Sample records for spatial mesh size

  1. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  2. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  3. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  4. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Qiu, Jianxian

    2017-11-01

    In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.

  5. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  6. Assessing species distribution using Google Street View: a pilot study with the Pine Processionary Moth.

    PubMed

    Rousselet, Jérôme; Imbert, Charles-Edouard; Dekri, Anissa; Garcia, Jacques; Goussard, Francis; Vincent, Bruno; Denux, Olivier; Robinet, Christelle; Dorkeld, Franck; Roques, Alain; Rossi, Jean-Pierre

    2013-01-01

    Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we designed a survey to explore to which extent large-scale databases such as Google maps and Google Street View could be used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can therefore be inferred from visual records derived from the panoramic views available from Google Street View. We designed a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh size. Data derived from Google Street View were highly similar to field data in the large-scale analysis based on a square grid with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the coverage of Google Street View network with regards to sampling grid size and the spatial distribution of host trees with regards to road network may also be determinant.

  7. Assessing Species Distribution Using Google Street View: A Pilot Study with the Pine Processionary Moth

    PubMed Central

    Dekri, Anissa; Garcia, Jacques; Goussard, Francis; Vincent, Bruno; Denux, Olivier; Robinet, Christelle; Dorkeld, Franck; Roques, Alain; Rossi, Jean-Pierre

    2013-01-01

    Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we designed a survey to explore to which extent large-scale databases such as Google maps and Google street view could be used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can therefore be inferred from visual records derived from the panoramic views available from Google street view. We designed a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh size. Data derived from Google street view were highly similar to field data in the large-scale analysis based on a square grid with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the coverage of Google street view network with regards to sampling grid size and the spatial distribution of host trees with regards to road network may also be determinant. PMID:24130675

  8. The performance of a wire mesh collimator SPECT camera for different breast volumes in prone position

    NASA Astrophysics Data System (ADS)

    Roslan, R. E.; Saad, W. H. Mohd; Saripan, M. I.; Hashim, S.; Choong, W.-S.

    2010-07-01

    The multihole collimator is the most commonly used collimator in conventional SPECT cameras for general purpose imaging. However, there are some limitations with this collimator, which includes the lack of sensitivity as a trade-off for obtaining better spatial resolution. This paper looks at the performance of a wire mesh collimator that was introduced recently in order to improve the ability of SPECT cameras in mapping breast cancer cells, utilizing the Technetium-99 m 140 keV radiotracer. In this work, various volumes of breast are modelled and simulated using Monte Carlo N-Particle (MCNP5) code, derived based on the real cup sizes and volumes in prone position. The size of tumour is 1 cm in diameter with tumour to background ratios (TBRs) ranging between TBR from 1:1 to TBR 20:1, and located 2 cm inside breast skin. The results show that wire mesh collimator 1 (WM-1) has the highest sensitivity and signal to noise ratio (SNR) in comparison with wire mesh collimator 2 (WM-2) and the multihole collimator (MHC). This indicates the potential of using a wire mesh collimator for early mapping of breast cancer cells.

  9. Anisotropic mesh adaptation for marine ice-sheet modelling

    NASA Astrophysics Data System (ADS)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.

  10. Effect of particle size on mixing degree in dispensation.

    PubMed

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  11. Towards a large-scale scalable adaptive heart model using shallow tree meshes

    NASA Astrophysics Data System (ADS)

    Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf

    2015-10-01

    Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.

  12. Discretization-dependent model for weakly connected excitable media

    NASA Astrophysics Data System (ADS)

    Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo

    2018-03-01

    Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.

  13. Monte Carlo design of optimal wire mesh collimator for breast tumor imaging process

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Roslan, R. E.; Mahdi, M. A.; Choong, W.-S.; Saion, E.; Saripan, M. I.

    2011-08-01

    This paper presents the modeling of breast tumor imaging process using wire mesh collimator gamma camera. Previous studies showed that the wire mesh collimator has a potential to improve the sensitivity of the tumor detection. In this paper, we extend our research significantly, to find an optimal configuration of the wire mesh collimator specifically for semi-compressed breast tumor detection, by looking into four major factors: weight, sensitivity, spatial resolution and tumor contrast. The numbers of layers in the wire mesh collimator is varied to optimize the collimator design. The statistical variations of the results are studied by simulating multiple realizations for each experiment using different starting random numbers. All the simulation environments are modeled using Monte Carlo N-Particle Code (MCNP). The quality of the detection is measured directly by comparing the sensitivity, spatial resolution and tumor contrast of the images produced by the wire mesh collimator and benchmarked that with a standard multihole collimator. The proposed optimal configuration of the wire mesh collimator is optimized by selecting the number of layers in wire mesh collimator, where the tumor contrast shows a relatively comparable value to the multihole collimator, when it is tested with uniformly semi-compressed breast phantom. The wire mesh collimator showed higher number of sensitivity because of its loose arrangement while the spatial resolution of wire mesh collimator does not shows much different compared to the multihole collimator. With a relatively good tumor contrast and spatial resolution, and increased in sensitivity, a new proposed wire mesh collimator gives a significant improvement in the wire mesh collimator design for breast cancer imaging process. The proposed collimator configuration is reduced to 44.09% from the total multihole collimator weight.

  14. Lack of size selectivity for paddlefish captured in hobbled gillnets

    USGS Publications Warehouse

    Scholten, G.D.; Bettoli, P.W.

    2007-01-01

    A commercial fishery for paddlefish Polyodon spathula caviar exists in Kentucky Lake, a reservoir on the lower Tennessee River. A 152-mm (bar-measure) minimum mesh size restriction on entanglement gear was enacted in 2002 and the minimum size limit was increased to 864 mm eye-fork length to reduce the possibility of recruitment overfishing. Paddlefish were sampled in 2003-2004 using experimental monofilament gillnets with panels of 89, 102, 127, 152, 178, and 203-mm meshes and the efficacy of the mesh size restriction was evaluated. Following the standards of commercial gear used in that fishery, nets were "hobbled" (i.e., 128 m ?? 3.6 m nets were tied down to 2.4 m; 91 m ?? 9.1 m nets were tied down to 7.6 m). The mean lengths of paddlefish (Ntotal = 576 fish) captured in each mesh were similar among most meshes and bycatch rates of sublegal fish did not vary with mesh size. Selectivity curves could not be modeled because the mean and modal lengths of fish captured in each mesh did not increase with mesh size. Ratios of fish girth to mesh perimeter (G:P) for individual fish were often less than 1.0 as a result of the largest meshes capturing small paddlefish. It is unclear whether lack of size selectivity for paddlefish was because the gillnets were hobbled, the unique morphology of paddlefish, or the fact that they swim with their mouths agape when filter feeding. The lack of size selectivity by hobbled gillnets fished in Kentucky Lake means that managers cannot influence the size of paddlefish captured by commercial gillnet gear by changing minimum mesh size regulations. ?? 2006 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  16. Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.

    PubMed

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T

    2013-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

  17. 50 CFR 622.208 - Minimum mesh size applicable to rock shrimp off Georgia and Florida.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Minimum mesh size applicable to rock... mesh size applicable to rock shrimp off Georgia and Florida. (a) The minimum mesh size for the cod end of a rock shrimp trawl net in the South Atlantic EEZ off Georgia and Florida is 17/8 inches (4.8 cm...

  18. 50 CFR 622.208 - Minimum mesh size applicable to rock shrimp off Georgia and Florida.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Minimum mesh size applicable to rock... mesh size applicable to rock shrimp off Georgia and Florida. (a) The minimum mesh size for the cod end of a rock shrimp trawl net in the South Atlantic EEZ off Georgia and Florida is 17/8 inches (4.8 cm...

  19. Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio

    2016-04-01

    We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.

  20. Convergence study of global meshing on enamel-cement-bracket finite element model

    NASA Astrophysics Data System (ADS)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  1. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  2. Benchmark measurements and calculations of a 3-dimensional neutron streaming experiment

    NASA Astrophysics Data System (ADS)

    Barnett, D. A., Jr.

    1991-02-01

    An experimental assembly known as the Dog-Legged Void assembly was constructed to measure the effect of neutron streaming in iron and void regions. The primary purpose of the measurements was to provide benchmark data against which various neutron transport calculation tools could be compared. The measurements included neutron flux spectra at four places and integral measurements at two places in the iron streaming path as well as integral measurements along several axial traverses. These data have been used in the verification of Oak Ridge National Laboratory's three-dimensional discrete ordinates code, TORT. For a base case calculation using one-half inch mesh spacing, finite difference spatial differencing, an S(sub 16) quadrature and P(sub 1) cross sections in the MUFT multigroup structure, the calculated solution agreed to within 18 percent with the spectral measurements and to within 24 percent of the integral measurements. Variations on the base case using a fewgroup energy structure and P(sub 1) and P(sub 3) cross sections showed similar agreement. Calculations using a linear nodal spatial differencing scheme and fewgroup cross sections also showed similar agreement. For the same mesh size, the nodal method was seen to require 2.2 times as much CPU time as the finite difference method. A nodal calculation using a typical mesh spacing of 2 inches, which had approximately 32 times fewer mesh cells than the base case, agreed with the measurements to within 34 percent and yet required on 8 percent of the CPU time.

  3. Effect of Codend Circumference on the Size Selection of Square-Mesh Codends in Trawl Fisheries

    PubMed Central

    De Carlo, Francesco; Lucchetti, Alessandro

    2016-01-01

    It is well established that increasing mesh number in the circumference of a diamond-mesh trawl codend can reduce size selection for round fish, whereas selection for flat fish species is unaffected. This effect has also been documented in Mediterranean trawl fisheries. In contrast, no information is available with regard to the effect of increasing mesh number in the circumference of square-mesh codends on the size selection of round fish and flat fish species. A field study was devised to bridge this gap and formulate proposals aimed at improving trawl fishery management. Size selection data were collected for a round fish species, red mullet (Mullus barbatus), and two flat fish species, Mediterranean scaldfish (Arnoglossus laterna) and solenette (Buglossidium luteum). Fishing trials were conducted in the Adriatic Sea (Central Mediterranean) using three square-mesh codends that differed only in mesh number around the circumference. Results demonstrated that increasing the number of meshes from 107 to 213 reduced the 50% retention length (L50) for red mullet by 2.5 cm but did not affect size selection for the two flat fish species. In some fisheries, regulatory provisions regarding the number of meshes in the circumference should therefore be carefully considered both for diamond- and square-mesh codends. PMID:27472058

  4. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    NASA Astrophysics Data System (ADS)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  5. LES on unstructured deforming meshes: Towards reciprocating IC engines

    NASA Technical Reports Server (NTRS)

    Haworth, D. C.; Jansen, K.

    1996-01-01

    A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

  6. dc3dm: Software to efficiently form and apply a 3D DDM operator for a nonuniformly discretized rectangular planar fault

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.

    2013-12-01

    My poster will describe dc3dm, a free open source software (FOSS) package that efficiently forms and applies the linear operator relating slip and traction components on a nonuniformly discretized rectangular planar fault in a homogeneous elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method (DDM). The key properties of dc3dm are: 1. The mesh can be nonuniform. 2. Work and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy of my method on a nonuniform mesh is the same as that of the standard method on a uniform mesh. Property 2 is achieved using my FOSS package hmmvp [AGU 2012]. A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation, nucleation length, and so required element size, scales reciprocally with effective normal stress. Property 3 assures that if a nonuniform mesh is more efficient than a uniform mesh (in the sense of accuracy per element) at one level of mesh refinement, it will remain so at all further mesh refinements. I use the routine DC3D of Y. Okada, which calculates the stress tensor at a receiver resulting from a rectangular uniform dislocation source in an HE half space. On a uniform mesh, straightforward application of this Green's function (GF) yields a DDM I refer to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the order of accuracy of the DDM. I have developed a method I call IGA that implements the DDM using this GF for a nonuniformly discretized mesh having certain properties. Importantly, IGA's order of accuracy on a nonuniform mesh is the same as DDMu's on a uniform one. Boundary conditions can be periodic in the surface-parallel direction (in both directions if the GF is for a whole space), velocity on any side, and free surface. The mesh must have the following main property: each uniquely sized element must tile each element larger than itself. A mesh generated by a family of quadtrees has this property. Using multiple quadtrees that collectively cover the domain enables the elements to have a small aspect ratio. Mathematically, IGA works as follows. Let Mn be the nonuniform mesh. Define Mu to be the uniform mesh that is composed of the smallest element in Mn. Every element e in Mu has associated subelements in Mn that tile e. First, a linear operator Inu mapping data on Mn to Mu implements smooth (C^1) interpolation; I use cubic (Clough-Tocher) interpolation over a triangulation induced by Mn. Second, a linear operator Gu implements DDMu on Mu. Third, a linear operator Aun maps data on Mu to Mn. These three linear operators implement exact IGA (EIGA): Gn = Aun Gu Inu. Computationally, there are several more details. EIGA has the undesirable property that calculating one entry of Gn for receiver ri requires calculating multiple entries of Gu, no matter how far away from ri the smallest element is. Approximate IGA (AIGA) solves this problem by restricting EIGA to a neighborhood around each receiver. Associated with each neighborhood is a minimum element size s^i that indexes a family of operators Gu^i. The order of accuracy of AIGA is the same as that of EIGA and DDMu if each neighborhood is kept constant in spatial extent as the mesh is refined.

  7. A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nivarti, Girish V., E-mail: g.nivarti@alumni.ubc.ca; Salehi, M. Mahdi; Bushe, W. Kendal

    2015-01-15

    Highlights: •An algorithm for partitioning computational meshes is proposed. •The Morton order space-filling curve is modified to achieve improved locality. •A spatial locality metric is defined to compare results with existing approaches. •Results indicate improved performance of the algorithm in complex geometries. -- Abstract: A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton ordermore » curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.« less

  8. Mesh control information of windmill designed by Solidwork program

    NASA Astrophysics Data System (ADS)

    Mulyana, T.; Sebayang, D.; Rafsanjani, A. M. D.; Adani, J. H. D.; Muhyiddin, Y. S.

    2017-12-01

    This paper presents the mesh control information imposed on the windmill already designed. The accuracy of Simulation results is influenced by the quality of the created mesh. However, compared to the quality of the mesh is made, the simulation time running will be done software also increases. The smaller the size of the elements created when making the mesh, the better the mesh quality will be generated. When adjusting the mesh size, there is a slider that acts as the density regulator of the element. SolidWorks Simulation also has Mesh Control facility. Features that can adjust mesh density only in the desired part. The best results of mesh control obtained for both static and thermal simulation have ratio 1.5.

  9. Mesh-size effects on drift sample composition as determined with a triple net sampler

    USGS Publications Warehouse

    Slack, K.V.; Tilley, L.J.; Kennelly, S.S.

    1991-01-01

    Nested nets of three different mesh apertures were used to study mesh-size effects on drift collected in a small mountain stream. The innermost, middle, and outermost nets had, respectively, 425 ??m, 209 ??m and 106 ??m openings, a design that reduced clogging while partitioning collections into three size groups. The open area of mesh in each net, from largest to smallest mesh opening, was 3.7, 5.7 and 8.0 times the area of the net mouth. Volumes of filtered water were determined with a flowmeter. The results are expressed as (1) drift retained by each net, (2) drift that would have been collected by a single net of given mesh size, and (3) the percentage of total drift (the sum of the catches from all three nets) that passed through the 425 ??m and 209 ??m nets. During a two day period in August 1986, Chironomidae larvae were dominant numerically in all 209 ??m and 106 ??m samples and midday 425 ??m samples. Large drifters (Ephemerellidae) occurred only in 425 ??m or 209 ??m nets, but the general pattern was an increase in abundance and number of taxa with decreasing mesh size. Relatively more individuals occurred in the larger mesh nets at night than during the day. The two larger mesh sizes retained 70% of the total sediment/detritus in the drift collections, and this decreased the rate of clogging of the 106 ??m net. If an objective of a sampling program is to compare drift density or drift rate between areas or sampling dates, the same mesh size should be used for all sample collection and processing. The mesh aperture used for drift collection should retain all species and life stages of significance in a study. The nested net design enables an investigator to test the adequacy of drift samples. ?? 1991 Kluwer Academic Publishers.

  10. Mesh size effects on assessments of planktonic hydrozoan abundance and assemblage structure

    NASA Astrophysics Data System (ADS)

    Nogueira Júnior, Miodeli; Pukanski, Luis Eduardo de M.; Souza-Conceição, José M.

    2015-04-01

    The choice of appropriate mesh-size is paramount to accurately quantify planktonic assemblages, however there is no such information available for hydrozoans. Here planktonic hydrozoan abundance and assemblage structure were compared using 200 and 500 μm meshes at Babitonga estuary (S Brazil), throughout a year cycle. Species richness and Shannon-Wiener diversity were higher in the 200 μm mesh, while evenness was typically higher in the 500 μm. Assemblage structure was significantly different between meshes (PERMANOVA, P < 0.05; n = 72 pairs of samples) both regarding taxa and size composition. These discrepancies are due to significant underestimation of small hydromedusae by the coarse mesh, like Obelia spp., young Liriope tetraphylla, Podocoryna loyola and others. Yet, larger taxa like Eucheilota maculata and adult L. tetraphylla were more abundant in the coarse mesh on some occasions and others such as Blackfordia virginica and Muggiaea kochi were similarly represented in both meshes. Overall collection efficiency of the coarse mesh (CE500) was 14.4%, with monthly averages between 1.6% and 43.0%, in July (winter) and January (summer) respectively. Differences between the meshes were size-dependent; CE500 was ~ 0.3% for hydrozoans sizing < 0.5 mm, ~ 21% for those between 1 and 2 mm, ~ 56% for those between 2 and 4 mm, and nearly 100% for larger ones, reaching up to 312% for hydrozoans > 8 mm in October. These results suggest that both meshes have their drawbacks and the best choice would depend on the objectives of each study. Nevertheless species richness, total abundances and most taxa were better represented by the 200 μm mesh, suggesting that it is more appropriate to quantitatively sample planktonic hydrozoan assemblages.

  11. Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates.

    PubMed

    Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun

    2017-10-24

    Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.

  12. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  13. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.

    PubMed

    Spiegel, Martin; Redel, Thomas; Zhang, Y; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof

    2009-01-01

    Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality. Meshes with a coarse spatial resolution may lead to an inaccurate flow pattern. Meshes with a large number of elements will result in unnecessarily high computation time which is undesirable should CFD be used for planning in the interventional setting. Most CFD simulations reported for these vascular pathologies have used tetrahedral meshes. We illustrate the use of polyhedral volume elements in comparison to tetrahedral meshing on two different geometries, a sidewall aneurysm of the internal carotid artery and a basilar bifurcation aneurysm. The spatial mesh resolution ranges between 5,119 and 228,118 volume elements. The evaluation of the different meshes was based on the wall shear stress previously identified as a one possible parameter for assessing aneurysm growth. Polyhedral meshes showed better accuracy, lower memory demand, shorter computational speed and faster convergence behavior (on average 369 iterations less).

  14. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  15. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  16. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  17. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  18. Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1993-01-01

    Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.

  19. Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1993-01-01

    Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.

  20. Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan

    2017-04-01

    When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh the contributions of the property values that are used to calculate the cross-gradients. In a first series of synthetic-data tests, we examined the mesh dependency of the cross-gradients operators. Compared to operators that are only defined in the direct neighbourhood of a cell, the dependency on the cell size of the cross-gradients calculation is markedly reduced when using operators with larger footprints. A second test with synthetic models focussed on the effect of small-scale variabilities of the parameter value on the cross-gradients calculation. Small-scale variabilities that are superimposed on a global trend of the property value can potentially degrade the cross-gradients calculation and destabilize joint inversion. We observe that the cross-gradients from operators with footprints larger than the length scale of the variabilities are less affected compared to operators with a small footprint. In joint inversions on unstructured meshes, we thus expect the correlation-based coupling operators to ensure robust coupling on a physically meaningful scale.

  1. Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates.

    PubMed

    Meshot, Eric R; Zhao, Zhouzhou; Lu, Wei; Hart, A John

    2014-09-07

    Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.

  2. Land Use Change and Agricultural Land Fragmentation due to Anthropogenic Activities in an Hot Spot Area: A Case Study for Thrace Region of Turkey

    NASA Astrophysics Data System (ADS)

    Altürk, Bahadır; Konukcu, Fatih

    2017-04-01

    Agricultural lands that supply food, energy and ecosystem services for human life have been lost due to anthropogenic activities such as construction of roads, urban and industry areas. The significant reasons for the increase of artificial surfaces were poorly planned economic decisions by the government and internal migration due to this poorly planning. Unplanned urban sprawl also give rise to land fragmentation. Fragmentation of agricultural land affects both the agricultural production capacity and rural sustainable employment. In this study: i) Land use changes between 1990-2014 period were assessed using remotely sensed data and ii) Spatial and temporal agricultural land fragmentation were investigated using landscape pattern indice (effective mesh size), Morphological Spatial Pattern Analysis (MSPA) and Entropy method for 25 years period. The selected"hot spot" study area is located on east Thrace region of Turkey, being the service and industrial development zone where agricultural activities, water resources and natural habitat have been damaged due to rapid urban and industrial development for about 25 years. The results showed that agricultural lands decreased 6.44%, urban areas increased 111.68% and industry areas increased 251.19% during this 25 years period. Additionally, fragmentation analyses demonstrated that core agricultural areas sharply decreased and relative fragmentation (effective mesh size) increased from 50.68% to 56.77% during 1990 and 2014.

  3. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.

    PubMed

    Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W

    2012-08-01

    While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Mesh Intercomparisons of Fog Water Collected Yield Insight Into the Nature of Fog-Drip Collection Mechanisms

    NASA Astrophysics Data System (ADS)

    Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.

    2016-12-01

    At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.

  5. Prostheses size dependency of the mechanical response of the herniated human abdomen.

    PubMed

    Simón-Allué, R; Hernández-Gascón, B; Lèoty, L; Bellón, J M; Peña, E; Calvo, B

    2016-12-01

    Hernia repairs still exhibit clinical complications, i.e. recurrence, discomfort and pain and mesh features are thought to be highly influent. The aim of this study is to evaluate the impact of the defect size and mesh type in an herniated abdominal wall using numerical models. To do so, we have started from a FE model based on a real human abdomen geometry obtained by MRI, where we have provoked an incisional hernia of three different sizes. The surgical procedure was simulated by covering the hernia with a prostheses, and three surgical meshes with distinct mechanical properties were used for the hernia repair: an isotropic heavy-weight mesh (Surgipro @ ), a slightly anisotropic light-weight mesh (Optilene @ ) and a highly anisotropic medium-weight mesh (Infinit @ ). The mechanical response of the wall to a high intraabdominal pressure (corresponding to a coughing motion) was analyzed here. Our findings suggest that the anisotropy of the mesh becomes more relevant with the increase of the defect size. Additionally, according to our results Optilene @ showed the closest deformation to the natural distensibility of the abdomen while Infinit @ should be carefully used due to its excessive compliance.

  6. Hybrid seine for full fish community collections

    USGS Publications Warehouse

    McKenna, James E.; Waldt, Emily M.; Abbett, Ross; David, Anthony; Snyder, James

    2013-01-01

    Seines are simple and effective fish collection gears, but the net mesh size influences how well the catch represents the fish communities. We designed and tested a hybrid seine with a dual-mesh bag (1/4″ and 1/8″) and compared the fish assemblage collected by each mesh. The fine-mesh net retained three times as many fish and collected more species (as many as eight), including representatives of several rare species, than did the coarser mesh. The dual-mesh bag permitted us to compare both sizes and species retained by each layer and to develop species-specific abundance correction factors, which allowed comparison of catches with the coarse-mesh seine used for earlier collections. The results indicate that a hybrid seine with coarse-mesh wings and a fine-mesh bag would enhance future studies of fish communities, especially when small-bodied fishes or early life stages are the research focus.

  7. Treatment of late time instabilities in finite-difference EMP scattering codes

    NASA Astrophysics Data System (ADS)

    Simpson, L. T.; Holland, R.; Arman, S.

    1982-12-01

    Constraints applicable to a finite difference mesh for solution of Maxwell's equations are defined. The equations are applied in the time domain for computing electromagnetic coupling to complex structures, e.g., rectangular, cylindrical, or spherical. In a spatially varying grid, the amplitude growth of high frequency waves becomes exponential through multiple reflections from the outer boundary in cases of late-time solution. The exponential growth of the numerical noise exceeds the value of the real signal. The correction technique employs an absorbing surface and a radiating boundary, along with tailored selection of the grid mesh size. High frequency noise is removed through use of a low-pass digital filter, a linear least squares fit is made to thy low frequency filtered response, and the original, filtered, and fitted data are merged to preserve the high frequency early-time response.

  8. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  9. Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators

    NASA Astrophysics Data System (ADS)

    Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T.

    2015-11-01

    A random field (RF) is a set of correlated random variables associated with different spatial locations. RF generation algorithms are of crucial importance for many scientific areas, such as astrophysics, geostatistics, computer graphics, and many others. Current approaches commonly make use of 3D fast Fourier transform (FFT), which does not scale well for RF bigger than the available memory; they are also limited to regular rectilinear meshes. We introduce random field generation with the turning band method (RAFT), an RF generation algorithm based on the turning band method that is optimized for massively parallel hardware such as GPUs and accelerators. Our algorithm replaces the 3D FFT with a lower-order, one-dimensional FFT followed by a projection step and is further optimized with loop unrolling and blocking. RAFT can easily generate RF on non-regular (non-uniform) meshes and efficiently produce fields with mesh sizes bigger than the available device memory by using a streaming, out-of-core approach. Our algorithm generates RF with the correct statistical behavior and is tested on a variety of modern hardware, such as NVIDIA Tesla, AMD FirePro and Intel Phi. RAFT is faster than the traditional methods on regular meshes and has been successfully applied to two real case scenarios: planetary nebulae and cosmological simulations.

  10. Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1991-01-01

    Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in a high gradient region or the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational costs. A detailed description is given of the enrichment and coarsening procedures and comparisons with alternative results and experimental data are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.

  11. Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Yang, Henry T. Y.; Batina, John T.

    1991-01-01

    Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with alternative results and experimental data to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.

  12. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  13. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  14. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  15. Decay of grid turbulence in superfluid helium-4: Mesh dependence

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ihas, G. G.

    2018-03-01

    Temporal decay of grid turbulence is experimentally studied in superfluid 4He in a large square channel. The second sound attenuation method is used to measure the turbulent vortex line density (L) with a phase locked tracking technique to minimize frequency shift effects induced by temperature fluctuations. Two different grids (0.8 mm and 3.0 mm mesh) are pulled to generate turbulence. Different power laws for decaying behavior are predicted by a theory. According to this theory, L should decay as t‑11/10 when the length scale of energy containing eddies grows from the grid mesh size to the size of the channel. At later time, after the energy containing eddy size becomes comparable to the channel, L should follow t‑3/2. Our recent experimental data exhibit evidence for t‑11/10 during the early time and t‑2 instead of t‑3/2 for later time. Moreover, a consistent bump/plateau feature is prominent between the two decay regimes for smaller (0.8 mm) grid mesh holes but absent with a grid mesh hole of 3.0 mm. This implies that in the large channel different types of turbulence are generated, depending on mesh hole size (mesh Reynolds number) compared to channel Reynolds number.

  16. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  17. Adapting to life: ocean biogeochemical modelling and adaptive remeshing

    NASA Astrophysics Data System (ADS)

    Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.

    2013-11-01

    An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. As an example, state-of-the-art models give values of primary production approximately two orders of magnitude lower than those observed in the ocean's oligotrophic gyres, which cover a third of the Earth's surface. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a~simple vertical column (quasi 1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The simulations capture both the seasonal and inter-annual variations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3, so reducing computational overhead. We then show the potential of this method in two case studies where we change the metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate adaptive meshes may provide a~suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high spatial resolution whilst minimising computational cost.

  18. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  19. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [The Open Retromuscular Preperitoneal Mesh Repair of the Incisional Lateral Hernia - Technique and Results of a Prospective Cohort Study].

    PubMed

    Isemer, Friedrich-Eckart; Dietz, Ulrich; Ackermann, Maximilian

    2018-05-18

    Surgical approaches to flank hernias have been poorly standardised. The most demanding issues in intermuscular net insertion are the limited area in the dorsal direction and the difficulties in fixing the net to the costal arch or the iliac crest. This is why many different surgical procedures have been published. From August 2015 to October 2016, nine patients with a primary incisional lateral hernia received open retromuscular preperitoneal mesh repair. In intermuscular mesh placement, the mesh size must be smaller at smaller values of the CPA (costopelvic angle). On the dorsal side of the reference stretch RS of 10 cm between costal arch and iliac crest, fixations are necessary to achieve stability. Retroperitoneal preperitoneal net implantation is unrestricted by the patient's anatomy. The placement of the mesh is similar to the Stoppa procedure and almost any size can be used with little fixation. Remodeling of the abdominal wall can be comfortably achieved. All 9 patients underwent retromuscular preperitoneal mesh repair. The hernia size was 92.85 cm 2 with a corresponding mesh size of 426.22 cm 2 . No adverse side effects or surgical complications were observed; the length of hospital stay was between 3 to 7 days; the follow up was 3 to 18 months, with a mean follow-up of 9.1 months. In a follow-up questionnaire, the patients reported a high satisfaction rate with a grade of 1,2 (school mark); there was no recurrence. The pain level decreased from VAS grade 4 preoperatively to 1.2 postoperatively. 7 patients had no pain at all. In conclusion, adequate overlap of the implanted mesh can be achieved in the preperitoneal retromuscular space even in large hernias. Fixation of the mesh to the costal arch or the iliac crest is not necessary and would only induce postoperative pain. Long-term stability depends on the size of the mesh. Remodeling of the abdominal wall with closure of the fascia above the mesh can be easily achieved. Georg Thieme Verlag KG Stuttgart · New York.

  1. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  2. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  3. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  4. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers.

