally (P < 0.05). The study demonstrated that the construction of 3D clay models in combination with autonomous learning activities was a valuable and efficient learning tool in the anatomy course, and that additional models could be designed to promote deeper learning of other neuroanatomy topics. Anat Sci Educ 11: 137-145. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
The concept of shared mental models in healthcare collaboration.
McComb, Sara; Simpson, Vicki
2014-07-01
To report an analysis of the concept of shared mental models in health care. Shared mental models have been described as facilitators of effective teamwork. The complexity and criticality of the current healthcare system requires shared mental models to enhance safe and effective patient/client care. Yet, the current concept definition in the healthcare literature is vague and, therefore, difficult to apply consistently in research and practice. Concept analysis. Literature for this concept analysis was retrieved from several databases, including CINAHL, PubMed and MEDLINE (EBSCO Interface), for the years 1997-2013. Walker and Avant's approach to concept analysis was employed and, following Paley's guidance, embedded in extant theory from the team literature. Although teamwork and collaboration are discussed frequently in healthcare literature, the concept of shared mental models in that context is not as commonly found but is increasing in appearance. Our concept analysis defines shared mental models as individually held knowledge structures that help team members function collaboratively in their environments and are comprised of the attributes of content, similarity, accuracy and dynamics. This theoretically grounded concept analysis provides a foundation for a middle-range descriptive theory of shared mental models in nursing and health care. Further research concerning the impact of shared mental models in the healthcare setting can result in development and refinement of shared mental models to support effective teamwork and collaboration. © 2013 John Wiley & Sons Ltd.
Preceptors' perspectives of an integrated clinical learning model in a mental health environment.
Boardman, Gayelene; Lawrence, Karen; Polacsek, Meg
2018-02-14
Supervised clinical practice is an essential component of undergraduate nursing students' learning and development. In the mental health setting, nursing students traditionally undertake four-week block placements. An integrated clinical learning model, where preceptors mentor students on an individual basis, has been used successfully in the clinical learning environment. This flexible model provides the opportunity for students to work across morning, afternoon, night and weekend shifts. There is a need to improve the evidence base for a flexible model for students undertaking a mental health placement. The aim of this study was to understand preceptors' experience of, and satisfaction with, a mental health integrated clinical learning model. Focus groups were used to elicit the views of preceptors from a mental health service. Findings highlight the advantages and disadvantages of an integrated clinical learning model in the mental health setting. Participants suggested that students may benefit from flexible work arrangements, a variety of experiences and a more realistic experience of working in a mental health service. However, they found it challenging to mentor and evaluate students under this model. Most also agreed that the model impeded students' ability to engage with consumers and develop rapport with staff. The findings indicate the need to develop a placement model that meets the unique needs of the mental health setting. © 2018 Australian College of Mental Health Nurses Inc.
ERIC Educational Resources Information Center
Chiou, Guo-Li
2013-01-01
Although prediction is claimed to be a prime function of mental models, to what extent students can run their mental models to make predictions of physical phenomena remains uncertain. The purpose of this study, therefore, was first to investigate 30 physics students' mental models of heat convection, and then to examine the relationship between…
NASA Astrophysics Data System (ADS)
Oh, Jun-Young; Kang, Yong-Hee; Yoo, Kye-Hwa
2005-09-01
This study was to understand the components that influence preservice elementary teachers' mental models about `astronomical phenomena' such as the Seasons of the year, and the Lunar Phases of the month. We selected university of education students among whom 23 were in the second year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had apparent synthetic Mental models, and that the 'distance theory, and occultation theory' had most important effects on their Mental Models. It can be said that preservice elementary teachers' initial mental models of the `astronomical phenomenon' have their origin in their belief sets (specific theory) related to `astronomical phenomenon', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their mental models for overcoming these synthetic mental models were also discussed.
NASA Astrophysics Data System (ADS)
Barnea, Nitza; Dori, Yehudit J.
1999-12-01
Computerized molecular modeling (CMM) contributes to the development of visualization skills via vivid animation of three dimensional representations. Its power to illustrate and explore phenomena in chemistry teaching stems from the convenience and simplicity of building molecules of any size and color in a number of presentation styles. A new CMM-based learning environment for teaching and learning chemistry in Israeli high schools has been designed and implemented. Three tenth grade experimental classes used this discovery CMM approach, while two other classes, who studied the same topic in the customary approach, served as a control group. We investigated the effects of using molecular modeling on students' spatial ability, understanding of new concepts related to geometric and symbolic representations and students' perception of the model concept. Each variable was examined for gender differences. Students of the experimental group performed better than control group students in all three performance aspects. Experimental group students scored higher than the control group students in the achievement test on structure and bonding. Students' spatial ability improved in both groups, but students from the experimental group scored higher. For the average students in the two groups the improvement in all three spatial ability sub-tests —paper folding, card rotation, and cube comparison—was significantly higher for the experimental group. Experimental group students gained better insight into the model concept than the control group and could explain more phenomena with the aid of a variety of models. Hence, CMM helps in particular to improve the examined cognitive aspects of the average student population. In most of the achievement and spatial ability tests no significant differences between the genders were found, but in some aspects of model perception and verbal argumentation differences still exist. Experimental group females improved their model perception more than the control group females in understanding ways to create models and in the role of models as mental structures and prediction tools. Teachers' and students' feedback on the CMM learning environment was found to be positive, as it helped them understand concepts in molecular geometry and bonding. The results of this study suggest that teaching/learning of topics in chemistry that are related to three dimensional structures can be improved by using a discovery approach in a computerized learning environment.
The effects of mental representation on performance in a navigation task
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice F.
2002-01-01
In three experiments, we investigated the mental representations employed when instructions were followed that involved navigation in a space displayed as a grid on a computer screen. Performance was affected much more by the number of instructional units than by the number of words per unit. Performance in a three-dimensional space was independent of the number of dimensions along which participants navigated. However, memory for and accuracy in following the instructions were reduced when the task required mentally representing a three-dimensional space, as compared with representing a two-dimensional space, although the words used in the instructions were identical in the two cases. These results demonstrate the interdependence of verbal and spatial memory representations, because individuals' immediate memory for verbal navigation instructions is affected by their mental representation of the space referred to by the instructions.
Gabbard, Carl
2015-04-01
Recent research findings indicate that with older adulthood, there are functional decrements in spatial cognition and more specially, in the ability to mentally represent and effectively plan motor actions. A typical finding is a significant over- or underestimation of one's actual physical abilities with movement planning-planning that has implications for movement efficiency and physical safety. A practical, daily life example is estimation of reachability--a situation that for the elderly may be linked with fall incidence. A strategy used to mentally represent action is the use of motor imagery--an ability that also declines with advancing older age. This brief review highlights research findings on mental representation and motor imagery in the elderly and addresses the implications for improving movement efficiency and lowering the risk of movement-related injury. © The Author(s) 2013.
Complexity vs. unity in unilateral spatial neglect.
Rode, G; Fourtassi, M; Pagliari, C; Pisella, L; Rossetti, Y
Unilateral spatial neglect constitutes a heterogeneous syndrome characterized by two main entangled components: a contralesional bias of spatial attention orientation; and impaired building and/or exploration of mental representations of space. These two components are present in different subtypes of unilateral spatial neglect (visual, auditory, somatosensory, motor, allocentric, egocentric, personal, representational and productive manifestations). Detailed anatomical and clinical analyses of these conditions and their underlying disorders show the complexity of spatial cognitive deficits and the difficulty of proposing just one explanation. This complexity is in contrast, however, to the widely acknowledged effectiveness of rehabilitation of the various symptoms and subtypes of unilateral spatial neglect, exemplified in the case of prism adaptation. These common effects are reflections of the unity of the physiotherapeutic mechanisms behind the higher brain functions related to multisensory integration and spatial representations, whereas the paradoxical aspects of unilateral spatial neglect emphasize the need for a greater understanding of spatial cognitive disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bilateral parietal contributions to spatial language.
Conder, Julie; Fridriksson, Julius; Baylis, Gordon C; Smith, Cameron M; Boiteau, Timothy W; Almor, Amit
2017-01-01
It is commonly held that language is largely lateralized to the left hemisphere in most individuals, whereas spatial processing is associated with right hemisphere regions. In recent years, a number of neuroimaging studies have yielded conflicting results regarding the role of language and spatial processing areas in processing language about space (e.g., Carpenter, Just, Keller, Eddy, & Thulborn, 1999; Damasio et al., 2001). In the present study, we used sparse scanning event-related functional magnetic resonance imaging (fMRI) to investigate the neural correlates of spatial language, that is; language used to communicate the spatial relationship of one object to another. During scanning, participants listened to sentences about object relationships that were either spatial or non-spatial in nature (color or size relationships). Sentences describing spatial relationships elicited more activation in the superior parietal lobule and precuneus bilaterally in comparison to sentences describing size or color relationships. Activation of the precuneus suggests that spatial sentences elicit spatial-mental imagery, while the activation of the SPL suggests sentences containing spatial language involve integration of two distinct sets of information - linguistic and spatial. Copyright © 2016 Elsevier Inc. All rights reserved.
Transformations and representations supporting spatial perspective taking
Yu, Alfred B.; Zacks, Jeffrey M.
2018-01-01
Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning. PMID:29545731
Gardner, Aimee K; Scott, Daniel J; AbdelFattah, Kareem R
2017-05-01
Team mental models represent the shared understanding of team members within their relevant environment. Thus, team mental models should have a substantial impact on a team's ability to engage in purposeful and coordinated action. We sought to examine the impact of shared team mental models on team performance and to investigate if team mental models increase over time as teams continue to work together. New surgery interns were assigned randomly to 1 of 10 teams. Each team participated in one unique simulation every day for 5 days, each followed by video-based debriefing with a facilitator. Participants also completed independently a concept similarity tool validated previously in nonmedical team literature to assess team mental models. All performances were video recorded and evaluated with a scenario-specific team performance tool by a single, blinded junior surgeon under an institutional review board-approved protocol. Changes in performance and team mental models over time were assessed with paired samples t tests. Regression analysis was used to examine the extent to which team mental models predicted team performance. Thirty interns (age 27; 77% men) participated in the training program. Percentage of items achieved (x¯ ± SD) on the performance evaluation was 39 ± 20, 51 ± 14, 22 ± 17, 63 ± 14, and 77 ± 25 for Days 1-5, respectively. Team mental models were 30 ± 5, 28 ± 6, 27 ± 8, 26 ± 7, and 25 ± 6 for Days 1-5 respectively, such that larger values corresponded to greater differences in team mental models. Paired sample t tests indicated that both average performance and team mental models similarity improved from the first to last day (P < .01, P < .05, respectively). Additionally, regression analyses indicated that team mental models predicted team performance on Days 2-5 (all P < .05) but not on the first day of simulations. These results demonstrate that greater sharing of team mental models among the teams leads to better team performance. Additionally, the increase in team mental models over time suggests that engaging in team-based simulation may catalyze the process by which surgery teams are able to develop shared knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Situation Model Updating in Young and Older Adults: Global versus Incremental Mechanisms
Bailey, Heather R.; Zacks, Jeffrey M.
