Science.gov

Sample records for spatial olap application

  1. Easier surveillance of climate-related health vulnerabilities through a Web-based spatial OLAP application

    PubMed Central

    Bernier, Eveline; Gosselin, Pierre; Badard, Thierry; Bédard, Yvan

    2009-01-01

    Background Climate change has a significant impact on population health. Population vulnerabilities depend on several determinants of different types, including biological, psychological, environmental, social and economic ones. Surveillance of climate-related health vulnerabilities must take into account these different factors, their interdependence, as well as their inherent spatial and temporal aspects on several scales, for informed analyses. Currently used technology includes commercial off-the-shelf Geographic Information Systems (GIS) and Database Management Systems with spatial extensions. It has been widely recognized that such OLTP (On-Line Transaction Processing) systems were not designed to support complex, multi-temporal and multi-scale analysis as required above. On-Line Analytical Processing (OLAP) is central to the field known as BI (Business Intelligence), a key field for such decision-support systems. In the last few years, we have seen a few projects that combine OLAP and GIS to improve spatio-temporal analysis and geographic knowledge discovery. This has given rise to SOLAP (Spatial OLAP) and a new research area. This paper presents how SOLAP and climate-related health vulnerability data were investigated and combined to facilitate surveillance. Results Based on recent spatial decision-support technologies, this paper presents a spatio-temporal web-based application that goes beyond GIS applications with regard to speed, ease of use, and interactive analysis capabilities. It supports the multi-scale exploration and analysis of integrated socio-economic, health and environmental geospatial data over several periods. This project was meant to validate the potential of recent technologies to contribute to a better understanding of the interactions between public health and climate change, and to facilitate future decision-making by public health agencies and municipalities in Canada and elsewhere. The project also aimed at integrating an initial

  2. The Composite OLAP-Object Data Model

    SciTech Connect

    Pourabbas, Elaheh; Shoshani, Arie

    2005-12-07

    In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.

  3. Connecting traditional sciences with the OLAP and data mining paradigms

    NASA Astrophysics Data System (ADS)

    Guergachi, Aziz A.

    2003-03-01

    The paradigms of OLAP, multidimensional modeling and data mining have first emerged in the areas of market analysis and finance to address various needs of people working in these areas. Does this mean that they are useful and applicable in these areas only? Or, can they also be applicable in the other more traditional areas of science and engineering? What characterize the systems for which these paradigms are suitable? What are the goals of these paradigms? How do they relate to the traditional body of knowledge that has been developed throughout the centuries in the areas of mathematics, statistics, systems science and engineering? Where, how and to what extent can we leverage the conventional wisdom that has been accumulated in the aforementioned disciplines to develop a foundational basis for the above paradigms? The goal of this paper is to address these questions at the foundational level. We argue that the paradigms of OLAP, multidimensional modeling and data mining can also be applied successfully to complex engineering systems, such as membrane-based water/wastewater treatment plants, for example. We develop mathematically-based axiomatic definition of the concepts of 'dimension,' 'dimension level,' 'dimension hierarchy' and 'measure' using set theory and equivalence relations.

  4. Using data warehousing and OLAP in public health care.

    PubMed

    Hristovski, D; Rogac, M; Markota, M

    2000-01-01

    The paper describes the possibilities of using data warehousing and OLAP technologies in public health care in general and then our own experience with these technologies gained during the implementation of a data warehouse of outpatient data at the national level. Such a data warehouse serves as a basis for advanced decision support systems based on statistical, OLAP or data mining methods. We used OLAP to enable interactive exploration and analysis of the data. We found out that data warehousing and OLAP are suitable for the domain of public health and that they enable new analytical possibilities in addition to the traditional statistical approaches.

  5. Examining the Impact of Culture and Human Elements on OLAP Tools Usefulness

    ERIC Educational Resources Information Center

    Sharoupim, Magdy S.