    PubMed

    Teste, François P; Karst, Justine; Jones, Melanie D; Simard, Suzanne W; Durall, Daniel M

    2006-12-01

    We conducted greenhouse experiments using Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings where chemical methods (fungicides) were used to prevent ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of mycorrhizal connections between neighboring seedlings. These methods were chosen for their ease of application in the field. We applied the fungicides, Topas (nonspecific) and Senator (ascomycete specific), separately and in combination at different concentrations and application frequencies to seedlings grown in unsterilized forest soils. Additionally, we assessed the ability of hyphae to penetrate mesh barriers of various pore sizes (0.2, 1, 20, and 500 microm) to form mycorrhizas on roots of neighboring seedlings. Ectomycorrhizal colonization was reduced by approximately 55% with the application of Topas at 0.5 g l(-1). Meshes with pore sizes of 0.2 and 1 microm were effective in preventing the formation of mycorrhizas via hyphal growth across the mesh barriers. Hence, meshes in this range of pore sizes could also be used to prevent the formation of common mycorrhizal networks in the field. Depending on the ecological question of interest, Topas or the employment of mesh with pore sizes <1 microm are suitable for restricting mycorrhization in the field.

  5. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  6. Geometrical and topological issues in octree based automatic meshing

    NASA Technical Reports Server (NTRS)

    Saxena, Mukul; Perucchio, Renato

    1987-01-01

    Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.

  7. Octree based automatic meshing from CSG models

    NASA Technical Reports Server (NTRS)

    Perucchio, Renato

    1987-01-01

    Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is emphasized. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary respresentation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractors. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.

  8. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    NASA Astrophysics Data System (ADS)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  9. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  10. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  11. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  12. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  13. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2009-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

  14. Disk Density Tuning of a Maximal Random Packing

    PubMed Central

    Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.

    2016-01-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162

  15. Disk Density Tuning of a Maximal Random Packing.

    PubMed

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  16. Refreshing Music: Fog Harvesting with Harps

    NASA Astrophysics Data System (ADS)

    Shi, Weiwei; Anderson, Mark; Kennedy, Brook; Boreyko, Jonathan

    2017-11-01

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture fog, while fine meshes suffer from clogging issues. Here, we design a new type of fog harvester comprised of an array of vertical wires, which we call ``fog harps.'' To investigate the water collection efficiency, three fog harps were designed with different diameters (254 μm, 508 μm and 1.30 mm) but the same pitch-to-diameter ratio of 2. For comparison, three different size meshes were purchased with equivalent dimensions. As expected for the mesh structures, the mid-sized wires performed the best, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog harvesting rate continually increased with decreasing wire diameter for the fog harps, due to its low hysteresis that prevented droplet clogging. This resulted in a 3-fold enhancement in the fog harvesting rate for the harp form factor compared to the mesh. The lack of a performance ceiling for the harps suggest that even greater enhancements could be achieved by scaling down to yet smaller sizes.

  17. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Guoxian; Huang, Yuefei; Yang, Jerry Zhijian; Feng, Hui

    2013-04-01

    A new geometrical conservative interpolation on unstructured meshes is developed for preserving still water equilibrium and positivity of water depth at each iteration of mesh movement, leading to an adaptive moving finite volume (AMFV) scheme for modeling flood inundation over dry and complex topography. Unlike traditional schemes involving position-fixed meshes, the iteration process of the AFMV scheme moves a fewer number of the meshes adaptively in response to flow variables calculated in prior solutions and then simulates their posterior values on the new meshes. At each time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement to shift the vertices position, a geometrical conservative interpolation to remap the flow variables by summing the total mass over old meshes to avoid the generation of spurious waves, and a partial differential equations(PDEs) discretization to update the flow variables for a new time step. Five different test cases are presented to verify the computational advantages of the proposed scheme over nonadaptive methods. The results reveal three attractive features: (i) the AMFV scheme could preserve still water equilibrium and positivity of water depth within both mesh movement and PDE discretization steps; (ii) it improved the shock-capturing capability for handling topographic source terms and wet-dry interfaces by moving triangular meshes to approximate the spatial distribution of time-variant flood processes; (iii) it was able to solve the shallow water equations with a relatively higher accuracy and spatial-resolution with a lower computational cost.

  18. Characterizing mesh size distributions (MSDs) in thermosetting materials using a high-pressure system.

    PubMed

    Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L

    2011-04-21

    The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer.

  19. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  20. Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems

    Treesearch

    T. A. Clement; K. Pangle; D. G. Uzarski; B. A. Murry

    2014-01-01

    Measurement of fish body-size distributions is increasingly used as a management tool to assess fishery status. However, the effects of gear selection on observed fish size structure has not received sufficient attention. Four different gear types (experimental gill nets, fine mesh bag seine, and two different sized mesh trap nets), which are commonly employed in the...

  1. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  2. Control of nanoparticle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Wan; Hwang, Nong-Moon; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin

    2017-11-01

    The effect of applying a bias to the substrate on the size and amount of charged crystalline silicon nanoparticles deposited on the substrate was investigated in the inductively coupled plasma chemical vapor deposition process. By inserting the grounded grid with meshes above the substrate, the region just above the substrate was separated from the plasma. Thereby, crystalline Si nanoparticles formed by the gas-phase reaction in the plasma could be deposited directly on the substrate, successfully avoiding the formation of a film. Moreover, the size and the amount of deposited nanoparticles could be changed by applying direct current bias to the substrate. When the grid of 1 × 1-mm-sized mesh was used, the nanoparticle flux was increased as the negative substrate bias increased from 0 to - 50 V. On the other hand, when a positive bias was applied to the substrate, Si nanoparticles were not deposited at all. Regardless of substrate bias voltages, the most frequently observed nanoparticles synthesized with the grid of 1 × 1-mm-sized mesh had the size range of 10-12 nm in common. When the square mesh grid of 2-mm size was used, as the substrate bias was increased from - 50 to 50 V, the size of the nanoparticles observed most frequently increased from the range of 8-10 to 40-45 nm but the amount that was deposited on the substrate decreased.

  3. Configuring the Mesh Size, Side Taper and Wing Depth of Penaeid Trawls to Reduce Environmental Impacts

    PubMed Central

    Broadhurst, Matt K.; Sterling, David J.; Millar, Russell B.

    2014-01-01

    The effects of reducing mesh size while concomitantly varying the side taper and wing depth of a generic penaeid-trawl body were investigated to improve engineering performance and minimize bycatch. Five trawl bodies (with the same codends) were tested across various environmental (e.g. depth and current) and biological (e.g. species and sizes) conditions. The first trawl body comprised 41-mm mesh and represented conventional designs (termed the ‘41 long deep-wing'), while the remaining trawl bodies were made from 32-mm mesh and differed only in their side tapers, and therefore length (i.e. 1N3B or ‘long’ and ∼28o to the tow direction vs 1N5B or ‘short’ and ∼35o) and wing depths (‘deep’–97 T vs ‘shallow’–60 T). There were incremental drag reductions (and therefore fuel savings – by up to 18 and 12% per h and ha trawled) associated with reducing twine area via either modification, and subsequently minimizing otter-board area in attempts to standardize spread. Side taper and wing depth had interactive and varied effects on species selectivity, but compared to the conventional 41 long deep-wing trawl, the 32 short shallow-wing trawl (i.e. the least twine area) reduced the total bycatch by 57% (attributed to more fish swimming forward and escaping). In most cases, all small-meshed trawls also caught more smaller school prawns Metapenaeus macleayi but to decrease this effect it should be possible to increase mesh size slightly, while still maintaining the above engineering benefits and species selectivity. The results support precisely optimizing mesh size as a precursor to any other anterior penaeid-trawl modifications designed to improve environmental performance. PMID:24911786

  4. 50 CFR 229.35 - Bottlenose Dolphin Take Reduction Plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a gillnet constructed with a mesh size greater than or equal to 7-inches (17.8 cm) stretched mesh... less than 7-inches (17.8 cm) stretched mesh. New Jersey, Delaware, and Maryland State waters means the...) stretched mesh. South Carolina, Georgia, and Florida waters means the area consisting of all marine and...

  5. 50 CFR 229.35 - Bottlenose Dolphin Take Reduction Plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a gillnet constructed with a mesh size greater than or equal to 7-inches (17.8 cm) stretched mesh... less than 7-inches (17.8 cm) stretched mesh. New Jersey, Delaware, and Maryland State waters means the...) stretched mesh. South Carolina, Georgia, and Florida waters means the area consisting of all marine and...

  6. 50 CFR 229.35 - Bottlenose Dolphin Take Reduction Plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a gillnet constructed with a mesh size greater than or equal to 7-inches (17.8 cm) stretched mesh... less than 7-inches (17.8 cm) stretched mesh. New Jersey, Delaware, and Maryland State waters means the...) stretched mesh. South Carolina, Georgia, and Florida waters means the area consisting of all marine and...

  7. 50 CFR 229.35 - Bottlenose Dolphin Take Reduction Plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... means a gillnet constructed with a mesh size greater than or equal to 7-inches (17.8 cm) stretched mesh... less than 7-inches (17.8 cm) stretched mesh. New Jersey, Delaware, and Maryland State waters means the...) stretched mesh. South Carolina, Georgia, and Florida waters means the area consisting of all marine and...

  8. 50 CFR 229.35 - Bottlenose Dolphin Take Reduction Plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... means a gillnet constructed with a mesh size greater than or equal to 7-inches (17.8 cm) stretched mesh... less than 7-inches (17.8 cm) stretched mesh. New Jersey, Delaware, and Maryland State waters means the...) stretched mesh. South Carolina, Georgia, and Florida waters means the area consisting of all marine and...

  9. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes: Scalable hierarchical PDE sampler using nonmatching meshes

    DOE PAGES

    Osborn, Sarah; Zulian, Patrick; Benson, Thomas; ...

    2018-01-30

    This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less

  10. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes: Scalable hierarchical PDE sampler using nonmatching meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Sarah; Zulian, Patrick; Benson, Thomas

    This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less

  11. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    PubMed

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P < .05). Collagen 1/3 mRNA levels failed to vary at 90 days yet in the longer term, the LW meshes showed the reduced genetic expression of both collagens (P < .05) accompanied by increased neocollagen deposition, indicating more efficient mRNA translation. After 90-180 days of implant, tensile strengths and elastic modulus values were similar for all 3 implants (P > .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. Differences in Size Selectivity and Catch Composition Between Two Bottom Trawls Used in High-Arctic Surveys of Bottom Fishes, Crabs and Other Demersal Macrofauna

    NASA Astrophysics Data System (ADS)

    Lauth, R.; Norcross, B.; Kotwicki, S.; Britt, L.

    2016-02-01

    Long-term monitoring of the high-Arctic marine biota is needed to understand how the ecosystem is changing in response to climate change, diminishing sea-ice, and increasing anthropogenic activity. Since 1959, bottom trawls (BT) have been a primary research tool for investigating fishes, crabs and other demersal macrofauna in the high-Arctic. However, sampling gears, methodologies, and the overall survey designs used have generally lacked consistency and/or have had limited spatial coverage. This has restricted the ability of scientists and managers to effectively use existing BT survey data for investigating historical trends and zoogeographic changes in high-Arctic marine populations. Two different BTs currently being used for surveying the high-Arctic are: 1) a small-mesh 3-m plumb-staff beam trawl (PSBT), and 2) a large-mesh 83-112 Eastern bottom trawl (EBT). A paired comparison study was conducted in 2012 to compare catch composition and the sampling characteristics of the two different trawl gears, and a size selectivity ratio statistic was used to investigate how the probability of fish and crab retention differs between the EBT and PBST. Obvious contrasting characteristics of the PSBT and EBT were mesh size, area-swept, tow speed, and vertical opening. The finer mesh and harder bottom-tending characteristics of the PSBT retained juvenile fishes and other smaller macroinvertebrates and it was also more efficient catching benthic infauna that were just below the surface. The EBT had a larger net opening with greater tow duration at a higher speed that covered a potentially wider range of benthic habitats during a single tow, and it was more efficient at capturing larger and more mobile organisms, as well as organisms that were further off bottom. The ratio statistic indicated large differences in size selectivity between the two gears for both fish and crab. Results from this investigation will provide a framework for scientists and mangers to better understand how to interpret and compare data from existing PBST and EBT surveys in the high-Arctic, and the results provide information on factors worth considering in choosing what BT gear to use for a standardized long-term BT sampling program to monitor fishes, crabs and other demersal macrofauna in the high-Arctic.

  13. Spatial Convergence of Three Dimensional Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Anderson, W. Kyle

    2016-01-01

    Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

  14. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  15. [Size structure, selectivity and specific composition of the catch in traps for marine fish in the Gulf of California].

    PubMed

    Nevárez-Martínez, Manuel O; Balmori-Ramírez, Alejandro; Miranda-Mier, Everardo; Santos-Molina, J Pablo; Méndez-Tenorio, Francisco J; Cervantes-Valle, Celio

    2008-09-01

    We analyzed the performance of three traps for marine fish between October 2005 and August 2006 in the Gulf of California, Mexico. The performance was measured as difference in selectivity, fish diversity, size structure and yield. The samples were collected with quadrangular traps 90 cm wide, 120 cm long and 50 cm high. Trap type 1 had a 5 x 5 cm mesh (type 2: 5 x 5 cm including a rear panel of 5 x 10 cm; trap 3: 5 x 10 cm). Most abundant in our traps were: Goldspotted sand bass (Paralabrax auroguttatus), Ocean whitefish (Caulolatilus princeps), Spotted sand bass (P. maculatofaciatus) and Bighead tilefish (C. affinis); there was no bycatch. The number offish per trap per haul decreased when mesh size was increased. We also observed a direct relationship between mesh size and average fish length. By comparing our traps with the authorized fishing gear (hooks-and-line) we found that the size structure is larger in traps. Traps with larger mesh size were more selective. Consequently, we recommend adding traps to hooks-and-line as authorized fishing gear in the small scale fisheries of the Sonora coast, Mexico.

  16. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    PubMed

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 3D microwave tomography of the breast using prior anatomical information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golnabi, Amir H., E-mail: golnabia@montclair.edu; Meaney, Paul M.; Paulsen, Keith D.

    2016-04-15

    Purpose: The authors have developed a new 3D breast image reconstruction technique that utilizes the soft tissue spatial resolution of magnetic resonance imaging (MRI) and integrates the dielectric property differentiation from microwave imaging to produce a dual modality approach with the goal of augmenting the specificity of MR imaging, possibly without the need for nonspecific contrast agents. The integration is performed through the application of a soft prior regularization which imports segmented geometric meshes generated from MR exams and uses it to constrain the microwave tomography algorithm to recover nearly uniform property distributions within segmented regions with sharp delineation betweenmore » these internal subzones. Methods: Previous investigations have demonstrated that this approach is effective in 2D simulation and phantom experiments and also in clinical exams. The current study extends the algorithm to 3D and provides a thorough analysis of the sensitivity and robustness to misalignment errors in size and location between the spatial prior information and the actual data. Results: Image results in 3D were not strongly dependent on reconstruction mesh density, and the changes of less than 30% in recovered property values arose from variations of more than 125% in target region size—an outcome which was more robust than in 2D. Similarly, changes of less than 13% occurred in the 3D image results from variations in target location of nearly 90% of the inclusion size. Permittivity and conductivity errors were about 5 times and 2 times smaller, respectively, with the 3D spatial prior algorithm in actual phantom experiments than those which occurred without priors. Conclusions: The presented study confirms that the incorporation of structural information in the form of a soft constraint can considerably improve the accuracy of the property estimates in predefined regions of interest. These findings are encouraging and establish a strong foundation for using the soft prior technique in clinical studies, where their microwave imaging system and MRI can simultaneously collect breast exam data in patients.« less

  18. Influence of local meshing size on stress intensity factor of orthopedic lag screw

    NASA Astrophysics Data System (ADS)

    Husain, M. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, M. Y.; Arifin, A. K.

    2017-09-01

    Linear elastic fracture mechanics (LEFM) concept is generally used to study the influence of crack on the performance of structures. In order to study the LEFM concept on damaged structure, the usage of finite element analysis software is implemented to do the simulation of the structure. Mesh generation is one of the most crucial procedures in finite element method. For the structure that crack or damaged, it is very important to determine the accurate local meshing size at the crack tip of the crack itself in order to get the accurate value of stress intensity factor, KI. Pre crack will be introduced to the lag screw based on the von mises' stress result that had been performed in previous research. This paper shows the influence of local mesh arrangement on numerical value of the stress intensity factor, KI obtained by the displacement method. This study aims to simulate the effect of local meshing which is the singularity region on stress intensity factor, KI to the critical point of failure in screw. Five different set of wedges meshing size are introduced during the simulation of finite element analysis. The number of wedges used to simulate this research is 8, 10, 14, 16 and 20. There are three set of numerical equations used to validate the results which are brown and srawley, gross and brown and Tada equation. The result obtained from the finite element software (ANSYS APDL) has a positive agreement with the numerical analysis which is Brown and Srawley compared to other numerical formula. Radius of first row size of 0.014 and singularity element with 14 numbers of wedges is proved to be the best local meshing for this study.

  19. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  20. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated that the adaptive mesh refinement can be particularly efficient in resolving complex shapes. The implemented inversion scheme was able to resolve a hemisphere object with sufficient resolution starting from a coarse discretization and refining mesh adaptively in a fully automatic process. The code is able to harness the computational power of modern distributed platforms and is shown to work with models consisting of millions of degrees of freedom. Significant computational savings were achieved by using locally refined decoupled meshes.

  1. Space-time VMS computation of wind-turbine rotor and tower aerodynamics

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; McIntyre, Spenser; Kostov, Nikolay; Kolesar, Ryan; Habluetzel, Casey

    2014-01-01

    We present the space-time variational multiscale (ST-VMS) computation of wind-turbine rotor and tower aerodynamics. The rotor geometry is that of the NREL 5MW offshore baseline wind turbine. We compute with a given wind speed and a specified rotor speed. The computation is challenging because of the large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. The presence of the tower increases the computational challenge because of the fast, rotational relative motion between the rotor and tower. The ST-VMS method is the residual-based VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and is also called "DSD/SST-VMST" method (i.e., the version with the VMS turbulence model). In calculating the stabilization parameters embedded in the method, we are using a new element length definition for the diffusion-dominated limit. The DSD/SST method, which was introduced as a general-purpose moving-mesh method for computation of flows with moving interfaces, requires a mesh update method. Mesh update typically consists of moving the mesh for as long as possible and remeshing as needed. In the computations reported here, NURBS basis functions are used for the temporal representation of the rotor motion, enabling us to represent the circular paths associated with that motion exactly and specify a constant angular velocity corresponding to the invariant speeds along those paths. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. We name this "ST/NURBS Mesh Update Method (STNMUM)." The STNMUM increases computational efficiency in terms of computer time and storage, and computational flexibility in terms of being able to change the time-step size of the computation. We use layers of thin elements near the blade surfaces, which undergo rigid-body motion with the rotor. We compare the results from computations with and without tower, and we also compare using NURBS and linear finite element basis functions in temporal representation of the mesh motion.

  2. Space-Time VMS Computation of Wind-Turbine Rotor and Tower Aerodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Spenser W.

    This thesis is on the space{time variational multiscale (ST-VMS) computation of wind-turbine rotor and tower aerodynamics. The rotor geometry is that of the NREL 5MW offshore baseline wind turbine. We compute with a given wind speed and a specified rotor speed. The computation is challenging because of the large Reynolds numbers and rotating turbulent ows, and computing the correct torque requires an accurate and meticulous numerical approach. The presence of the tower increases the computational challenge because of the fast, rotational relative motion between the rotor and tower. The ST-VMS method is the residual-based VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and is also called "DSD/SST-VMST" method (i.e., the version with the VMS turbulence model). In calculating the stabilization parameters embedded in the method, we are using a new element length definition for the diffusion-dominated limit. The DSD/SST method, which was introduced as a general-purpose moving-mesh method for computation of ows with moving interfaces, requires a mesh update method. Mesh update typically consists of moving the mesh for as long as possible and remeshing as needed. In the computations reported here, NURBS basis functions are used for the temporal representation of the rotor motion, enabling us to represent the circular paths associated with that motion exactly and specify a constant angular velocity corresponding to the invariant speeds along those paths. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. We name this "ST/NURBS Mesh Update Method (STNMUM)." The STNMUM increases computational efficiency in terms of computer time and storage, and computational exibility in terms of being able to change the time-step size of the computation. We use layers of thin elements near the blade surfaces, which undergo rigid-body motion with the rotor. We compare the results from computations with and without tower, and we also compare using NURBS and linear finite element basis functions in temporal representation of the mesh motion.

  3. Adaptive Skin Meshes Coarsening for Biomolecular Simulation

    PubMed Central

    Shi, Xinwei; Koehl, Patrice

    2011-01-01

    In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137

  4. Hierarchical image feature extraction by an irregular pyramid of polygonal partitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2008-01-01

    We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less

  5. Adsorption and kinetics study of manganesse (II) in waste water using vertical column method by sugar cane bagasse

    NASA Astrophysics Data System (ADS)

    Zaini, H.; Abubakar, S.; Rihayat, T.; Suryani, S.

    2018-03-01

    Removal of heavy metal content in wastewater has been largely done by various methods. One effective and efficient method is the adsorption method. This study aims to reduce manganese (II) content in wastewater based on column adsorption method using absorbent material from bagasse. The fixed variable consisted of 50 g adsorbent, 10 liter adsorbate volume, flow rate of 7 liters / min. Independent variable of particle size with variation 10 – 30 mesh and contact time with variation 0 - 240 min and respon variable concentration of adsorbate (ppm), pH and conductivity. The results showed that the adsorption process of manganese metal is influenced by particle size and contact time. The adsorption kinetics takes place according to pseudo-second order kinetics with an equilibrium adsorption capacity (qe: mg / g) for 10 mesh adsorbent particles: 0.8947; 20 mesh adsorbent particles: 0.4332 and 30 mesh adsorbent particles: 1.0161, respectively. Highest removal efficience for 10 mesh adsorbent particles: 49.22% on contact time 60 min; 20 mesh adsorbent particles: 35,25% on contact time 180 min and particle 30 mesh adsorbent particles: 51,95% on contact time 150 min.

  6. Does expanded polytetrafluoroethylene mesh really shrink after laparoscopic ventral hernia repair?

    PubMed

    Carter, P R; LeBlanc, K A; Hausmann, M G; Whitaker, J M; Rhynes, V K; Kleinpeter, K P; Allain, B W

    2012-06-01

    The shrinkage of mesh has been cited as a possible explanation for hernia recurrence. Expanded polytetrafluoroethylene (ePTFE) is unique in that it can be visualized on computed tomography (CT). Some animal studies have shown a greater than 40% rate of contraction of ePTFE; however, very few human studies have been performed. A total of 815 laparoscopic incisional/ventral hernia (LIVH) repairs were performed by a single surgical group. DualMesh Plus (ePTFE) (WL Gore & Associates, Newark, DE) was placed in the majority of these patients using both transfascial sutures and tack fixation. Fifty-eight patients had postoperative CTs of the abdomen and pelvis with ePTFE and known transverse diameter of the implanted mesh. The prosthesis was measured on the CT using the AquariusNet software program (TeraRecon, San Mateo, CA), which outlines the mesh and calculates the total length. Data were collected regarding the original mesh size, known linear dimension of mesh, seroma formation, and time interval since mesh implantation in months. The mean shrinkage rate was 6.7%. The duration of implantation ranged from 6 weeks to 78 months, with a median of 15 months. Seroma was seen in 8.6% (5) of patients. No relationship was identified between the percentage of shrinkage and the original mesh size (P = 0.78), duration of time implanted (P = 0.57), or seroma formation (P = 0.074). In 27.5% (16) of patients, no shrinkage of mesh was identified. Of the patients who did experience mesh shrinkage, the range of shrinkage was 2.6-25%. Our results are markedly different from animal studies and show that ePTFE has minimal shrinkage after LIVH repair. The use of transfascial sutures in addition to tack fixation may have an implication on the mesh contraction rates.

  7. Laboratory hydraulic calibration of the Helley-Smith bedload sediment sampler

    USGS Publications Warehouse

    Druffel, Leroy; Emmett, W.W.; Schneider, V.R.; Skinner, J.V.

    1976-01-01

    Filling the sample bag to 40 percent capacity with a sediment larger in diameter than the mesh size of the bag had no effect on the hydraulic efficiency. Particles close to the 0.2 mm mesh size of the sample bag plugged the openings and caused the efficiency to decrease in an undetermined manner.

  8. Reliability and validity of food portion size estimation from images using manual flexible digital virtual meshes

    USDA-ARS?s Scientific Manuscript database

    The eButton takes frontal images at 4 second intervals throughout the day. A three-dimensional (3D) manually administered wire mesh procedure has been developed to quantify portion sizes from the two-dimensional (2D) images. This paper reports a test of the interrater reliability and validity of use...

  9. Recent Development in the CESE Method for the Solution of the Navier-Stokes Equations Using Unstructured Triangular or Tetrahedral Meshes With High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.

    2013-01-01

    In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.

  10. Superhydrophobic hierarchical structure carbon mesh films for oil/water separation application

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoxia; Huang, Xing; Wang, Lisheng

    2017-08-01

    In this study, we showed that a superoleophobic mesh with the self-cleaning ability could be readily prepared by a facile spray-coating method on stainless steel mesh. Poly(methyl methacrylate) was employed to provide a stable strength between carbon nanotubes and steel mesh surface. The effect of opening size of these steel meshes on surface wetting has been investigated. The dynamics of liquid droplets was investigated as well. The as-prepared meshes exhibited both superhydrophobicity and superoleophilicity and could effectively separate water from the oil and water mixture. The present study contributes to the development of oil and water separation materials for marine industrial application.

  11. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    NASA Astrophysics Data System (ADS)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  12. Study of variation grain size in desulfurization process of calcined petroleum coke

    NASA Astrophysics Data System (ADS)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  13. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  14. Solution adaptive grids applied to low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    de With, G.; Holdø, A. E.; Huld, T. A.

    2003-08-01

    A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.

  15. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  16. Gillnet selectivity in the Ebro Delta coastal lagoons and its implication for the fishery management of the sand smelt, Atherina boyeri (Actinopterygii: Atherinidae)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Climent, Sílvia; Alcaraz, Carles; Caiola, Nuno; Ibáñez, Carles; Nebra, Alfonso; Muñoz-Camarillo, Gloria; Casals, Frederic; Vinyoles, Dolors; de Sostoa, Adolfo

    2012-12-01

    Multimesh nylon gillnets were set in three Ebro Delta (North-East of Spain) lagoons to determine mesh selectivity for the inhabiting fish community. Each gillnet consisted on a series of twelve panels of different mesh size (ranging from 5.0 to 55.0 mm bar length) randomly distributed. The SELECT method (Share Each Length's Catch Total) was used to estimate retention curves through five models: normal location, normal scale, gamma, lognormal and inverse Gaussian. Each model was fitted twice, under the assumptions of equal and proportional to mesh size fishing effort, but no differences were found between approaches. A possible situation of overfishing in the lagoons, where artisanal fisheries are carried out with a low surveillance effort, was assessed using a vulnerable species inhabiting these brackish waters as case study: the sand smelt, Atherina boyeri. The minimum size for its fishery has not been established, thus remaining under an uncontrolled exploitation situation. Therefore, a Minimum Landing Size (MLS) is proposed based on sexual maturity data. The importance of establishing an adequate MLS and regulate mesh sizes in order to respect natural maturation length is discussed, as well as, the proposal of other measures to improve A. boyeri fishery management.

  17. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    NASA Astrophysics Data System (ADS)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  18. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

    PubMed

    Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K

    2014-08-27

    Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.

  19. Incorporation of carrot pomace powder in wheat flour: effect on flour, dough and cookie characteristics.

    PubMed

    Ahmad, Mukhtar; Wani, Touseef Ahmed; Wani, S M; Masoodi, F A; Gani, Adil

    2016-10-01

    Carrot pomace powder (CPP) of 72 and 120 mesh sizes was incorporated in wheat flour at 10, 15 and 20 % level and its impact on flour, dough and cookie characteristics was evaluated. Protein content of the flour blends (8.84-7.88 %) decreased and fibre content (4.63-6.68 %) increased upon blending of CPP in wheat flour. Wheat flour containing 120 mesh CPP showed better functional properties [water absorption (1.16-1.47 %), oil absorption (1.11-1.39 %), solubility index (41-50 %) and swelling power (1.34-1.39)] than those containing 72 mesh. Water solvent retention capacity and sucrose solvent retention capacity increased while lactic acid solvent retention capacity and sodium carbonate solvent retention capacity decreased with blending of CPP. Water absorption, dough development time and degree of softening increased whereas, dough stability and mixing tolerance decreased with increasing CPP. The highest decrease in pasting was observed flour containing 72 mesh CPP. Rheology of dough containing 120 mesh CPP closely resembled the control. Color of flour and cookies increased with blending of CPP irrespective of mesh size. Antioxidant activity of cookies was higher than the flour blends. The cookies containing CPP of 72 mesh showed the lowest hardness. However, cookies containing CPP of 120 mesh showed the best sensory properties. Incorporation of 120 mesh CPP produced low gluten cookies with manageable flour and dough characteristics and better antioxidant and sensory properties.

  20. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOEpatents

    Iwasaki, Iwao

    2012-10-16

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  1. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOEpatents

    Iwasaki, Iwao

    2014-04-08

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  2. Mesh size selectivity of the gillnet in East China Sea

    NASA Astrophysics Data System (ADS)

    Li, L. Z.; Tang, J. H.; Xiong, Y.; Huang, H. L.; Wu, L.; Shi, J. J.; Gao, Y. S.; Wu, F. Q.

    2017-07-01

    A production test using several gillnets with various mesh sizes was carried out to discover the selectivity of gillnets in the East China Sea. The result showed that the composition of the catch species was synthetically affected by panel height and mesh size. The bycatch species of the 10-m nets were more than those of the 6-m nets. For target species, the effect of panel height on juvenile fish was ambiguous, but the number of juvenile fish declined quickly with the increase in mesh size. According to model deviance (D) and Akaike’s information criterion, the bi-normal model provided the best fit for small yellow croaker (Larimichthy polyactis), and the relative retention was 0.2 and 1, respectively. For Chelidonichthys spinosus, the log-normal was the best model; the right tilt of the selectivity curve was obvious and well coincided with the original data. The contact population of small yellow croaker showed a bi-normal distribution, and body lengths ranged from 95 to 215 mm. The contact population of C. spinosus showed a normal distribution, and the body lengths ranged from 95 to 205 mm. These results can provide references for coastal fishery management.