2015-01-01
Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory. PMID:25938248
Biogenetic models of psychopathology, implicit guilt, and mental illness stigma.
Rüsch, Nicolas; Todd, Andrew R; Bodenhausen, Galen V; Corrigan, Patrick W
2010-10-30
Whereas some research suggests that acknowledgment of the role of biogenetic factors in mental illness could reduce mental illness stigma by diminishing perceived responsibility, other research has cautioned that emphasizing biogenetic aspects of mental illness could produce the impression that mental illness is a stable, intrinsic aspect of a person ("genetic essentialism"), increasing the desire for social distance. We assessed genetic and neurobiological causal attributions about mental illness among 85 people with serious mental illness and 50 members of the public. The perceived responsibility of persons with mental illness for their condition, as well as fear and social distance, was assessed by self-report. Automatic associations between Mental Illness and Guilt and between Self and Guilt were measured by the Brief Implicit Association Test. Among the general public, endorsement of biogenetic models was associated with not only less perceived responsibility, but also greater social distance. Among people with mental illness, endorsement of genetic models had only negative correlates: greater explicit fear and stronger implicit self-guilt associations. Genetic models may have unexpected negative consequences for implicit self-concept and explicit attitudes of people with serious mental illness. An exclusive focus on genetic models may therefore be problematic for clinical practice and anti-stigma initiatives. Copyright © 2009 Elsevier Ltd. All rights reserved.
Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.
2013-01-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185
NASA Astrophysics Data System (ADS)
Sell, K. S.; Heather, M. R.; Herbert, B. E.
2004-12-01
Exposing earth system science (ESS) concepts into introductory geoscience courses may present new and unique cognitive learning issues for students including understanding the role of positive and negative feedbacks in system responses to perturbations, spatial heterogeneity, and temporal dynamics, especially when systems exhibit complex behavior. Implicit learning goals of typical introductory undergraduate geoscience courses are more focused on building skill-sets and didactic knowledge in learners than developing a deeper understanding of the dynamics and processes of complex earth systems through authentic inquiry. Didactic teaching coupled with summative assessment of factual knowledge tends to limit student¡¦s understanding of the nature of science, their belief in the relevancy of science to their lives, and encourages memorization and regurgitation; this is especially true among the non-science majors who compose the majority of students in introductory courses within the large university setting. Students organize scientific knowledge and reason about earth systems by manipulating internally constructed mental models. This pilot study focuses on characterizing the impact of inquiry-based learning with multiple representations to foster critical thinking and mental model development about authentic environmental issues of coastal systems in an introductory geoscience course. The research was conducted in nine introductory physical geology laboratory sections (N ˜ 150) at Texas A&M University as part of research connected with the Information Technology in Science (ITS) Center. Participants were randomly placed into experimental and control groups. Experimental groups were exposed to multiple representations including both web-based learning materials (i.e. technology-supported visualizations and analysis of multiple datasets) and physical models, whereas control groups were provided with the traditional ¡workbook style¡" laboratory assignments. Assessment of pre- and post-test results was performed to provide indications of content knowledge and mental model expression improvements between groups. A rubric was used as the assessment instrument to evaluate student products (Cronbach alpha: 0.84 ¡V 0.98). Characterization of student performance based on a Student¡¦s t-test indicates that significant differences (p < 0.05) in pre-post achievement occurred primarily within the experimental group; this illustrates that the use of multiple representations had an impact on student learning of ESS concepts, particularly in regard to mental model constructions. Analysis of variance also suggests that student mental model constructions were significantly different (p < 0.10) between test groups. Factor analysis extracted three principle components (eigenvalue > 1) which show similar clustering of variables that influence cognition, indicating that the cognitive processes driving student understanding of geoscience do not vary among student test groups. Categories of cognition include critical thinking skills (percent variance = 22.16%), understanding of the nature of science (percent variance = 25.16%), and ability to interpret results (percent variance = 28.89%). Lower numbers of students completed all of the required assignments of this research than expected (65.3%), restricting the quality of the results and therefore the ability to make more significant interpretations; this was likely due to the non-supportive learning environment in which the research was implemented.
Effects of complex aural stimuli on mental performance.
Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen
2003-06-01
The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments.
A psychological model of mental disorder.
Kinderman, Peter
2005-01-01
A coherent conceptualization of the role of psychological factors is of great importance in understanding mental disorder. Academic articles and professional reports alluding to psychological models of the etiology of mental disorder are becoming increasingly common, and there is evidence of a marked policy shift toward the provision of psychological therapies and interventions. This article discusses the relationship between biological, social, and psychological factors in the causation and treatment of mental disorder. It argues that simple biological reductionism is not scientifically justified, and also that the specific role of psychological processes within the biopsychosocial model requires further elaboration. The biopsychosocial model is usually interpreted as implying that biological, psychological, and social factors are co-equal partners in the etiology of mental disorder. The psychological model of mental disorder presented here suggests that disruption or dysfunction in psychological processes is a final common pathway in the development of mental disorder. These processes include, but are not limited to, cognitive processes. The model proposes that biological and social factors, together with a person's individual experiences, lead to mental disorder through their conjoint effects on those psychological processes. Implications for research, interventions, and policy are discussed.
Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate
2013-01-01
Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.
Personality, relationship conflict, and teamwork-related mental models.
Vîrgă, Delia; Curşeu, Petru Lucian; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A; Macsinga, Irina; Măgurean, Silvia
2014-01-01
This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models.
Personality, Relationship Conflict, and Teamwork-Related Mental Models
Vîrgă, Delia; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A.; Macsinga, Irina; Măgurean, Silvia
2014-01-01
This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. PMID:25372143
Atique, Bijoy; Erb, Michael; Gharabaghi, Alireza; Grodd, Wolfgang; Anders, Silke
2011-04-15
Mentalizing, i.e. the process of inferring another person's mental state, is thought to be primarily subserved by three brain regions, the VMPFC (ventromedial prefrontal cortex), precuneus and TPJ (temporo-parietal junction). However, it is still unclear what the exact roles of these regions in mentalizing are. Here, we compare activity within, and functional connectivity between, the VMPFC, precuneus and TPJ during two different mentalizing tasks. Specifically, we examine whether inferring another person's emotion ("emotion mentalizing") and inferring another person's intention ("intention mentalizing") activate similar or distinct subregions within the VMPFC, precuneus and TPJ, and whether these different kinds of mentalizing are associated with different patterns of functional connectivity between these regions. Our results indicate that emotion mentalizing and intention mentalizing activate partly distinct subregions of the right and left TPJ that can be spatially separated across participants. These subregions also showed different patterns of functional connectivity with the VMPFC: a more anterior region of the right and left TPJ, which was more strongly activated during emotion mentalizing, showed stronger functional connectivity with the VMPFC, particularly during emotion mentalizing, than a more posterior region that was more strongly activated during intention mentalizing. Critically, this double dissociation became evident only when the fine-scale distribution of activity within activated regions was analysed, and despite the fact that there was also a significant overlap of activity during the two tasks. Our findings provide first evidence that different neural modules might have evolved within the TPJ that show distinct patterns of functional connectivity and might subserve slightly different subfunctions of mentalizing. Copyright © 2010 Elsevier Inc. All rights reserved.
Lateralization of event-related potential effects during mental rotation of polygons.
Pellkofer, Julia; Jansen, Petra; Heil, Martin
2012-07-11
Numerous studies have shown that there is an amplitude modulation of the late positivity depending on the angular disparity during mental rotation performance. However, almost all of these studies used characters as stimulus material, whereas studies with different stimuli are rare. In the present experiment, 35 participants were instructed to rotate polygons mentally. Most importantly, with this stimulus material, the well-known event-related potential effects were also present at posterior electrode leads. Interestingly, the amplitude modulation were found to be larger and more reliable over left than over right posterior electrode leads, a finding reported previously for characters as stimuli, although not consistently. Thus, the present data suggest that the left lateralization of event-related potential effects during mental rotation of characters might not be because of their 'verbal nature', but might suggest a stronger involvement of the left parietal cortex during mental rotation per se, a suggestion that needs to be addressed with methods providing a higher spatial resolution.
Sex differences on a computerized mental rotation task disappear with computer familiarization.
Roberts, J E; Bell, M A
2000-12-01
The area of cognitive research that has produced the most consistent sex differences is spatial ability. Particularly, men consistently perform better on mental rotation tasks than do women. This study examined the effects of familiarization with a computer on performance of a computerized two-dimensional mental rotation task. Two groups of college students (N=44) performed the rotation task, with one group performing a color-matching task that allowed them to be familiarized with the computer prior to the rotation task. Among the participants who only performed the rotation task, the 11 men performed better than the 11 women. Among the participants who performed the computer familiarization task before the rotation task, how ever, there were no sex differences on the mental rotation task between the 10 men and 12 women. These data indicate that sex differences on this two-dimensional task may reflect familiarization with the computer, not the mental rotation component of the task. Further research with larger samples and increased range of task difficulty is encouraged.
Seepanomwan, Kristsana; Caligiore, Daniele; Cangelosi, Angelo; Baldassarre, Gianluca
2015-12-01
Mental rotation, a classic experimental paradigm of cognitive psychology, tests the capacity of humans to mentally rotate a seen object to decide if it matches a target object. In recent years, mental rotation has been investigated with brain imaging techniques to identify the brain areas involved. Mental rotation has also been investigated through the development of neural-network models, used to identify the specific mechanisms that underlie its process, and with neurorobotics models to investigate its embodied nature. Current models, however, have limited capacities to relate to neuro-scientific evidence, to generalise mental rotation to new objects, to suitably represent decision making mechanisms, and to allow the study of the effects of overt gestures on mental rotation. The work presented in this study overcomes these limitations by proposing a novel neurorobotic model that has a macro-architecture constrained by knowledge held on brain, encompasses a rather general mental rotation mechanism, and incorporates a biologically plausible decision making mechanism. The model was tested using the humanoid robot iCub in tasks requiring the robot to mentally rotate 2D geometrical images appearing on a computer screen. The results show that the robot gained an enhanced capacity to generalise mental rotation to new objects and to express the possible effects of overt movements of the wrist on mental rotation. The model also represents a further step in the identification of the embodied neural mechanisms that may underlie mental rotation in humans and might also give hints to enhance robots' planning capabilities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The spatial representation of power in children.