    2010-01-01

    The purpose of the present study was to examine the impact of culture and human-related elements on the On-line Analytical Processing (OLAP) usability in generating decision-making information. The use of OLAP technology has evolved rapidly and gained momentum, mainly due to the ability of OLAP tools to examine and query large amounts of data sets…

  6. OLAP: A Fast, Easy, Affordable Executive Information System--Finally!

    ERIC Educational Resources Information Center

    Stewart, Henry M.

    1995-01-01

    The University of Rochester's experience with online analytical processing (OLAP), part of its executive information system, is reported. The server, a multiuser, local area network (LAN)-based database loaded from legacy systems or a data warehouse, can rapidly manipulate and display data, and allows quick creation and changing of analytical…

  7. View discovery in OLAP databases through statistical combinatorial optimization

    SciTech Connect

    Hengartner, Nick W; Burke, John; Critchlow, Terence; Joslyn, Cliff; Hogan, Emilie

    2009-01-01

    OnLine Analytical Processing (OLAP) is a relational database technology providing users with rapid access to summary, aggregated views of a single large database, and is widely recognized for knowledge representation and discovery in high-dimensional relational databases. OLAP technologies provide intuitive and graphical access to the massively complex set of possible summary views available in large relational (SQL) structured data repositories. The capability of OLAP database software systems to handle data complexity comes at a high price for analysts, presenting them a combinatorially vast space of views of a relational database. We respond to the need to deploy technologies sufficient to allow users to guide themselves to areas of local structure by casting the space of 'views' of an OLAP database as a combinatorial object of all projections and subsets, and 'view discovery' as an search process over that lattice. We equip the view lattice with statistical information theoretical measures sufficient to support a combinatorial optimization process. We outline 'hop-chaining' as a particular view discovery algorithm over this object, wherein users are guided across a permutation of the dimensions by searching for successive two-dimensional views, pushing seen dimensions into an increasingly large background filter in a 'spiraling' search process. We illustrate this work in the context of data cubes recording summary statistics for radiation portal monitors at US ports.

  8. An efficient communication strategy for mobile agent based distributed spatial data mining application

    NASA Astrophysics Data System (ADS)

    Han, Guodong; Wang, Jiazhen

    2005-11-01

    An efficient communication strategy is proposed in this paper, which aims to improve the response time and availability of mobile agent based distributed spatial data mining applications. When dealing with decomposed complex data mining tasks or On-Line Analytical Processing (OLAP), mobile agents authorized by the specified user need to coordinate and cooperate with each other by employing given communication method to fulfill the subtasks delegated to them. Agent interactive behavior, e.g. messages passing, intermediate results exchanging and final results merging, must happen after the specified path is determined by executing given routing selection algorithm. Most of algorithms exploited currently run in time that grows approximately quadratic with the size of the input nodes where mobile agents migrate between. In order to gain enhanced communication performance by reducing the execution time of the decision algorithm, we propose an approach to reduce the number of nodes involved in the computation. In practice, hosts in the system are reorganized into groups in terms of the bandwidth between adjacent nodes. Then, we find an optimal node for each group with high bandwidth and powerful computing resources, which is managed by an agent dispatched by agent home node. With that, the communication pattern can be implemented at a higher level of abstraction and contribute to improving the overall performance of mobile agent based distributed spatial data mining applications.

  9. Spatial aggregation: Language and applications

    SciTech Connect

    Bailey-Kellogg, C.; Zhao, F.; Yip, K.

    1996-12-31

    Spatial aggregation is a framework for organizing computations around image-like, analogue representations of physical processes in data interpretation and control tasks. It conceptualizes common computational structures in a class of implemented problem solvers for difficult scientific and engineering problems. It comprises a mechanism, a language, and a programming style. The spatial aggregation mechanism transforms a numerical input field to successively higher-level descriptions by applying a small, identical set of operators to each layer given a metric, neighborhood relation and equivalence relation. This paper describes the spatial aggregation language and its applications. The spatial aggregation language provides two abstract data types - neighborhood graph and field - and a set of interface operators for constructing the transformations of the field, together with a library of component implementations from which a user can mix-and-match and specialize for a particular application. The language allows users to isolate and express important computational ideas in different problem domains while hiding low-level details. We illustrate the use of the language with examples ranging from trajectory grouping in dynamics interpretation to region growing in image analysis. Programs for these different task domains can be written in a modular, concise fashion in the spatial aggregation language.