  3. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  4. 50 CFR 648.91 - Monkfish regulated mesh areas and restrictions on gear and methods of fishing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restrictions on gear and methods of fishing. 648.91 Section 648.91 Wildlife and Fisheries FISHERY CONSERVATION... § 648.91 Monkfish regulated mesh areas and restrictions on gear and methods of fishing. All vessels fishing for, possessing or landing monkfish must comply with the following minimum mesh size, gear, and...

  5. 50 CFR 648.91 - Monkfish regulated mesh areas and restrictions on gear and methods of fishing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... restrictions on gear and methods of fishing. 648.91 Section 648.91 Wildlife and Fisheries FISHERY CONSERVATION... § 648.91 Monkfish regulated mesh areas and restrictions on gear and methods of fishing. All vessels fishing for, possessing or landing monkfish must comply with the following minimum mesh size, gear, and...

  6. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  7. Laser additive manufacturing of 3D meshes for optical applications.

    PubMed

    Essa, Khamis; Sabouri, Aydin; Butt, Haider; Basuny, Fawzia Hamed; Ghazy, Mootaz; El-Sayed, Mahmoud Ahmed

    2018-01-01

    Selective laser melting (SLM) is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D) metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  8. Laser additive manufacturing of 3D meshes for optical applications

    PubMed Central

    Essa, Khamis; Sabouri, Aydin; Butt, Haider; Basuny, Fawzia Hamed; Ghazy, Mootaz

    2018-01-01

    Selective laser melting (SLM) is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D) metallic structures. Here we demonstrate the fabrication of titanium alloy Ti–6Al–4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size. PMID:29414982

  9. A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake

    NASA Astrophysics Data System (ADS)

    Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.

    2016-10-01

    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10-20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.

  10. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    NASA Astrophysics Data System (ADS)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  11. From h to p efficiently: optimal implementation strategies for explicit time-dependent problems using the spectral/hp element method

    PubMed Central

    Bolis, A; Cantwell, C D; Kirby, R M; Sherwin, S J

    2014-01-01

    We investigate the relative performance of a second-order Adams–Bashforth scheme and second-order and fourth-order Runge–Kutta schemes when time stepping a 2D linear advection problem discretised using a spectral/hp element technique for a range of different mesh sizes and polynomial orders. Numerical experiments explore the effects of short (two wavelengths) and long (32 wavelengths) time integration for sets of uniform and non-uniform meshes. The choice of time-integration scheme and discretisation together fixes a CFL limit that imposes a restriction on the maximum time step, which can be taken to ensure numerical stability. The number of steps, together with the order of the scheme, affects not only the runtime but also the accuracy of the solution. Through numerical experiments, we systematically highlight the relative effects of spatial resolution and choice of time integration on performance and provide general guidelines on how best to achieve the minimal execution time in order to obtain a prescribed solution accuracy. The significant role played by higher polynomial orders in reducing CPU time while preserving accuracy becomes more evident, especially for uniform meshes, compared with what has been typically considered when studying this type of problem.© 2014. The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd. PMID:25892840

  12. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  13. Past, Present and Future of Surgical Meshes: A Review.

    PubMed

    Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen

    2017-08-22

    Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.

  14. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  15. Diffraction Analysis of Antennas With Mesh Surfaces

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1987-01-01

    Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.

  16. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less

  17. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application.

    PubMed

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-22

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.

  18. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  19. EFFECTS OF ETHYLENE OXIDE RESTERILISATION AND IN-VITRO DEGRADATION ON MECHANICAL PROPERTIES OF PARTIALLY ABSORBABLE COMPOSITE HERNIA MESHES.

    PubMed

    Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N

    2013-06-01

    Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, however newer composite materials are recommended by some centers because of their advantages. However, these meshes are more expensive than pure polypropylene meshes. Resterilisation of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces that suitable for hernia type or defect size. Nevertheless there is no data about the safety after resterilisation of the composite meshes. To search the effects of resterilisation and In vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweigth meshes. Laboratory-based research. Two composite meshes were used in the study: One mesh is consisted of monofilament polypropylene and monofilament polyglecaprone--a copolymer of glycolide and epsilon (ε)-caprolactone--(Ultrapro®, 28 g/m2, Ethicon, Hamburg, Germany),andthe otherone consisted of multifilamentpolypropyleneandmultifilament polyglactine (Vypro II®, 30 g/m2,Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50x20 mm for mechanical testing and 20x20 mm for In vitro degradation experiments. Meshes were divided into control group with no resterilisation and gas resterilisation. Ethylene oxide gas sterilisation was performed at 55°C for 4.5 hours. In vitro degradation in 0.01 M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electron microscopyic evaluations were completed for control and resterilisation specimens. Regardless of resterilisation, when meshes were exposed to In vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilisation by ethylene oxide did not have significant difference on the degradation characteristics and almost similar physical structures were observed for resterilised and non-resterilised meshes. For Vypro II meshes, no significant mechanical difference was observedbetweenresterilised andnon-resterilised meshes after degradationwhile resterilised Ultrapro meshes exhibited stronger characteristics than non-resterilised counterparts, after degradation. Resterilisation with ethylene oxide did not affect the mechanical properties of partially absorbable composite meshes. No important surface changeswere observed in scanning electron microscopy after resterilisation.

  20. 75 FR 58352 - Magnuson-Stevens Act Provisions; General Provisions for Domestic Fisheries; Issuance of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... mm), consistent with the Loligo mesh size restrictions in place at the time. Amendment 10 to the... squid, from 1 7/8 in. (48 mm) to 2 1/8 in. (54 mm), during Trimester I (January to April) and Trimester.... (54-mm) minimum mesh size was not in place at the onset of field operations, research trips were...

  1. Mammoth grazers on the ocean's minuteness: a review of selective feeding using mucous meshes

    PubMed Central

    2018-01-01

    Mucous-mesh grazers (pelagic tunicates and thecosome pteropods) are common in oceanic waters and efficiently capture, consume and repackage particles many orders of magnitude smaller than themselves. They feed using an adhesive mucous mesh to capture prey particles from ambient seawater. Historically, their grazing process has been characterized as non-selective, depending only on the size of the prey particle and the pore dimensions of the mesh. The purpose of this review is to reverse this assumption by reviewing recent evidence that shows mucous-mesh feeding can be selective. We focus on large planktonic microphages as a model of selective mucus feeding because of their important roles in the ocean food web: as bacterivores, prey for higher trophic levels, and exporters of carbon via mucous aggregates, faecal pellets and jelly-falls. We identify important functional variations in the filter mechanics and hydrodynamics of different taxa. We review evidence that shows this feeding strategy depends not only on the particle size and dimensions of the mesh pores, but also on particle shape and surface properties, filter mechanics, hydrodynamics and grazer behaviour. As many of these organisms remain critically understudied, we conclude by suggesting priorities for future research. PMID:29720410

  2. Effects of ethylene oxide resterilization and in-vitro degradation on mechanical properties of partially absorbable composite hernia meshes.

    PubMed

    Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N

    2013-01-01

    Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, although newer composite materials are recommended by some centers due to their advantages.However, these meshes are more expensive than pure polypropylene meshes. Resterilization of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces, suitable for any hernia type or defect size. Nevertheless there is no data about the safety after resterilization of the composite meshes. The present study was carried out to investigate the effects of resterilization and in vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweight meshes. Two composite meshes were used in the study: One mesh consists of monofilament polypropylene and monofilament polyglecaprone -a copolymer of glycolide and epsilon(ε)- caprolactone - (Ultrapro®, 28 g m2, Ethicon, Hamburg,Germany), and the other one consisted of multifilament polypropylene and multifilament polyglactine (Vypro II®, 30g m2, Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50 x 20 mm for mechanical testing and 20 x 20 mm for in vitro degradation experiments.Meshes were divided into control group with no resterilization and gas resterilization. Ethylene oxide gas sterilization was performed at 55°C for 4.5 hours. In vitro degradation in 0.01M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electronmicroscopic evaluations were completed for control and resterilization specimens. Regardless of resterilization, when the meshes were exposed to in vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilization by ethylene oxide did not determine significant difference on the degradation characteristics and almost similar physical structures were observed for resterilized and non-resterilized meshes. For VyproII meshes, no significant mechanical difference was observed between resterilized and non-resterilized meshes after degradation while resterilized Ultrapro meshes exhibited stronger characteristics than non-resterilized counterparts, after degradation. Resterilization with ethylene oxide did not affect the mechanical properties of partially absorbable compositemeshes. No important surface changes were observed inscanning electron microscopy after resterilization. Celsius.

  3. Moving Particles Through a Finite Element Mesh

    PubMed Central

    Peskin, Adele P.; Hardin, Gary R.

    1998-01-01

    We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377

  4. 50 CFR 300.110 - Mesh size.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...

  5. 50 CFR 300.110 - Mesh size.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...

  6. 50 CFR 300.110 - Mesh size.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...

  7. 50 CFR 300.110 - Mesh size.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...

  8. 50 CFR 300.110 - Mesh size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...

  9. Past, Present and Future of Surgical Meshes: A Review

    PubMed Central

    Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen

    2017-01-01

    Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods. PMID:28829367

  10. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian

    2015-06-01

    Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  12. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  13. Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Xie, L.; Pietrafesa, L.

    2003-12-01

    The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12­’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.

  14. Electromagnetic plasma simulation in realistic geometries

    NASA Astrophysics Data System (ADS)

    Brandon, S.; Ambrosiano, J. J.; Nielsen, D.

    1991-08-01

    Particle-in-Cell (PIC) calculations have become an indispensable tool to model the nonlinear collective behavior of charged particle species in electromagnetic fields. Traditional finite difference codes, such as CONDOR (2-D) and ARGUS (3-D), are used extensively to design experiments and develop new concepts. A wide variety of physical processes can be modeled simply and efficiently by these codes. However, experiments have become more complex. Geometrical shapes and length scales are becoming increasingly more difficult to model. Spatial resolution requirements for the electromagnetic calculation force large grids and small time steps. Many hours of CRAY YMP time may be required to complete 2-D calculation -- many more for 3-D calculations. In principle, the number of mesh points and particles need only to be increased until all relevant physical processes are resolved. In practice, the size of a calculation is limited by the computer budget. As a result, experimental design is being limited by the ability to calculate, not by the experimenters ingenuity or understanding of the physical processes involved. Several approaches to meet these computational demands are being pursued. Traditional PIC codes continue to be the major design tools. These codes are being actively maintained, optimized, and extended to handle large and more complex problems. Two new formulations are being explored to relax the geometrical constraints of the finite difference codes. A modified finite volume test code, TALUS, uses a data structure compatible with that of standard finite difference meshes. This allows a basic conformal boundary/variable grid capability to be retrofitted to CONDOR. We are also pursuing an unstructured grid finite element code, MadMax. The unstructured mesh approach provides maximum flexibility in the geometrical model while also allowing local mesh refinement.

  15. Toward automatic finite element analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Perucchio, Renato; Voelcker, Herbert

    1987-01-01

    Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.

  16. A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid

    2004-01-01

    Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.

  17. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  18. Extended bounds limiter for high-order finite-volume schemes on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, Panagiotis

    2018-06-01

    This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations.

  19. Floating plastic debris in the Central and Western Mediterranean Sea.

    PubMed

    Ruiz-Orejón, Luis F; Sardá, Rafael; Ramis-Pujol, Juan

    2016-09-01

    In two sea voyages throughout the Mediterranean (2011 and 2013) that repeated the historical travels of Archduke Ludwig Salvator of Austria (1847-1915), 71 samples of floating plastic debris were obtained with a Manta trawl. Floating plastic was observed in all the sampled sites, with an average weight concentration of 579.3 g dw km(-2) (maximum value of 9298.2 g dw km(-2)) and an average particle concentration of 147,500 items km(-2) (the maximum concentration was 1,164,403 items km(-2)). The plastic size distribution showed microplastics (<5 mm) in all the samples. The most abundant particles had a surface area of approximately 1 mm(2) (the mesh size was 333 μm). The general estimate obtained was a total value of 1455 tons dw of floating plastic in the entire Mediterranean region, with various potential spatial accumulation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.

    2018-02-01

    Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.

  1. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  2. Personal computer study of finite-difference methods for the transonic small disturbance equation

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1989-01-01

    Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.

  3. Particle systems for adaptive, isotropic meshing of CAD models

    PubMed Central

    Levine, Joshua A.; Whitaker, Ross T.

    2012-01-01

    We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181

  4. Overset meshing coupled with hybridizable discontinuous Galerkin finite elements

    DOE PAGES

    Kauffman, Justin A.; Sheldon, Jason P.; Miller, Scott T.

    2017-03-01

    We introduce the use of hybridizable discontinuous Galerkin (HDG) finite element methods on overlapping (overset) meshes. Overset mesh methods are advantageous for solving problems on complex geometrical domains. We also combine geometric flexibility of overset methods with the advantages of HDG methods: arbitrarily high-order accuracy, reduced size of the global discrete problem, and the ability to solve elliptic, parabolic, and/or hyperbolic problems with a unified form of discretization. This approach to developing the ‘overset HDG’ method is to couple the global solution from one mesh to the local solution on the overset mesh. We present numerical examples for steady convection–diffusionmore » and static elasticity problems. The examples demonstrate optimal order convergence in all primal fields for an arbitrary amount of overlap of the underlying meshes.« less

  5. Fog Harvesting with Harps.

    PubMed

    Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B

    2018-04-11

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.

  6. Making High-Pass Filters For Submillimeter Waves

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Lichtenberger, John A.

    1991-01-01

    Micromachining-and-electroforming process makes rigid metal meshes with cells ranging in size from 0.002 in. to 0.05 in. square. Series of steps involving cutting, grinding, vapor deposition, and electroforming creates self-supporting, electrically thick mesh. Width of holes typically 1.2 times cutoff wavelength of dominant waveguide mode in hole. To obtain sharp frequency-cutoff characteristic, thickness of mesh made greater than one-half of guide wavelength of mode in hole. Meshes used as high-pass filters (dichroic plates) for submillimeter electromagnetic waves. Process not limited to square silicon wafers. Round wafers also used, with slightly more complication in grinding periphery. Grid in any pattern produced in electroforming mandrel. Any platable metal or alloy used for mesh.

  7. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  8. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  9. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  10. Hailstorms over Switzerland: Verification of Crowd-sourced Data

    NASA Astrophysics Data System (ADS)

    Noti, Pascal-Andreas; Martynov, Andrey; Hering, Alessandro; Martius, Olivia

    2016-04-01

    The reports of smartphone users, witnessing hailstorms, can be used as source of independent, ground-based observation data on ground-reaching hailstorms with high temporal and spatial resolution. The presented work focuses on the verification of crowd-sourced data collected over Switzerland with the help of a smartphone application recently developed by MeteoSwiss. The precise location, time of hail precipitation and the hailstone size are included in the crowd-sourced data, assessed on the basis of the weather radar data of MeteoSwiss. Two radar-based hail detection algorithms, POH (Probability of Hail) and MESHS (Maximum Expected Severe Hail Size), in use at MeteoSwiss are confronted with the crowd-sourced data. The available data and investigation time period last from June to August 2015. Filter criteria have been applied in order to remove false reports from the crowd-sourced data. Neighborhood methods have been introduced to reduce the uncertainties which result from spatial and temporal biases. The crowd-sourced and radar data are converted into binary sequences according to previously set thresholds, allowing for using a categorical verification. Verification scores (e.g. hit rate) are then calculated from a 2x2 contingency table. The hail reporting activity and patterns corresponding to "hail" and "no hail" reports, sent from smartphones, have been analyzed. The relationship between the reported hailstone sizes and both radar-based hail detection algorithms have been investigated.

  11. HARP: A Dynamic Inertial Spectral Partitioner

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Sohn, Andrew; Biswas, Rupak

    1997-01-01

    Partitioning unstructured graphs is central to the parallel solution of computational science and engineering problems. Spectral partitioners, such recursive spectral bisection (RSB), have proven effecfive in generating high-quality partitions of realistically-sized meshes. The major problem which hindered their wide-spread use was their long execution times. This paper presents a new inertial spectral partitioner, called HARP. The main objective of the proposed approach is to quickly partition the meshes at runtime in a manner that works efficiently for real applications in the context of distributed-memory machines. The underlying principle of HARP is to find the eigenvectors of the unpartitioned vertices and then project them onto the eigerivectors of the original mesh. Results for various meshes ranging in size from 1000 to 100,000 vertices indicate that HARP can indeed partition meshes rapidly at runtime. Experimental results show that our largest mesh can be partitioned sequentially in only a few seconds on an SP2 which is several times faster than other spectral partitioners while maintaining the solution quality of the proven RSB method. A parallel WI version of HARP has also been implemented on IBM SP2 and Cray T3E. Parallel HARP, running on 64 processors SP2 and T3E, can partition a mesh containing more than 100,000 vertices into 64 subgrids in about half a second. These results indicate that graph partitioning can now be truly embedded in dynamically-changing real-world applications.

  12. Temporal changes in phytoplankton biomass and cellular properties; implications for the IMO ballast water convention.

    PubMed

    de Castro, Maria Cecilia Trindade; Veldhuis, Marcel J W

    2018-01-24

    In the Wadden Sea, the Netherlands, and at L4 in the English Channel, UK, the size class distribution of phytoplankton was investigated with respect to the size range >10-≤50 µm identified by the IMO Ballast Water Convention. Size fractionation using 10 µm mesh filtration showed considerable size bias; 23.1% of >10 µm cells were still present in the <10 µm, but 21.8% of the smaller size cells were also retained on the mesh, resulting in an overestimated number of cells/mL by as much as a factor of 5.4. Flowcytometry measurements indicated that the phytoplankton in the size range 2-50  µm was dominated by the smaller size (<10 µm) at both sites. For the >10-≤50 µm size, these were on average 3.6% and 2% in the Wadden Sea and at L4, respectively. In terms of chlorophyll biomass, they represented 28.7% and 12%, respectively. The filtration method resulted in much higher chlorophyll values for 10-50  µm size range: 53.7% in the Wadden Sea and 38% at L4. This overestimation appears to be caused by cells in 6-10  µm size range being retained on the mesh. These findings are relevant in the context of the size class distribution based on flowcytometry and semi-quantification using chlorophyll as proxy for cell density.

  13. Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds

    DTIC Science & Technology

    2012-02-29

    element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element

  14. Properties of Particle Size Distribution from Milled White Nixtamalized Corn Kernels as a Function of Steeping Time

    PubMed Central

    Fernández-Muñoz, J. L.; Zapata-Torrez, M.; Márquez-Herrera, A.; Sánchez-Sinencio, F.; Mendoza-Álvarez, J. G.; Meléndez-Lira, M.; Zelaya-Ángel, O.

    2016-01-01

    This paper focuses on the particle size distribution (PSD) changes during nixtamalized corn kernels (NCK) as a function of the steeping time (ST). The process to obtain powder or corn flour from NCK was as follows: (i) the NCK with different STs were wet-milled in a stone mill, (ii) dehydrated by a Flash type dryer, and (iii) pulverized with a hammer mill and sieved with a 20 mesh. The powder was characterized by measuring the PSD percentage, calcium percentage (CP), peak viscosity at 90°C (PV), and crystallinity percentage (CP). The PSD of the powder as a function of ST was determined by sieving in Ro-TAP equipment. By sieving, five fractions of powder were obtained employing meshes 30, 40, 60, 80, and 100. The final weight of the PSD obtained from the sieving process follows a Gaussian profile with the maximum corresponding to the average particle obtained with mesh 60. The calcium percentage as a function of ST follows a behavior similar to the weight of the PSD. The study of crystallinity versus the mesh number shows that it decreases for smaller mesh number. A similar behavior is observed as steeping time increases, except around ST = 8 h where the gelatinization of starch is observed. The trend of increasing viscosity values of the powder samples occurs when increasing ST and decreasing particle size. The ST significantly changes the crystallinity and viscosity values of the powder and, in both cases, a minimum value is observed in the region 7–9 h. The experimental results show that the viscosity increases (decreases) if the particle size decreases (increases). PMID:27375921

  15. Comparison and combination of several MeSH indexing approaches

    PubMed Central

    Yepes, Antonio Jose Jimeno; Mork, James G.; Demner-Fushman, Dina; Aronson, Alan R.

    2013-01-01

    MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI’s performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings. PMID:24551371

  16. Comparison and combination of several MeSH indexing approaches.

    PubMed

    Yepes, Antonio Jose Jimeno; Mork, James G; Demner-Fushman, Dina; Aronson, Alan R

    2013-01-01

    MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.

  17. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.

    2011-02-01

    The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.

  18. Effect of boundary representation on viscous, separated flows in a discontinuous-Galerkin Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.

    2016-08-01

    The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.

  19. Grating droplets with a mesh

    NASA Astrophysics Data System (ADS)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  20. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  1. Scaling Optimization of the SIESTA MHD Code

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Perumalla, Kalyan

    2013-10-01

    SIESTA is a parallel three-dimensional plasma equilibrium code capable of resolving magnetic islands at high spatial resolutions for toroidal plasmas. Originally designed to exploit small-scale parallelism, SIESTA has now been scaled to execute efficiently over several thousands of processors P. This scaling improvement was accomplished with minimal intrusion to the execution flow of the original version. First, the efficiency of the iterative solutions was improved by integrating the parallel tridiagonal block solver code BCYCLIC. Krylov-space generation in GMRES was then accelerated using a customized parallel matrix-vector multiplication algorithm. Novel parallel Hessian generation algorithms were integrated and memory access latencies were dramatically reduced through loop nest optimizations and data layout rearrangement. These optimizations sped up equilibria calculations by factors of 30-50. It is possible to compute solutions with granularity N/P near unity on extremely fine radial meshes (N > 1024 points). Grid separation in SIESTA, which manifests itself primarily in the resonant components of the pressure far from rational surfaces, is strongly suppressed by finer meshes. Large problem sizes of up to 300 K simultaneous non-linear coupled equations have been solved on the NERSC supercomputers. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  2. Prophylactic mesh at end-colostomy construction reduces parastomal hernia rate: a randomized trial.

    PubMed

    Lambrecht, J R; Larsen, S G; Reiertsen, O; Vaktskjold, A; Julsrud, L; Flatmark, K

    2015-10-01

    Parastomal hernia (PSH) is the most common complication of an end-colostomy and about one-quarter of patients need operative repair, which is often unsuccessful. A randomized trial was carried out to compare the results of using mesh or no mesh at the time of formation of a colostomy with the clinical identification of PSH as the primary outcome. In this two-centre randomized trial (Oslo University Hospital and Sykehuset Innlandet Hospital Trust, Norway), patients with rectal cancer undergoing open pelvic surgery were randomized to receive a retromuscular synthetic mesh (study group, n = 32) or no mesh (control group, n = 26) at the time of end-colostomy formation. Postoperative follow up was not blinded and included clinical examination and routine CT. The median period of follow up was 40 (range: 84) months. There were no differences in demographic variables or complications between the study and control groups. PSH developed in two patients of the study group and in 12 of the control group [OR = 0.04 (95% CI: 0.01-0.30) and hazard ratio 0.134 (95% CI: 0.030-0.603); P < 0.001]. The number needed to treat to avoid one PSH was 2.5 patients. CT demonstrated an increase over time in the size of the fascial orifice in patients with PSH without mesh prophylaxis, in contrast to a stable size in patients with mesh and in the control patients who did not develop PSH. The retromuscular insertion of synthetic mesh at the time of formation of an end-colostomy reduced the risk of PSH. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  3. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  4. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  5. A New Material Mapping Procedure for Quantitative Computed Tomography-Based, Continuum Finite Element Analyses of the Vertebra

    PubMed Central

    Unnikrishnan, Ginu U.; Morgan, Elise F.

    2011-01-01

    Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740

  6. Textile properties of synthetic prolapse mesh in response to uniaxial loading.

    PubMed

    Barone, William R; Moalli, Pamela A; Abramowitch, Steven D

    2016-09-01

    Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups, with values decreasing by as much as 87% (P < .05). On loading to 10 N of force, nearly all mesh products that were tested were found to have porosities that approached 0% and 0 pores with diameters >1 mm. In this study, it was shown that the pore size of current prolapse meshes dramatically decreases in response to mechanical loading. These findings suggest that prolapse meshes, which are more likely to experience tensile forces in vivo relative to hernia repair meshes, have pores that are unfavorable for tissue integration after surgical tensioning and/or loading in urogynecologic surgeries. Such decreases in pore geometry support the hypothesis that regional increases in the concentration of mesh leads to an enhanced local foreign body response. Although pore deformation in transvaginal meshes requires further characterization, the findings presented here provide a mechanical understanding that can be used to recognize potential areas of concern for complex mesh geometries. Understanding mesh mechanics in response to surgical and in vivo loading conditions may provide improved design criteria for mesh and a refinement of surgical techniques, ultimately leading to better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane

    PubMed Central

    Fujiwara, Takahiro K.; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A.; Watanabe, Yusuke; Umemura, Yasuhiro M.; Murakoshi, Hideji; Suzuki, Kenichi G. N.; Nemoto, Yuri L.; Morone, Nobuhiro; Kusumi, Akihiro

    2016-01-01

    The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion. PMID:26864625

  8. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility.

    PubMed

    Kelly, Michelle; Macdougall, Katherine; Olabisi, Oluwafisayo; McGuire, Neil

    2017-02-01

    Polypropylene is a material that is commonly used to treat pelvic floor conditions such as pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Owing to the nature of complications experienced by some patients implanted with either incontinence or prolapse meshes, the biocompatibility of polypropylene has recently been questioned. This literature review considers the in vivo response to polypropylene following implantation in animal models. The specific areas explored in this review are material selection, impact of anatomical location, and the structure, weight and size of polypropylene mesh types. All relevant abstracts from original articles investigating the host response of mesh in vivo were reviewed. Papers were obtained and categorised into various mesh material types: polypropylene, polypropylene composites, and other synthetic and biologically derived mesh. Polypropylene mesh fared well in comparison with other material types in terms of host response. It was found that a lightweight, large-pore mesh is the most appropriate structure. The evidence reviewed shows that polypropylene evokes a less inflammatory or similar host response when compared with other materials used in mesh devices.

  9. Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Yi, Ce

    With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.

  10. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  11. Optimization of gold ore Sumbawa separation using gravity method: Shaking table

    NASA Astrophysics Data System (ADS)

    Ferdana, Achmad Dhaefi; Petrus, Himawan Tri Bayu Murti; Bendiyasa, I. Made; Prijambada, Irfan Dwidya; Hamada, Fumio; Sachiko, Takahi

    2018-04-01

    Most of artisanal small gold mining in Indonesia has been using amalgamation method, which caused negative impact to the environment around ore processing area due to the usage of mercury. One of the more environmental-friendly method for gold processing is gravity method. Shaking table is one of separation equipment of gravity method used to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as rotational speed shaking, particle size and deck slope. In this research, the range of rotational speed shaking was between 100 rpm and 200 rpm, the particle size was between -100 + 200 mesh and -200 + 300 mesh and deck slope was between 3° and 7°. Gold concentration in concentrate was measured by EDX. The result shows that the optimum condition is obtained at a shaking speed of 200 rpm, with a slope of 7° and particle size of -100 + 200 mesh.

  12. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    NASA Astrophysics Data System (ADS)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  13. Airplane Mesh Development with Grid Density Studies

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.

    1999-01-01

    Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).

  14. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of the spectrum as well as active device simulations that model charge transport and Maxwell's equations will be presented.

  15. Particle Shape and Composition of NU-LHT-2M

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Lowers, H.

    2012-01-01

    Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements.

  16. Multipurpose Sediment Passive Sampler with Improved Tissue Mimicry to Measure the Bioavailable Fraction

    DTIC Science & Technology

    2016-11-01

    sieved to a 35-60 mesh particle size (250-500 μm) for testing. Sampler construction. Media (500 mg) was placed in 150 mesh stainless steel which...ASP400P), and 5% kaolin clay (ASP900) by weight into a cement mixer. The sediment was mixed for 1.5 hr to 10 ensure homogeneity. This resulted in...fabricated using stainless steel mesh and 500 mg of the identified media blend. A manufacturing space and process was established for Osorb enhanced

  17. Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo

    With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.

  18. Safety of silastic sheet for orbital wall reconstruction.

    PubMed

    Moon, Seong June; Suh, Hyun Suk; Park, Bo Young; Kang, So Ra

    2014-07-01

    Many implants are being used for the reconstruction of orbital wall fractures. The effect of the choice of implant for the reconstruction of an orbital wall fracture on the surgical outcome is under debate. The purpose of this article is to compare the outcomes of orbital wall reconstruction of small orbital wall fractures on the basis of the implants used. The authors conducted a retrospective study using electronic databases. Between March 2001 and December 2012, 461 patients with orbital wall fractures were included in this study. Among them, 431 patients in whom the fracture size was less than 300 mm(2) were analyzed. The fracture size was calculated using computed tomography scans of the orbit in the sagittal and coronal images. Cases in which the fracture size was less than 300 mm(2) were included in this study. One hundred and twenty-nine patients were treated with silastic sheets; 238 patients were treated with titanium meshes; and absorbable meshes were used in the case of 64 patients. Overall, 13 patients required revision, and the revision rate was 3.0%. The revision rate of the silastic sheet group was 5.4%. In the multivariable analysis, the revision rate of the group reconstructed with silastic sheets was highly statistically significant (P=0.043, odds ratio=3.65). However, other factors such as age, sex, fracture type, and fracture size were not significant. Reconstruction of orbital wall fractures with silastic sheets may cause more complications than that with other materials such as titanium meshes and absorbable meshes.

  19. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  20. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  1. AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven

    Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less

  2. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE PAGES

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  3. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senecal, P. K.; Pomraning, E.; Anders, J. W.