Lu, Lifeng; Schubert, Thomas W; Zhu, Lei
2017-11-01
Previous evidence demonstrates that power is mentally represented as vertical space by adults. However, little is known about how power is mentally represented in children. The current research examines such representations. The influence of vertical information (motor cues) was tested in both an explicit power evaluation task (judge whether labels refer to powerless or powerful groups) and an incidental task (judge whether labels refer to people or animals). The results showed that when power was explicitly evaluated, vertical motor responses interfered with responding in children and adults, i.e., they responded to words representing powerful groups faster with the up than the down cursor key (and vice versa for powerless groups). However, this interference effect disappeared in the incidental task in children. The findings suggest that children have developed a spatial representation of power before they have been taught power-space associations formally, but that they do not judge power spontaneously.
Visuo-spatial processing in autism--testing the predictions of extreme male brain theory.
Falter, Christine M; Plaisted, Kate C; Davis, Greg
2008-03-01
It has been hypothesised that autism is an extreme version of the male brain, caused by high levels of prenatal testosterone (Baron-Cohen 1999). To test this proposal, associations were assessed between three visuo-spatial tasks and prenatal testosterone, indexed in second-to-fourth digit length ratios (2D:4D). The study included children with Autism Spectrum Disorder, ASD (N = 28), and chronological as well as mental age matched typically-developing children (N = 31). While the group with ASD outperformed the control group at Mental Rotation and Figure-Disembedding, these group differences were not related to differences in prenatal testosterone level. Previous findings of an association between Targeting and 2D:4D were replicated in typically-developing children and children with ASD. The implications of these results for the extreme male brain (EMB) theory of autism are discussed.
Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.
Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul
2014-12-01
This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. Copyright © 2014 Elsevier B.V. All rights reserved.
Mentalizing the body: spatial and social cognition in anosognosia for hemiplegia
Besharati, Sahba; Forkel, Stephanie J.; Kopelman, Michael; Solms, Mark; Jenkinson, Paul M.
2016-01-01
Abstract Following right-hemisphere damage, a specific disorder of motor awareness can occur called anosognosia for hemiplegia, i.e. the denial of motor deficits contralateral to a brain lesion. The study of anosognosia can offer unique insights into the neurocognitive basis of awareness. Typically, however, awareness is assessed as a first person judgement and the ability of patients to think about their bodies in more ‘objective’ (third person) terms is not directly assessed. This may be important as right-hemisphere spatial abilities may underlie our ability to take third person perspectives. This possibility was assessed for the first time in the present study. We investigated third person perspective taking using both visuospatial and verbal tasks in right-hemisphere stroke patients with anosognosia ( n = 15) and without anosognosia ( n = 15), as well as neurologically healthy control subjects ( n = 15). The anosognosic group performed worse than both control groups when having to perform the tasks from a third versus a first person perspective. Individual analysis further revealed a classical dissociation between most anosognosic patients and control subjects in mental (but not visuospatial) third person perspective taking abilities. Finally, the severity of unawareness in anosognosia patients was correlated to greater impairments in such third person, mental perspective taking abilities (but not visuospatial perspective taking). In voxel-based lesion mapping we also identified the lesion sites linked with such deficits, including some brain areas previously associated with inhibition, perspective taking and mentalizing, such as the inferior and middle frontal gyri, as well as the supramarginal and superior temporal gyri. These results suggest that neurocognitive deficits in mental perspective taking may contribute to anosognosia and provide novel insights regarding the relation between self-awareness and social cognition. PMID:26811254
Efficient mental workload estimation using task-independent EEG features.
Roy, R N; Charbonnier, S; Campagne, A; Bonnet, S
2016-04-01
Mental workload is frequently estimated by EEG-based mental state monitoring systems. Usually, these systems use spectral markers and event-related potentials (ERPs). To our knowledge, no study has directly compared their performance for mental workload assessment, nor evaluated the stability in time of these markers and of the performance of the associated mental workload estimators. This study proposes a comparison of two processing chains, one based on the power in five frequency bands, and one based on ERPs, both including a spatial filtering step (respectively CSP and CCA), an FLDA classification and a 10-fold cross-validation. To get closer to a real life implementation, spectral markers were extracted from a short window (i.e. towards reactive systems) that did not include any motor activity and the analyzed ERPs were elicited by a task-independent probe that required a reflex-like answer (i.e. close to the ones required by dead man's vigilance devices). The data were acquired from 20 participants who performed a Sternberg memory task for 90 min (i.e. 2/6 digits to memorize) inside which a simple detection task was inserted. The results were compared both when the testing was performed at the beginning and end of the session. Both chains performed significantly better than random; however the one based on the spectral markers had a low performance (60%) and was not stable in time. Conversely, the ERP-based chain gave very high results (91%) and was stable in time. This study demonstrates that an efficient and stable in time workload estimation can be achieved using task-independent spatially filtered ERPs elicited in a minimally intrusive manner.
Efficient mental workload estimation using task-independent EEG features
NASA Astrophysics Data System (ADS)
Roy, R. N.; Charbonnier, S.; Campagne, A.; Bonnet, S.
2016-04-01
Objective. Mental workload is frequently estimated by EEG-based mental state monitoring systems. Usually, these systems use spectral markers and event-related potentials (ERPs). To our knowledge, no study has directly compared their performance for mental workload assessment, nor evaluated the stability in time of these markers and of the performance of the associated mental workload estimators. This study proposes a comparison of two processing chains, one based on the power in five frequency bands, and one based on ERPs, both including a spatial filtering step (respectively CSP and CCA), an FLDA classification and a 10-fold cross-validation. Approach. To get closer to a real life implementation, spectral markers were extracted from a short window (i.e. towards reactive systems) that did not include any motor activity and the analyzed ERPs were elicited by a task-independent probe that required a reflex-like answer (i.e. close to the ones required by dead man’s vigilance devices). The data were acquired from 20 participants who performed a Sternberg memory task for 90 min (i.e. 2/6 digits to memorize) inside which a simple detection task was inserted. The results were compared both when the testing was performed at the beginning and end of the session. Main results. Both chains performed significantly better than random; however the one based on the spectral markers had a low performance (60%) and was not stable in time. Conversely, the ERP-based chain gave very high results (91%) and was stable in time. Significance. This study demonstrates that an efficient and stable in time workload estimation can be achieved using task-independent spatially filtered ERPs elicited in a minimally intrusive manner.
An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming
2017-05-01
Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.
Sauter, Megan; Uttal, David H.; Alman, Amanda Schaal; Goldin-Meadow, Susan; Levine, Susan C.
2013-01-01
This article examines two issues: the role of gesture in the communication of spatial information and the relation between communication and mental representation. Children (8–10 years) and adults walked through a space to learn the locations of six hidden toy animals and then explained the space to another person. In Study 1, older children and adults typically gestured when describing the space and rarely provided spatial information in speech without also providing the information in gesture. However, few 8-year-olds communicated spatial information in speech or gesture. Studies 2 and 3 showed that 8-year-olds did understand the spatial arrangement of the animals and could communicate spatial information if prompted to use their hands. Taken together, these results indicate that gesture is important for conveying spatial relations at all ages and, as such, provides us with a more complete picture of what children do and do not know about communicating spatial relations. PMID:22209401
Stulz, Niklaus; Pichler, Eva-Maria; Kawohl, Wolfram; Hepp, Urs
2018-02-05
Previous research suggested a distance decay effect in health services systems, with people living closer to service facilities being more likely to use them. In this ecological cross sectional study, we conducted spatial and statistical analyses in a Swiss mental health services system being legally bound to provide primary mental health care to approximately 620,000 inhabitants. We examined a cohort of all patients who were over 18 years old and who were treated in the mental health services system between January and December 2011. There were 5574 treatment cases during the 12-month period, 2161 inpatient cases and 3413 outpatient cases. Travel time by public transportation between patients' residence and the closest mental health service facility negatively predicted the utilization of outpatient services for all mental disorders, even after controlling for variability in ecological (e.g. socioeconomic) characteristics of the communities in the service provision area. For utilization of inpatient wards no geographical distance decay effect was observed, except for organic mental disorders. Based on these findings, outpatient clinics should be most effectively located decentralized and in the largest communities to meet the needs of the population as close as possible to where people live and to avoid remote areas being insufficiently supplied with mental health care. For mental hospitals and inpatient services decentralized location seems to be less important.
NASA Astrophysics Data System (ADS)
Davis, R.
2013-12-01
The purpose of this study is to test the conjecture that environmentally sustainable decisions and behaviors are related to individuals' conceptions of the natural world, in this case climate change; individuals' attitudes towards climate change; and the situations in which these decisions are made. The nature of mental models is an ongoing subject of disagreement. Some argue that mental models are coherent theories, much like scientific theories, that individuals employ systematically when reasoning about the world (Gopnik & Meltzoff, 1998). Others maintain that mental models are cobbled together from fragmented collections of ideas that are only loosely connected and context dependent (Disessa, 1988; Minstrell, 2000). It is likely that individuals sometimes reason about complex phenomena using systematic mental models and at other times reason using knowledge that is organized in fragmented pieces (Steedle & Shavelson, 2009). Thus, in measuring mental models of complex environmental systems, such as climate change, the assumption of systematicity may not be justified. Individuals may apply certain chains of reasoning in some contexts but not in others. The current study hypothesizes that an accurate mental model of climate change enables an individual to make effective evaluative judgments of environmental behavior options. The more an individual's mental model resembles that of an expert, the more consistent, accurate and automatic these judgments become. However, an accurate mental model is not sufficient to change environmental behavior. Real decisions and behaviors are products of a person-situation interaction: an interplay between psychosocial factors (such as knowledge and attitudes) and the situation in which the decision is made. This study investigates the relationship between both psychosocial and situational factors for climate change decisions. Data was collected from 436 adult participants through an online survey. The survey was comprised of demographic questions; three discreet instruments measuring (1) mental models of climate change, (2) attitudes and beliefs about climate change, and (3) self-reported behaviors; and an experimental intervention, followed by a behavioral intention question. Latent class analysis (LCA) and item-response theory (IRT) will be employed to analyze multiple-choice responses to the mental model survey to create groupings of individuals assumed to hold similar mental of climate change. A principal component analysis (PCA) using oblique rotation was employed to identify five scales (Chronbach's alpha > 0.80) within the attitude/belief instrument. Total and sub-scale scores were also calculated for self-reported behaviors. The relationships between mental models, attitudes and behaviors will be analyzed using multiple regression models. This work presents not only the development and validation of three novel instruments for accurately and efficiently measuring mental models, attitudes, and self-reported behaviors, but also provides insight into the types of mental models individuals hold. Understanding how climate change is conceptualized and how such knowledge influences attitudes and behaviors gives educators tools for guiding students towards more expert understandings while also enabling environmentalists to craft more effective messages.