  10. Developing Access Control Model of Web OLAP over Trusted and Collaborative Data Warehouses

    NASA Astrophysics Data System (ADS)

    Fugkeaw, Somchart; Mitrpanont, Jarernsri L.; Manpanpanich, Piyawit; Juntapremjitt, Sekpon

    This paper proposes the design and development of Role- based Access Control (RBAC) model for the Single Sign-On (SSO) Web-OLAP query spanning over multiple data warehouses (DWs). The model is based on PKI Authentication and Privilege Management Infrastructure (PMI); it presents a binding model of RBAC authorization based on dimension privilege specified in attribute certificate (AC) and user identification. Particularly, the way of attribute mapping between DW user authentication and privilege of dimensional access is illustrated. In our approach, we apply the multi-agent system to automate flexible and effective management of user authentication, role delegation as well as system accountability. Finally, the paper culminates in the prototype system A-COLD (Access Control of web-OLAP over multiple DWs) that incorporates the OLAP features and authentication and authorization enforcement in the multi-user and multi-data warehouse environment.

  11. Spatial transformation architectures with applications: an introduction

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    1993-08-01

    Spatial transformations (STs) constitute an important class of image operations, which include the well-known affine transformation, image rotation, scaling, warping, etc. Less well known are the anisomorphic transformations among cartographic projections such as the Mercator, gnomonic, and equal-area formats. In this preliminary study, we introduce a unifying theory of spatial transformation, expressed in terms of the Image Algebra, a rigorous, inherently parallel notation for image and signal processing. Via such theory, we can predict the implementational cost of various STs. Since spatial operations are frequently I/O-intensive, we first analyze the I/O performance of well-known architectures, in order to determine their suitability for ST implementation. Analyses are verified by simulation, with emphasis upon vision-based navigation applications. An additional applications area concerns the remapping of visual receptive fields, which facilitates visual rehabilitation in the presence of retinal damage.

  12. Multidimensional Analysis and Location Intelligence Application for Spatial Data Warehouse Hotspot in Indonesia using SpagoBI

    NASA Astrophysics Data System (ADS)

    Uswatun Hasanah, Gamma; Trisminingsih, Rina

    2016-01-01

    Spatial data warehouse refers to data warehouse which has a spatial component that represents the geographic location of the position or an object on the Earth's surface. Spatial data warehouse can be visualized in the form of a crosstab tables, graphs, and maps. Spatial data warehouse of hotspot in Indonesia has been constructed by researchers from FIRM NASA 2006-2015. This research develops multidimensional analysis module and location intelligence module using SpagoBI. The multidimensional analysis module is able to visualize online analytical processing (OLAP). The location intelligence module creates dynamic map visualization in map zone and map point. Map zone can display the different colors based on the number of hotspot in each region and map point can display different sizes of the point to represent the number of hotspots in each region. This research is expected to facilitate users in the presentation of hotspot data as needed.

  13. Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems.

    PubMed

    Kaya, Mehmet; Alhajj, Reda

    2005-04-01

    Multiagent systems and data mining have recently attracted considerable attention in the field of computing. Reinforcement learning is the most commonly used learning process for multiagent systems. However, it still has some drawbacks, including modeling other learning agents present in the domain as part of the state of the environment, and some states are experienced much less than others, or some state-action pairs are never visited during the learning phase. Further, before completing the learning process, an agent cannot exhibit a certain behavior in some states that may be experienced sufficiently. In this study, we propose a novel multiagent learning approach to handle these problems. Our approach is based on utilizing the mining process for modular cooperative learning systems. It incorporates fuzziness and online analytical processing (OLAP) based mining to effectively process the information reported by agents. First, we describe a fuzzy data cube OLAP architecture which facilitates effective storage and processing of the state information reported by agents. This way, the action of the other agent, not even in the visual environment. of the agent under consideration, can simply be predicted by extracting online association rules, a well-known data mining technique, from the constructed data cube. Second, we present a new action selection model, which is also based on association rules mining. Finally, we generalize not sufficiently experienced states, by mining multilevel association rules from the proposed fuzzy data cube. Experimental results obtained on two different versions of a well-known pursuit domain show the robustness and effectiveness of the proposed fuzzy OLAP mining based modular learning approach. Finally, we tested the scalability of the approach presented in this paper and compared it with our previous work on modular-fuzzy Q-learning and ordinary Q-learning.