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  4. Geo-PUMMA: Urban and Periurban Landscape Representation Toolbox for Hydrological Distributed Modeling

    NASA Astrophysics Data System (ADS)

    Sanzana, Pedro; Gironas, Jorge; Braud, Isabelle; Branger, Flora; Rodriguez, Fabrice; Vargas, Ximena; Hitschfeld, Nancy; Francisco Munoz, Jose

    2016-04-01

    In addition to land use changes, the process of urbanization can modify the direction of the surface and sub-surface flows, generating complex environments and increasing the types of connectivity between pervious and impervious areas. Thus, hydrological pathways in urban and periurban areas are significantly affected by artificial elements like channels, pipes, streets and other elements of storm water systems. This work presents Geo-PUMMA, a new GIS toolbox to generate vectorial meshes for distributed hydrological modeling and extract the drainage network in urban and periurban terrain. Geo-PUMMA gathers spatial information maps (e.g. cadastral, soil types, geology and digital elevation models) to produce Hydrological Response Units (HRU) and Urban Hydrological Elements (UHE). Geo-PUMMA includes tools to improve the initial mesh derived from GIS layers intersection in order to respect geometrical constraints, which ensures numerical stability while preserving the shape of the initial HRUs and minimizing the small elements to lower computing times. The geometrical constraints taken into account include: elements convexity, limitation of the number of sliver elements (e.g. roads) and of very small or very large elements. This toolbox allows the representation of basins at small scales (0.1-10km2), as it takes into account the hydrological connectivity of the main elements explicitly, and improves the representation of water pathways compared with classical raster approaches. Geo-PUMMA also allows the extraction of basin morphologic properties such as the width function, the area function and the imperviousness function. We applied this new toolbox to two periurban catchments: the Mercier catchment located near Lyon, France, and the Estero El Guindo catchment located in the Andean piedmont in the Maipo River, Chile. We use the capability of Geo-PUMMA to generate three different meshes. The first one is the initial mesh derived from the direct intersection of GIS layers. The second one is based on fine triangulation of HRUs and is considered the best one we can obtain (reference mesh). The third one is the recommended mesh, preserving the shape of the initial HRUs and limiting the number of elements. The representation of the drainage network and its morphological properties is compared between the three meshes. This comparison shows that the drainage network representation is particularly improved at small to medium spatial scales when using the recommended meshes (i.e. 120-150 m for the El Guindo catchment and 80-150 m for the Mercier catchment). The results also show that the recommended mesh correctly represents the main features of the drainage network as compared to the reference mesh. KEYWORDS: GRASS-GIS, Computer-assisted mesh generation, periurban catchments

  5. Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals

    DTIC Science & Technology

    2015-09-01

    covariant Levi - Civita skew-symmetric tensor. Using tensorial notation per- mits one to present all the equations in the universal covariant (i.e., coordinate...tensors numerically coincide with the corresponding values of the Kronnekker symbol δij, δij, δij. The Levi - Civita tensor z ijk has the main com...simulations: body -fitted (left) and regular (right). 6.1 Spatial Discretization Two mesh configurations were used: (1) a body -fitted irregular mesh

  6. Fixed mesh refinement in the characteristic formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Barreto, W.; de Oliveira, H. P.; Rodriguez-Mueller, B.

    2017-08-01

    We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy condition lets us deploy an adaptive resolution in (retarded-like) time, even for the nonlinear regime. As test cases, we replicate the main features of the gravitational critical behavior and the spacetime structure at null infinity using the Bondi mass and the News function. Additionally, we obtain the global energy conservation for an extreme situation, i.e. in the threshold of the black hole formation. In principle, the calibrated code can be used in conjunction with an ADM 3+1 code to confirm the critical behavior recently reported in the gravitational collapse of a massless scalar field in an asymptotic anti-de Sitter spacetime. For the scenarios studied, the fixed mesh refinement offers improved runtime and results comparable to code without mesh refinement.

  7. The freshwater artisanal fishery of Patos Lagoon.

    PubMed

    Ceni, G; Fontoura, N F; Cabral, H N

    2016-07-01

    In this study data relative to the fishery in the freshwater area of the Patos Lagoon are analysed, and the dynamics, fishing gears used and catches evaluated. The results reveal the existence of two fishery strategies: forbidden mesh size gillnets (FMG; <35 mm; square measure) and allowed mesh size gillnets (AMG; ≥35 mm; square measure). In total, 31 species were caught (AMG = 27 and FMG = 24), but selectivity due to mesh size was significant (P < 0·001). The FMG may be very harmful since it captures individuals of most species below size at first maturity, including the target species, the armoured catfish Loricariichthys anus (61% of the total catch). In addition, this gear is used throughout the year, including the closed season (CS; November to January), when the target species is reproducing. Target species for the AMG are larger in size, comprising mainly the mullet Mugil liza, the marine catfish Genidens barbus and the whitemouth croaker Micropogonias furnieri. AMS gillnets were not used during the CS. The use of FMG reveals the need for effective fishery law enforcement and the need for additional studies to assess the status of populations of the exploited species. © 2016 The Fisheries Society of the British Isles.

  8. Autologous Skin Cell Spray for Massive Soft Tissue War Injuries: A Prospective, Case-Control, Multicenter Trial

    DTIC Science & Technology

    2015-01-01

    control group; standard skin grafting with 1:1.5 meshing); Arm 2 (experimental group 1; wide 1:6 mesh graft with sprayed cells), and Arm 3...injured patient’s body and grafted over the wounded area to obtain a healed wound. These skin grafts are often “meshed” or flattened and spread out to...increase the size of the skin graft to better cover a large wound. Standard “meshing” increases the size of the donor graft by 1.5 times (1:1.5

  9. 50 CFR 223.207 - Approved TEDs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wet or dry. Any such measurement will be of the stretched mesh size. (a) Hard TEDs. Hard TEDs are TEDs.... The resultant escape opening with a webbing flap must have a stretched mesh circumference of no less... used when making the side cuts. The sum of the straight-line base measurement and the stretched...

  10. 50 CFR 223.207 - Approved TEDs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wet or dry. Any such measurement will be of the stretched mesh size. (a) Hard TEDs. Hard TEDs are TEDs.... The resultant escape opening with a webbing flap must have a stretched mesh circumference of no less... used when making the side cuts. The sum of the straight-line base measurement and the stretched...

  11. 50 CFR 223.207 - Approved TEDs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... wet or dry. Any such measurement will be of the stretched mesh size. (a) Hard TEDs. Hard TEDs are TEDs.... The resultant escape opening with a webbing flap must have a stretched mesh circumference of no less... used when making the side cuts. The sum of the straight-line base measurement and the stretched...

  12. 78 FR 54547 - Fisheries Off West Coast States; Highly Migratory Fisheries; California Drift Gillnet Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... an immediate closure of the California thresher shark/swordfish drift gillnet (mesh size >=14 inches.../operators of vessels intending to fish with DGN gear will be required to install, activate, carry and.... Implementation Vessel Monitoring System Owners/operators of vessels intending to fish with large-mesh DGN gear...

  13. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  14. Cyanidation Study of Slag Rich in Silver

    NASA Astrophysics Data System (ADS)

    Pérez-Labra, Miguel; Romero-Serrano, J. Antonio; Ávila-Davila, E. O.; Reyes-Pérez, M.; Barrientos-Hernández, F. R.; Hernández, I. A. Lira

    Slag from smelting reduction processes were characterized by chemical analysis, XRD, SEM-EDS and XRF. The results revealed Ag concentrations of 362 g/t of slag, the slag mineralogical characterization by XRD and SEM-EDS showed mineralogical species oxidized complex containing Pb, Zn, Ca, Si, Fe, As, S in its structure, silver was found in globules associated lead in the slag and the furutobeite specie. The leaching study was conducted to evaluate process variables such as NaCN concentration: from 7.8×10-3M - 1.26×10-1M, temperature: 25-50°C, particle size: +140 mesh to -400 mesh, stirring speed of 750 rpm - 900 rpm. All studies were performed with a NaOH concentration of 0.2 M. The optimal values of silver recovery encountered in conditions of 7.8×10-3M NaCN, agitation rate of 750 rpm, temperature of 35°C and with a treatment time of 240 min. We also observed that a particle size -400 mesh will have optimum recoveries compared to +140 mesh, +200, +270 and +325.

  15. Study on Sumbawa gold recovery using centrifuge

    NASA Astrophysics Data System (ADS)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  16. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  17. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh.

    PubMed

    Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd

    2003-10-01

    The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1 50%). At necropsy the mesh was excised en bloc with the anterior abdominal wall for histological evaluation of mesothelial layer growth. The mean adhesion score for the polypropylene mesh was significantly greater (P < 0.05) than Dual Mesh at 9 weeks and 16 weeks and modified Dual Mesh at 7 days, 9 weeks, and 16 weeks. Fifty-five percent (n = 11) of the polypropylene mesh had adhesions to small intestine or omentum at necropsy compared to 30% (n = 6) of the Dual Mesh and 20% (n = 4) of the modified Dual Mesh. There was a significantly greater percentage (P < 0.003) of ePTFE mesh mesothelialized at explant (modified Dual Mesh 44.2%; Dual Mesh 55.8%) compared to the polypropylene mesh (12.9%). Serial microlaparoscopic evaluation of intraperitoneally implanted polypropylene mesh and ePTFE mesh in a rabbit model revealed a progression of adhesions to polypropylene mesh over a 16 week period. The pore size of mesh is critical in the development and maintenance of abdominal adhesions and tissue ingrowth. The macroporous polypropylene mesh promoted adhesion formation, while the microporous nature of the visceral side of the ePTFE served as a barrier to adhesions.

  18. Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T,; Thomas, James L.

    2009-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.

  19. Split thickness skin graft meshing ratio indications and common practices.

    PubMed

    Pripotnev, Stahs; Papp, Anthony

    2017-12-01

    Split thickness skin grafting is a commonly used technique in burn surgery for resurfacing wounds that are unlikely to heal without scarring. Meshing and expanding skin grafts allow for reconstruction of larger wounds with smaller donor sites. A retrospective chart review was performed of 210 patients with burns equal to or greater than 20% total body surface area admitted to Vancouver General Hospital between 1998 and 2014. Charts were reviewed to collect data on patient and burn demographics. A survey was sent to Canadian plastic surgeons registered with the CSPS to collect data on common practices in burn surgery nationwide. The patients that received 3:1 or higher meshed grafts were all flame burns, had a significantly higher average TBSA (51.89%±14.87 vs 29.13%±9.48, p=0.001), and a significantly higher full thickness burn TBSA (25.76%±21.97 vs 6.20%±9.04, p=0.001). We found no significant differences in gender, age, or burn location between the less than 2:1 and 3:1 or greater meshing ratio groups. The survey of plastic surgeons performing burn surgery in Canada revealed that 60% of responders had experience with skin grafts using meshing ratios of 3:1 or higher. Of these surgeons, 100% felt that burn size and 36% felt that burn location would influence their decision to use a 3:1 or higher meshing ratio. A larger burn size is the major influencing factor for the use of higher skin graft meshing ratios by Canadian burn surgeons. Furthermore, burn location determines the choice of donor and recipient sites in these cases. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  20. Prophylactic mesh to prevent parastomal hernia after end colostomy: a meta-analysis and trial sequential analysis.

    PubMed

    López-Cano, M; Brandsma, H-T; Bury, K; Hansson, B; Kyle-Leinhase, I; Alamino, J G; Muysoms, F

    2017-04-01

    Prevention of parastomal hernia (PSH) formation is crucial, given the high prevalence and difficulties in the surgical repair of PSH. To investigate the effect of a preventive mesh in PSH formation after an end colostomy, we aimed to meta-analyze all relevant randomized controlled trials (RCTs). We searched five databases. For each trial, we extracted risk ratios (RRs) of the effects of mesh or no mesh. The primary outcome was incidence of PSH with a minimum follow-up of 12 months with a clinical and/or computed tomography diagnosis. RRs were combined using the random-effect model (Mantel-Haenszel). To control the risk of type I error, we performed a trial sequential analysis (TSA). Seven RCTs with low risk of bias (451 patients) were included. Meta-analysis for primary outcome showed a significant reduction of the incidence of PSH using a mesh (RR 0.43, 95% CI 0.26-0.71; P = 0.0009). Regarding TSA calculation for the primary outcome, the accrued information size (451) was 187.1% of the estimated required information size (RIS) (241). Wound infection showed no statistical differences between groups (RR 0.77, 95% CI 0.39-1.54; P = 0.46). PSH repair rate showed a significant reduction in the mesh group (RR 0.28 (95% CI 0.10-0.78; P = 0.01). PSH prevention with mesh when creating an end colostomy reduces the incidence of PSH, the risk for subsequent PSH repair and does not increase wound infections. TSA shows that the RIS is reached for the primary outcome. Additional RCTs in the previous context are not needed.

  1. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  2. Electroformed screens with uniform hole size

    NASA Technical Reports Server (NTRS)

    Schaer, G. R.

    1968-01-01

    Efficient method electroforms fine-mesh nickel screens, or plagues, with uniform hole size and accurate spacing between holes. An electroformed nickel mandrel has nonconducting silicone rubber projections that duplicate the desired hole size and shape in the finished nickel screen.

  3. On the application of hybrid meshes in hydraulic machinery CFD simulations

    NASA Astrophysics Data System (ADS)

    Schlipf, M.; Tismer, A.; Riedelbauch, S.

    2016-11-01

    The application of two different hybrid mesh types for the simulation of a Francis runner for automated optimization processes without user input is investigated. Those mesh types are applied to simplified test cases such as flow around NACA airfoils to identify the special mesh resolution effects with reduced complexity, like rotating cascade flows, as they occur in a turbomachine runner channel. The analysis includes the application of those different meshes on the geometries by keeping defined quality criteria and exploring the influences on the simulation results. All results are compared with reference values gained by simulations with blockstructured hexahedron meshes and the same numerical scheme. This avoids additional inaccuracies caused by further numerical and experimental measurement methods. The results show that a simulation with hybrid meshes built up by a blockstructured domain with hexahedrons around the blade in combination with a tetrahedral far field in the channel is sufficient to get results which are almost as accurate as the results gained by the reference simulation. Furthermore this method is robust enough for automated processes without user input and enables comparable meshes in size, distribution and quality for different similar geometries as occurring in optimization processes.

  4. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts. The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6° and 25° with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.

  5. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.

    PubMed

    Knight, Katrina M; Moalli, Pamela A; Abramowitch, Steven D

    2018-05-01

    Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.

  6. Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility

    PubMed Central

    Cerutti, David S.; Duke, Robert E.; Darden, Thomas A.; Lybrand, Terry P.

    2009-01-01

    We draw on an old technique for improving the accuracy of mesh-based field calculations to extend the popular Smooth Particle Mesh Ewald (SPME) algorithm as the Staggered Mesh Ewald (StME) algorithm. StME improves the accuracy of computed forces by up to 1.2 orders of magnitude and also reduces the drift in system momentum inherent in the SPME method by averaging the results of two separate reciprocal space calculations. StME can use charge mesh spacings roughly 1.5× larger than SPME to obtain comparable levels of accuracy; the one mesh in an SPME calculation can therefore be replaced with two separate meshes, each less than one third of the original size. Coarsening the charge mesh can be balanced with reductions in the direct space cutoff to optimize performance: the efficiency of StME rivals or exceeds that of SPME calculations with similarly optimized parameters. StME may also offer advantages for parallel molecular dynamics simulations because it permits the use of coarser meshes without requiring higher orders of charge interpolation and also because the two reciprocal space calculations can be run independently if that is most suitable for the machine architecture. We are planning other improvements to the standard SPME algorithm, and anticipate that StME will work synergistically will all of them to dramatically improve the efficiency and parallel scaling of molecular simulations. PMID:20174456

  7. Mesh versus suture repair of umbilical hernia in adults: a randomised, double-blind, controlled, multicentre trial.

    PubMed

    Kaufmann, Ruth; Halm, Jens A; Eker, Hasan H; Klitsie, Pieter J; Nieuwenhuizen, Jeroen; van Geldere, Dick; Simons, Maarten P; van der Harst, Erwin; van 't Riet, Martijne; van der Holt, Bronno; Kleinrensink, Gert Jan; Jeekel, Johannes; Lange, Johan F

    2018-03-03

    Both mesh and suture repair are used for the treatment of umbilical hernias, but for smaller umbilical hernias (diameter 1-4 cm) there is little evidence whether mesh repair would be beneficial. In this study we aimed to investigate whether use of a mesh was better in reducing recurrence compared with suture repair for smaller umbilical hernias. We did a randomised, double-blind, controlled multicentre trial in 12 hospitals (nine in the Netherlands, two in Germany, and one in Italy). Eligible participants were adults aged at least 18 years with a primary umbilical hernia of diameter 1-4 cm, and were randomly assigned (1:1) intraoperatively to either suture repair or mesh repair. In the first 3 years of the inclusion period, blocked randomisation (of non-specified size) was achieved by an envelope randomisation system; after this time computer-generated randomisation was introduced. Patients, investigators, and analysts were masked to the allocated treatment, and participants were stratified by hernia size (1-2 cm and >2-4 cm). At study initiation, all surgeons were invited to training sessions to ensure they used the same standardised techniques for suture repair or mesh repair. Patients underwent physical examinations at 2 weeks, and 3, 12, and 24-30 months after the operation. The primary outcome was the rate of recurrences of the umbilical hernia after 24 months assessed in the modified intention-to-treat population by physical examination and, in case of any doubt, abdominal ultrasound. This trial is registered with ClinicalTrials.gov, number NCT00789230. Between June 21, 2006, and April 16, 2014, we randomly assigned 300 patients, 150 to mesh repair and 150 to suture repair. The median follow-up was 25·1 months (IQR 15·5-33·4). After a maximum follow-up of 30 months, there were fewer recurrences in the mesh group than in the suture group (six [4%] in 146 patients vs 17 [12%] in 138 patients; 2-year actuarial estimates of recurrence 3·6% [95% CI 1·4-9·4] vs 11·4% (6·8-18·9); p=0·01, hazard ratio 0·31, 95% CI 0·12-0·80, corresponding to a number needed to treat of 12·8). The most common postoperative complications were seroma (one [<1%] in the suture group vs five [3%] in the mesh group), haematoma (two [1%] vs three [2%]), and wound infection (one [<1%] vs three [2%]). There were no anaesthetic complications or postoperative deaths. This is the first study showing high level evidence for mesh repair in patients with small hernias of diameter 1-4 cm. Hence we suggest mesh repair should be used for operations on all patients with an umbilical hernia of this size. Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Diethylene-triamine-penta-acetate administration protocol for radiological emergency medicine in nuclear fuel reprocessing plants.

    PubMed

    Jin, Yutaka

    2008-01-01

    Inhalation therapy of diethylene-triamine-penta-acetate (DTPA) should be initiated immediately to workers who have significant incorporation of plutonium, americium or curium in the nuclear fuel reprocessing plant. A newly designed electric mesh nebulizer is a small battery-operated passive vibrating mesh device, in which vibrations in an ultrasonic horn are used to force drug solution through a mesh of micron-sized holes. This nebulizer enables DTPA administration at an early stage in the event of a radiation emergency from contamination from the above radioactive metals.

  9. Investigation of Transitional Flows on Compressor Blades in Cascade

    DTIC Science & Technology

    2011-09-01

    UU NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for...mesh was refined by adjusting the number of divisions in the “Edge Sizing” menu and the growth rate in the “sizing” section of the CFX Mesher. The...was determined that a better mesh could be achieved by letting CFX determine the “Min Size,” “Max Size” and “Max Face Size” and refining the mesh

  10. REE Sorption Study of Seived -50 +100 Mesh Fraction of Media #1 in Brine #1 at Different Concentrations of REE at 70C

    DOE Data Explorer

    Gary Garland

    2015-06-29

    This dataset shows the sorption capacities of smaller grain size (-50 +100 mesh) of media #1 in brine #1 at different starting concentrations of REE's at elevated temperature of 70C. The experimental conditions are 2g of -50 +100 mesh media #1 to 150mL of REE solution at concentartions of .2ppm each, 2ppm each, and 20ppm each. The pH of the solution is 5.5, and the temperature was at 70C.

  11. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  12. Single fiber model of particle retention in an acoustically driven porous mesh.

    PubMed

    Grossner, Michael T; Penrod, Alan E; Belovich, Joanne M; Feke, Donald L

    2003-03-01

    A method for the capture of small particles (tens of microns in diameter) from a continuously flowing suspension has recently been reported. This technique relies on a standing acoustic wave resonating in a rectangular chamber filled with a high-porosity mesh. Particles are retained in this chamber via a complex interaction between the acoustic field and the porous mesh. Although the mesh has a pore size two orders of magnitude larger than the particle diameter, collection efficiencies of 90% have been measured. A mathematical model has been developed to understand the experimentally observed phenomena and to be able to predict filtration performance. By examining a small region (a single fiber) of the porous mesh, the model has duplicated several experimental events such as the focusing of particles near an element of the mesh and the levitation of particles within pores. The single-fiber analysis forms the basis of modeling the overall performance of the particle filtration system. Copyright 2002 Elsevier Science B.V.

  13. Estimating Bulk Entrainment With Unaggregated and Aggregated Convection

    NASA Astrophysics Data System (ADS)

    Becker, Tobias; Bretherton, Christopher S.; Hohenegger, Cathy; Stevens, Bjorn

    2018-01-01

    To investigate how entrainment is influenced by convective organization, we use the ICON (ICOsahedral Nonhydrostatic) model in a radiative-convective equilibrium framework, with a 1 km spatial grid mesh covering a 600 by 520 km2 domain. We analyze two simulations, with unaggregated and aggregated convection, and find that, in the lower free troposphere, the bulk entrainment rate increases when convection aggregates. The increase of entrainment rate with aggregation is caused by a strong increase of turbulence in the close environment of updrafts, masking other effects like the increase of updraft size and of static stability with aggregation. Even though entrainment rate increases with aggregation, updraft buoyancy reduction through entrainment decreases because aggregated updrafts are protected by a moist shell. Parameterizations that wish to represent mesoscale convective organization would need to model this moist shell.

  14. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less

  15. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown formore » each problem in order to facilitate element selection when computer resources are limited.« less

  16. 50 CFR 223.207 - Approved TEDs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wet or dry. Any such measurement will be of the stretched mesh size. (a) Hard TEDs. Hard TEDs are TEDs... paragraph (d)(3)(ii) of this section. The resultant escape opening with a webbing flap must have a stretched... triangular piece of 8-inch (20.3 cm) stretched mesh webbing and two trapezoidal pieces of 4-inch (10.2-cm...

  17. Monel-shot and screen regenerators

    NASA Technical Reports Server (NTRS)

    Browning, C. W.

    1974-01-01

    Monel has been found to be ideal material for matrix of regenerators operating in temperature range of 325 K to 50 K. Two best shapes are as spheres or as wire mesh. For given size of regenerator, spherical shots are preferable for low-temperature operation. At high temperatures, mesh would be superior by virtue of its lower flow resistance.

  18. Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul

    2015-12-01

    In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less

  19. Quality Control of Trichinella Testing at the Slaughterhouse Laboratory: Evaluation of the Use of a 400-Micrometer-Mesh-Size Sieve in the Magnetic Stirrer Method.

    PubMed

    Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke

    2016-02-01

    The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries.

  20. Mesh Convergence Requirements for Composite Damage Models

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    The ability of the finite element method to accurately represent the response of objects with intricate geometry and loading renders the finite element method as an extremely versatile analysis technique for structural analysis. Finite element analysis is routinely used in industry to calculate deflections, stress concentrations, natural frequencies, buckling loads, and much more. The method works by discretizing complex problems into smaller, simpler approximations that are valid over small uniform domains. For common analyses, the maximum size of the elements that can be used is often be determined by experience. However, to verify the quality of a solution, analyses with several levels of mesh refinement should be performed to ensure that the solution has converged. In recent years, the finite element method has been used to calculate the resistance of structures, and in particular that of composite structures. A number of techniques such as cohesive zone modeling, the virtual crack closure technique, and continuum damage modeling have emerged that can be used to predict cracking, delaminations, fiber failure, and other composite damage modes that lead to structural collapse. However, damage models present mesh refinement requirements that are not well understood. In this presentation, we examine different mesh refinement issues related to the representation of damage in composite materials. Damage process zone sizes and their corresponding mesh requirements will be discussed. The difficulties of modeling discontinuities and the associated need for regularization techniques will be illustrated, and some unexpected element size constraints will be presented. Finally, some of the difficulties in constructing models of composite structures capable of predicting transverse matrix cracking will be discussed. It will be shown that to predict the initiation and propagation of transverse matrix cracks, their density, and their saturation may require models that are significantly more refined than those that have been contemplated in the past.

  1. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations.

    PubMed

    Gumbart, James C; Beeby, Morgan; Jensen, Grant J; Roux, Benoît

    2014-02-01

    Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.

  2. An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, A.; Davila, C. G.; Camanho, P. P.; Costa, J.

    2007-01-01

    This paper presents a methodology to determine the parameters to be used in the constitutive equations of Cohesive Zone Models employed in the simulation of delamination in composite materials by means of decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is also proposed. The procedure ensures that the energy dissipated by the fracture process is computed correctly. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used for the simulation of fracture processes.

  3. A coolant flow simulation in fast reactor wire-wrapped assembly

    NASA Astrophysics Data System (ADS)

    Volkov, V. Yu.; Belova, O. V.; Krutikov, A. A.; Skibin, A. P.

    2013-06-01

    A CFD model of a 19-rod wire-wrapped fuel assembly is developed. The effect the size of computation mesh in the calculated region and the type of turbulence models have on the pressure drop between the inlet to and outlet from the calculated region is investigated. The possibility of shifting from low-Reynolds to high-Reynolds turbulence models is substantiated. Such a shift allows the mesh size in the calculated region to be reduced by approximately a factor of 18. The obtained results are in good agreement with the empirical dependences and international calculations.

  4. Effect of DEM mesh size on AnnAGNPS simulation and slope correction.

    PubMed

    Wang, Xiaoyan; Lin, Q

    2011-08-01

    The objective of this paper is to study the impact of the mesh size of the digital elevation model (DEM) on terrain attributes within an Annualized AGricultural NonPoint Source pollution (AnnAGNPS) Model simulation at watershed scale and provide a correction of slope gradient for low resolution DEMs. The effect of different grid sizes of DEMs on terrain attributes was examined by comparing eight DEMs (30, 40, 50, 60, 70, 80, 90, and 100 m). The accuracy of the AnnAGNPS stimulation on runoff, sediments, and nutrient loads is evaluated. The results are as follows: (1) Rnoff does not vary much with decrease of DEM resolution whereas soil erosion and total nitrogen (TN) load change prominently. There is little effect on runoff simulation of AnnAGNPS modeling by the amended slope using an adjusted 50 m DEM. (2) A decrease of sediment yield and TN load is observed with an increase of DEM mesh size from 30 to 60 m; a slight decrease of sediment and TN load with the DEM mesh size bigger than 60 m. There is similar trend for total phosphorus (TP) variation, but with less range of variation, the simulation of sediment, TN, and TP increase, in which sediment increase up to 1.75 times compared to the model using unadjusted 50 m DEM. In all, the amended simulation still has a large difference relative to the results using 30 m DEM. AnnAGNPS is less reliable for sediment loading prediction in a small hilly watershed. (3) Resolution of DEM has significant impact on slope gradient. The average, minimum, maximum of slope from the various DEMs reduced obviously with the decrease of DEM precision. For the grade of 0∼15°, the slopes at lower resolution DEM are generally bigger than those at higher resolution DEM. But for the grade bigger than 15°, the slopes at lower resolution DEM are generally smaller than those at higher resolution DEM. So it is necessary to adjust the slope with a fitting equation. A cubic model is used for correction of slope gradient from lower resolution to that from higher resolution. Results for Dage watershed showed that fine meshes are desired to avoid large underestimates of sediment and total nitrogen loads and moderate underestimates of total phosphorus loads even with the slopes for the 50 m DEM adjusted to be more similar to the slopes from the 30 m DEM. Decreasing the mesh size beyond this threshold does not substantially affect the computed runoff flux but generated prediction errors for nitrogen and sediment yields. So the appropriate DEM will control error and make simulation at acceptable level.

  5. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  6. The mineral composition and the effect of particle size of carbonized rice straw as colorant of a traditional cake kue jongkong Surabaya

    NASA Astrophysics Data System (ADS)

    Murtini, E. S.; Yuwono, S. S.; Setyawan, H. Y.

    2018-03-01

    Carbonized rice straw (CRS) is a term defined for the residue of incomplete combustion of rice straw. Utilization of CRS as a natural food coloring agent has been the local Indonesian wisdom. However, study of this local food coloring agent is rare in the literature. This study was aimed to determine the mineral composition of the CRS, and to investigate the effect of particle size of the CRS to the black color intensity of a traditional Indonesian cake called kue jongkong Surabaya. The mineral content of the CRS was analyzed using X-ray fluorescence (XRF). The CRS was grounded and sieved passing through different screen sizes (40, 80, 100, 120 and 200 mesh).The particle size distribution was measured using particle size analyzer. The CRS with different particle sizes were then applied as a natural coloring agent of the kue jongkong, from which the intensity of black color was determined using a color reader. It was found that the dominant minerals of the CRS were SiO2, carbon, and K2O. Other trace elements found were Cl, CaO, Na2O, MgO, P, S, Fe, Al2O3 and Mn. The CRS which passed to the sieve of 40 mesh has particle size distribution of 28μm, 115μm, and 348μm for a standard of D10, D50, and D90, respectively. However, CRS that passing through the sieve of 60-200 mesh have similar particle sizes (D10: 12-14μm, D50: 49-60μm, and D90: 114-145 μm). The smaller of CRS particle size produced a darker color of the kue jongkong due to better molecule dispersion and wider surface area.

  7. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  8. Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting

    NASA Astrophysics Data System (ADS)

    Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein

    2016-06-01

    In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.

  9. Spatial patterns of copepod biodiversity in relation to a tidal front system in the main spawning and nursery area of the Argentine hake Merluccius hubbsi

    NASA Astrophysics Data System (ADS)

    Temperoni, B.; Viñas, M. D.; Martos, P.; Marrari, M.

    2014-11-01

    Copepods play an important role in marine ecosystems as a direct link of energy transfer between primary producers and higher trophic level consumers, such as fish. In the Argentine Sea, the Patagonian stock of Argentine hake Merluccius hubbsi spawns from late austral spring (December) to early autumn (April) in the northern Patagonian shelf region (43°-45°30‧S), in association with a highly productive tidal front system. Since hake larvae prey mainly upon copepods, the objective of this study was to assess the spatial variability in the abundance and diversity of these potential food items in different sectors of the front, as one of the possible factors affecting hake recruitment success. Two complementary mesh sizes (67 and 300 μm) were used to accurately target the entire copepod size spectrum. The copepod community was dominated by developmental stages < 1 mm in total length (eggs, nauplii, copepodites of cyclopoids and calanoids), and adults of the species Oithona helgolandica, Microsetella norvegica, Ctenocalanus vanus and Drepanopus forcipatus. Their spatial distribution was highly influenced by the across-shelf characteristics of the tidal front system, highlighting the impact of environmental features, mainly bottom temperature and salinity, in shaping the community. Abundances were higher in the transitional relative to the stratified sector of the system. Such sector would provide the appropriate conditions to sustain M. hubbsi larval growth resulting from high availability of adequate prey, the suitable thermal ranges, and the existence of retention mechanisms.