NASA Astrophysics Data System (ADS)
Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran
2017-08-01
Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7
ERIC Educational Resources Information Center
Wei, Yifeng; Kutcher, Stan; Szumilas, Magdalena
2011-01-01
Adolescence is a critical period for the promotion of mental health and the treatment of mental disorders. Schools are well-positioned to address adolescent mental health. This paper describes a school mental health model, "School-Based Pathway to Care," for Canadian secondary schools that links schools with primary care providers and…
On Looking into the Black Box: Prospects and Limits in the Search for Mental Models
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Morris, N. M.
1984-01-01
To place the arguments advanced in this paper in alternative points of view with regard to mental models are reviewed. Use of the construct in areas such as neural information processing, manual control, decision making, problem solving, and cognitive science are discussed. Also reviewed are several taxonomies of mental models. The available empirical evidence for answering questions concerning the nature and usage of mental models is then discussed. A variety of studies are reviewed where the type and form of humans' knowledge have been manipulated. Also considered are numerous transfer of training studies whose results provide indirect evidence of the nature of mental models. The alternative perspectives considered and the spectrum of empirical evidence are combined to suggest a framework within which research on mental models can be viewed. By considering interactions of dimensions of this framework, the most salient unanswered questions can be identified.
NASA Astrophysics Data System (ADS)
Taher, M.; Hamidah, I.; Suwarma, I. R.
2017-09-01
This paper outlined the results of an experimental study on the effects of multi-representation approach in learning Archimedes Law on students’ mental model improvement. The multi-representation techniques implemented in the study were verbal, pictorial, mathematical, and graphical representations. Students’ mental model was classified into three levels, i.e. scientific, synthetic, and initial levels, based on the students’ level of understanding. The present study employed the pre-experimental methodology, using one group pretest-posttest design. The subject of the study was 32 eleventh grade students in a Public Senior High School in Riau Province. The research instrument included model mental test on hydrostatic pressure concept, in the form of essay test judged by experts. The findings showed that there was positive change in students’ mental model, indicating that multi-representation approach was effective to improve students’ mental model.
ERIC Educational Resources Information Center
Kelly, Ryan M.; Hills, Kimberly J.; Huebner, E. Scott; McQuillin, Samuel D.
2012-01-01
This study examined the longitudinal stability and dynamics of group membership within the Greenspoon and Sakflofske's dual-factor model of mental health. This expanded model incorporates information about subjective well-being (SWB), in addition to psychopathological symptoms, to better identify the mental health status and current functioning of…
Effects of spatial training on transitive inference performance in humans and rhesus monkeys
Gazes, Regina Paxton; Lazareva, Olga F.; Bergene, Clara N.; Hampton, Robert R.
2015-01-01
It is often suggested that transitive inference (TI; if A>B and B>C then A>C) involves mentally representing overlapping pairs of stimuli in a spatial series. However, there is little direct evidence to unequivocally determine the role of spatial representation in TI. We tested whether humans and rhesus monkeys use spatial representations in TI by training them to organize seven images in a vertical spatial array. Then, we presented subjects with a TI task using these same images. The implied TI order was either congruent or incongruent with the order of the trained spatial array. Humans in the congruent condition learned premise pairs more quickly, and were faster and more accurate in critical probe tests, suggesting that the spatial arrangement of images learned during spatial training influenced subsequent TI performance. Monkeys first trained in the congruent condition also showed higher test trial accuracy when the spatial and inferred orders were congruent. These results directly support the hypothesis that humans solve TI problems by spatial organization, and suggest that this cognitive mechanism for inference may have ancient evolutionary roots. PMID:25546105
Arcury, Thomas A; Gesler, Wilbert M; Preisser, John S; Sherman, Jill; Spencer, John; Perin, Jamie
2005-01-01
Objective This analysis determines the importance of geography and spatial behavior as predisposing and enabling factors in rural health care utilization, controlling for demographic, social, cultural, and health status factors. Data Sources A survey of 1,059 adults in 12 rural Appalachian North Carolina counties. Study Design This cross-sectional study used a three-stage sampling design stratified by county and ethnicity. Preliminary analysis of health services utilization compared weighted proportions of number of health care visits in the previous 12 months for regular check-up care, chronic care, and acute care across geographic, sociodemographic, cultural, and health variables. Multivariable logistic models identified independent correlates of health services utilization. Data Collection Methods Respondents answered standard survey questions. They located places in which they engaged health related and normal day-to-day activities; these data were entered into a geographic information system for analysis. Principal Findings Several geographic and spatial behavior factors, including having a driver's license, use of provided rides, and distance for regular care, were significantly related to health care utilization for regular check-up and chronic care in the bivariate analysis. In the multivariate model, having a driver's license and distance for regular care remained significant, as did several predisposing (age, gender, ethnicity), enabling (household income), and need (physical and mental health measures, number of conditions). Geographic measures, as predisposing and enabling factors, were related to regular check-up and chronic care, but not to acute care visits. Conclusions These results show the importance of geographic and spatial behavior factors in rural health care utilization. They also indicate continuing inequity in rural health care utilization that must be addressed in public policy. PMID:15663706
Root, Elisabeth Dowling; Thomas, Deborah S K; Campagna, Elizabeth J; Morrato, Elaine H
2014-08-27
Area-level variation in treatment and outcomes may be a potential source of confounding bias in observational comparative effectiveness studies. This paper demonstrates how to use exploratory spatial data analysis (ESDA) and spatial statistical methods to investigate and control for these potential biases. The case presented compares the effectiveness of two antipsychotic treatment strategies: oral second-generation antipsychotics (SGAs) vs. long-acting paliperiodone palmitate (PP). A new-start cohort study was conducted analyzing patient-level administrative claims data (8/1/2008-4/30/2011) from Missouri Medicaid. ESDA techniques were used to examine spatial patterns of antipsychotic prescriptions and outcomes (hospitalization and emergency department (ED) visits). Likelihood of mental health-related outcomes were compared between patients starting PP (N = 295) and oral SGAs (N = 8,626) using multilevel logistic regression models adjusting for patient composition (demographic and clinical factors) and geographic region. ESDA indicated significant spatial variation in antipsychotic prescription patterns and moderate variation in hospitalization and ED visits thereby indicating possible confounding by geography. In the multilevel models for this antipsychotic case example, patient composition represented a stronger source of confounding than geographic context. Because geographic variation in health care delivery is ubiquitous, it could be a comparative effectiveness research (CER) best practice to test for possible geographic confounding in observational data. Though the magnitude of the area-level geography effects were small in this case, they were still statistically significant and should therefore be examined as part of this observational CER study. More research is needed to better estimate the range of confounding due to geography across different types of observational comparative effectiveness studies and healthcare utilization outcomes.
2011-01-01
Background Recent global mental health research suggests that mental health interventions can be adapted for use across cultures and in low resource environments. As evidence for the feasibility and effectiveness of certain specific interventions begins to accumulate, guidelines are needed for how to train, supervise, and ideally sustain mental health treatment delivery by local providers in low- and middle-income countries (LMIC). Model and case presentations This paper presents an apprenticeship model for lay counselor training and supervision in mental health treatments in LMIC, developed and used by the authors in a range of mental health intervention studies conducted over the last decade in various low-resource settings. We describe the elements of this approach, the underlying logic, and provide examples drawn from our experiences working in 12 countries, with over 100 lay counselors. Evaluation We review the challenges experienced with this model, and propose some possible solutions. Discussion We describe and discuss how this model is consistent with, and draws on, the broader dissemination and implementation (DI) literature. Conclusion In our experience, the apprenticeship model provides a useful framework for implementation of mental health interventions in LMIC. Our goal in this paper is to provide sufficient details about the apprenticeship model to guide other training efforts in mental health interventions. PMID:22099582
A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.
Simner, Julia; Mayo, Neil; Spiller, Mary-Jane
2009-01-01
Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).
The Fractions SNARC Revisited: Processing Fractions on a Consistent Mental Number Line.
Toomarian, Elizabeth Y; Hubbard, Edward M
2017-07-12
The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components (Bonato et al. 2007). Subsequent studies have produced evidence for default holistic processing (Meert et al., 2009; 2010), but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments: Experiment 1 replicated Bonato et al. (2007); 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions, and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.
Braverman, Julia; Dunn, Rita
2018-01-01
Mental synthesis is the conscious purposeful process of synthesizing novel mental images from objects stored in memory. Mental synthesis ability is essential for understanding complex syntax, spatial prepositions, and verb tenses. In typical children, the timeline of mental synthesis acquisition is highly correlated with an increasing vocabulary. Children with Autism Spectrum Disorder (ASD), on the other hand, may learn hundreds of words but never acquire mental synthesis. In these individuals, tests assessing vocabulary comprehension may fail to demonstrate the profound deficit in mental synthesis. We developed a parent-reported Mental Synthesis Evaluation Checklist (MSEC) designed to assess mental synthesis acquisition in ASD children. The psychometric quality of MSEC was tested with 3715 parents of ASD children. Internal reliability of the 20-item MSEC was good (Cronbach’s alpha >0.9). MSEC exhibited adequate test–retest reliability; good construct validity, supported by a positive correlation with the Autism Treatment Evaluation Checklist (ATEC) Communication subscale; and good known group validity reflected by the difference in MSEC scores for children of different ASD severity levels. The MSEC questionnaire is copyright-free and can be used by researchers as a complimentary subscale for the ATEC evaluation. We hope that the addition of MSEC will make the combined assessment more sensitive to small steps in a child’s development. As MSEC does not rely on productive language, it may be an especially useful tool for assessing the development of nonverbal and minimally verbal children. PMID:29783788
Laceulle, Odilia M; Ormel, Johan; Vollebergh, Wilma A M; van Aken, Marcel A G; Nederhof, Esther
2014-03-01
This study aimed to test the vulnerability model of the relationship between temperament and mental disorders using a large sample of adolescents from the TRacking Adolescents Individual Lives' Survey (TRAILS). The vulnerability model argues that particular temperaments can place individuals at risk for the development of mental health problems. Importantly, the model may imply that not only baseline temperament predicts mental health problems prospectively, but additionally, that changes in temperament predict corresponding changes in risk for mental health problems. Data were used from 1195 TRAILS participants. Adolescent temperament was assessed both at age 11 and at age 16. Onset of mental disorders between age 16 and 19 was assessed at age 19, by means of the World Health Organization Composite International Diagnostic Interview (WHO CIDI). Results showed that temperament at age 11 predicted future mental disorders, thereby providing support for the vulnerability model. Moreover, temperament change predicted future mental disorders above and beyond the effect of basal temperament. For example, an increase in frustration increased the risk of mental disorders proportionally. This study confirms, and extends, the vulnerability model. Consequences of both temperament and temperament change were general (e.g., changes in frustration predicted both internalizing and externalizing disorders) as well as dimension specific (e.g., changes in fear predicted internalizing but not externalizing disorders). These findings confirm previous studies, which showed that mental disorders have both unique and shared underlying temperamental risk factors. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
A diffusion modeling approach to understanding contextual cueing effects in children with ADHD.