  14. Spatial transformations: from fundamentals to applications

    PubMed Central

    Foster, Robert; Grant, Patrick; Hao, Yang; Hibbins, Alastair; Philbin, Thomas; Sambles, Roy

    2015-01-01

    This paper forms the introduction to this themed issue of Philosophical Transactions of the Royal Society A on ‘Spatial transformations’, arising from the Royal Society Scientific Discussion Meeting held in January 2015. The paper begins with a review of the concepts and history of spatial transformations, followed by a discussion of the contributions from the papers in this themed issue. A summary of the advantages and current limitations of spatial transformations concludes the paper, with the key challenges identified at the Scientific Discussion Meeting also given. PMID:26217061

  15. Spatial transformations: from fundamentals to applications.

    PubMed

    Foster, Robert; Grant, Patrick; Hao, Yang; Hibbins, Alastair; Philbin, Thomas; Sambles, Roy

    2015-08-28

    This paper forms the introduction to this themed issue of Philosophical Transactions of the Royal Society A on 'Spatial transformations', arising from the Royal Society Scientific Discussion Meeting held in January 2015. The paper begins with a review of the concepts and history of spatial transformations, followed by a discussion of the contributions from the papers in this themed issue. A summary of the advantages and current limitations of spatial transformations concludes the paper, with the key challenges identified at the Scientific Discussion Meeting also given.

  16. Technological Applications to Support Children's Development of Spatial Awareness

    ERIC Educational Resources Information Center

    Matthews, David; Geist, Eugene A.

    2002-01-01

    This article presents methods and theory behind promoting children's spatial awareness through representing 3D reality in 2D cyberspace. Spatial awareness in children is an often neglected aspect in early education. However, applications such as GPS and 3D modeling programs can be used to offer children rich experiences that allow children to…

  17. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  18. APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.

    USGS Publications Warehouse

    Miller, Betty M.; Domaratz, Michael A.

    1984-01-01

    Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.

  19. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  20. Radiographic applications of spatial frequency multiplexing

    NASA Technical Reports Server (NTRS)

    Macovski, A.

    1981-01-01

    The application of spacial frequency encoding techniques which allow different regions of the X-ray spectrum to be encoded on conventional radiographs was studied. Clinical considerations were reviewed, as were experimental studies involving the encoding and decoding of X-ray images at different energies and the subsequent processing of the data to produce images of specific materials in the body.

  1. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  2. Bayesian approaches for adaptive spatial sampling : an example application.

    SciTech Connect

    Johnson, R. L.; LePoire, D.; Huttenga, A.; Quinn, J.

    2005-05-25

    BAASS (Bayesian Approaches for Adaptive Spatial Sampling) is a set of computational routines developed to support the design and deployment of spatial sampling programs for delineating contamination footprints, such as those that might result from the accidental or intentional environmental release of radionuclides. BAASS presumes the existence of real-time measurement technologies that provide information quickly enough to affect the progress of data collection. This technical memorandum describes the application of BAASS to a simple example, compares the performance of a BAASS-based program with that of a traditional gridded program, and explores the significance of several of the underlying assumptions required by BAASS. These assumptions include the range of spatial autocorrelation present, the value of prior information, the confidence level required for decision making, and ''inside-out'' versus ''outside-in'' sampling strategies. In the context of the example, adaptive sampling combined with prior information significantly reduced the number of samples required to delineate the contamination footprint.