  10. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    PubMed

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  11. Summary on several key techniques in 3D geological modeling.

    PubMed

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  12. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation.

    PubMed

    Dione, Ibrahima; Deteix, Jean; Briffard, Thomas; Chamberland, Eric; Doyon, Nicolas

    2016-01-01

    In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism allows one to describe ionic concentrations and the electric field (even away from the membrane) with arbitrary spatial and temporal resolution which is impossible to achieve with models relying on cable theory. However, solving the PNP equations on complex geometries involves handling intricate numerical difficulties related either to the spatial discretization, temporal discretization or the resolution of the linearized systems, often requiring large computational resources which have limited the use of this approach. In the present paper, we investigate the best ways to use the finite elements method (FEM) to solve the PNP equations on domains with discontinuous properties (such as occur at the membrane-cytoplasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solution, we show that mesh adaptation is a very (if not the most) efficient way to obtain accurate solutions while limiting the computational efforts, 2) We use mesh adaptation in a 3D model of a node of Ranvier to reveal details of the solution which are nearly impossible to resolve with other modelling techniques. For instance, we exhibit a non linear distribution of the electric potential within the membrane due to the non uniform width of the myelin and investigate its impact on the spatial profile of the electric field in the Debye layer.

  13. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand

    2016-04-01

    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90-120 kV and target currents from 40-60 μA. The focal spot size on the diamond/tungsten target was about 5 μm. The x-ray beam was filtered using a 1 mm Aluminum plate before passing the sample. 1200 x-ray images were taken during a full rotation of the sample using an amorphous silicon flat panel detector with 1516x1900 pixels. This resulted in a voxel resolution of about 8 μm in the 3D data reconstructed from the images. Future work will be aimed in the images segmentation of the fault-related fracture mesh followed by the estimation of its hydraulic properties at the time of fracture sealing. Acknowledgements: This work is a contribution to the CONICYT- BMBF International Scientific Collaborative Research Program Project PCCI130025/FKZ01DN14033 and the FONDAP-CONICYT Project 15090013.

  14. Integration of colloids into a semi-flexible network of fibrin.

    PubMed

    Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H

    2017-02-15

    Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.

  15. Optimization-based mesh correction with volume and convexity constraints

    DOE PAGES

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...

    2016-02-24

    In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less

  16. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs.

    PubMed

    Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori

    2016-09-01

    We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.

  17. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  18. On wave breaking for Boussinesq-type models

    NASA Astrophysics Data System (ADS)

    Kazolea, M.; Ricchiuto, M.

    2018-03-01

    We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90's, and some more recent developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball range and which agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities is observed at mesh sizes which vary from case to case, and depend on the propagation model. These results are comforted by numerical computations on a large number of classical benchmarks. To perform a systematic study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results, To gain an insight into the mechanism actually responsible for wave breaking by providing a quantitative description of the different contributions to the dissipation mechanism, differentiating those associated to the numerical scheme from those introduced at the PDE level, To provide some understanding of the sensitivity of the above mentioned dissipation to the mesh size, To prove the equivalent capabilities of the approaches studied in reproducing simple as well as complex wave transformation, while showing the substantial difference in the underlying dissipation mechanisms. The paper is organised as follows. Section two presents the two Boussinesq approximations used in this work. Section 3 discusses the numerical approximation of the models, as well as of the wave breaking closure. The comparison of the two approaches on a wide selection of benchmarks is discussed in Section 4. The paper is ended by a summary and a sketch of the future and ongoing developments of this work.

  19. Modelling of high-frequency structure-borne sound transmission on FEM grids using the Discrete Flow Mapping technique

    NASA Astrophysics Data System (ADS)

    Hartmann, Timo; Tanner, Gregor; Xie, Gang; Chappell, David; Bajars, Janis

    2016-09-01

    Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping technique (DFM) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. This has proven to enhance vibro-acoustic simulations considerably by making it possible to work directly on existing finite element meshes circumventing time-consuming and costly re-modelling strategies. In addition, DFM provides detailed spatial information about the vibrational energy distribution within a complex structure in the mid-to-high frequency range. We will present here progress in the development of the DEA method towards handling complex FEM-meshes including Rigid Body Elements. In addition, structure borne transmission paths due to spot welds are considered. We will present applications for a car floor structure.

  20. THz near-field spectral encoding imaging using a rainbow metasurface.

    PubMed

    Lee, Kanghee; Choi, Hyun Joo; Son, Jaehyeon; Park, Hyun-Sung; Ahn, Jaewook; Min, Bumki

    2015-09-24

    We demonstrate a fast image acquisition technique in the terahertz range via spectral encoding using a metasurface. The metasurface is composed of spatially varying units of mesh filters that exhibit bandpass features. Each mesh filter is arranged such that the centre frequencies of the mesh filters are proportional to their position within the metasurface, similar to a rainbow. For imaging, the object is placed in front of the rainbow metasurface, and the image is reconstructed by measuring the transmitted broadband THz pulses through both the metasurface and the object. The 1D image information regarding the object is linearly mapped into the spectrum of the transmitted wave of the rainbow metasurface. Thus, 2D images can be successfully reconstructed using simple 1D data acquisition processes.

  1. Importance of mesh overlap on hernia recurrence after open umbilical hernia repair with bilayer prosthesis.

    PubMed

    Porrero, Jose L; Cano-Valderrama, Oscar; Castillo, María J; Marcos, Alberto; Tejerina, Gabriel; Cendrero, Manuel; Porrero, Belén; Alonso, María T; Torres, Antonio J

    2018-02-02

    importance of mesh overlap on recurrence after open umbilical hernia repair has been poorly studied. a retrospective cohort study was performed with patients who underwent open umbilical hernia repair with bilayer prosthesis between 2004 and 2015. 1538 patients were included. Fifty patients (3.3%) had a mesh overlap lower than 1 cm. After a mean follow-up of 4.1 years 53 patients (3.5%) developed a recurrence. Recurrence was associated with a mesh overlap smaller than 1 cm (10.2% vs. 3.3%, p = 0.010, OR = 3.3). In the logistic regression model an overlap smaller than 1 cm was not statistically associated with recurrence (OR = 2.5, p = 0.123). Female gender, postoperative complications and prosthesis size were associated with hernia recurrence. mesh overlap seems to be an important factor for hernia recurrence. A mesh overlap of at least 1 cm should be used until more studies are performed about this issue. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  3. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2013-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  4. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  5. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1986-01-01

    A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.

  6. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.

  7. Minimal Invasive Linea Alba Reconstruction for the Treatment of Umbilical and Epigastric Hernias with Coexisting Rectus Abdominis Diastasis.

    PubMed

    Köhler, Gernot; Fischer, Ines; Kaltenböck, Richard; Schrittwieser, Rudolf

    2018-04-05

    Patients with umbilical or epigastric hernias benefit from mesh- based repairs, and even more so if a concomitant rectus diastasis (RD) is present. The ideal technique is, however, still under debate. In this study we introduce the minimal invasive linea alba reconstruction (MILAR) with the supraaponeurotic placement of a fully absorbable synthetic mesh. Midline reconstruction with anterior rectus sheath repair and mesh augmentation by an open approach is a well-known surgical technique for ventral hernia repair. Between December 1, 2016, and November 30, 2017, 20 patients with symptomatic umbilical and/or epigastric hernias, and coexisting RD underwent a minimally invasive complete reconstruction of the midline through a small access route. The inner part of both incised and medialized anterior rectus sheaths was replaced by a fully absorbable synthetic mesh placed in a supraaponeurotic position. Patients were hospitalized for an average of 4 days and the mean operating time was 79 minutes. The mean hernia defect size was 1.5 cm in diameter and the mean mesh size was recorded as 15.8 cm in length and 5.2 cm in width. Two patients sustained surgical postoperative complications in terms of symptomatic seroma occurrences with successful interventional treatment.The early results (mean follow-up period of 5 months) showed no recurrences and only 1 patient reported occasional pain following exertion without rest. MILAR is a modification of the recently published endoscopic linea alba reconstruction restoring the normal anatomy of the abdominal wall. A new linea alba is formed with augmentation of autologous tissue consisting of the plicated anterior rectus sheaths. Supraaponeurotic placement of a fully absorbable synthetic mesh eliminates potential long-term mesh-associated complications. Regarding MILAR, there is no need for endoscopic equipment due to the uniquely designed flexible lighted retractors, meaning one assistant less is required.

  8. 50 CFR 648.91 - Monkfish regulated mesh areas and restrictions on gear and methods of fishing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... while on a monkfish DAS. Except as provided in paragraph (c)(1)(ii) of this section, the minimum mesh size for any trawl net, including beam trawl nets, used by a vessel fishing under a monkfish DAS is 10... area being fished. (ii) Trawl nets while on a monkfish and NE multispecies DAS. Vessels issued a...

  9. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and biocompatibility to function as suitable ventral hernia repair mesh, while offering a reduction in surgical operating time and improving mesh placement characteristics. Future work will include ball-burst tests similar to ASTM D3787-07, direct surgeon feedback studies, and a 30 day chronic porcine model to evaluate the SMP surgical mesh in a realistic hernia repair environment, using laparoscopic techniques for typical ventral hernia repair.

  10. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  11. METHOD OF MAKING FUEL BODIES

    DOEpatents

    Goeddel, W.V.; Simnad, M.T.

    1962-04-24

    An improved method of making a fuel body containing carbon for reactors is described. Carbides of uranium and thorium having a particle size of from 100 to 500 microns are mixed with carbon having a particle size that will pass a 200 mesh screen but be retained by a 325 mesh screen, and 10 per cent by weight pitch. The mixture is heated to a temperature of about 700 to 900 deg C, at which point bonding is effected while maintaining it under mechanical pressure of over 3,000 pounds per square inch. The entire compact is heated to a uniform temperature during the process, preferably by electrical resistance of the compact itself. (AEC)

  12. Latency-Efficient Communication in Wireless Mesh Networks under Consideration of Large Interference Range

    NASA Astrophysics Data System (ADS)

    Xin, Qin; Yao, Xiaolan; Engelstad, Paal E.

    2010-09-01

    Wireless Mesh Networking is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. We study here the minimum-latency communication primitive of gossiping (all-to-all communication) in multi-hop ad-hoc Wireless Mesh Networks (WMNs). Each mesh node in the WMN is initially given a message and the objective is to design a minimum-latency schedule such that each mesh node distributes its message to all other mesh nodes. Minimum-latency gossiping problem is well known to be NP-hard even for the scenario in which the topology of the WMN is known to all mesh nodes in advance. In this paper, we propose a new latency-efficient approximation scheme that can accomplish gossiping task in polynomial time units in any ad-hoc WMN under consideration of Large Interference Range (LIR), e.g., the interference range is much larger than the transmission range. To the best of our knowledge, it is first time to investigate such a scenario in ad-hoc WMNs under LIR, our algorithm allows the labels (e.g., identifiers) of the mesh nodes to be polynomially large in terms of the size of the WMN, which is the first time that the scenario of large labels has been considered in ad-hoc WMNs under LIR. Furthermore, our gossiping scheme can be considered as a framework which can be easily implied to the scenario under consideration of mobility-related issues since we assume that the mesh nodes have no knowledge on the network topology even for its neighboring mesh nodes.

  13. Fog water collection effectiveness: Mesh intercomparisons

    USGS Publications Warehouse

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of < 1 m s–1 the coated stainless steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  14. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2017-12-01

    In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.

  15. Charged particle tracking through electrostatic wire meshes using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed.more » The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.« less

  16. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  17. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  18. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  19. Continuously differentiable PIC shape functions for triangular meshes

    DOE PAGES

    Barnes, D. C.

    2018-03-21

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  20. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  1. Continuously differentiable PIC shape functions for triangular meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D. C.

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  2. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less

  3. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  4. Battle Damage Modeling

    DTIC Science & Technology

    2010-05-01

    has been an increasing move towards armor systems which are both structural and protection components at the same time. Analysis of material response...the materials can move. As the FE analysis progresses the component will move while the mesh remains motionless (Figure 4). Individual nodes and cells...this parameter. This subroutine needs many inputs, such as the speed of sound in the material , the FE size mesh and the safety factor, which prevents

  5. Utilization of Cocoa Peel as Biosorbent for Oil and Color Removal in Palm Oil Mill Effluent (POME)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Hutagalung, A. T.; Siahaan, A. D.

    2018-01-01

    The aim of this study is to discover the effectiveness of cocoa peel as biosorbents for oil and color removal in POME. This study used biosorbent from cocoa peel with variation of particle size which passed through 70 mesh, 100 mesh, and 120 mesh and was activated with the ratio of biosorbent and 0,6 M HNO3 of 1:2, 1:4, and 1:6 (m/v). The adsorption process was carried out using biosorbent with the highest iodine number in varying biosorbent mass and contact time. The highest iodine number was 596,684 mg/g and obtained at particle size 120 mesh and the ratio of biosorbent : HNO3 as 1 : 4. The resulting biosorbents were analyzed for their characterization, such as vapor content, ash content, and volatile matter, including FT-IR and SEM-EDX. The POME were analyzed for their oil and color content, using gravimetric method and UV-Vis spectrophotometry. The best removal is were 80,88% for oil and 83.45% for color at 1.5 g biosorbent mass and 3 h contact time. The resullt for oil removal was close to the standard of Indonesian Environment Minister for oil in effluent. Also the adsorption of oil and color behaves as a pseudo-second-order kinetic models.

  6. Mesh Dependence on Shear Driven Boundary Layers in Stable Stratification Generated by Large Eddy-Simulation

    NASA Astrophysics Data System (ADS)

    Berg, Jacob; Patton, Edward G.; Sullivan, Peter S.

    2017-11-01

    The effect of mesh resolution and size on shear driven atmospheric boundary layers in a stable stratified environment is investigated with the NCAR pseudo-spectral LES model (J. Atmos. Sci. v68, p2395, 2011 and J. Atmos. Sci. v73, p1815, 2016). The model applies FFT in the two horizontal directions and finite differencing in the vertical direction. With vanishing heat flux at the surface and a capping inversion entraining potential temperature into the boundary layer the situation is often called the conditional neutral atmospheric boundary layer (ABL). Due to its relevance in high wind applications such as wind power meteorology, we emphasize on second order statistics important for wind turbines including spectral information. The simulations range from mesh sizes of 643 to 10243 grid points. Due to the non-stationarity of the problem, different simulations are compared at equal eddy-turnover times. Whereas grid convergence is mostly achieved in the middle portion of the ABL, statistics close to the surface of the ABL, where the presence of the ground limits the growth of the energy containing eddies, second order statistics are not converged on the studies meshes. Higher order structure functions also reveal non-Gaussian statistics highly dependent on the resolution.

  7. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  8. Linking fishery management and conservation in a tropical estuarine lagoon: biological and physical effects of an artisanal fishing gear

    NASA Astrophysics Data System (ADS)

    Rueda, M.; Defeo, O.

    2003-04-01

    Information coming from fishery monitoring, surveys and experimental fishing with participation of fishers was employed to determine the impact of an artisanal gear, 'boliche', on the biodiversity of the Ciénaga Grande de Santa Marta (CGSM), an estuarine lagoon on the Caribbean coast of Colombia. Fishery monitoring (catch data) included landings before (1968 and 1978) and after (1994-1996) the introduction of the boliche in the CGSM (1985), whereas surveys were conducted seasonally during 1993-1994. Fishing experiments involved evaluating different mesh sizes and the short-term effect of physical disturbance by the boliche. Monitoring suggested potential trophic effects of this fishing gear: the catch of large, long-lived, carnivorous species declined after the introduction of the boliche in the CGSM, whereas catch rates of smaller, shorter-lived, and lower trophic level species increased. Surveys revealed that the boliche retained 41 species. The by-catch made up 62% of the total catch and the remaining 38% involved the three target species Eugerres plumieri, Mugil incilis and Cathorops spixii. Selectivity experiments showed that 2.5 in. stretched mesh size gill nets caught more species than the 3.0-in. mesh. The smaller mesh also increased the risk of a critical reduction in the spawning stock of target species (notably E. plumieri); a situation that could affect the fish community if mesh sizes lower than 2.5 in. were intensively used. Suspended particulate matter significantly increased after fishing activity, with higher resuspension on mud-shells and mud substrata, whereas dissolved oxygen showed no appreciable changes after fishing operations. Notwithstanding, the activity of the boliche would generate sediment resuspension between 382 and 470 t day -1, which could lead to potential cascade impacts on water quality. We propose a framework of redundancy in management measures in order to simultaneously reach management and conservation goals.

  9. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  10. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Zhang, W

    2016-10-01

    The objective of the study is to fundamentally elucidate the biological response of 3D printed mesh structures subjected to plasma electrolytic oxidation process through the study of osteoblast functions. The cellular activity of plasma electrolytic-oxidized mesh structure was explored in terms of cell-to-cell communication involving proliferation, synthesis of extracellular and intracellular proteins, and mineralization. Upon plasma electrolytic oxidation of the mesh structure, a thin layer of bioactive titania with pore size 1-3 µm was nucleated on the surface. The combination of microporous bioactive titania and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and tissue and a favorable osteogenic microenvironment for tissue on-growth and in-growth, in relation to the unmodified mesh structure. The formation of a confluent layer as envisaged via electron microscopy and quantitative assessment of the expression level of proteins (actin, vinculin, and fibronectin) point toward the determining role of surface-modified mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2488-2501, 2016. © 2016 Wiley Periodicals, Inc.

  11. The influence of material and mesh characteristics on transmission mode desorption electrospray ionization.

    PubMed

    Chipuk, Joseph E; Brodbelt, Jennifer S

    2009-04-01

    Adaptation of desorption electrospray ionization to a transmission mode (TM-DESI) entails passing an electrospray plume through a sample that has been deposited onto a mesh substrate. A combination of mass spectrometry and fluorescence microscopy studies is used to illustrate the critical role material composition, mesh open space, and mesh fiber diameter play on the transmission, desorption, and ionization process. Substrates with open spaces less than 150 microm and accompanying minimal strand diameters produce less scattering of the plume and therefore favor transmission. Larger strand diameters typically encompass larger open spaces, but the increase in the surface area of the strand increases plume scattering as well as solvent and analyte spreading on the mesh. Polypropylene (PP), ethylene tetrafluoroethylene (ETFE), and polyetheretherketone (PEEK) materials afford much better desorption than similarly sized polyethylene terephthalate (PETE) or nylon-6,6 (PA66) substrates. Ultimately, the manner in which the electrospray plume interacts with the mesh as it is transmitted through the substrate is shown to be critical to performing and optimizing TM-DESI analyses. In addition, evidence is presented for analyte dependent variations in the desorption mechanisms of dry and solvated samples.

  12. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)--Biocompatibility in a standardized endoscopic extraperitoneal hernia model.

    PubMed

    Jacob, Dietmar A; Schug-Pass, Christine; Sommerer, Florian; Tannapfel, Andrea; Lippert, Hans; Köckerling, Ferdinand

    2012-02-01

    The use of a mesh with good biocompatibility properties is of decisive importance for the avoidance of recurrences and chronic pain in endoscopic hernia repair surgery. As we know from numerous experiments and clinical experience, large-pore, lightweight polypropylene meshes possess the best biocompatibility. However, large-pore meshes of different polymers may be used as well and might be an alternative solution. Utilizing a totally extraperitoneal technique in an established animal model, 20 domestic pigs were implanted with either a lightweight large-pore polypropylene (PP) mesh (Optilene® LP) or a medium-weight large-pore knitted polytetrafluorethylene (PTFE) mesh (GORE® INFINIT® mesh). After 94 days, the pigs were sacrificed and postmortem diagnostic laparoscopy was performed, followed by explantation of the specimens for macroscopic, histological and immunohistochemical evaluation. The mean mesh shrinkage rate was 14.2% for Optilene® LP vs. 24.7% for INFINIT® mesh (p = 0.017). The partial volume of the inflammatory cells was 11.2% for Optilene® LP vs. 13.9% for INFINIT (n.s.). CD68 was significantly higher for INFINIT (11.8% vs. 5.6%, p = 0.007). The markers of cell turnover, namely Ki67 and the apoptotic index, were comparable at 6.4% vs. 12.4% (n.s.) and 1.6% vs. 2.0% (n.s.). In the extracellular matrix, TGF-β was 35.4% for Optilene® LP and 31.0% for INFINIT® (n.s.). Collagen I (pos/300 μm) deposits were 117.8 and 114.9, respectively. In our experimental examinations, Optilene® LP and INFINIT® showed a comparable biocompatibility in terms of chronic inflammatory reaction; however, the shrinkage rate was significantly higher for INFINIT® after 3 months. The higher shrinkage rate of INFINIT® should be taken into account when choosing the mesh size for an adequate hernia overlap.

  13. Preliminary report of a sutureless onlay technique for incisional hernia repair using fibrin glue alone for mesh fixation.

    PubMed

    Stoikes, Nathaniel; Webb, David; Powell, Ben; Voeller, Guy

    2013-11-01

    The Rives repair for ventral/incisional (V/I) hernias involves sublay mesh placement requiring retrorectus dissection and transfascial stitches. Chevrel described a repair by onlaying mesh after a unique primary fascial closure. Although Chevrel fixated mesh to the anterior fascia with sutures, he used fibrin glue for fascial closure reinforcement. We describe an onlay technique with mesh fixated to the anterior fascia solely with fibrin glue without suture fixation. From January 2010 to January 2012, 50 patients underwent a V/I hernia onlay technique with fibrin glue mesh fixation. Records were reviewed for technical details, demographics, mesh characteristics, and postoperative outcomes. Primary fascial closure with interrupted permanent suture was done with or without myofascial advancement flaps. Onlay polypropylene mesh was placed providing 8 cm of overlap. Fibrin glue was applied over the prosthesis and subcutaneous drains were placed. Mean age was 62.4 years. Mean body mass index was 30.1 kg/m(2). Average mesh size was 14.5 cm × 19.1 cm. Mean operative time was 144.4 minutes (range, 38 to 316 minutes). Mean discharge was postoperative Day 2.9 (range, 0 to 15 days). Morbidity included eight seromas, one hematoma, and three wound infections. Seventeen patients required components separation. Mean follow-up was 19.5 months with no recurrences. This is the first series describing fibrin glue alone for mesh fixation for V/I hernia repair. It allows for immediate prosthesis fixation to the anterior fascia. Early results are promising. Potential advantages include less operative time, less technical difficulty, and less long-term pain. A prospective trial is needed to evaluate this approach.

  14. Nested high-resolution large-eddy simulations in WRF to support wind power

    NASA Astrophysics Data System (ADS)

    Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.

    2009-12-01

    The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482

  15. Infrasonic wind-noise reduction by barriers and spatial filters.

    PubMed

    Hedlin, Michael A H; Raspet, Richard

    2003-09-01

    This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.

  16. Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki

    2017-03-01

    Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.

  17. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Design variability in web geometry of an orb-weaving spider.

    PubMed

    Vollrath, F; Downes, M; Krackow, S

    1997-10-01

    We studied the effect of several variables (environmental and physiological) on web geometry in the garden cross spider Araneus diadematus. Variables were: web support, wind, temperature, humidity, and silk supply. All had an effect. The spiders generally attempted to fit their webs to the shape of the supporting frame (standard, small, vertical, or horizontal). Windy conditions (0.5 m s-1) during web construction caused spiders to build smaller and rounder webs, laying down fewer capture spirals while increasing the distances between capture-spiral meshes. Decreasing temperature from 24 degrees to 12 degrees C caused the capture spiral to have fewer and wider spaced meshes, which did not change overall capture area but reduced the length of capture-spiral threads laid down. Subsequent increase of temperature to 24 degrees C restored the number of meshes laid down, but the wider mesh was retained, causing the capture area to be increased over initial control values. Decreased humidity (from 70 to 20% rH) had the effect of reducing web and capture-spiral size, the latter by reducing mesh number while keeping mesh spacing constant. Subsequent increase of humidity to control level (70%) restored web and capture area. However, this was achieved by laying down capture meshes at larger distances, rather than returning to initial mesh numbers. Silk supply also had a strong effect. Webs built in unnaturally rapid succession by the same spider (4 in 24 h when 1 is the norm) became sequentially smaller, had fewer radii, shorter capture spirals, and were wider meshed.

  19. Towards hybrid mesh generation for realistic design environments

    NASA Astrophysics Data System (ADS)

    McMorris, Harlan Tom

    Two different techniques that allow hybrid mesh generation to be easily used in the design environment are presented. The purpose of this research is to allow for hybrid meshes to be used during the design process where the geometry is being varied. The first technique, modular hybrid mesh generation, allows for the replacement of portions of a geometry with a new design shape. The mesh is maintained for the portions of that have not changed during the design process. A new mesh is generated for the new part of the geometry and this piece is added to the existing mesh. The new mesh must match the remaining portions of the geometry plus the element sizes must match exactly across the interfaces. The second technique, hybrid mesh movement, is used when the basic geometry remains the same with only small variations to portions of the geometry. These small variations include changing the cross-section of a wing, twisting a blade or changing the length of some portion of the geometry. The mesh for the original geometry is moved onto the new geometry one step at a time beginning with the curves of the surface, continuing with the surface mesh geometry and ending with the interior points of the mesh. The validity of the hybrid mesh is maintained by applying corrections to the motion of the points. Finally, the quality of the new hybrid mesh is improved to ensure that the new mesh maintains the quality of the original hybrid mesh. Applications of both design techniques are applied to typical example cases from the fields of turbomachinery, aerospace and offshore technology. The example test cases demonstrate the ability of the two techniques to reuse the majority of an existing hybrid mesh for typical design changes. Modular mesh generation is used to change the shape of piece of a seafloor pipeline geometry to a completely different configuration. The hybrid mesh movement technique is used to change the twist of a turbomachinery blade, the tip clearance of a rotor blade and to simulate the aeroelastic bending of a wing. Finally, the movement technique is applied to an offshore application where the solution for the original configuration is used as a starting point for solution for a new configuration. The application of both techniques show that the methods can be a powerful addition to the design environment and will facilitate a rapid turnaround when the design geometry changes.

  20. American Society of Composites, 32nd Technical Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitharaju, Venkat; Wollschlager, Jeffrey; Plakomytis2, Dimitrios

    This paper will present a general methodology by which weave draping manufacturing simulation results can be utilized to include the effects of weave draping and scissor angle in a structural multiscale simulation. While the methodology developed is general in nature, this paper will specifically demonstrate the methodology applied to a truncated pyramid, utilizing manufacturing simulation weave draping results from ESI PAM-FORM, and multiscale simulation using Altair Multiscale Designer (MDS) and OptiStruct. From a multiscale simulation perspective, the weave draping manufacturing simulation results will be used to develop a series of woven unit cells which cover the range of weave scissormore » angles existing within the part. For each unit cell, a multiscale material model will be developed, and applied to the corresponding spatial locations within the structural simulation mesh. In addition, the principal material orientation will be mapped from the wave draping manufacturing simulation mesh to the structural simulation mesh using Altair HyperMesh mapping technology. Results of the coupled simulation will be compared and verified against experimental data of the same available via General Motors (GM) Department of Energy (DOE) project.« less

  1. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig

    2015-10-01

    The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.

  2. Definitive Surgical Treatment of Infected or Exposed Ventral Hernia Mesh

    PubMed Central

    Szczerba, Steven R.; Dumanian, Gregory A.

    2003-01-01

    Objective To discuss the difficulties in dealing with infected or exposed ventral hernia mesh, and to illustrate one solution using an autogenous abdominal wall reconstruction technique. Summary Background Data The definitive treatment for any infected prosthetic material in the body is removal and substitution. When ventral hernia mesh becomes exposed or infected, its removal requires a solution to prevent a subsequent hernia or evisceration. Methods Eleven patients with ventral hernia mesh that was exposed, nonincorporated, with chronic drainage, or associated with a spontaneous enterocutaneous fistula were referred by their initial surgeons after failed local wound care for definitive management. The patients were treated with radical en bloc excision of mesh and scarred fascia followed by immediate abdominal wall reconstruction using bilateral sliding rectus abdominis myofascial advancement flaps. Results Four of the 11 patients treated for infected mesh additionally required a bowel resection. Transverse defect size ranged from 8 to 18 cm (average 13 cm). Average procedure duration was 3 hours without bowel repair and 5 hours with bowel repair. Postoperative length of stay was 5 to 7 days without bowel repair and 7 to 9 days with bowel repair. Complications included hernia recurrence in one case and stitch abscesses in two cases. Follow-up ranges from 6 to 54 months (average 24 months). Conclusions Removal of infected mesh and autogenous flap reconstruction is a safe, reliable, and one-step surgical solution to the problem of infected abdominal wall mesh. PMID:12616130

  3. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  4. Application of confocal laser microscopy for monitoring mesh implants in herniology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V P; Belokonev, V I; Bratchenko, I A

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  5. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  6. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics.