Weigard, Alexander; Huang-Pollock, Cynthia
2014-12-01
Strong theoretical models suggest implicit learning deficits may exist among children with Attention Deficit Hyperactivity Disorder (ADHD). We examine implicit contextual cueing (CC) effects among children with ADHD (n = 72) and non-ADHD Controls (n = 36). Using Ratcliff's drift diffusion model, we found that among Controls, the CC effect is due to improvements in attentional guidance and to reductions in response threshold. Children with ADHD did not show a CC effect; although they were able to use implicitly acquired information to deploy attentional focus, they had more difficulty adjusting their response thresholds. Improvements in attentional guidance and reductions in response threshold together underlie the CC effect. Results are consistent with neurocognitive models of ADHD that posit subcortical dysfunction but intact spatial attention, and encourage the use of alternative data analytic methods when dealing with reaction time data. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Working memory subsystems and task complexity in young boys with Fragile X syndrome.
Baker, S; Hooper, S; Skinner, M; Hatton, D; Schaaf, J; Ornstein, P; Bailey, D
2011-01-01
Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual-spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results suggested that boys with FXS showed deficits in phonological loop and visual-spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual-spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual-spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
Working memory subsystems and task complexity in young boys with Fragile X syndrome
Baker, S.; Hooper, S.; Skinner, M.; Hatton, D.; Schaaf, J.; Ornstein, P.; Bailey, D.
2011-01-01
Background Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual–spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. Methods The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results Results suggested that boys with FXS showed deficits in phonological loop and visual–spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual–spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual–spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. Conclusions These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. PMID:21121991
Mental Models: Knowledge in the Head and Knowledge in the World.
ERIC Educational Resources Information Center
Jonassen, David H.; Henning, Philip
1999-01-01
Explores the utility of mental models as learning outcomes in using complex and situated learning environments. Describes two studies: one aimed at eliciting mental models in the heads of novice refrigeration technicians, and the other an ethnographic study eliciting knowledge and models within the community of experienced refrigeration…
Jiang, Nan; Lu, Nan
2018-04-30
Keyes' two continua model is a useful concept in which mental health and mental illness exist on two separate axes. Based on this model, this study examined the prevalence and correlates of three mental health categories among older adults in China. Cross-sectional data were derived from Wave 1 of the Study on Global AGEing and Adult Health. Participants were categorized into complete mental health (CMH), complete mental illness (CMI), and moderate mental health (MMH) groups. Multinomial logistic regressions were used. The prevalence of CMH, CMI, and MMH in China was 18%, 16%, and 66%, respectively. Being female, unmarried, younger, and feeling unhealthy were more likely to result in placement in the CMI category. Employment, education, and cognitive function were identified as important protective factors of CMH. Age, income, urban or rural residence, and physical function difficulty were associated with all three categories. We demonstrated the utility of the two continua model in identifying mental health needs in Chinese contexts. The findings suggest that future policy reforms and clinical interventions should establish a more comprehensive mental health category as a screening tool nationwide. The promotion of social engagement could play an important role in treating mental illness and improving positive mental health.
Li, Jin-Biau; Tsai, Sing-Ling
2017-06-01
Evidence-based nursing science has identified psychological recovery, partnership, and medication adherence as factors that have influenced the development of mental health care. This article discusses the process by which mental health care has developed from a medical / rehabilitation-focused model to a model that focuses on patient empowerment. The current model aims to assist patients to achieve self-awareness and to develop coping skills that enhance their motivation to transform. Medical advances have improved the control of psychiatric symptoms. Following the introduction of 2nd generation antipsychotics, patients were invited to establish decisions related to these prescription medications. Under the principles of patient-centered service, Taiwanese mental health professionals have changed their relationship with patients from a therapeutic model to a mutual-partnership model. Furthermore, investigations of the therapeutic care of patients with mental illness have used the needs of patients as their starting point and emphasized various aspects of patient and caregiver needs. Taiwanese mental health professionals are searching for a model of mental health care that is superior to the traditional operative framework of medical authority.
Drach-Zahavy, Anat; Broyer, Chaya; Dagan, Efrat
2017-09-01
Shared mental models are crucial for constructing mutual understanding of the patient's condition during a clinical handover. Yet, scant research, if any, has empirically explored mental models of the parties involved in a clinical handover. This study aimed to examine the similarities among mental models of incoming and outgoing nurses, and to test their accuracy by comparing them with mental models of expert nurses. A cross-sectional study, exploring nurses' mental models via the concept mapping technique. 40 clinical handovers. Data were collected via concept mapping of the incoming, outgoing, and expert nurses' mental models (total of 120 concept maps). Similarity and accuracy for concepts and associations indexes were calculated to compare the different maps. About one fifth of the concepts emerged in both outgoing and incoming nurses' concept maps (concept similarity=23%±10.6). Concept accuracy indexes were 35%±18.8 for incoming and 62%±19.6 for outgoing nurses' maps. Although incoming nurses absorbed fewer number of concepts and associations (23% and 12%, respectively), they partially closed the gap (35% and 22%, respectively) relative to expert nurses' maps. The correlations between concept similarities, and incoming as well as outgoing nurses' concept accuracy, were significant (r=0.43, p<0.01; r=0.68 p<0.01, respectively). Finally, in 90% of the maps, outgoing nurses added information concerning the processes enacted during the shift, beyond the expert nurses' gold standard. Two seemingly contradicting processes in the handover were identified. "Information loss", captured by the low similarity indexes among the mental models of incoming and outgoing nurses; and "information restoration", based on accuracy measures indexes among the mental models of the incoming nurses. Based on mental model theory, we propose possible explanations for these processes and derive implications for how to improve a clinical handover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatializing Emotion: No Evidence for a Domain-General Magnitude System.
Pitt, Benjamin; Casasanto, Daniel
2017-11-22
People implicitly associate different emotions with different locations in left-right space. Which aspects of emotion do they spatialize, and why? Across many studies people spatialize emotional valence, mapping positive emotions onto their dominant side of space and negative emotions onto their non-dominant side, consistent with theories of metaphorical mental representation. Yet other results suggest a conflicting mapping of emotional intensity (a.k.a., emotional magnitude), according to which people associate more intense emotions with the right and less intense emotions with the left - regardless of their valence; this pattern has been interpreted as support for a domain-general system for representing magnitudes. To resolve the apparent contradiction between these mappings, we first tested whether people implicitly map either valence or intensity onto left-right space, depending on which dimension of emotion they attend to (Experiments 1a, b). When asked to judge emotional valence, participants showed the predicted valence mapping. However, when asked to judge emotional intensity, participants showed no systematic intensity mapping. We then tested an alternative explanation of findings previously interpreted as evidence for an intensity mapping (Experiments 2a, b). These results suggest that previous findings may reflect a left-right mapping of spatial magnitude (i.e., the size of a salient feature of the stimuli) rather than emotion. People implicitly spatialize emotional valence, but, at present, there is no clear evidence for an implicit lateral mapping of emotional intensity. These findings support metaphor theory and challenge the proposal that mental magnitudes are represented by a domain-general metric that extends to the domain of emotion. Copyright © 2017 Cognitive Science Society, Inc.
Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L
2018-02-01
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Zielinski, Mark R; Davis, J Mark; Fadel, James R; Youngstedt, Shawn D
2013-08-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. Published by Elsevier B.V.
Towards a functional model of mental disorders incorporating the laws of thermodynamics.
Murray, George C; McKenzie, Karen
2013-05-01
The current paper presents the hypothesis that the understanding of mental disorders can be advanced by incorporating the laws of thermodynamics, specifically relating to energy conservation and energy transfer. These ideas, along with the introduction of the notion that entropic activities are symptomatic of inefficient energy transfer or disorder, were used to propose a model of understanding mental ill health as resulting from the interaction of entropy, capacity and work (environmental demands). The model was applied to Attention Deficit Hyperactivity Disorder, and was shown to be compatible with current thinking about this condition, as well as emerging models of mental disorders as complex networks. A key implication of the proposed model is that it argues that all mental disorders require a systemic functional approach, with the advantage that it offers a number of routes into the assessment, formulation and treatment for mental health problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clem, Douglas Wayne
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.
Visuospatial training improves elementary students' mathematics performance.
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2017-06-01
Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.
Seventh Grade Students' Mental Models of the Greenhouse Effect
ERIC Educational Resources Information Center
Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn
2011-01-01
This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…
Externalising Students' Mental Models through Concept Maps
ERIC Educational Resources Information Center
Chang, Shu-Nu
2007-01-01
The purpose of this study is to use concept maps as an "expressed model" to investigate students' mental models regarding the homeostasis of blood sugar. The difficulties in learning the concept of homeostasis and in probing mental models have been revealed in many studies. Homeostasis of blood sugar is one of the themes in junior high…
Social Work Education on Mental Health: Postmodern Discourse and the Medical Model
ERIC Educational Resources Information Center
Casstevens, W. J.
2010-01-01
This article provides a pedagogical approach to presenting alternatives along with the traditional medical model in the context of mental health treatment and service provision. Given the current influence of the medical model in community mental health, this article outlines a rationale for challenging the model and considering alternative models…
Application of the PRECEDE Model to Understanding Mental Health Promoting Behaviors in Hong Kong
ERIC Educational Resources Information Center
Mo, Phoenix K. H.; Mak, Winnie W. S.
2008-01-01
The burdens related to mental illness have been increasingly recognized in many countries. Nevertheless, research in positive mental health behaviors remains scarce. This study utilizes the Predisposing, Reinforcing, and Enabling Causes in Education Diagnosis and Evaluation (PRECEDE) model to identify factors associated with mental health…
Rizzo, Jon; Bell, Alexandra
2018-05-09
A mental model is the collection of an individual's perceptions, values, and expectations about a particular aspect of their life, which strongly influences behaviors. This study explored orthopedic outpatients mental models of adherence to prescribed home exercise programs and how they related to mental models of adherence to other types of personal regimens. The study followed an interpretive description qualitative design. Data were collected via two semi-structured interviews. Interview One focused on participants prior experiences adhering to personal regimens. Interview Two focused on experiences adhering to their current prescribed home exercise program. Data analysis followed a constant comparative method. Findings revealed similarity in perceptions, values, and expectations that informed individuals mental models of adherence to personal regimens and prescribed home exercise programs. Perceived realized results, expected results, perceived social supports, and value of convenience characterized mental models of adherence. Parallels between mental models of adherence for prescribed home exercise and other personal regimens suggest that patients adherence behavior to prescribed routines may be influenced by adherence experiences in other aspects of their lives. By gaining insight into patients adherence experiences, values, and expectations across life domains, clinicians may tailor supports that enhance home exercise adherence. Implications for Rehabilitation A mental model is the collection of an individual's perceptions, values, and expectations about a particular aspect of their life, which is based on prior experiences and strongly influences behaviors. This study demonstrated similarity in orthopedic outpatients mental models of adherence to prescribed home exercise programs and adherence to personal regimens in other aspects of their lives. Physical therapists should inquire about patients non-medical adherence experiences, as strategies patients customarily use to adhere to other activities may inform strategies to promote prescribed home exercise adherence.