  3. A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries

    NASA Astrophysics Data System (ADS)

    Santos, Ricardo Jorge; Bernardino, Jorge

    On-line analytical processing against data warehouse databases is a common form of getting decision making information for almost every business field. Decision support information oftenly concerns periodic values based on regular attributes, such as sales amounts, percentages, most transactioned items, etc. This means that many similar OLAP instructions are periodically repeated, and simultaneously, between the several decision makers. Our Query Cache Tool takes advantage of previously executed queries, storing their results and the current state of the data which was accessed. Future queries only need to execute against the new data, inserted since the queries were last executed, and join these results with the previous ones. This makes query execution much faster, because we only need to process the most recent data. Our tool also minimizes the execution time and resource consumption for similar queries simultaneously executed by different users, putting the most recent ones on hold until the first finish and returns the results for all of them. The stored query results are held until they are considered outdated, then automatically erased. We present an experimental evaluation of our tool using a data warehouse based on a real-world business dataset and use a set of typical decision support queries to discuss the results, showing a very high gain in query execution time.

  4. Design and implementation of GGEarth spatial data service application system

    NASA Astrophysics Data System (ADS)

    Chen, Jianhua; Miao, Fang; Wang, Weihong; Wang, Huajun

    2009-06-01

    The digital earth concept has aroused strong repercussions and been arousing researches boom both at home and abroad once it is proposed. Many digital earth prototype systems have been researched and distributed in worldwide, and the Google Earth is more typical. The booming development of digital earth's research and its prototype's development bring about G/S mode timely, a novel spatial information distributing access, and organization software architecture mode. Based on native GML spatial database system and Google Earth, with G/S mode as its architecture, and combination with GML/KML compressive transport and transformation, this paper proposed and designed the software architecture of GGEarth spatial data service application system, the research content and key implementation technologies were given. This system provides functions of data presentation, query, update and spatial analysis, which uses native GML spatial database (and GML, KML documents) as the standard data center, and the client based on Google Earth COM API as the front-end. This system can be applied in fields of digital city, digital tourism and traditional Web GIS. The authors developed the GGEarth experimental system and ran it with the data of '5.12' Wenchuan earthquake timing and the model data of digital Jiuzhaigou virtual tourism. Some running screenshots are also given.

  5. Management model application at nested spatial levels in Mediterranean Basins

    NASA Astrophysics Data System (ADS)

    Lo Porto, Antonio; De Girolamo, Anna Maria; Froebrich, Jochen

    2014-05-01

    In the EU Water Framework Directive (WFD) implementation processes, hydrological and water quality models can be powerful tools that allow to design and test alternative management strategies, as well as judging their general feasibility and acceptance. Although in recent decades several models have been developed, their use in Mediterranean basins, where rivers have a temporary character, is quite complex and there is limited information in literature which can facilitate model applications and result evaluations in this region. The high spatial variability which characterizes rainfall events, soil hydrological properties and land uses of Mediterranean basin makes more difficult to simulate hydrological and water quality in this region than in other Countries. This variability also has several implications in modeling simulations results especially when simulations at different spatial scale are needed for watershed management purpose. It is well known that environmental processes operating at different spatial scale determine diverse impacts on water quality status (hydrological, chemical, ecological). Hence, the development of management strategies have to include both large scale (watershed) and local spatial scales approaches (e.g. stream reach). This paper presents the results of a study which analyzes how the spatial scale affects the results of hydrologic process and water quality of model simulations in a Mediterranean watershed. Several aspects involved in modeling hydrological and water quality processes at different spatial scale for river basin management are investigated including model data requirements, data availability, model results and uncertainty. A hydrologic and water quality model (SWAT) was used to simulate hydrologic processes and water quality at different spatial scales in the Candelaro river basin (Puglia, S-E Italy) and to design management strategies to reach as possible WFD goals. When studying a basin to assess its current status

  6. Random vectors and spatial analysis by geostatistics for geotechnical applications

    SciTech Connect

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics to spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.

  7. Pediatric and adolescent applications of the Taylor Spatial Frame.

    PubMed

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients.