    PubMed

    Lehofer, Bernhard; Bloder, Florian; Jain, Pritesh P; Marsh, Leigh M; Leitinger, Gerd; Olschewski, Horst; Leber, Regina; Olschewski, Andrea; Prassl, Ruth

    2014-11-01

    The objective of this study was to evaluate the impact of nebulization on liposomes with specific surface characteristics by applying three commercially available inhaler systems (air-jet, ultrasonic and vibrating-mesh). Conventional liposome formulations composed of phosphatidylcholine and cholesterol were compared to sterically stabilized PEGylated liposomes and cationic polymer coated liposomes.Liposomes of similar size (between 140 and 165 nm in diameter with polydispersity indices <0.1) were prepared by dry lipid film rehydration followed by size extrusion. Their stability upon nebulization was determined in terms of size, polydispersity index and leakage using a fluorescence quenching system. The transport efficiencies of the nebulizer devices and the influences of both salt and liposomes on the droplet size distribution of the aerosol were investigated. While the droplet size of the aerosol decreased with increasing salt concentration the liposomes had no influence on the droplet size distribution. The output of the nebulizers in terms of liposomal transport efficiencies differed significantly among the nebulizer principles (20–100%, p < 0.05), with the vibrating-mesh nebulizers being the most effective. The integrity of the conventional liposomes was almost unaffected by the atomization process, while polymer coated and especially positively charged liposomes showed enhanced leakage. The release rates for the hydrophilic model drug system were highest for the vibrating-mesh nebulizers regardless of the surface characteristics of the liposomes (increasing from 10% to 20% and 50% for the conventional, PEGylated and positively charged formulations, respectively). In view of surface modified liposomes our data suggest that drug delivery via nebulization necessitates the finding of a compromise between nebulizer efficiency, formulation stability and drug release profile to accomplish the development of tailored formulations suitable for advanced inhalation therapy.

  7. Research on regional numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1976-01-01

    Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.

  8. Laparoscopic repair of a large perineal hernia after laparoscopic abdominoperineal resection: A case report.

    PubMed

    Kakiuchi, Daiki; Saito, Kenichiro; Mitsui, Takeshi; Munemoto, Yoshinori; Takashima, Yoshihiro; Amaya, Susumu; Shimada, Masanari; Kato, Yosuke

    2018-06-19

    A 75-year-old woman underwent laparoscopic abdominoperineal resection. Four months after abdominoperineal resection, the patient complained of a perineal bulge and urination disorder. Abdominal CT showed protrusion of the small intestine and bladder to the perineum. The patient underwent laparoscopic hernia repair with mesh. The size of the hernial orifice was 7.0 × 9.0 cm, and it had no solid rim. The mesh was tacked ventrally to the pectineal ligament and dorsally to the sacrum, and then sutured on the lateral side. The hernia has not recurred 10 months after the operation. Laparoscopic repair is a good treatment choice for secondary perineal hernia and fixing the mesh to the pectineal ligament, and the sacrum prevents the mesh from sagging. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  9. Investigating the Greenland ice sheet evolution under changing climate using a three-dimensional full-Stokes model

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.

    2010-12-01

    A three-dimensional, thermo-mechanically coupled model is applied to the Greenland ice sheet. The model implements the full-Stokes equations for the ice dynamics, and the system is solved with the finite-element method (FEM) using the open source multi-physics package Elmer (http://www.csc.fi/elmer/). The finite-element mesh for the computational domain has been created using the Greenland surface and bedrock DEM data with a spatial resolution of 5 km (SeaRise community effort, based on Bamber and others, 2001). The study is particularly aimed at better understanding the ice dynamics near the major Greenland ice streams. The meshing procedure starts with the bedrock footprint where a mesh with triangle elements and a resolution of 5 km is constructed. Since the resulting mesh is unnecessarily dense in areas with slow ice dynamics, an anisotropic mesh adaptation procedure has been introduced. Using the measured surface velocities to evaluate the Hessian matrix of the velocities, a metric tensor is computed at the mesh vertices in order to define the adaptation scheme. The resulting meshed footprint obtained with the automatic tool YAMS shows a high density of elements in the vicinities of the North-East Greenland Ice Stream (NEGIS), the Jakobshavn ice stream (JIS) and the Kangerdlugssuaq (KL) and Helheim (HH) glaciers. On the other hand, elements with a coarser resolution are generated away from the ice streams and domain margins. The final three-dimensional mesh is obtained by extruding the 2D footprint with 21 vertical layers, so that the resulting mesh contains 400860 wedge elements and 233583 nodes. The numerical solution of the Stokes and the heat transfer equations involves direct and iterative solvers depending on the simulation case, and both methods are coupled with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the available data, the geothermal heat flux at the bedrock is prescribed as spatially constant and the lateral sides are open boundaries. A non-linear Weertman law is used for the basal sliding. The project goal is to better assess the effects of dynamical changes of the Greenland ice sheet on sea level rise under global-warming conditions. Hence, the simulations have been conducted in order to investigate the ice sheet evolution using the climate forcing experiments defined in the SeaRISE project. For that purpose, four different experiments have been conducted, (i) constant climate control run beginning at present (epoch 2004-1-1 0:0:0) and running up to 500 years holding the climate constant to its present state, (ii) constant climate forcing with increased basal lubrication, (iii) AR4 climate run forced by anomalies derived from results given in the IPCC 4th Assessment Report (AR4) for the A1B emission scenario, (iv) AR4 climate run with increased basal lubrication.

  10. Properties of Ejecta Generated at High-Velocity Perforation of Thin Bumpers made from Different Constructional Materials

    NASA Astrophysics Data System (ADS)

    Myagkov, N. N.; Shumikhin, T. A.; Bezrukov, L. N.

    2013-08-01

    The series of impact experiments were performed to study the properties of ejecta generated at high-velocity perforation of thin bumpers. The bumpers were aluminum plates, fiber-glass plastic plates, and meshes weaved of steel wire. The projectiles were 6.35 mm diameter aluminum spheres. The impact velocities ranged from 1.95 to 3.52 km/s. In the experiments the ejecta particles were captured with low-density foam collectors or registered with the use of aluminum foils. The processing of the experimental results allowed us to estimate the total masses, spatial and size distributions, and perforating abilities of the ejecta produced from these different bumpers. As applied to the problem of reducing the near-Earth space pollution caused by the ejecta, the results obtained argue against the use of aluminum plates as first (outer) bumper in spacecraft shield protection.

  11. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.

    2017-06-01

    In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.

  12. Parallel deterministic neutronics with AMR in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C.; Ferguson, J.; Hendrickson, C.

    1997-12-31

    AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.

  13. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    PubMed

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh nanoelectronics into rodent brains. First, we describe the design of ultraflexible mesh nanoelectronics with size features and mechanical properties similar to brain tissue and a novel syringe-injection methodology that allows the mesh nanoelectronics to be precisely delivered to targeted brain regions in a minimally invasive manner. Next, we discuss time-dependent histology studies showing seamless and stable integration of mesh nanoelectronics within brain tissue on at least one year scales without evidence of chronic immune response or glial scarring characteristic of conventional implants. Third, armed with facile input/output interfaces, we describe multiplexed single-unit recordings that demonstrate stable tracking of the same individual neurons and local neural circuits for at least 8 months, long-term monitoring and stimulation of the same groups of neurons, and following changes in individual neuron activity during brain aging. Moving forward, we foresee substantial opportunities for (1) continued development of mesh nanoelectronics through, for example, broadening nanodevice signal detection modalities and taking advantage of tissue-like properties for selective cell targeting and (2) exploiting the unique capabilities of mesh nanoelectronics for tackling critical scientific and medical challenges such as understanding and potentially ameliorating cell and circuit level changes associated with natural and pathological aging, as well as using mesh nanoelectronics as active tissue scaffolds for regenerative medicine and as neuroprosthetics for monitoring and treating neurological diseases.

  14. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    PubMed

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  15. An efficient technique for the numerical solution of the bidomain equations.

    PubMed

    Whiteley, Jonathan P

    2008-08-01

    Computing the numerical solution of the bidomain equations is widely accepted to be a significant computational challenge. In this study we extend a previously published semi-implicit numerical scheme with good stability properties that has been used to solve the bidomain equations (Whiteley, J.P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006). A new, efficient numerical scheme is developed which utilizes the observation that the only component of the ionic current that must be calculated on a fine spatial mesh and updated frequently is the fast sodium current. Other components of the ionic current may be calculated on a coarser mesh and updated less frequently, and then interpolated onto the finer mesh. Use of this technique to calculate the transmembrane potential and extracellular potential induces very little error in the solution. For the simulations presented in this study an increase in computational efficiency of over two orders of magnitude over standard numerical techniques is obtained.

  16. A priori mesh grading for the numerical calculation of the head-related transfer functions

    PubMed Central

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2017-01-01

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs. PMID:28239186

  17. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  18. The optimization of high resolution topographic data for 1D hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  19. An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects

    DOE PAGES

    Puso, M. A.; Kokko, E.; Settgast, R.; ...

    2014-10-22

    An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less

  20. The optimization of high resolution topographic data for 1D hydrodynamic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domainmore » and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.« less

  1. Laparoscopic transabdominal preperitoneal approach for umbilical hernia with rectus diastasis.

    PubMed

    Capitano, Sante

    2017-08-01

    Rectus diastasis, when coexistent with umbilical hernia, can benefit from mesh-based repair of the midline. Laparoscopic correction of an umbilical hernia involves the placement of a mesh in the peritoneal cavity, but this comes with the risk of bowel complications. However, newly developed dual-sided composite meshes have helped to reduce this risk. Four men and three women with umbilical hernia and rectus diastasis were treated with laparoscopic transabdominal preperitoneal repair. Composite mesh with a hydrophilic 3-D polyester textile on the parietal side and an absorbable collagen barrier on the peritoneal side were placed in the preperitoneal pocket after hernial sac reduction. Mean hernia size was 2.5 cm, and no recurrences were observed during the mean follow-up period of 9.2 months. The laparoscopic transabdominal preperitoneal approach for umbilical hernia and rectus diastasis may be a safe surgical option when trying to avoid potential complications related to intra-abdominal mesh positioning. © 2017 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  2. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  3. The use of self-gripping (Progrip™) mesh during laparoscopic total extraperitoneal (TEP) inguinal hernia repair: a prospective feasibility and long-term outcomes study.

    PubMed

    Bresnahan, Erin; Bates, Andrew; Wu, Andrew; Reiner, Mark; Jacob, Brian

    2015-09-01

    The use of self-gripping mesh during laparoscopic TEP inguinal hernia repairs may eliminate the need for any additional fixation, and thus reduce post-operative pain without the added concern for mesh migration. Long-term outcomes are not yet prospectively studied in a controlled fashion. Under IRB approval, from January 2011-April 2013, 91 hernias were repaired laparoscopically with self-gripping mesh without additional fixation. Patients were followed for at least 1 year. Demographics and intraoperative data (defect location, size, and mesh deployment time) are recorded. VAS is used in the recovery room (RR) to score pain, and the Carolinas Comfort Scale ™ (CCS), a validated 0-5 pain/quality of life (QoL) score where a mean score of >1.0 means symptomatic pain, is employed at 2 weeks and at 1 year. Morbidities, narcotic usage, days to full activity and return to work, and CCS scores are reported. Sixty two patients, with 91 hernias repaired with self-gripping mesh, completed follow-up at a mean time period of 14.8 months. Seventeen hernias were direct defects (average size 3.0 cm). Mesh deployment time was 193.7 s. RR pain was 1.1/10 using a VAS. Total average oxycodone/acetaminophen (5 mg/325 mg) usage = 5.0 tablets, days to full activity was 1.6, and return to work was 4.2 days. Thirteen small asymptomatic seromas were palpated without any recurrences or groin tenderness, and all seromas resolved by the 6 month visit. Transient testis discomfort was reported in five patients. Urinary retention was 3.2%. Mean CCS™ scores at the first visit for groin pain laying, bending, sitting, walking, and step-climbing were 0.2, 0.5, 0.4, 0.3, and 0.3, respectively. At the first post op visit, 4.8% had symptomatic pain (CCS > 1). At 14.8 months, no patients reported symptomatic pain with CCS scores for all 62 patients averaging 0.02, (range 0-0.43). There are no recurrences thus far. Self-gripping mesh can be safely used during laparoscopic TEP inguinal hernia repairs; our cohort had a rapid recovery, and at the 1-year follow-up visit, there were no recurrences and no patients reported any chronic pain as defined by a CCS™ > 1.

  4. Multiscale modeling and simulation for nano/micro materials

    NASA Astrophysics Data System (ADS)

    Wang, Xianqiao

    Continuum description and atomic description used to be two distinct methods in the community of modeling and simulations. Science and technology have become so advanced that our understanding of many physical phenomena involves the concepts of both. So our goal now is to build a bridge to make atoms and continua communicate with each other. Micromorphic theory (MMT) envisions a material body as a continuous collection of deformable particles; each possesses finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model to bridge the gap between the micro level and macro level. Therefore MMT can be expected to unveil many new classes of physical phenomena that fall beyond classical field theories. In this work, the constitutive equations for generalized Micromorphic thermoviscoelastic solid and generalized Micromorphic fluid have been formulated. To enlarge the domain of applicability of MMT, from nano, micro to macro, we take a bottom-up approach to re-derive the generalized atomistic field theory (AFT) comprehensively and completely and establish the relationship between AFT and MMT. Finite element (FE) method is then implemented to pursue the numerical solutions of the governing equations derived in AFT. When the finest mesh is used, i.e., the size of FE mesh is equal to the lattice constant of the material, the computational model becomes identical to molecular dynamics simulation. When a coarse mesh is used, the resulting model is a coarse-grained model, the majority of the degrees of freedom are eliminated and the computational cost is largely reduced. When the coarse mesh and finest mesh exist concurrently, i.e., the finest mesh is used in the critical regions and the coarser mesh is used in the far field, it leads naturally to a concurrent atomistic/continuum model. Atomic scale, coarse-grained scale and concurrent atomistic/continuum simulations have demonstrated the potential capability of AFT to simulate most grand challenging problems in nano/micro physics, and shown that AFT has the advantages of both atomic model and MMT. Therefore, AFT has accomplished the mission to bridge the gap between continuum mechanics and atomic physics.

  5. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  6. Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model.

    PubMed

    Petter-Puchner, A; Gruber-Blum, S; Walder, N; Fortelny, R H; Redl, H; Raum, K

    2014-08-01

    Mesh integration is a key parameter for reliable and safe hernia repair. So far, its assessment is based on histology obtained from rare second-look operations or experimental research. Therefore, non-invasive high-resolution imaging techniques would be of great value. Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) have shown potential in the imaging of hard and soft tissues. This experimental study compared the detection of mesh integration, foreign body reaction and scar formation in UBM/SAM with standard histology. Ten titanized polypropylene meshes were implanted in rats in a model of onlay repair. 17 days postoperative animals were killed and samples were paraffin embedded for histology (H&E, Cresyl violet) or processed for postmortem UBM/SAM. The observation period was uneventful and meshes appeared well integrated. Relocation of neighboring cross-sectional levels could easily be achieved with the 40-MHz UBM and granulation tissue could be distinguished from adjacent muscle tissue layers. The spatial resolution of approximately 8 μm of the 200-MHz UBM system images was comparable to standard histology (2.5-5× magnification) and allowed a clear identification of mesh fibers and different tissue types, e.g., scar, fat, granulation, and muscle tissues, as well as vessels, abscedations, and foreign body giant cell clusters. This pilot study demonstrates the potential of high-frequency ultrasound to assess hernia mesh integration non-invasively. Although the methods lack cell-specific information, tissue integration could reliably be assessed. The possibility of conducting UBM in vivo advocates this method as a guidance tool for the indication of second-look operations and subsequent elaborate histological analyses.

  7. Determination of CEC value (Cation Exchange Capacity) of Bentonites from North Aceh and Bener Meriah, Aceh Province, Indonesia using three methods

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Salim, S.; Arlina, A.; Fona, Z.; Jalal, R.; Alam, P. N.; Zaimahwati; Sami, M.; Syarif, J.; Juhan, N.

    2018-03-01

    Research on determination of value CEC (Cation Exchange Capacity) Bentonite North Aceh and Bener Meriah with three methods has been studied. The purpose of this study was to determine the value of CEC bentonite North Aceh and Bener Meriah. The methods used in this research were pH equilibrium, BaCl2/MgSO4 and the adsorption of methylene blue. These three methods used to determine, compare, and calculation of the CEC value and determine the effect of particle size of bentonite on the value of the CEC. Bentonite North Aceh and Bener Meriah sieved with particle sizes of 80, 100, 150, 200, 250 mesh. The results showed that determination of the value of CEC bentonite North Aceh using BaCl2/MgSO4 with a particle size of 250 mesh is the value of the highest, reaching 79.09 meq/100 g.

  8. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model.

    PubMed

    Darzi, Saeedeh; Urbankova, Iva; Su, Kai; White, Jacinta; Lo, Camden; Alexander, David; Werkmeister, Jerome A; Gargett, Caroline E; Deprest, Jan

    2016-07-15

    Pelvic Organ Prolapse (POP) is the herniation of pelvic organs into the vagina. Despite broad acceptance of mesh use in POP surgical repair, the complication rate is unacceptable. We hypothesized that collagen-containing polypropylene (PP) mesh types could modulate mesh-tissue integration and reduce long-term inflammation, thereby reducing mesh-associated complications. This study compared the long-term tissue response to an unmodified PP mesh and two collagen containing meshes in an ovine model which has similar pelvic anatomy and vaginal size to human. Three commercially available macroporous PP meshes, uncoated PP mesh (Avaulta Solo) (PP), the same textile PP mesh layered with a sheet of cross-linked porcine acellular matrix (Avaulta Plus) (PP-ACM) and a different yet also macroporous PP (Sofradim) mesh coated with solubilized atelocollagen (Ugytex) (PP-sCOL) were implanted in the ovine vagina and tissue explanted after 60 and 180days. The macrophage phenotype and response to implanted meshes, and vascularity were quantified by immunostaining and morphometry. We quantified changes in extracellular matrix composition biochemically and collagen organisation and percentage area around the interface of the mesh implants by Sirius Red birefringence and morphometry. PP-ACM induced a more sustained inflammatory response, indicated by similar CD45(+) leukocytes but reduced CD163(+) M2 macrophages at 60days (P<0.05). PP-sCOL increased Von Willebrand Factor (vWF)-immunoreactive vessel profiles after 60days. At the micro-molecular level, collagen birefringence quantification revealed significantly fewer mature collagen fibrils (red, thick fibrils) at the mesh-tissue interface than control tissue for all mesh types (P<0.001) but still significantly greater than the proportion of immature (green thin fibrils) at 60days (P<0.05). The proportion of mature collagen fibrils increased with time around the mesh filaments, particularly those containing collagen. The total collagen percent area at the mesh interface was greatest around the PP-ACM mesh at 60days (P<0.05). By 180days the total mature and immature collagen fibres at the interface of the mesh filaments resembled that of native tissue. In particular, these results suggest that both meshes containing collagen evoke different types of tissue responses at different times during the healing response yet both ultimately lead to physiological tissue formation approaching that of normal tissue. Pelvic organ prolapse (POP) is the descent of the pelvic organs to the vagina. POP affects more than 25% of all women and the lifetime risk of undergoing POP surgery is 19%. Although synthetic polypropylene (PP) meshes have improved the outcome of the surgical treatment for POP, there was an unacceptable rate of adverse events including mesh exposure and contracture. It is hypothesized that coating the PP meshes with collagen would provide a protective effect by preventing severe mesh adhesions to the wound, resulting in a better controlled initial inflammatory response, and diminished risk of exposure. In this study we assessed the effect of two collagen-containing PP meshes on the long-term vaginal tissue response using new techniques to quantify these tissue responses. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. [Skeleton extractions and applications].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at leastmore » two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.« less

  10. Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data

    DTIC Science & Technology

    2009-01-14

    to perform a union find on the ground mesh vertices to calculate the sizes of ground mesh segments, 462 seconds to read the airborne data in to a...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of...California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  11. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  12. A continuum mechanics-based musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2017-11-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.

  13. Palaeopermeability anisotropies of a strike-slip fault damage zone: 3D Insights of quantitative fluid flow from µCT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Arancibia, G.; Nehler, M.; Bracke, R.; Morata, D.

    2017-12-01

    Fault zones and their related structural permeability are a key aspect in the migration of fluids through the continental crust. Therefore, the estimation of the hydraulic properties (palaeopermeability conditions; k) and the spatial distribution of the fracture mesh within the damage zone (DZ) are critical in the assessment of fault zones behavior for fluids. The study of the real spatial distribution of the veinlets of the fracture mesh (3D), feasible with the use of µCT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, and the validation of previous (and classical) estimations made in 2D analyses in thin-sections. This work shows the results of a fault-related fracture mesh and its 3D spatial distribution in the damage-zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of drilling 5 mm vertically oriented plugs at several locations within the JF damage zone. Each specimen was scanned with an X-Ray µCT scanner, to assess the fracture mesh, with a voxel resolution of ca. 4.5 µm in the 3D reconstructed data. Tensor permeability modeling, using Lattice-Boltzmann Method, through the segmented microfracture mesh show GMkmin (geometric mean values) of 2.1x10-12 and 9.8x10-13 m2, and GMkmax of 6.4x10-12 and 2.1x10-12 m2. A high degree of anisotropy of the DZ permeability tensor both sides of the JF (eastern and western side, respectively) is observed, where the k values in the kmax plane are 2.4 and 1.9 times higher than the kmin direction at the time of fracture sealing. This style of anisotropy is consistent with the obtained for bedded sandstones supporting the idea that damage zones have an analogous effect - but vertically orientated - on bulk permeability (in low porosity rocks) as stratigraphic layering, where across-strike khorizontal of a fault is lower when compared with the kvertical and kfault parallel. Acknowledgements: This work is a contribution to FONDAP-CONICYT Project 15090013 and CONICYT- BMBF International Scientific Collaborative Research Program Project PCCI130025/FKZ01DN14033. R.G. Ph.D. is funded by CONICYT Scholarship 21140021.

  14. Retrofascial mesh repair of ventral incisional hernias.

    PubMed

    Le, Hamilton; Bender, Jeffrey S

    2005-03-01

    Recurrence rates after ventral incisional hernia repair are reported to be as high as 33% and are associated with considerable morbidity and lost time. The purpose of this study was to determine if retrofascial mesh placement reduces the incidence of recurrence as well as the severity of wound infections. A prospective database covering the period from January 1995 to June 2003 was maintained. All patients underwent a standardized technique by a single surgeon. Polypropylene mesh was placed between the fascia and the peritoneum with the fascia closed over the mesh. There were 150 patients (126 women, 24 men) with a mean age of 55 years. Their average weight was 88 kg, with an average body mass index of 32. Sixty-three (42%) of the hernias were recurrences of a previous repair. The average size of the hernia was 8 x 14 cm. There was 1 postoperative mortality. There was a 9% postoperative infection rate with 2 patients (1%) requiring mesh removal. Long-term follow-up evaluation has revealed 3 recurrences (2%) and 3 readmissions for bowel obstruction with 1 patient requiring surgical release. There were no fistulas noted. Incisional hernia repair with mesh placed in the retrofascial position decreases both the risk for recurrence and the severity of wound infection without significant problems from bowel obstruction or enteric fistula.

  15. SANTA BARBARA CLUSTER COMPARISON TEST WITH DISPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Takayuki R.; Makino, Junichiro, E-mail: saitoh@elsi.jp

    2016-06-01

    The Santa Barbara cluster comparison project revealed that there is a systematic difference between entropy profiles of clusters of galaxies obtained by Eulerian mesh and Lagrangian smoothed particle hydrodynamics (SPH) codes: mesh codes gave a core with a constant entropy, whereas SPH codes did not. One possible reason for this difference is that mesh codes are not Galilean invariant. Another possible reason is the problem of the SPH method, which might give too much “protection” to cold clumps because of the unphysical surface tension induced at contact discontinuities. In this paper, we apply the density-independent formulation of SPH (DISPH), whichmore » can handle contact discontinuities accurately, to simulations of a cluster of galaxies and compare the results with those with the standard SPH. We obtained the entropy core when we adopt DISPH. The size of the core is, however, significantly smaller than those obtained with mesh simulations and is comparable to those obtained with quasi-Lagrangian schemes such as “moving mesh” and “mesh free” schemes. We conclude that both the standard SPH without artificial conductivity and Eulerian mesh codes have serious problems even with such an idealized simulation, while DISPH, SPH with artificial conductivity, and quasi-Lagrangian schemes have sufficient capability to deal with it.« less

  16. Canine tooth wear in captive little brown bats

    USGS Publications Warehouse

    Clark, Donald R.

    1980-01-01

    Upper canine teeth of little brown bats Myotis lucifugus lucifugus held in stainless steel wire mesh cages underwent severe wear which exceeded that observed previously in caged big brown bats, Eptesicus fuscus fuscus. This suggests a relationship between amount of wear and size of the caged bats with damage increasing as size decreases. Rapid wear of canine teeth by little brown bats resembled that observed in big brown bats in that it was limited to the first 2 weeks of captivity. This result indicates a universal interval for acclimation to cage conditions among vespertilionid bats. Dietary toxicants DDE and PCB did not affect the extent of wear. If bats are to be released to the wild, confinement in wire mesh cages should be avoided.

  17. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    PubMed

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  18. A New Cross-By-Pass-Torus Architecture Based on CBP-Mesh and Torus Interconnection for On-Chip Communication.

    PubMed

    Gulzari, Usman Ali; Sajid, Muhammad; Anjum, Sheraz; Agha, Shahrukh; Torres, Frank Sill

    2016-01-01

    A Mesh topology is one of the most promising architecture due to its regular and simple structure for on-chip communication. Performance of mesh topology degraded greatly by increasing the network size due to small bisection width and large network diameter. In order to overcome this limitation, many researchers presented modified Mesh design by adding some extra links to improve its performance in terms of network latency and power consumption. The Cross-By-Pass-Mesh was presented by us as an improved version of Mesh topology by intelligent addition of extra links. This paper presents an efficient topology named Cross-By-Pass-Torus for further increase in the performance of the Cross-By-Pass-Mesh topology. The proposed design merges the best features of the Cross-By-Pass-Mesh and Torus, to reduce the network diameter, minimize the average number of hops between nodes, increase the bisection width and to enhance the overall performance of the network. In this paper, the architectural design of the topology is presented and analyzed against similar kind of 2D topologies in terms of average latency, throughput and power consumption. In order to certify the actual behavior of proposed topology, the synthetic traffic trace and five different real embedded application workloads are applied to the proposed as well as other competitor network topologies. The simulation results indicate that Cross-By-Pass-Torus is an efficient candidate among its predecessor's and competitor topologies due to its less average latency and increased throughput at a slight cost in network power and energy for on-chip communication.

  19. An adaptive multiblock high-order finite-volume method for solving the shallow-water equations on the sphere

    DOE PAGES

    McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...

    2015-09-04

    We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.

  20. Euler Flow Computations on Non-Matching Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  1. A class of renormalised meshless Laplacians for boundary value problems

    NASA Astrophysics Data System (ADS)

    Basic, Josip; Degiuli, Nastia; Ban, Dario

    2018-02-01

    A meshless approach to approximating spatial derivatives on scattered point arrangements is presented in this paper. Three various derivations of approximate discrete Laplace operator formulations are produced using the Taylor series expansion and renormalised least-squares correction of the first spatial derivatives. Numerical analyses are performed for the introduced Laplacian formulations, and their convergence rate and computational efficiency are examined. The tests are conducted on regular and highly irregular scattered point arrangements. The results are compared to those obtained by the smoothed particle hydrodynamics method and the finite differences method on a regular grid. Finally, the strong form of various Poisson and diffusion equations with Dirichlet or Robin boundary conditions are solved in two and three dimensions by making use of the introduced operators in order to examine their stability and accuracy for boundary value problems. The introduced Laplacian operators perform well for highly irregular point distribution and offer adequate accuracy for mesh and mesh-free numerical methods that require frequent movement of the grid or point cloud.

  2. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    PubMed Central

    Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo

    2018-01-01

    There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture. PMID:29342129

  3. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.

    PubMed

    Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo

    2018-01-17

    There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm-3 mm and a porosity of 10-35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm-50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture.

  4. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mesh leaves the interior of the structure open to the weather. (n) Except for nonnavigable houseboats... APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS... structure of the maximum size, TVA shall determine the size of facility that may be approved. Applicants are...

  5. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mesh leaves the interior of the structure open to the weather. (n) Except for nonnavigable houseboats... APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS... structure of the maximum size, TVA shall determine the size of facility that may be approved. Applicants are...

  6. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mesh leaves the interior of the structure open to the weather. (n) Except for nonnavigable houseboats... APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS... structure of the maximum size, TVA shall determine the size of facility that may be approved. Applicants are...

  7. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  8. Hydrogen atom kinetics in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  9. Scalable Computing of the Mesh Size Effect on Modeling Damage Mechanics in Woven Armor Composites

    DTIC Science & Technology

    2008-12-01

    manner of a user defined material subroutine to provide overall stress increments to, the parallel LS-DYNA3D a Lagrangian explicit code used in...finite element code, as a user defined material subroutine . The ability of this subroutine to model the effect of the progressions of a select number...is added as a user defined material subroutine to parallel LS-DYNA3D. The computations of the global mesh are handled by LS-DYNA3D and are spread

  10. A priori error estimates for an hp-version of the discontinuous Galerkin method for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Oden, J. Tinsley

    1993-01-01

    A priori error estimates are derived for hp-versions of the finite element method for discontinuous Galerkin approximations of a model class of linear, scalar, first-order hyperbolic conservation laws. These estimates are derived in a mesh dependent norm in which the coefficients depend upon both the local mesh size h(sub K) and a number p(sub k) which can be identified with the spectral order of the local approximations over each element.

  11. Gamma motes for detection of radioactive materials in shipping containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold McHugh; William Quam; Stephan Weeks

    Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks.

  12. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  13. Thermal Performance Analysis of a Geologic Borehole Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reagin, Lauren

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of twomore » WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to being independent of mesh size. The results from the computational case and analytically-calculated case for the homogeneous WP in benchmarking were almost identical, which indicates that the computational approach used here was successfully verified by the analytical solution.« less

  14. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases.

  15. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.

  16. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  17. Filtration of submicrometer particles by pelagic tunicates

    PubMed Central

    Sutherland, Kelly R.; Madin, Laurence P.; Stocker, Roman

    2010-01-01

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d ∼0.1 μm) at low velocity (U = 1.6 ± 0.6 cm·s−1, mean ± SD) and is thus a low Reynolds-number (Re ∼10−3) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-μm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 μm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-μm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 μm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean. PMID:20696887

  18. Filtration of submicrometer particles by pelagic tunicates.

    PubMed

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  19. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  20. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  1. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  2. Effects of Initial Powder Size on the Mechanical Properties and Microstructure of As-Extruded GRCop-84

    NASA Technical Reports Server (NTRS)

    Okoro, Chika L.