Yampolskaya, Svetlana; Sharrock, Patty J; Clark, Colleen; Hanson, Ardis
2017-10-01
This longitudinal study examined the parallel trajectories of mental health service use and mental health status among children placed in Florida out-of-home care. The results of growth curve modeling suggested that children with greater mental health problems initially received more mental health services. Initial child mental health status, however, had no effect on subsequent service provision when all outpatient mental health services were included. When specific types of mental health services, such as basic outpatient, targeted case management, and intensive mental health services were examined, results suggested that children with compromised functioning during the baseline period received more intensive mental health services over time. However, this increased provision of intensive mental health services did not improve mental health status, rather it was significantly associated with progressively worse mental health functioning. These findings underscore the need for regular comprehensive mental health assessments focusing on specific needs of the child.
Roberts, J E; Bell, M A
2000-01-01
The area of cognitive research that has produced the most consistent sex differences is spatial ability. In particular, men usually perform better on mental rotation tasks than women. Performance on mental rotation tasks has been associated with right parietal activation levels, both during task performance and prior to performance during baseline recordings. This study examined the relations among sex, age, electroencephalogram (EEG) hemispheric activation (at the 10.5 Hz to 13.5 Hz frequency band), and 2-D mental rotation task ability. Nineteen 8-year-olds (10 boys) and 20 college students (10 men) had EEG recorded at baseline and while performing a mental rotation task. Men had a faster reaction time on the mental rotation task than women, whereas there were no differences between boys and girls. After covarying for baseline EEG power values, men exhibited more activation (lower EEG power values) than women in the parietal and posterior temporal regions, whereas boys' and girls' power values did not differ in the parietal or posterior temporal regions. Furthermore, during the baseline condition, men generally exhibited more activation (lower EEG power values) throughout all regions of the scalp. Results support the hypothesis that a change that affects both brain activation and performance on mental rotation tasks occurs sometime between childhood and adulthood.
Mental Imagery Scale: a new measurement tool to assess structural features of mental representations
NASA Astrophysics Data System (ADS)
D'Ercole, Martina; Castelli, Paolo; Giannini, Anna Maria; Sbrilli, Antonella
2010-05-01
Mental imagery is a quasi-perceptual experience which resembles perceptual experience, but occurring without (appropriate) external stimuli. It is a form of mental representation and is often considered centrally involved in visuo-spatial reasoning and inventive and creative thought. Although imagery ability is assumed to be functionally independent of verbal systems, it is still considered to interact with verbal representations, enabling objects to be named and names to evoke images. In literature, most measurement tools for evaluating imagery capacity are self-report instruments focusing on differences in individuals. In the present work, we applied a Mental Imagery Scale (MIS) to mental images derived from verbal descriptions in order to assess the structural features of such mental representations. This is a key theme for those disciplines which need to turn objects and representations into words and vice versa, such as art or architectural didactics. To this aim, an MIS questionnaire was administered to 262 participants. The questionnaire, originally consisting of a 33-item 5-step Likert scale, was reduced to 28 items covering six areas: (1) Image Formation Speed, (2) Permanence/Stability, (3) Dimensions, (4) Level of Detail/Grain, (5) Distance and (6) Depth of Field or Perspective. Factor analysis confirmed our six-factor hypothesis underlying the 28 items.
NASA Astrophysics Data System (ADS)
Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir
2016-01-01
Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.
Using 3D modeling techniques to enhance teaching of difficult anatomical concepts
Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt
2016-01-01
Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601
A Model of Mental State Transition Network
NASA Astrophysics Data System (ADS)
Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo
Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.
Boccia, M; Piccardi, L; Palermo, L; Nemmi, F; Sulpizio, V; Galati, G; Guariglia, C
2014-09-05
Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cross-national diffusion of mental health policy
Shen, Gordon C
2014-01-01
Background: Following the tenets of world polity and innovation diffusion theories, I focus on the coercive and mimetic forces that influence the diffusion of mental health policy across nations. International organizations’ mandates influence government behavior. Dependency on external resources, namely foreign aid, also affects governments’ formulation of national policy. And finally, mounting adoption in a region alters the risk, benefits, and information associated with a given policy. Methods: I use post-war, discrete time data spanning 1950 to 2011 and describing 193 nations’ mental health systems to test these diffusion mechanisms. Results: I find that the adoption of mental health policy is highly clustered temporally and spatially. Results provide support that membership in the World Health Organization (WHO), interdependence with neighbors and peers in regional blocs, national income status, and migrant sub-population are responsible for isomorphism. Aid, however, is an insufficient determinant of mental health policy adoption. Conclusion: This study examines the extent to which mental, neurological, and substance use disorder are addressed in national and international contexts through the lens of policy diffusion theory. It also adds to policy dialogues about non-communicable diseases as nascent items on the global health agenda. PMID:25337601
Crossingham, Jodi L; Jenkinson, Jodie; Woolridge, Nick; Gallinger, Steven; Tait, Gordon A; Moulton, Carol-Anne E
2009-01-01
Background: Given the increasing number of indications for liver surgery and the growing complexity of operations, many trainees in surgical, imaging and related subspecialties require a good working knowledge of the complex intrahepatic anatomy. Computed tomography (CT), the most commonly used liver imaging modality, enhances our understanding of liver anatomy, but comprises a two-dimensional (2D) representation of a complex 3D organ. It is challenging for trainees to acquire the necessary skills for converting these 2D images into 3D mental reconstructions because learning opportunities are limited and internal hepatic anatomy is complicated, asymmetrical and variable. We have created a website that uses interactive 3D models of the liver to assist trainees in understanding the complex spatial anatomy of the liver and to help them create a 3D mental interpretation of this anatomy when viewing CT scans. Methods: Computed tomography scans were imported into DICOM imaging software (OsiriX™) to obtain 3D surface renderings of the liver and its internal structures. Using these 3D renderings as a reference, 3D models of the liver surface and the intrahepatic structures, portal veins, hepatic veins, hepatic arteries and the biliary system were created using 3D modelling software (Cinema 4D™). Results: Using current best practices for creating multimedia tools, a unique, freely available, online learning resource has been developed, entitled Visual Interactive Resource for Teaching, Understanding And Learning Liver Anatomy (VIRTUAL Liver) (http://pie.med.utoronto.ca/VLiver). This website uses interactive 3D models to provide trainees with a constructive resource for learning common liver anatomy and liver segmentation, and facilitates the development of the skills required to mentally reconstruct a 3D version of this anatomy from 2D CT scans. Discussion: Although the intended audience for VIRTUAL Liver consists of residents in various medical and surgical specialties, the website will also be useful for other health care professionals (i.e. radiologists, nurses, hepatologists, radiation oncologists, family doctors) and educators because it provides a comprehensive resource for teaching liver anatomy. PMID:19816618
Millennial Students' Mental Models of Information Retrieval
ERIC Educational Resources Information Center
Holman, Lucy
2009-01-01
This qualitative study examines first-year college students' online search habits in order to identify patterns in millennials' mental models of information retrieval. The study employed a combination of modified contextual inquiry and concept mapping methodologies to elicit students' mental models. The researcher confirmed previously observed…
Students' Mental Models of Atomic Spectra
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
Townley, Greg; Brusilovskiy, Eugene; Salzer, Mark S
2017-03-01
Despite a wealth of studies examining the relationship between urbanicity (i.e., living in an urban area) and psychological distress, there is a paucity of research examining the relationship between urbanicity, community living, and community participation of adults with serious mental illnesses. This study addresses this knowledge gap by assessing urban and non-urban differences in community participation, sense of community, mental health stigma, and perceptions of the neighborhood environment among individuals with serious mental illnesses living independently throughout the United States. A total of 300 individuals with serious mental illnesses recruited from 21 outpatient mental health service organizations in 15 states completed a phone survey about their community living and participation experiences. Urbanicity was examined at two spatial scales (block group and county), and independent-samples t-tests were employed to assess urban and non-urban differences in community living and participation variables. Levels of community participation and perceptions of neighborhood quality and crime were higher in urban block groups; sense of community was higher in urban counties; and perceptions of mental health stigma were higher in non-urban counties. Results inform the methodological literature on best practices for assessing urbanicity, as well as interventions aimed at increasing community participation and improving aspects of the built and social environment that affect individuals who experience mental health distress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Consumer-operated service program members' explanatory models of mental illness and recovery.
Hoy, Janet M
2014-10-01
Incorporating individuals' understandings and explanations of mental illness into service delivery offers benefits relating to increased service relevance and meaning. Existing research delineates explanatory models of mental illness held by individuals in home, outpatient, and hospital-based contexts; research on models held by those in peer-support contexts is notably absent. In this article, I describe themes identified within and across explanatory models of mental illness and recovery held by mental health consumers (N = 24) at one peer center, referred to as a consumer-operated service center (COSP). Participants held explanatory models inclusive of both developmental stressors and biomedical causes, consistent with a stress-diathesis model (although no participant explicitly referenced such). Explicit incorporation of stress-diathesis constructs into programming at this COSP offers the potential of increasing service meaning and relevance. Identifying and incorporating shared meanings across individuals' understandings of mental illness likewise can increase relevance and meaning for particular subgroups of service users. © The Author(s) 2014.
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Azin, Mahdieh; Zangiabadi, Nasser; Moghadas Tabrizi, Yousef; Iranmanesh, Farhad; Baneshi, Mohammad Reza
2016-08-01
Mental rotation is a cognitive motor process which was impaired in different neurologic disorders. We investigated whether there were deficits in response pattern, reaction time and response accuracy rate of mental rotation in multiple sclerosis (MS) patients compared to healthy subjects and whether cognitive dysfunctions in MS patients were correlated with mental rotation deficits. Moreover, we showed whether there was a difference between upper and lower-limbs mental rotation in MS patients. Thirty-five MS patients and 25 healthy subjects performed hand mental rotation (HMR) and foot mental rotation (FMR) tasks. Visual information processing speed, spatial learning and memory ability, and visuospatial processing were assessed by Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT-R), and Judgment of Line Orientation Test (JLO) respectively in MS patients. Reaction time for both hand and foot stimuli increased, and response accuracy rate for hand stimuli decreased in MS patients compared to healthy subjects, but response pattern of mental rotation in MS patients persisted. Similar to healthy subjects, MS patients performed upper-limbs mental rotation more easily than a lower-limbs mental rotation with more speed and response accuracy rate. Reaction time and response accuracy rate were correlated with the mentioned cognitive functions. MS patients made use of the correct response pattern for problem solving of increasing orientation from upright stimuli. Reaction time and response accuracy rate altered in these patients and this alteration might occur along with impairment in motor planning. Subjects' better responding to hand stimuli was due to more familiarity with hand stimuli. The correlation of mental rotation ability with cognitive functions indicates the possible role of cognitive functions in mental rotation.