    2004-01-01

    GRCop-84 was developed to meet the mechanical and thermal property requirements for advanced regeneratively cooled rocket engine main combustion chamber liners. It is a ternary Cu- Cr-Nb alloy having approximately 8 at% Cr and 4 at% Nb. The chromium and niobium constituents combine to form 14 vol% Cr2Nb, the strengthening phase. The alloy is made by producing GRCop-84 powder through gas atomization and consolidating the powder using extrusion, hot isostatic pressing (HIP) or vacuum plasma spraying (VPS). GRCop-84 has been selected by Rocketdyne, Ratt & Wlutney and Aerojet for use in their next generation of rocket engines. GRCop-84 demonstrates favorable mechanical and thermal properties at elevated temperatures. Compared to NARloy-Z, the currently used inaterial in the Space Shuttle, GRCop-84 has approximately twice the yield strength, 10-1000 times the creep life, and 1.5-2.5 times the low cycle fatigue life. The thermal expansion of GRCop-84 is 7515% less than NARloy-Z which minimizes thermally induced stresses. The thermal conductivity of the two alloys is comparable at low temperature but NARloy-Z has a 20-50 W/mK thermal conductivity advantage at typical rocket engine hot wall temperatures. GRCop-84 is also much more microstructurally stable than NARloy-Z which translates into better long term stability of mechanical properties. Previous research into metal alloys fabricated by means of powder metallurgy (PM), has demonstrated that initial powder size can affect the microstructural development and mechanical properties of such materials. Grain size, strength, ductility, size of second phases, etc., have all been shown to vary with starting powder size in PM-alloys. This work focuses on characterizing the effect of varying starting powder size on the microstructural evolution and mechanical properties of as- extruded GRCop-84. Tensile tests and constant load creep tests were performed on extrusions of four powder meshes: +140 mesh (great3er than l05 micron powder size), -140 mesh (less than or equal to 105 microns), -140 plus or minus 270 (53 - 105 microns), and - 270 mesh (less than or equal to 53 microns). Samples were tested in tension at room temperature and at 500 C (932 F). Creep tests were performed under vacuum at 500 C using a stress of 111 MPa (16.1 ksi). The fracture surfaces of selected samples from both tests were studied using a Scanning Electron Microscope (SEM). The as-extruded materials were also studied, using both optical microscopy and SEM analysis, to characterize changes within the microstructure.

  3. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    PubMed

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds. © 2015 Wiley Periodicals, Inc.

  4. A Hexapod Robot to Demonstrate Mesh Walking in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Foor, David C.

    2005-01-01

    The JPL Micro-Robot Explorer (MRE) Spiderbot is a robot that takes advantage of its small size to perform precision tasks suitable for space applications. The Spiderbot is a legged robot that can traverse harsh terrain otherwise inaccessible to wheeled robots. A team of Spiderbots can network and can exhibit collaborative efforts to SUCCeSSfUlly complete a set of tasks. The Spiderbot is designed and developed to demonstrate hexapods that can walk on flat surfaces, crawl on meshes, and assemble simple structures. The robot has six legs consisting of two spring-compliant joints and a gripping actuator. A hard-coded set of gaits allows the robot to move smoothly in a zero-gravity environment along the mesh. The primary objective of this project is to create a Spiderbot that traverses a flexible, deployable mesh, for use in space repair. Verification of this task will take place aboard a zero-gravity test flight. The secondary objective of this project is to adapt feedback from the joints to allow the robot to test each arm for a successful grip of the mesh. The end result of this research lends itself to a fault-tolerant robot suitable for a wide variety of space applications.

  5. The use of BAS-TR imaging plates calibration in determining the resolving power of Fuji BAS-1800II image plate reader

    NASA Astrophysics Data System (ADS)

    Alnaimi, R.

    2018-01-01

    The importance of this work lies in assuring the reliability of the results obtained from both imaging plates type BAS-TR and Fuji Image Reader BAS-1800II as they are widely used in calculating essential x-ray sources parameters such as the source size, x-ray flux and brilliance, hence, the calibration presented in this work. For such quantitative analysis, a common practice used by many researchers, where Gold resolution meshes are utilised for such purpose, however not quite successful due to the transmission effect of high energy photons at their edges as well as the pixeling effect while magnifying the scanned image to secure the edge spread function (ESF) data. In contrast, the use of resolution test target (RTT) and wire mesh grid together with a set of test samples i.e. Stanley blades, Ta, Ti and Si wafer of 100, 300, 15, and 490 micron thickness respectively appeared to be efficient in determining IP pixel size and the resolution of the reader. Two different experiments were conducted using two different targets and lasers of very different performance. The first, was a 15 μm VHS video tape composed of Mylar as carrier film with Fe2O3 and CrO2 powder. Nd:YAG laser of long pulse 800 ps, 50 Hz repetition rate and single shot were utilised. Whereas, the second experiment were conducted on a 9μm C wire and a short pulse 500fs Cerberus single shot laser was used. The results obtained from both experiments were pretty much similar. The imaging plate spatial resolution was measured to be: 3.4 ± 0.2 pixels and a pixel size of 41.26 ± 1.4 μm, whereas the smallest resolvable object visible to the reader (1:1 imaging with magnification factor) was of order 140.3 ± 0.3 microns. This appeared to be worse by a factor of three which indicates the importance of the reader's calibration on a regular basis, and at the same time one has to reconsider any related work and calculation based upon the previous nominal values.

  6. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compoundsmore » was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.« less

  7. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.

    PubMed

    Nakamura, Koji; Murray, Robert J; Joseph, Jeffrey I; Peppas, Nicholas A; Morishita, Mariko; Lowman, Anthony M

    2004-03-24

    Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content.

  8. Properties of bio-based medium density fiberboard

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2006-01-01

    In order to utilize agricultural waste fibers as an alternative resource for composites, a number of variables were investigated to determine whether the mechanical and physical properties of agro-based fiberboard could be improved. Fibers were classified into four different mesh sizes and used to evaluated the effect of fiber size on the mechanical and physical...

  9. Aerodynamic Drag Scoping Work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskuilen, Tyler; Erickson, Lindsay Crowl; Knaus, Robert C.

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined bymore » Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.« less

  10. Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data.

    PubMed

    Bayer, Jason; Prassl, Anton J; Pashaei, Ali; Gomez, Juan F; Frontera, Antonio; Neic, Aurel; Plank, Gernot; Vigmond, Edward J

    2018-04-01

    Being able to map a particular set of cardiac ventricles to a generic topologically equivalent representation has many applications, including facilitating comparison of different hearts, as well as mapping quantities and structures of interest between them. In this paper we describe Universal Ventricular Coordinates (UVC), which can be used to describe position within any biventricular heart. UVC comprise four unique coordinates that we have chosen to be intuitive, well defined, and relevant for physiological descriptions. We describe how to determine these coordinates for any volumetric mesh by illustrating how to properly assign boundary conditions and utilize solutions to Laplace's equation. Using UVC, we transferred scalar, vector, and tensor data between four unstructured ventricular meshes from three different species. Performing the mappings was very fast, on the order of a few minutes, since mesh nodes were searched in a KD tree. Distance errors in mapping mesh nodes back and forth between meshes were less than the size of an element. Analytically derived fiber directions were also mapped across meshes and compared, showing  < 5° difference over most of the ventricles. The ability to transfer gradients was also demonstrated. Topologically variable structures, like papillary muscles, required further definition outside of the UVC framework. In conclusion, UVC can aid in transferring many types of data between different biventricular geometries. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Learning curves in abdominal wall reconstruction with components separation: one step closer toward improving outcomes and reducing complications.

    PubMed

    Hultman, Charles Scott; Clayton, John L; Kittinger, Benjamin J; Tong, Winnie M

    2014-01-01

    Learning curves are characterized by incremental improvement of a process, through repetition and reduction in variability, but can be disrupted with the emergence of new techniques and technologies. Abdominal wall reconstruction continues to evolve, with the introduction of components separation in the 1990s and biologic mesh in the 2000s. As such, attempts at innovation may impact the success of reconstructive outcomes and yield a changing set of complications. The purpose of this project was to describe the paradigm shift that has occurred in abdominal wall reconstruction during the past 10 years, focusing on the incorporation of new materials and methods. We reviewed 150 consecutive patients who underwent abdominal wall reconstruction of midline defects with components separation, from 2000 to 2010. Both univariate and multivariate logistic regression analyses were performed to identify risk factors for complications. Patients were stratified into the following periods: early (2000-2003), middle (2004-2006), and late (2007-2010). From 2000 to 2010, we performed 150 abdominal wall reconstructions with components separation [mean age, 50.2 years; body mass index (BMI), 30.4; size of defect, 357 cm; length of stay, 9.6 days; follow-up, 4.4 years]. Primary fascial closure was performed in 120 patients. Mesh was used in 114 patients in the following locations: overlay (n = 28), inlay (n = 30), underlay (n = 54), and unknown (n = 2). Complications occurred in a bimodal distribution, highest in 2001 (introduction of biologic mesh) and 2008 (conversion from underlay to overlay location). Age, sex, history of smoking, defect size, and length of stay were not associated with incidence of complications. Unadjusted risk factors for seroma (16.8%) were elevated BMI, of previous hernia repairs, use of overlay mesh, and late portion of the learning curve, with logistic regression supporting only late portion of the learning curve [odds ratio (OR), 4.3; 95% confidence interval (CI), 1.0-18.6] and BMI (OR, 1.17; 95% CI, 1.06-1.29). The only unadjusted risk factor for recurrence was location of mesh. Logistic regression, comparing underlay, inlay, and overlay mesh to no mesh, revealed that the use of underlay mesh predicted recurrence (OR, 3.0; 95% CI, 1.04-8.64). All P values were less than 0.05. The overall learning curve for a specific procedure, such as abdominal wall reconstruction, can be quite volatile, especially as innovative techniques and new technologies are introduced and incorporated into the surgeon's practice. Our current practice includes primary repair myofascial flap of the components separation and the use of biologic mesh as an overlay graft, anchored to the external oblique. This process of outcome improvement is not gradual but is often punctuated by periods of failure and redemption.

  12. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except for directly under and close to the track. Where the track runs parallel to the contours, water-tables were found to be deeper downslope of the track and shallower upslope. However in the no track/driving treatment; water table was significantly shallower downslope than upslope. Strong anisotropy was found in both 'before-track' and 'after-track' Ks, with horizontal Ks significantly greater than vertical Ks. No significant difference was found in vertical Ks before and after driving (medians 8.6 x 10-5 and 6.6 x 10-5 cm s-1 respectively). Horizontal Ks was significantly greater after driving (median 2.2 x 10-3 cm s-1) than before (median 3.7 x 10-4 cm s-1). Post-hoc testing highlights variability in response to treatment and topographic position. We suggest that this surprising result is related to rapid regrowth of new vegetation (particularly Sphagnum) through the mesh of the track, which was more dominant on horizontal Ks than the compression from low-ground-pressure vehicle use. Our results indicate that mesh tracks have a significant impact upon hydrology; however response is variable dependent upon topographic and seasonal factors. These findings can be used to inform land-management decision-making for the use of mesh tracks in peatlands.

  13. Hopping Diffusion of Nanoparticles in Polymer Matrices

    PubMed Central

    2016-01-01

    We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803

  14. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346

  15. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

    PubMed

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

  16. Progressive simplification and transmission of building polygons based on triangle meshes

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu

    2010-11-01

    Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.

  17. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.

    PubMed

    Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R

    2018-01-15

    Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio

    2018-04-01

    We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.

  19. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  20. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    PubMed

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We demonstrate it's usefulness using the example of a signaling cascade leading to formation of a morphological gradient of Fus3 within the cytoplasm of the mating yeast cell Saccharomyces cerevisiae. STSE is an efficient and powerful novel platform, designed for computational handling and evaluation of microscopic images. It allows for an uninterrupted workflow including digitization, representation, analysis, and mathematical modeling. By providing the means to relate the simulation to the image data it allows for systematic, image driven model validation or rejection. STSE can be scripted and extended using the Python language. STSE should be considered rather as an API together with workflow guidelines and a collection of GUI tools than a stand alone application. The priority of the project is to provide an easy and intuitive way of extending and customizing software using the Python language.

  1. The Fysics of Filopodia (or The Physics of Philopodia)

    NASA Astrophysics Data System (ADS)

    Schwarz, Jen; Gopinathan, Ajay; Lee, Kun-Chun; Liu, Andrea; Yang, Louise

    2006-03-01

    Cell motility is driven by the dynamic reorganization of the cellular cytoskeleton which is composed of actin. Monomeric actin assembles into filaments that grow, shrink, branch and bundle. Branching generates new filaments that form a mesh-like structure that protrudes outward allowing the cell to move somewhere. But how does it know where to move? It has been proposed that filopodia serve as scouts for the cell. Filopodia are bundles of actin filaments that extend out ahead of the rest of the cell to probe its upcoming environment. Recent in vitro experiments [Vignjevic et al., J. Ce ll Bio. 160, 951 (2003)] determine the minimal ingredients required for such a process. We model these experiments analytically and via Monte Carlo simulations to estimate the typical bundle size and length. We also estimate the size of the mesh-like structure from which the filopodia emerge and explain the observed nonmonotonicity of this size as a function of capping protein concentration, which inhibits filament growth.

  2. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  3. Adapting to life: ocean biogeochemical modelling and adaptive remeshing

    NASA Astrophysics Data System (ADS)

    Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.

    2014-05-01

    An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in vertical nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a simple vertical column (quasi-1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3. Unlike previous work the adaptivity metric used is flexible and we show that capturing the physical behaviour of the model is paramount to achieving a reasonable solution. Adding biological quantities to the adaptivity metric further refines the solution. We then show the potential of this method in two case studies where we change the adaptivity metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate that adaptive meshes may provide a suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high vertical resolution whilst minimising the number of elements in the mesh. More work is required to move this to fully 3-D simulations.

  4. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    NASA Astrophysics Data System (ADS)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  5. Grouper: a compact, streamable triangle mesh data structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  6. Advances and applications of ABCI

    NASA Astrophysics Data System (ADS)

    Chin, Y. H.

    1993-05-01

    ABCI (Azimuthal Beam Cavity Interaction) is a computer program which solves the Maxwell equations directly in the time domain when a Gaussian beam goes through an axi-symmetrical structure on or off axis. Many new features have been implemented in the new version of ABCI (presently version 6.6), including the 'moving mesh' and Napoly's method of calculation of wake potentials. The mesh is now generated only for the part of the structure inside a window and moves together with the window frame. This moving mesh option reduces the number of mesh points considerably, and very fine meshes can be used. Napoly's integration method makes it possible to compute wake potentials in a structure such as a collimator, where parts of the cavity material are at smaller radii than that of the beam pipes, in such a way that the contribution from the beam pipes vanishes. For the monopole wake potential, ABCI can be applied even to structures with unequal beam pipe radii. Furthermore, the radial mesh size can be varied over the structure, permitting use a fine mesh only where actually needed. With these improvements, the program allows computation of wake fields for structures far too complicated for older codes. Plots of a cavity shape and wake potentials can be obtained in the form of a Top Drawer file. The program can also calculate and plot the impedance of a structure and/or the distribution of the deposited energy as a function of the frequency from Fourier transforms of wake potentials. Its usefulness is illustrated by showing some numerical examples.

  7. Airflow attenuation and bed net utilization: observations from Africa and Asia.

    PubMed

    von Seidlein, Lorenz; Ikonomidis, Konstantin; Bruun, Rasmus; Jawara, Musa; Pinder, Margaret; Knols, Bart Gj; Knudsen, Jakob B

    2012-06-15

    Qualitative studies suggest that bed nets affect the thermal comfort of users. To understand and reduce this discomfort the effect of bed nets on temperature, humidity, and airflow was measured in rural homes in Asia and Africa, as well as in an experimental wind tunnel. Two investigators with architectural training selected 60 houses in The Gambia, Tanzania, Philippines, and Thailand. Data-loggers were used to measure indoor temperatures in hourly intervals over a 12 months period. In a subgroup of 20 houses airflow, temperature and humidity were measured at five-minute intervals for one night from 21.00 to 6.00 hrs inside and outside of bed nets using sensors and omni-directional thermo-anemometers. An investigator set up a bed net with a mesh size of 220 holes per inch 2 in each study household and slept under the bed net to simulate a realistic environment. The attenuation of airflow caused by bed nets of different mesh sizes was also measured in an experimental wind tunnel. The highest indoor temperatures (49.0 C) were measured in The Gambia. During the hottest months of the year the mean temperature at night (9 pm) was between 33.1 C (The Gambia) and 26.2 C (Thailand). The bed net attenuated the airflow from a minimum of 27% (Philippines) to a maximum of 71% (The Gambia). Overall the bed nets reduced airflow compared to un-attenuated airflow from 9 to 4 cm sec-1 or 52% (p<0.001). In all sites, no statistically significant difference in temperature or humidity was detected between the inside and outside of the bed net. Wind tunnel experiments with 11 different mesh-sized bed nets showed an overall reduction in airflow of 64% (range 55 - 71%) compared to un-attenuated airflow. As expected, airflow decreased with increasing net mesh size. Nets with a mesh of 136 holes inch-2 reduced airflow by 55% (mean; range 51 - 73%). A denser net (200 holes inch-2) attenuated airflow by 59% (mean; range 56 - 74%). Despite concerted efforts to increase the uptake of this intervention in many areas uptake remains poor. Bed nets reduce airflow, but have no influence on temperature and humidity. The discomfort associated with bed nets is likely to be most intolerable during the hottest and most humid period of the year, which frequently coincides with the peak of malaria vector densities and the force of pathogen transmission. These observations suggest thermal discomfort is a factor limiting bed net use and open a range of architectural possibilities to overcome this limitation.

  8. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy.

    PubMed

    Lin, Hui; Jing, Jia; Xu, Liangfeng; Mao, Xiaoli

    2017-12-01

    To evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation. A Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25μm, 50μm or 75μm in thickness and fixed 1mm in height with 200μmc-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom. PVDR of the lower BMIT@CLS spectrum is 2.4times that of ID17@ESRF for lower valley dose. The optimized mesh is 5µm for 25µm, and 10µm for 50µm and 75µm microbeams with 200µmc-t-c. A 500μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (<5%) for the farther homogeneous media (e.g. 600µm). The peak dose uniformity of 3-D VMHP at the same depth could be up to 8% for 1.85mm×1mm irradiation field, whereas that of 3-D VMHWP is<1%. The high Z element makes the dose uniformity enhance in target. The surface arc could affect the superficial PVDR (from 44% to 21% in 0.2mm depth), whereas this influence is limited for the more depth (<1%). An accurate MRT dose calculation algorithm should include the influence of 3-D heterogeneous media. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

    PubMed Central

    Thalhammer, Mechthild; Abhau, Jochen

    2012-01-01

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0<ε≪1, especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study. PMID:25550676

  10. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

    PubMed

    Thalhammer, Mechthild; Abhau, Jochen

    2012-08-15

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross-Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study.

  11. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674

  12. Parallelization of PANDA discrete ordinates code using spatial decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.

    2006-07-01

    We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less

  13. Quantifying the linear and nonlinear relations between the urban form fragmentation and the carbon emission distribution

    NASA Astrophysics Data System (ADS)

    Zuo, S.; Dai, S.; Ren, Y.; Yu, Z.

    2017-12-01

    Scientifically revealing the spatial heterogeneity and the relationship between the fragmentation of urban landscape and the direct carbon emissions are of great significance to land management and urban planning. In fact, the linear and nonlinear effects among the various factors resulted in the carbon emission spatial map. However, there is lack of the studies on the direct and indirect relations between the carbon emission and the city functional spatial form changes, which could not be reflected by the land use change. The linear strength and direction of the single factor could be calculated through the correlation and Geographically Weighted Regression (GWR) analysis, the nonlinear power of one factor and the interaction power of each two factors could be quantified by the Geodetector analysis. Therefore, we compared the landscape fragmentation metrics of the urban land cover and functional district patches to characterize the landscape form and then revealed the relations between the landscape fragmentation level and the direct the carbon emissions based on the three methods. The results showed that fragmentation decreased and the fragmented patches clustered at the coarser resolution. The direct CO2 emission density and the population density increased when the fragmentation level aggregated. The correlation analysis indicated the weak linear relation between them. The spatial variation of GWR output indicated the fragmentation indicator (MESH) had the positive influence on the carbon emission located in the relatively high emission region, and the negative effects regions accounted for the small part of the area. The Geodetector which explores the nonlinear relation identified the DIVISION and MESH as the most powerful direct factor for the land cover patches, NP and PD for the functional district patches, and the interactions between fragmentation indicator (MESH) and urban sprawl metrics (PUA and DIS) had the greatly increased explanation powers on the urban carbon emission. Overall, this study provides a framework to understand the relation between the urban landscape fragmentation and the carbon emission for the low carbon city construction planning in the other cities.

  14. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  15. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  16. A simple finite element method for non-divergence form elliptic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  17. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  18. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  19. Caught in a net: Retention efficiency of microplankton ≥ 10 and < 50 μm collected on mesh netting

    NASA Astrophysics Data System (ADS)

    Molina, Vanessa; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; First, Matthew R.; Drake, Lisa A.

    2018-03-01

    Living organisms ≥ 10 μm and < 50 μm in ballast water discharged from ships are typically collected by filtering samples through a monofilament mesh net with pore openings sized to retain organisms ≥ 10 μm. This (or any) filtering method does not result in perfect size fractionation, and it can induce stress, mortality, and loss of organisms that, in turn, may underestimate the concentration of organisms within samples. To address this loss, the retention efficiency (RE) was determined for six filtration approaches using laboratory cultures of microalgae and ambient marine organisms. The approaches employed a membrane filter or mesh nettings of different compositions (nylon, stainless steel, polyester, and polycarbonate), nominal pore sizes (5, 7, and 10 μm), and filtering sequences (e.g., pre-filtering water through a coarse filter). Additionally, in trials with polycarbonate track etched (PCTE) membrane filters, water was amended with particulate material to increase turbidity. Organisms ≥ 10 μm were counted in the material retained on the filter (the filtrand), the material passing through the filter (the filtrate), and the whole water (i.e., unfiltered water). In addition, variable fluorescence fluorometry was used to gauge the relative photochemical yield of phytoplankton-a proximal measurement of the physiological status of phytoplankton-in the size fractions. Further, the mesh types and filters were examined using scanning electron microscopy, which showed irregular openings. The RE of cultured organisms-calculated as the concentration in the filtrand relative to combined concentration in the filtrand and the filtrate-was high for all filtration approaches when laboratory cultures were assessed (> 93%), but RE ranged from 66 to 98% when mixed assemblages of ambient organisms were evaluated. Although PCTE membrane filters had the highest RE (98%), it was not significantly higher than the efficiencies of the 7-μm polyester, Double 7-μm polyester, and Dual 35-μm and 7-μm polyester approaches, but it was significantly higher than the 5-μm nylon and 5-μm stainless steel techniques. This result suggests that PCTE membrane filters perform comparably to 7-μm polyester meshes, so that any of these approaches could be used for concentrating organisms. However, the potential for handling loss is inherently lower for one rinsing step rather than two. Therefore, it is recommended that, either PCTE filters or 7-μm polyester mesh could be used to concentrate organisms ≥ 10 μm and < 50 μm. In trials conducted using a 10-μm PCTE filters with water amended to increase the particulate concentration, no significant difference in RE of ambient organisms was found compared to unamended water. Finally, photochemical yield did not vary significantly between organisms in the filtrand or filtrate, regardless of the filtration approach used.

  20. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  1. Climate projections of spatial variations in coastal storm surges along the Gulf of Mexico and U.S. east coast

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Xie, Jun; Ge, Qian

    2017-02-01

    Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system (ROMS) to the study region with a mesh grid size of 7-10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry (PI) and the other for the A1FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.

  2. 78 FR 48656 - Procurement List; Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ..., Synthetic Mesh, 24x36, Locking Drawstring NSN: 3510-00-NIB-0013--Heavy Duty, \\3/16\\'' Hole Size. NSN: 3510-00-NIB-0014--Medium Duty, \\1/16\\'' Hole Size. NPA: Bestwork Industries for the Blind, Inc., Runnemede... NSN: 7510-01-462-1383--View Framed, Navy Blue, \\1/2\\''. NSN: 7510-01-462-1384--View Framed, Black, \\1...

  3. The near extinction of lake trout in Lake Michigan

    USGS Publications Warehouse

    Eschmeyer, Paul H.

    1957-01-01

    Comparisons in 1949 and 1950 of numbers of legal-sized lake trout caught in large-mesh nets with numbers of small fish taken in chub nets showed that both large and small lake trout declined over the same period, and that by these years the decline may have been greater among small than among legal-sized fish.

  4. Simulating galactic dust grain evolution on a moving mesh

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  5. Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2017-12-21

    The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.

  6. Light extraction in planar light-emitting diode with nonuniform current injection: model and simulation.

    PubMed

    Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei

    2014-07-20

    We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.

  7. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    NASA Astrophysics Data System (ADS)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  8. Analysis of dpa rates in the HFIR reactor vessel using a hybrid Monte Carlo/deterministic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeman, Edward

    2016-01-01

    The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiationmore » transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 below to approximately 12 above the axial extent of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.« less

  9. Mesh-based phase contrast Fourier transform imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  10. Automatic, unstructured mesh optimization for simulation and assessment of tide- and surge-driven hydrodynamics in a longitudinal estuary: St. Johns River

    NASA Astrophysics Data System (ADS)

    Bacopoulos, Peter

    2018-05-01

    A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09-0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09-0.23 m s-1 and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09-0.33 m and IA values of 75-96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.

  11. The use of the Kelor Seeds (Moringa oleifera) as alternative coagulant in waste delivery process of textile industrial waste

    NASA Astrophysics Data System (ADS)

    Rambe, AM; Pandia, S.; Ginting, MHS; Tambun, R.; Haryanto, B.

    2018-02-01

    This research is to know the influence of moringa seed as coagulant, pH of liquid waste textile industry (jeans wash), size of moringa seed particles to decrease of turbidity percentage. Measurements were made to Total Suspended Solid, Color Rate and Chemical Oxygen Demand for wastewater textile industry by coagulation - flocculation method. Variables of this study were conducted on dosage of moringa, with particle size 212 mesh. The results showed that moringa seeds as coagulant dose optimum is 1250 mg/L for the textile industry wastewater at pH 7.8. Moringa seed powder is about 212 mesh with a dose of 1250 mg/L can lower the turbidity of 77.77%, Total Suspended Solid amounted to 83.69% and Chemical Oxygen Demand amounted to 75.86%.

  12. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    PubMed

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  13. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  14. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  15. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane.

    PubMed

    Fujiwara, Takahiro K; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A; Watanabe, Yusuke; Umemura, Yasuhiro M; Murakoshi, Hideji; Suzuki, Kenichi G N; Nemoto, Yuri L; Morone, Nobuhiro; Kusumi, Akihiro

    2016-04-01

    The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion. © 2016 Fujiwara et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Discerning some Tylenol brands using attenuated total reflection Fourier transform infrared data and multivariate analysis techniques.

    PubMed

    Msimanga, Huggins Z; Ollis, Robert J

    2010-06-01

    Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.

  17. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  18. The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wan, Z. Y.; Lindgren, L.-E.; Tan, Z. J.; Zhou, X.

    2017-12-01

    A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann-Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.

  19. A repellent net as a new technology to protect cabbage crops.

    PubMed

    Martin, T; Palix, R; Kamal, A; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M

    2013-08-01

    Floating row covers or insect-proof nets with fine mesh are effective at protecting vegetable crops against aphids but negatively impact plant health, especially under warm conditions. Furthermore, in control of cabbage insect pests, aphid parasitoids cannot enter the fine-mesh nets, leading to frequent aphid outbreaks. To surmount these difficulties, a 40-mesh-size repellent net treated with alphacypermethrin was studied in laboratory and field tests. Results showed both irritant and repellent effects of the alphacypermethrin-treated net on Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Haliday) (Hymenoptera: Braconidae). Under field conditions, there were no pests on cabbage protected with the repellent net. The repellent net allowed combining a visual and repellent barrier against aphids. Because of this additive effect, repellent nets allowed covering cabbage permanently with adequate protection against all pests.

  20. Grouper: A Compact, Streamable Triangle Mesh Data Structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2013-05-08

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle, Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access.

  1. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less

  2. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes

    PubMed Central

    Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.

    2014-01-01

    Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications. PMID:25309305

  3. Physiology driven adaptivity for the numerical solution of the bidomain equations.

    PubMed

    Whiteley, Jonathan P

    2007-09-01

    Previous work [Whiteley, J. P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006] derived a stable, semi-implicit numerical scheme for solving the bidomain equations. This scheme allows the timestep used when solving the bidomain equations numerically to be chosen by accuracy considerations rather than stability considerations. In this study we modify this scheme to allow an adaptive numerical solution in both time and space. The spatial mesh size is determined by the gradient of the transmembrane and extracellular potentials while the timestep is determined by the values of: (i) the fast sodium current; and (ii) the calcium release from junctional sarcoplasmic reticulum to myoplasm current. For two-dimensional simulations presented here, combining the numerical algorithm in the paper cited above with the adaptive algorithm presented here leads to an increase in computational efficiency by a factor of around 250 over previous work, together with significantly less computational memory being required. The speedup for three-dimensional simulations is likely to be more impressive.

  4. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process

    NASA Astrophysics Data System (ADS)

    Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh

    2018-06-01

    Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.

  5. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE PAGES

    Gunney, Brian T.N.; Anderson, Robert W.

    2015-12-18

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  6. A novel partitioning method for block-structured adaptive meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less

  7. Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Li, Wu; Robinson, Jay

    2016-01-01

    This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less

  9. A novel partitioning method for block-structured adaptive meshes

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  10. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunney, Brian T.N.; Anderson, Robert W.