Boasen, Jared; Takeshita, Yuya; Kuriki, Shinya; Yokosawa, Koichi
2018-01-01
Group musical improvisation is thought to be akin to conversation, and therapeutically has been shown to be effective at improving communicativeness, sociability, creative expression, and overall psychological health. To understand these therapeutic effects, clarifying the nature of brain activity during improvisational cognition is important. Some insight regarding brain activity during improvisational music cognition has been gained via functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). However, we have found no reports based on magnetoencephalography (MEG). With the present study, we aimed to demonstrate the feasibility of improvisational music performance experimentation in MEG. We designed a novel MEG-compatible keyboard, and used it with experienced musicians ( N = 13) in a music performance paradigm to spectral-spatially differentiate spontaneous brain activity during mental imagery of improvisational music performance. Analyses of source activity revealed that mental imagery of improvisational music performance induced greater theta (5-7 Hz) activity in left temporal areas associated with rhythm production and communication, greater alpha (8-12 Hz) activity in left premotor and parietal areas associated with sensorimotor integration, and less beta (15-29 Hz) activity in right frontal areas associated with inhibition control. These findings support the notion that musical improvisation is conversational, and suggest that creation of novel auditory content is facilitated by a more internally-directed, disinhibited cognitive state.
Brayda, L.; De Carli, F.; Chellali, R.; Famà, F.; Bruzzo, C.; Lucagrossi, L.; Rodriguez, G.
2012-01-01
The neural correlates of exploration and cognitive mapping in blindness remain elusive. The role of visuo-spatial pathways in blind vs. sighted subjects is still under debate. In this preliminary study, we investigate, as a possible estimation of the activity in the visuo-spatial pathways, the EEG patterns of blind and blindfolded-sighted subjects during the active tactile construction of cognitive maps from virtual objects compared with rest and passive tactile stimulation. Ten blind and ten matched, blindfolded-sighted subjects participated in the study. Events were defined as moments when the finger was only stimulated (passive stimulation) or the contour of a virtual object was touched (during active exploration). Event-related spectral power and coherence perturbations were evaluated within the beta 1 band (14–18 Hz). They were then related to a subjective cognitive-load estimation required by the explorations [namely, perceived levels of difficulty (PLD)]. We found complementary cues for sensory substitution and spatial processing in both groups: both blind and sighted subjects showed, while exploring, late power decreases and early power increases, potentially associated with motor programming and touch, respectively. The latter involved occipital areas only for blind subjects (long-term plasticity) and only during active exploration, thus supporting tactile-to-visual sensory substitution. In both groups, coherences emerged among the fronto-central, centro-parietal, and occipito-temporal derivations associated with visuo-spatial processing. This seems in accordance with mental map construction involving spatial processing, sensory-motor processing, and working memory. The observed involvement of the occipital regions suggests that a substitution process also occurs in sighted subjects. Only during explorations did coherence correlate positively with PLD for both groups and in derivations, which can be related to visuo-spatial processing, supporting the existence of supramodal spatial processing independently of vision capabilities. PMID:22338024
Maheedhariah, Meera S.; Ghani, Sarah; Raja, Anusha; Patel, Vikram
2017-01-01
Background Given the scarcity of specialist mental healthcare in India, diverse community mental healthcare models have evolved. This study explores and compares Indian models of mental healthcare delivered by primary-level workers (PHW), and health workers’ roles within these. We aim to describe current service delivery to identify feasible and acceptable models with potential for scaling up. Methods Seventy two programmes (governmental and non-governmental) across 12 states were visited. 246 PHWs, coordinators, leaders, specialists and other staff were interviewed to understand the programme structure, the model of mental health delivery and health workers’ roles. Data were analysed using framework analysis. Results Programmes were categorised using an existing framework of collaborative and non-collaborative models of primary mental healthcare. A new model was identified: the specialist community model, whereby PHWs are trained within specialist programmes to provide community support and treatment for those with severe mental disorders. Most collaborative and specialist community models used lay health workers rather than doctors. Both these models used care managers. PHWs and care managers received support often through multiple specialist and non-specialist organisations from voluntary and government sectors. Many projects still use a simple yet ineffective model of training without supervision (training and identification/referral models). Discussion and conclusion Indian models differ significantly to those in high-income countries—there are less professional PHWs used across all models. There is also intensive specialist involvement particularly in the community outreach and collaborative care models. Excessive reliance on specialists inhibits their scalability, though they may be useful in targeted interventions for severe mental disorders. We propose a revised framework of models based on our findings. The current priorities are to evaluate the comparative effectiveness, cost-effectiveness and scalability of these models in resource-limited settings both in India and in other low- and middle- income countries. PMID:28582445
Beyond attributions: Understanding public stigma of mental illness with the common sense model.
Mak, Winnie W S; Chong, Eddie S K; Wong, Celia C Y
2014-03-01
The present study applied the common sense model (i.e., cause, controllability, timeline, consequences, and illness coherence) to understand public attitudes toward mental illness and help-seeking intention and to examine the mediating role of perceived controllability between causal attributions with public attitudes and help seeking. Based on a randomized household sample of 941 Chinese community adults in Hong Kong, results of the structural equation modeling demonstrated that people who endorsed cultural lay beliefs tended to perceive the course of mental illness as less controllable, whereas those with psychosocial attributions see its course as more controllable. The more people perceived the course of mental illness as less controllable, more chronic, and incomprehensible, the lower was their acceptance and the greater was mental illness stigma. Furthermore, those who perceived mental illness with dire consequences were more likely to feel greater stigma and social distance. Conversely, when people were more accepting, they were more likely to seek help for psychological services and felt a shorter social distance. The common sense model provides a multidimensional framework in understanding public's mental illness perceptions and stigma. Not only should biopsychosocial determinants of mental illness be advocated to the public, cultural myths toward mental illness must be debunked.
Roldan, Stephanie M
2017-01-01
One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.
Roldan, Stephanie M.
2017-01-01
One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation. PMID:28588538
Mental Models: A Robust Definition
ERIC Educational Resources Information Center
Rook, Laura
2013-01-01
Purpose: The concept of a mental model has been described by theorists from diverse disciplines. The purpose of this paper is to offer a robust definition of an individual mental model for use in organisational management. Design/methodology/approach: The approach adopted involves an interdisciplinary literature review of disciplines, including…
A Feedback Learning and Mental Models Perspective on Strategic Decision Making
ERIC Educational Resources Information Center
Capelo, Carlos; Dias, Joao Ferreira
2009-01-01
This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term…
ERIC Educational Resources Information Center
Gibbons, Pamela
1995-01-01
Describes a study that investigated individual differences in the construction of mental models of recursion in LOGO programming. The learning process was investigated from the perspective of Norman's mental models theory and employed diSessa's ontology regarding distributed, functional, and surrogate mental models, and the Luria model of brain…
An empirical analysis of executive behaviour with hospital executive information systems in Taiwan.
Huang, Wei-Min
2013-01-01
Existing health information systems largely only support the daily operations of a medical centre, and are unable to generate the information required by executives for decision-making. Building on past research concerning information retrieval behaviour and learning through mental models, this study examines the use of information systems by hospital executives in medical centres. It uses a structural equation model to help find ways hospital executives might use information systems more effectively. The results show that computer self-efficacy directly affects the maintenance of mental models, and that system characteristics directly impact learning styles and information retrieval behaviour. Other results include the significant impact of perceived environmental uncertainty on scan searches; information retrieval behaviour and focused searches on mental models and perceived efficiency; scan searches on mental model building; learning styles and model building on perceived efficiency; and finally the impact of mental model maintenance on perceived efficiency and effectiveness.
Towards a National Mental Retardation Manpower Model for Canada.
ERIC Educational Resources Information Center
Linton, Thomas E.
The stated need for developing a national mental retardation manpower model for Canada is not the manpower shortages in mental retardation, but the unsound conceptual and functional approaches to the socialization and education of the mentally retarded. The report is divided into the four major areas investigated by a task force. First, the…
Tidal waves: Implementing a new model of mental health recovery and reclamation.
Brookes, Nancy; Murata, Lisa; Tansey, Margaret
2008-10-01
The Royal Ottawa Mental Health Centre was the first North American site to implement the Tidal Model of Mental Health Recovery and Reclamation. This empowering approach to practice focuses on learning persons' stories as the key to practising person-centred nursing. The authors, who constituted the Tidal implementation team at ROMHC, describe the journey to excellence in psychiatric and mental health nursing practice following the introduction of the model.
Lai, Karen; Guo, Sisi; Ijadi-Maghsoodi, Roya; Puffer, Maryjane; Kataoka, Sheryl H.
2016-01-01
Objective School-based health centers (SBHCs) reduce mental health access-to-care barriers and improve educational outcomes for youth. This qualitative study evaluates the innovations and challenges of a unique network of SBHCs in a large, urban school district, as they attempt to integrate health, mental health, and educational services. Methods The 43 participants sampled included mental health providers, primary care providers, and care coordinators at 14 SBHCs. Semi-structured interviews with each participant were audio-recorded and transcribed. Themes were identified and coded using Atlas.ti 5.1, and collapsed into three domains: Operations, Partnership, and Engagement. Results Interviews revealed provider models ranging from single agencies offering both health and mental health services to co-located services. Sites with the Health Agency providing at least some mental health services reported more mental health screenings. Many sites utilized SBHC coordinators and coordination team meetings to facilitate relationships between schools and Health Agency and Community Mental Health Clinic providers. Partnership challenges included confidentiality policies and staff turnover. Participants also highlighted student and parent engagement, through culturally sensitive services, peer health advocates, and “drop-in” lunches. Conclusions Staffing and operational models are critical in the success of health-mental health-education integration. Among the provider models observed, the combined health and mental health provider model offered the most integrated services. Despite barriers, providers and schools have begun to implement novel solutions for operational problems and family engagement in mental health services. Implications for future SBHCs as an integrated model are described. PMID:27417895
Mental workload prediction based on attentional resource allocation and information processing.
Xiao, Xu; Wanyan, Xiaoru; Zhuang, Damin
2015-01-01
Mental workload is an important component in complex human-machine systems. The limited applicability of empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human factors interface design and reducing human errors.
Mental health status and healthcare utilization among community dwelling older adults.
Adepoju, Omolola; Lin, Szu-Hsuan; Mileski, Michael; Kruse, Clemens Scott; Mask, Andrew
2018-04-27
Shifts in mental health utilization patterns are necessary to allow for meaningful access to care for vulnerable populations. There have been long standing issues in how mental health is provided, which has caused problems in that care being efficacious for those seeking it. To assess the relationship between mental health status and healthcare utilization among adults ≥65 years. A negative binomial regression model was used to assess the relationship between mental health status and healthcare utilization related to office-based physician visits, while a two-part model, consisting of logistic regression and negative binomial regression, was used to separately model emergency visits and inpatient services. The receipt of care in office-based settings were marginally higher for subjects with mental health difficulties. Both probabilities and counts of inpatient hospitalizations were similar across mental health categories. The count of ER visits was similar across mental health categories; however, the probability of having an emergency department visit was marginally higher for older adults who reported mental health difficulties in 2012. These findings are encouraging and lend promise to the recent initiatives on addressing gaps in mental healthcare services.
Mangurian, Christina; Niu, Grace C; Schillinger, Dean; Newcomer, John W; Dilley, James; Handley, Margaret A
2017-11-14
Individuals with severe mental illness (e.g., schizophrenia, bipolar disorder) die 10-25 years earlier than the general population, primarily from premature cardiovascular disease (CVD). Contributing factors are complex, but include systemic-related factors of poorly integrated primary care and mental health services. Although evidence-based models exist for integrating mental health care into primary care settings, the evidence base for integrating medical care into specialty mental health settings is limited. Such models are referred to as "reverse" integration. In this paper, we describe the application of an implementation science framework in designing a model to improve CVD outcomes for individuals with severe mental illness (SMI) who receive services in a community mental health setting. Using principles from the theory of planned behavior, focus groups were conducted to understand stakeholder perspectives of barriers to CVD risk factor screening and treatment identify potential target behaviors. We then applied results to the overarching Behavior Change Wheel framework, a systematic and theory-driven approach that incorporates the COM-B model (capability, opportunity, motivation, and behavior), to build an intervention to improve CVD risk factor screening and treatment for people with SMI. Following a stepped approach from the Behavior Change Wheel framework, a model to deliver primary preventive care for people that use community mental health settings as their de facto health home was developed. The CRANIUM (cardiometabolic risk assessment and treatment through a novel integration model for underserved populations with mental illness) model focuses on engaging community psychiatrists to expand their scope of practice to become responsible for CVD risk, with significant clinical decision support. The CRANIUM model was designed by integrating behavioral change theory and implementation theory. CRANIUM is feasible to implement, is highly acceptable to, and targets provider behavior change, and is replicable and efficient for helping to integrate primary preventive care services in community mental health settings. CRANIUM can be scaled up to increase CVD preventive care delivery and ultimately improve health outcomes among people with SMI served within a public mental health care system.
Darabi, Aubteen; Arrastia-Lloyd, Meagan C; Nelson, David W; Liang, Xinya; Farrell, Jennifer
2015-12-01
In order to develop an expert-like mental model of complex systems, causal reasoning is essential. This study examines the differences between forward and backward instructional strategies' in terms of efficiency, students' learning and progression of their mental models of the electronic transport chain in an undergraduate metabolism course (n = 151). Additionally, the participants' cognitive flexibility, prior knowledge, and mental effort in the learning process are also investigated. The data were analyzed using a series of general linear models to compare the strategies. Although the two strategies did not differ significantly in terms of mental model progression and learning outcomes, both groups' mental models progressed significantly. Mental effort and prior knowledge were identified as significant predictors of mental model progression. An interaction between instructional strategy and cognitive flexibility revealed that the backward instruction was more efficient than the conventional (forward) strategy for students with lower cognitive flexibility, whereas the conventional instruction was more efficient for students with higher cognitive flexibility. The results are discussed and suggestions for future research on the possible moderating role of cognitive flexibility in the area of health education are presented.
Mental models: a basic concept for human factors design in infection prevention.
Sax, H; Clack, L
2015-04-01
Much of the effort devoted to promoting better hand hygiene is based on the belief that poor hand hygiene reflects poor motivation. We argue, however, that automatic unconscious behaviour driven by 'mental models' is an important contributor to what actually happens. Mental models are concepts of reality--imaginary, often blurred, and sometimes unstable. Human beings use them to reduce mental load and free up capacity in the conscious mind to focus on deliberate activities. They are pragmatic solutions to the complexity of life. Knowledge of such mental processes helps healthcare designers and clinicians overcome barriers to behavioural change. This article reviews the concept of mental models and considers how it can be used to improve hand hygiene and patient safety. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Out with the Old and in with the New—Is Backward Inhibition a Domain-Specific Process?
Menghini, Deny; Vicari, Stefano; Petrosini, Laura; Ferlazzo, Fabio
2015-01-01
Effective task switching is supported by the inhibition of the just executed task, so that potential interference from previously executed tasks is adaptively counteracted. This inhibitory mechanism, named Backward Inhibition (BI), has been inferred from the finding that switching back to a recently executed task (A-B-A task sequence) is harder than switching back to a less recently executed task (C-B-A task sequence). Despite the fact that BI effects do impact performance on everyday life activities, up to now it is still not clear whether the BI represents an amodal and material-independent process or whether it interacts with the task material. To address this issue, a group of individuals with Williams syndrome (WS) characterized by specific difficulties in maintaining and processing visuo-spatial, but not verbal, information, and a mental age- and gender-matched group of typically developing (TD) children were subjected to three task-switching experiments requiring verbal or visuo-spatial material to be processed. Results showed that individuals with WS exhibited a normal BI effect during verbal task-switching, but a clear deficit during visuo-spatial task-switching. Overall, our findings demonstrating that the BI is a material-specific process have important implications for theoretical models of cognitive control and its architecture. PMID:26565628
Team Learning: Building Shared Mental Models
ERIC Educational Resources Information Center
Van den Bossche, Piet; Gijselaers, Wim; Segers, Mien; Woltjer, Geert; Kirschner, Paul
2011-01-01
To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning behaviors and team effectiveness. Analyses were…
The Learners' Mental Models of Television in Mathematics.
ERIC Educational Resources Information Center
Sumalee, Chaijaroen
1999-01-01
Examines the learners' mental models of television in actual media classroom activity by which knowledge was constructed. Findings revealed how media capabilities and the instructional designs that employ them interact with the learners and the task characteristics to influence the formation of the learners' mental models and their learning…
Students' Mental Models of the Environment
ERIC Educational Resources Information Center
Shepardson, Daniel P.; Wee, Bryan; Priddy, Michelle; Harbor, Jon
2007-01-01
What are students' mental models of the environment? In what ways, if any, do students' mental models vary by grade level or community setting? These two questions guided the research reported in this article. The Environments Task was administered to students from 25 different teacher-classrooms. The student responses were first inductively…
The Conceptual Framework of Factors Affecting Shared Mental Model
ERIC Educational Resources Information Center
Lee, Miyoung; Johnson, Tristan; Lee, Youngmin; O'Connor, Debra; Khalil, Mohammed
2004-01-01
Many researchers have paid attention to the potentiality and possibility of the shared mental model because it enables teammates to perform their job better by sharing team knowledge, skills, attitudes, dynamics and environments. Even though theoretical and experimental evidences provide a close relationship between the shared mental model and…
Comparison of Two Analysis Approaches for Measuring Externalized Mental Models
ERIC Educational Resources Information Center
Al-Diban, Sabine; Ifenthaler, Dirk
2011-01-01
Mental models are basic cognitive constructs that are central for understanding phenomena of the world and predicting future events. Our comparison of two analysis approaches, SMD and QFCA, for measuring externalized mental models reveals different levels of abstraction and different perspectives. The advantages of the SMD include possibilities…
Effects of Scenario Planning on Participant Mental Models
ERIC Educational Resources Information Center
Glick, Margaret B.; Chermack, Thomas J.; Luckel, Henry; Gauck, Brian Q.
2012-01-01
Purpose: The purpose of this paper is to assess the effects of scenario planning on participant mental model styles. Design/methodology/approach: The scenario planning literature is consistent with claims that scenario planning can change individual mental models. These claims are supported by anecdotal evidence and stories from the practical…
Research in Mental Health: Social Etiology versus Social Consequences
ERIC Educational Resources Information Center
Aneshensel, Carol S.
2005-01-01
This article differentiates a social etiology model focused on identifying the social antecedents of one particular mental disorder from a social consequences model concerned with the overall mental health consequences of various social arrangements. In the social etiology model, people with disorders other than the one particular disorder singled…
Hysong, Sylvia J; Best, Richard G; Pugh, Jacqueline A; Moore, Frank I
2005-06-01
The purpose of this paper is to present differences in mental models of clinical practice guidelines (CPGs) among 15 Veterans Health Administration (VHA) facilities throughout the United States. Two hundred and forty-four employees from 15 different VHA facilities across four service networks around the country were invited to participate. Participants were selected from different levels throughout each service setting from primary care personnel to facility leadership. This qualitative study used purposive sampling, a semistructured interview process for data collection, and grounded theory techniques for analysis. A semistructured interview was used to collect information on participants' mental models of CPGs, as well as implementation strategies and barriers in their facility. Analysis of these interviews using grounded theory techniques indicated that there was wide variability in employees' mental models of CPGs. Findings also indicated that high-performing facilities exhibited both (a) a clear, focused shared mental model of guidelines and (b) a tendency to use performance feedback as a learning opportunity, thus suggesting that a shared mental model is a necessary but not sufficient step toward successful guideline implementation. We conclude that a clear shared mental model of guidelines, in combination with a learning orientation toward feedback are important components for successful guideline implementation and improved quality of care.
Neuronal basis of covert spatial attention in the frontal eye field.
Thompson, Kirk G; Biscoe, Keri L; Sato, Takashi R
2005-10-12
The influential "premotor theory of attention" proposes that developing oculomotor commands mediate covert visual spatial attention. A likely source of this attentional bias is the frontal eye field (FEF), an area of the frontal cortex involved in converting visual information into saccade commands. We investigated the link between FEF activity and covert spatial attention by recording from FEF visual and saccade-related neurons in monkeys performing covert visual search tasks without eye movements. Here we show that the source of attention signals in the FEF is enhanced activity of visually responsive neurons. At the time attention is allocated to the visual search target, nonvisually responsive saccade-related movement neurons are inhibited. Therefore, in the FEF, spatial attention signals are independent of explicit saccade command signals. We propose that spatially selective activity in FEF visually responsive neurons corresponds to the mental spotlight of attention via modulation of ongoing visual processing.