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  11. A preliminary study of the Caprella scaura amphipod culture for potential use in aquaculture

    NASA Astrophysics Data System (ADS)

    Baeza-Rojano, Elena; Calero-Cano, Sandra; Hachero-Cruzado, Ismael; Guerra-García, José Manuel

    2013-10-01

    The caprellid amphipod Caprella scaura Templeton, 1836 was investigated as a mass culture organism, for potential use as natural prey in aquaculture. C. scaura showed good population growth during 3 months of culturing with nauplii of Artemia sp. and microalgae as food source. A final mean population size of 12,510.67 individuals/tank and a maximum density of 10,460 individuals m- 2 were obtained; a 50-fold increase of the initial population was observed. Juveniles were the most abundant stage in the culture (86.0% of total), followed by mature females (5.4%) and immature males (3.1%). Three kinds of plastic mesh with different complexity levels were used as artificial substrates for amphipods to attach to and shelter. There were no significant differences in the total number of individuals present on each kind of mesh, although female and male adults were more abundant in folded meshes with larger pore diameter. This research demonstrated that the caprellid amphipod C. scaura may be readily cultured at high densities with a variety of mesh morphologies allowing more efficient use of tank volume and improved handling.

  12. Beneficiation of Kulon Progo iron sand by using tabling and magnetic separation methods

    NASA Astrophysics Data System (ADS)

    Oediyani, Soesaptri; Ikhlasul Amal, M.; M. Victoriyan, N.; Juniarsih, Andinnie

    2018-04-01

    There are two types of iron resources such as primary iron ore and iron sand. In general, primary iron ores use as raw materials in iron and steel making because the iron content is high (± 60%) and can reduce directly. On the other and, iron sand is rarely used as a raw material because the iron content is low (20-40%) but the iron sand reserves are very abundant in Indonesia for instance is about 173 million tons in Kulon Progo, Jogyakarta. In addition, the new regulation of Energy and Mineral Resources Ministry required that iron sands must process before are being export. Therefore, the proper beneficiation methods are need to improve the iron content of iron sand. In this research Kulon Progo iron sand was used as a raw materials because not only the reserves very abundant but also the new iron making plant will build here soon. The combine of ore concentration methods such as tabling and magnetic separation used to improve the iron content. Then, the variable process were inclination of the table (2°,3° and 4°), fraction of feed size (-100 mesh, -150 mesh and -200 mesh) and the magnetic intensity (176, 830, 1500 Gauss). The highest recovery was about 96.75% and the concentrate which is contain 59.78 % Fe achieved by using -200 mesh particle size, 4° inclination of table and 1500 Gauss as a magnetic intensity. In conclusion, this concentrate fulfilled raw material requires of iron making (≥ 55%Fe).

  13. On the convergence and accuracy of the FDTD method for nanoplasmonics.

    PubMed

    Lesina, Antonino Calà; Vaccari, Alessandro; Berini, Pierre; Ramunno, Lora

    2015-04-20

    Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large errors but reduces the computational resources required.

  14. Porous Polyurethane Foam for Use as a Particle Collection Substrate in a Nanoparticle Respiratory Deposition Sampler

    PubMed Central

    Mines, Levi W. D.; Park, Jae Hong; Mudunkotuwa, Imali A.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Porous polyurethane foam was evaluated to replace the eight nylon meshes used as a substrate to collect nanoparticles in the Nanoparticle Respiratory Deposition (NRD) sampler. Cylindrical (25-mm diameter by 40-mm deep) foam with 110 pores per inch was housed in a 25-mm-diameter conductive polypropylene cassette cowl compatible with the NRD sampler. Pristine foam and nylon meshes were evaluated for metals content via elemental analysis. The size-selective collection efficiency of the foam was evaluated using salt (NaCl) and metal fume aerosols in independent tests. Collection efficiencies were compared to the nanoparticulate matter (NPM) criterion and a semi-empirical model for foam. Changes in collection efficiency and pressure drop of the foam and nylon meshes were measured after loading with metal fume particles as measures of substrate performance. Substantially less titanium was found in the foam (0.173 μg sampler−1) compared to the nylon mesh (125 μg sampler−1), improving the detection capabilities of the NRD sampler for titanium dioxide particles. The foam collection efficiency was similar to that of the nylon meshes and the NPM criterion (R2 = 0.98, for NaCl), although the semi-empirical model underestimated the experimental efficiency (R2 = 0.38). The pressure drop across the foam was 8% that of the nylon meshes when pristine and changed minimally with metal fume loading (~ 19 mg). In contrast, the pores of the nylon meshes clogged after loading with ~ 1 mg metal fume. These results indicate that foam is a suitable substrate to collect metal (except for cadmium) nanoparticles in the NRD sampler. PMID:28867869

  15. Electrical Characteristics CuFe2O4 Thick Film Ceramics Made with Different Screen Size Utiizing Fe2O3 Nanopowder Derived from Yarosite for NTC Thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Syarif, Dani Gustaman

    2010-10-01

    Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.

  16. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  17. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.

  18. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.

  19. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-11-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  20. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan R.

    2014-01-01

    Hail scars are identifiable in MODIS satellite imagery based on NDVI change, which was dominantly negative. Hail damage spatially correlates with SPC hail reports and MESH. This study developed a proxy for quantifying crop loss at varying thresholds to address the gap between SPC damage estimates and insurance payouts.

  1. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  2. A parametric ribcage geometry model accounting for variations among the adult population.

    PubMed

    Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2016-09-06

    The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pressure Mapping and Efficiency Analysis of an EPPLER 857 Hydrokinetic Turbine

    NASA Astrophysics Data System (ADS)

    Clark, Tristan

    A conceptual energy ship is presented to provide renewable energy. The ship, driven by the wind, drags a hydrokinetic turbine through the water. The power generated is used to run electrolysis on board, taking the resultant hydrogen back to shore to be used as an energy source. The basin efficiency (Power/thrust*velocity) of the Hydrokinetic Turbine (HTK) plays a vital role in this process. In order to extract the maximum allowable power from the flow, the blades need to be optimized. The structural analysis of the blade is important, as the blade will undergo high pressure loads from the water. A procedure for analysis of a preliminary Hydrokinetic Turbine blade design is developed. The blade was designed by a non-optimized Blade Element Momentum Theory (BEMT) code. Six simulations were run, with varying mesh resolution, turbulence models, and flow region size. The procedure was developed that provides detailed explanation for the entire process, from geometry and mesh generation to post-processing analysis tools. The efficiency results from the simulations are used to study the mesh resolution, flow region size, and turbulence models. The results are compared to the BEMT model design targets. Static pressure maps are created that can be used for structural analysis of the blades.

  4. Fabrication and Wettability Study of WO3 Coated Photocatalytic Membrane for Oil-Water Separation: A Comparative Study with ZnO Coated Membrane.

    PubMed

    Gondal, Mohammed A; Sadullah, Muhammad S; Qahtan, Talal F; Dastageer, Mohamed A; Baig, Umair; McKinley, Gareth H

    2017-05-10

    Superhydrophilic and underwater superoleophobic surfaces were fabricated by facile spray coating of nanostructured WO 3 on stainless steel meshes and compared its performance in oil-water separation with ZnO coated meshes. The gravity driven oil-water separation system was designed using these surfaces as the separation media and it was noticed that WO 3 coated stainless steel mesh showed high separation efficiency (99%), with pore size as high as 150 µm, whereas ZnO coated surfaces failed in the process of oil-water separation when the pore exceeded 50 µm size. Since, nanostructured WO 3 is a well known catalyst, the simultaneous photocatalytic degradation of organic pollutants present in the separated water from the oil water separation process were tested using WO 3 coated surfaces under UV radiation and the efficiency of this degradation was found to be quite significant. These results assure that with little improvisation on the oil water separation system, these surfaces can be made multifunctional to work simultaneously for oil-water separation and demineralization of organic pollutants from the separated water. Fabrication of the separating surface, their morphological characteristics, wettability, oil water separation efficiency and photo-catalytic degradation efficiency are enunciated.

  5. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  6. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  7. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  8. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  9. A recent advance in the automatic indexing of the biomedical literature.

    PubMed

    Névéol, Aurélie; Shooshan, Sonya E; Humphrey, Susanne M; Mork, James G; Aronson, Alan R

    2009-10-01

    The volume of biomedical literature has experienced explosive growth in recent years. This is reflected in the corresponding increase in the size of MEDLINE, the largest bibliographic database of biomedical citations. Indexers at the US National Library of Medicine (NLM) need efficient tools to help them accommodate the ensuing workload. After reviewing issues in the automatic assignment of Medical Subject Headings (MeSH terms) to biomedical text, we focus more specifically on the new subheading attachment feature for NLM's Medical Text Indexer (MTI). Natural Language Processing, statistical, and machine learning methods of producing automatic MeSH main heading/subheading pair recommendations were assessed independently and combined. The best combination achieves 48% precision and 30% recall. After validation by NLM indexers, a suitable combination of the methods presented in this paper was integrated into MTI as a subheading attachment feature producing MeSH indexing recommendations compliant with current state-of-the-art indexing practice.

  10. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  11. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

    NASA Technical Reports Server (NTRS)

    Johnson, Scott; Walton, Otis; Settgast, Randolph

    2013-01-01

    PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

  12. Atelectasis after free rectus transfer and abdominal wall reconstruction.

    PubMed

    Lo, Jamie O; Weber, Stephen M; Andersen, Peter E; Gross, Neil D; Gosselin, Marc; Wax, Mark K

    2008-10-01

    Atelectasis is commonly encountered in patients undergoing rectus abdominus tissue transfer. Primary closure of the anterior rectus sheath may contribute to this process. Augmentation of the closure with mesh may decrease the incidence of Atelectasis. In this retrospective review 32 patients with preoperative and postoperative augmentation were compared to 23 who had primary closure of the anterior rectus sheath. Augmentation consisted of acellular dermis (25) or mesh (7). Postoperative atelectasis was radiographically detected in: 91% (n=29) of augmented patients versus 83% (n=19) of primary closure patients. Major atelectasis in 41% (n=13) of augmented patients versus 61% (n=14) of primary closure patients p<.05. The incidence of atelectasis was independent of skin flap size and operative times. The use of acellular dermis or mesh to augment the abdominal wall appears to reduce the high incidence of postoperative atelectasis following rectus-free flap harvest. Copyright (c) 2008 Wiley Periodicals, Inc. Head Neck 2008.

  13. Optical properties of flexible fluorescent films prepared by screen printing technology

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  14. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  15. Adaptive mesh optimization and nonrigid motion recovery based image registration for wide-field-of-view ultrasound imaging.

    PubMed

    Tan, Chaowei; Wang, Bo; Liu, Paul; Liu, Dong

    2008-01-01

    Wide field of view (WFOV) imaging mode obtains an ultrasound image over an area much larger than the real time window normally available. As the probe is moved over the region of interest, new image frames are combined with prior frames to form a panorama image. Image registration techniques are used to recover the probe motion, eliminating the need for a position sensor. Speckle patterns, which are inherent in ultrasound imaging, change, or become decorrelated, as the scan plane moves, so we pre-smooth the image to reduce the effects of speckle in registration, as well as reducing effects from thermal noise. Because we wish to track the movement of features such as structural boundaries, we use an adaptive mesh over the entire smoothed image to home in on areas with feature. Motion estimation using blocks centered at the individual mesh nodes generates a field of motion vectors. After angular correction of motion vectors, we model the overall movement between frames as a nonrigid deformation. The polygon filling algorithm for precise, persistence-based spatial compounding constructs the final speckle reduced WFOV image.

  16. Characterization of Imposed Ordered Structures in MDPX

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  17. The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems

    NASA Technical Reports Server (NTRS)

    Eliasson, Peter; Engquist, Bjoern

    1996-01-01

    The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.

  18. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  19. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  20. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  1. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  2. An implicit higher-order spatially accurate scheme for solving time dependent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tomaro, Robert F.

    1998-07-01

    The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.

  3. Assessing differences in macrofaunal assemblages as a factor of sieve mesh size, distance between samples, and time of sampling.

    PubMed

    Hemery, Lenaïg G; Politano, Kristin K; Henkel, Sarah K

    2017-08-01

    With increasing cascading effects of climate change on the marine environment, as well as pollution and anthropogenic utilization of the seafloor, there is increasing interest in tracking changes to benthic communities. Macrofaunal surveys are traditionally conducted as part of pre-incident environmental assessment studies and post-incident monitoring studies when there is a potential impact to the seafloor. These surveys usually characterize the structure and/or spatiotemporal distribution of macrofaunal assemblages collected with sediment cores; however, many different sampling protocols have been used. An assessment of the comparability of past and current survey methods was in need to facilitate future surveys and comparisons. This was the aim of the present study, conducted off the Oregon coast in waters 25-35 m deep. Our results show that the use of a sieve with a 1.0-mm mesh size gives results for community structure comparable to results obtained from a 0.5-mm mesh size, which allows reliable comparisons of recent and past spatiotemporal surveys of macroinfauna. In addition to our primary objective of comparing methods, we also found interacting effects of seasons and depths of collection. Seasonal differences (summer and fall) were seen in infaunal assemblages in the wave-induced sediment motion zone but not deeper. Thus, studies where wave-induced sediment motion can structure the benthic communities, especially during the winter months, should consider this effect when making temporal comparisons. In addition, some macrofauna taxa-like polychaetes and amphipods show high interannual variabilities, so spatiotemporal studies should make sure to cover several years before drawing any conclusions.

  4. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  5. Cortical bone fracture analysis using XFEM - case study.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2017-04-01

    We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  7. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshesmore » using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.« less

  8. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.

    PubMed

    Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J

    2010-04-28

    In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.

  9. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  10. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Serazio, C.; Chacon, L.; Lapenta, G.

    2006-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)

  11. 75 FR 11441 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... claim that larger mesh size increases would affect the profitability of the Loligo fishery. Industry... the profitability of the Loligo fishery by reducing Loligo catch for the owners of vessels that use...

  12. Port-site incisional hernia - A case series of 54 patients.

    PubMed

    Lambertz, A; Stüben, B O; Bock, B; Eickhoff, R; Kroh, A; Klink, C D; Neumann, U P; Krones, C J

    2017-02-01

    The increased use of laparoscopy has resulted in certain complications specifically associated with the laparoscopic approach, such as port-site incisional hernia (PIH). Until today, it is not finally clarified if port-site closure should be performed by fascia suture or not. Furthermore, the optimal treatment strategy in PIH (suture vs. mesh) is still widely unclear. The aim of this study was to present our experience with PIH in two independent departments and to derive possible treatment strategies from these results. Between 2003 and 2013, 54 patients were operated due to port-site incisional hernia in two surgical centres. Their data were collected and retrospectively analyzed depending on surgical technique of port-site hernia repair (Mesh repair group, n = 13 vs. Suture only group, n = 41). Port site incisional hernia occurred in 96% (52 patients) after the use of trocars with 10 mm or larger diameter. Patients treated with mesh repair had significantly higher body mass index (BMI) (32 ± 9 vs. 27 ± 4; p = 0.023) and significantly higher rates of cardiac diseases (77% vs. 39%; p = 0.026) than patients in the suture only group. Mean fascial defect size was significantly larger in the Mesh repair group than in the Suture only group (31 ± 24 mm vs. 24 ± 32 mm; p = 0.007) and mean time of operation was significantly longer in patients operated with mesh repair (83 ± 47 min vs. 40 ± 28 min; p < 0.001). There were no significant differences in mean hospital stay (3 ± 4 days; p = 0.057) and hernia recurrence rates (9%; p = 0.653) between study groups. Mean time of follow up was 32 ± 35 months. In Port sites of 10 mm and larger diameter fascia should be closed by suture, whereas the risk of hernia development in 5 mm trocar placements seems to be a rare complication. Port-site incisional hernia should be treated by suture or mesh repair depending on fascial defect size and the patients' risk factors regarding preexisting deseases and body mass index.

  13. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    PubMed

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  14. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  15. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  16. Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study.

    PubMed

    Saab, Xavier E; Griggs, Jason A; Powers, John M; Engelmeier, Robert L

    2007-02-01

    Angled abutments are often used to restore dental implants placed in the anterior maxilla due to esthetic or spatial needs. The effect of abutment angulation on bone strain is unknown. The purpose of the current study was to measure and compare the strain distribution on the bone around an implant in the anterior maxilla using 2 different abutments by means of finite element analysis. Two-dimensional finite element models were designed using software (ANSYS) for 2 situations: (1) an implant with a straight abutment in the anterior maxilla, and (2) an implant with an angled abutment in the anterior maxilla. The implant used was 4x13 mm (MicroThread). The maxillary bone was modeled as type 3 bone with a cortical layer thickness of 0.5 mm. Oblique loads of 178 N were applied on the cingulum area of both models. Seven consecutive iterations of mesh refinement were performed in each model to observe the convergence of the results. The greatest strain was found on the cancellous bone, adjacent to the 3 most apical microthreads on the palatal side of the implant where tensile forces were created. The same strain distribution was observed around both the straight and angled abutments. After several iterations, the results converged to a value for the maximum first principal strain on the bone of both models, which was independent of element size. Most of the deformation occurred in the cancellous bone and ranged between 1000 and 3500 microstrain. Small areas of cancellous bone experienced strain above the physiologic limit (4000 microstrain). The model predicted a 15% higher maximum bone strain for the straight abutment compared with the angled abutment. The results converged after several iterations of mesh refinement, which confirmed the lack of dependence of the maximum strain at the implant-bone interface on mesh density. Most of the strain produced on the cancellous and cortical bone was within the range that has been reported to increase bone mass and mineralization.

  17. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  18. Biocompatibility assessment of synthetic sling materials for female stress urinary incontinence.

    PubMed

    Gomelsky, Alex; Dmochowski, Roger R

    2007-10-01

    We evaluated the performance and complications of currently available synthetic sling materials with a focus on in vitro and in vivo biocompatibility, and acceptance in the human body. We reviewed the MEDLINE database for relevant literature pertaining to various synthetic sling materials. The Food and Drug Administration regulations regarding the regulation and biocompatibility testing of synthetic meshes were also reviewed. Many synthetic meshes used for sling construction were introduced before rigorous Food and Drug Administration regulations were passed and, thus, some became associated with unique complications. Most meshes used in pubovaginal and mid urethral sling surgery are associated with high short-term success rates and relatively few intraoperative complications. Despite modifications and additives, slings constructed from polytetrafluoroethylene and polyethylene are poorly accepted by the human body. Flexible, macroporous, polypropylene meshes appear to integrate more completely with human tissue than other synthetic materials. However, multifilament and nonknitted polypropylene slings may integrate poorly. The composition, weave and pore size of each material are unique. These properties are responsible for the strength and durability of the material, as well as the ultimate acceptance and incorporation in the human body. Each material should be individually evaluated and patients should be counseled appropriately before implantation.

  19. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  20. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  1. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 microns in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt. % of soluble imide and compression molded at 300 C under 131 MPa. Post fabrication heat treatments were performed at 960 C for 6 hours resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. The scanning electron micrographs taken for the 6-10 micron particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  2. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.; Buchman, A.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 micrometers in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt % of soluble imide and compression molded at 300 C under 131 MPa. Post-fabrication heat treatments were performed at 960 C for 6 h resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable. increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. ne scanning electron micrographs taken for the 6-10 micrometer particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) -dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  3. M-Adapting Low Order Mimetic Finite Differences for Dielectric Interface Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, Duncan A.; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-03-07

    We consider a problem of reducing numerical dispersion for electromagnetic wave in the domain with two materials separated by a at interface in 2D with a factor of two di erence in wave speed. The computational mesh in the homogeneous parts of the domain away from the interface consists of square elements. Here the method construction is based on m-adaptation construction in homogeneous domain that leads to fourth-order numerical dispersion (vs. second order in non-optimized method). The size of the elements in two domains also di ers by a factor of two, so as to preserve the same value ofmore » Courant number in each. Near the interface where two meshes merge the mesh with larger elements consists of degenerate pentagons. We demonstrate that prior to m-adaptation the accuracy of the method falls from second to rst due to breaking of symmetry in the mesh. Next we develop m-adaptation framework for the interface region and devise an optimization criteria. We prove that for the interface problem m-adaptation cannot produce increase in method accuracy. This is in contrast to homogeneous medium where m-adaptation can increase accuracy by two orders.« less

  4. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  5. Aridity and decomposition processes in complex landscapes

    NASA Astrophysics Data System (ADS)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally decreased with increasing aridity with k going from 0.0025 day-1 on equatorial (dry) facing slopes to 0.0040 day-1 on polar (wet) facing slopes. However, differences in temperature as a result of morning vs afternoon sun on east and west aspects, respectively, (not captured in the aridity metric) resulted in poor prediction of decomposition for the sites located in the intermediate aridity range. Overall the results highlight that relatively small differences in microclimate due to slope orientation can have large effects on decomposition. Future research will aim to refine the aridity metric to better resolve small scale variation in surface temperature which is important when up-scaling decomposition processes to landscapes.

  6. 50 CFR 622.40 - Limitations on traps and pots.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... limited to tyre palm, hemp, jute, cotton, wool, or silk. (B) Ungalvanized or uncoated iron wire with a... plastic, used or possessed in the EEZ, must have a minimum mesh size of 2.0 inches (5.1 cm) in the...

  7. [Development of better tolerated prosthetic materials: applications in gynecological surgery].

    PubMed

    Debodinance, P; Delporte, P; Engrand, J B; Boulogne, M

    2002-10-01

    Meshes have come to be widely used for surgical repair of the dysfunctional pelvic floor. The problem to date has been mesh intolerance. History. The first meshes were made with silver filigrees or stainless steel. Non-metallic and non-absorbable synthetic prostheses include nylon, silastic, polytetrafluoroethylene as well as expansive polyester and polypropylene forms. Most of the absorbable prostheses are made of polyglycolic acid and polyglactine 910. Classification. Four groups of biomaterials can be described according to pore size. Mechanical and biological properties. The mechanical properties of meshes have been tested industrially for resistance, pliability, elasticity and ductile qualities. These properties depend on type of tissue structure (woven or knitted) and the type of fiber used (mono and multi-filaments). The goal is to obtain a "silent" material, i.e. a material which does not trigger a host tissue reaction. Introducing the foreign body induces a "scarring" response. This fibroblastic reaction replaces the inflammatory reaction, leading to progressive colonization of the prosthesis. The major risk is infection caused by a disturbance of the inflammatory phase and bacterial development. Bacteria can be trapped in fibrotic tissue, with the risk of delayed infection. Immunological reactions may have an additive effect. These problems are not encountered with absorbable meshes. An ideal implant material must: not undergo physical modification by tissue fluids, be chemically inert, not trigger inflammatory or foreign body cell response in body tissues, be noncarcinogenic and nonallergenic, be capable of resisting mechanical stress and sterilization, and be able to be manufactured in the necessary shape. Polyester, polypropylene and expansive polytetrafluoroethylene fulfill these criteria. The ideal mesh. Eleven criteria are proposed. Complications for hernia repair. Infection and seroma are the most frequent complications with micro-porous meshes. Macro-porous meshes can cause erosive phenomena and adhesions. Retraction of synthetic tissues is observed in 20 to 30% of cases. Meshes in gynecology. In gynecology surgery, meshes made their first appearance in trans-abdominal sacrocolpopexy and slings. A detailed review of complications found in 32 articles studying slings and 22 studying sacrocolpopexy with approximately 10 types of meshes shows that intolerance of slings has oscillated between 1% with Prolene and 31% with Gore-Tex; for abdominal sacrocolpopexy the rate was between 1.7% with Prolene and 20% with Teflon. Rejection phenomena appear during the first year and are proportional to the surface area of the synthetic tissue and the proximity of the vaginal scar. New materials have been proposed over the last ten years for prolapse surgery, notably for cystocele, which accounts for 70% of all repair procedures. Nearly fifteen studies have reported a level of intolerance reaching 6%, the large majority of the meshes used being Prolene meshes. Our personal experience with 87 repair procedures has led us to the conclusion that Prolene is the most adapted mesh, allowing free tension between the bladder and the anterior vaginal wall. Continuous evaluation is needed to study these replacement materials which should in theory, improve the rate of recurrence, which is at present 20% with classic procedures not using a mesh.

  8. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  9. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  10. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    USGS Publications Warehouse

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal) leakance (29 percent); and inflow through the northern, western, and southern prescribed flux model boundaries (10 percent) represent the major inflow components. Principal outflow components in the Boca Raton well field area include well discharge (56 percent), river (canal) leakance (27 percent), and water that discharges along the coast (10 percent). A particle-tracking analysis using MODPATH was conducted to better understand well-field ground-water flow patterns and time of travel. MODTOOLS was used to construct zones-of-transport spatial data for municipal supply wells. Porosity estimates were uniformly increased to study the effect of porosity on zones of transport. Where porosity was increased, the size of the zones of transport were shown to decrease.

  11. A method for data handling numerical results in parallel OpenFOAM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Alin; Muntean, Sebastian

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  12. Tannase enzyme production by entrapped cells of Aspergillus niger FETL FT3 in submerged culture system.

    PubMed

    Darah, I; Sumathi, G; Jain, K; Lim, S H

    2011-09-01

    The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.

  13. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.

  14. Control of Eucryptorrhynchus scrobiculatus (Coleoptera: Cuculionidae), a Major Pest of Ailanthus altissima (Sapindales: Simaroubaceae), Using a Modified Square Trap Net.

    PubMed

    Yang, Kailang; Wen, Xiaojian; Ren, Yuan; Wen, Junbao

    2018-04-19

    Eucryptorrhynchus scrobiculatus (Motschulsky) (Coleoptera: Cuculionidae) is a borer that mainly attacks the tree of heaven, Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), and is one of the most damaging forestry pests in China. We developed a trap net for entangling and immobilizing soil-emerging weevils in order to reduce their impact. Recapture rates of weevils in the laboratory was significantly higher with nylon netting of 9, 10, or 11 mm mesh sizes than larger sizes, and these sizes were used to make trial nets for preventing weevil emergence from the soil around impacted trees in the field. Nets were 2 × 2 m with a reinforced border and Velcro-closable, radial slit which allowed the net to be arranged around the base of the tree while producing an unbroken barrier beneath the soil surface (i.e., a modified square trap net, MSTN). Recapture rates of weevils released in the soil did not differ among the MSTNs of 9, 10, or 11 mm mesh sizes. MSTN treatments significantly reduced emergence by naturally-occurring weevils from the soil surrounding trees and reduced numbers of weevils caught in population monitoring traps deployed in treated stands. The results demonstrated that MSTNs might be used to manage of E. scrobiculatus.

  15. Hopping Diffusion of Nanoparticles Subjected to Topological Constraints

    NASA Astrophysics Data System (ADS)

    Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael

    2013-03-01

    We describe a novel hopping mechanism for diffusion of large non-sticky nanoparticles subjected to topological constraints in polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size of unentangled polymer networks (tube diameter of entangled polymer liquids) are trapped by the network (entanglement) cages at time scales longer than the relaxation time of the network (entanglement) strand. At long time scales, however, these particles can move further by hopping between neighboring confinement cages. This hopping is controlled by fluctuations of surrounding confinement cages, which could be large enough to allow particles to slip through. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size slightly larger than the network mesh size (tube diameter). Very large particles in polymer solids will be permanently trapped by local network cages, whereas they can still move in polymer liquids by waiting for entanglement cages to rearrange on the relaxation time scale of the liquids. We would like to acknowledge the financial support of NSF CHE-0911588, DMR-0907515, DMR-1121107, DMR-1122483, and CBET-0609087, NIH R01HL077546 and P50HL107168, and Cystic Fibrosis Foundation under grant RUBIN09XX0.

  16. Size segregation of component coals during pulverization of high volatile/low volatile blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A.; Orban, P.C.

    1995-12-31

    Samples of single high volatile (hvb) and low volatile (lvb) coals and binary blends in proportions ranging from 75%hvb/25%lvb to 25%hvb/75%lvb were pulverized in a Raymond 271 bowl mill and then screened into different size fractions. The ranks of two of the feed coals were sufficiently different that individual particles could be distinguished microscopically. This enabled the proportions of each feed coal in the various blend size fractions to be determined. The difference in rank and therefore grindability of the components (Hardgrove indices of 99 versus 50) was such that significant segregation resulted. For example, the 25%hvb/75%lvb blend, upon grinding,more » produced a +50 mesh (300 {micro}m) fraction with 30% lvb coal, and a {minus}325 mesh (45 {micro}m) fraction with 84% lvb coal. The effect of this segregation according to size was a notable progressive decrease in volatility towards the finer fractions, consistent with an increase in the proportion of lvb particles; differences in volatile matter (d.b.) between coarsest and finest fractions of up to 6.9% were encountered. Although most of the segregation is attributable to rank difference between the component coals, part appears to be due to the lower grindability of liptinite-rich lithotypes in the hvb coal.« less

  17. Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan; Owen, Steven James

    2010-04-01

    We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant featuremore » and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.« less

  18. Microcystin distribution in physical size class separations of natural plankton communities

    USGS Publications Warehouse

    Graham, J.L.; Jones, J.R.

    2007-01-01

    Phytoplankton communities in 30 northern Missouri and Iowa lakes were physically separated into 5 size classes (>100 ??m, 53-100 ??m, 35-53 ??m, 10-35 ??m, 1-10 ??m) during 15-21 August 2004 to determine the distribution of microcystin (MC) in size fractionated lake samples and assess how net collections influence estimates of MC concentration. MC was detected in whole water (total) from 83% of takes sampled, and total MC values ranged from 0.1-7.0 ??g/L (mean = 0.8 ??g/L). On average, MC in the > 100 ??m size class comprised ???40% of total MC, while other individual size classes contributed 9-20% to total MC. MC values decreased with size class and were significantly greater in the >100 ??m size class (mean = 0.5 ??g /L) than the 35-53 ??m (mean = 0.1 ??g/L), 10-35 ??m (mean = 0.0 ??g/L), and 1-10 ??m (mean = 0.0 ??g/L) size classes (p < 0.01). MC values in nets with 100-??m, 53-??m, 35-??m, and 10-??m mesh were cumulatively summed to simulate the potential bias of measuring MC with various size plankton nets. On average, a 100-??m net underestimated total MC by 51%, compared to 37% for a 53-??m net, 28% for a 35-??m net, and 17% for a 10-??m net. While plankton nets consistently underestimated total MC, concentration of algae with net sieves allowed detection of MC at low levels (???0.01 ??/L); 93% of lakes had detectable levels of MC in concentrated samples. Thus, small mesh plankton nets are an option for documenting MC occurrence, but whole water samples should be collected to characterize total MC concentrations. ?? Copyright by the North American Lake Management Society 2007.

  19. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    NASA Astrophysics Data System (ADS)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  20. Osseointegrated dental implants produced via microwave processing

    NASA Astrophysics Data System (ADS)

    Kutty, Muralithran G.

    This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.

Top