  8. Spatial and statistical GIS Applications for geological and environmental courses

    NASA Astrophysics Data System (ADS)

    Marsellos, A.; Tsakiri, K.

    2012-12-01

    Building student's career through undergraduate and graduate courses integrated with modern statistical and GIS software foster a competitive curriculum for their future employment. We present examples that may be introduced in geological courses (e.g. mineralogy, geomorphology, geochronology, structural geology, tectonics, stratigraphy) and environmental courses (natural hazards, hydrology, atmospheric science). Univariate and multivariate statistical models can be used for the interpretation and mapping of the geological and environmental problems. Some of the main statistical univariate models such as the normal distribution as well as the multivariate methods such as the principal component analysis, cluster analysis and factor analysis are the basic methods for understanding the variables of the environmental and geological problems. Examples are presented describing the basic steps for the solution of the problems. Some of the geological problems in different scales are the interpretation of 3D structural data, identification of suitable outcrops for mapping shear sense kinematic indicators. categorical or cluster analysis on lineations depending on their origin, topology of mineral assemblages and spatial distribution of their c-axis, distinguishing paleo-elevations using cluster analysis in geomorphological structures using LiDAR intensity and elevation data for determination of meander evolution patterns and prediction of vulnerable sites for flooding or landsliding. Other applications in atmospheric and hydrology science are the prediction of ground level ozone and the decomposition of water use time series. Those fundamental statistical and spatial concepts may be used in the field or in the lab. In the lab, modern computers and friendly interface user software allow students to process data using advanced statistical methods and GIS techniques. Modern applications in tablets or smart phones may complement field work. Teaching those methods can

  9. Using data mining and OLAP to discover patterns in a database of patients with Y-chromosome deletions.

    PubMed Central

    Dzeroski, S.; Hristovski, D.; Peterlin, B.

    2000-01-01

    The paper presents a database of published Y chromosome deletions and the results of analyzing the database with data mining techniques. The database describes 382 patients for which 177 different markers were tested: 364 of the 382 patients had deletions. Two data mining techniques, clustering and decision tree induction were used. Clustering was used to group patients according to the overall presence/absence of deletions at the tested markers. Decision trees and On-Line-Analytical-Processing (OLAP) were used to inspect the resulting clustering and look for correlations between deletion patterns, populations and the clinical picture of infertility. The results of the analysis indicate that there are correlations between deletion patterns and patient populations, as well as clinical phenotype severity. PMID:11079876

  10. Spatial Power Combining Amplifier for Ground and Flight Applications

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  11. Application of Fourier analysis to multispectral/spatial recognition

    NASA Technical Reports Server (NTRS)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  12. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.; Comeron, Adolfo

    2002-12-01

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input. The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed.

  13. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications.

    PubMed

    Agishev, Ravil R; Comeron, Adolfo

    2002-12-20

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed.

  14. GIS application on spatial landslide analysis using statistical based models

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred F.

    2009-09-01

    This paper presents the assessment results of spatially based probabilistic three models using Geoinformation Techniques (GIT) for landslide susceptibility analysis at Penang Island in Malaysia. Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and supported with field surveys. Maps of the topography, soil type, lineaments and land cover were constructed from the spatial data sets. There are ten landslide related factors were extracted from the spatial database and the frequency ratio, fuzzy logic, and bivariate logistic regression coefficients of each factor was computed. Finally, landslide susceptibility maps were drawn for study area using frequency ratios, fuzzy logic and bivariate logistic regression models. For verification, the results of the analyses were compared with actual landslide locations in study area. The verification results show that bivariate logistic regression model provides slightly higher prediction accuracy than the frequency ratio and fuzzy logic models.

  15. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  16. [Fractal theory and its application in the analysis of soil spatial variability: a review].

    PubMed

    Zhang, Fa-Sheng; Liu, Zuo-Xin

    2011-05-01

    Soil has spatial variability in its attributes. The analysis of soil spatial variability is of significance for soil management. This paper summarized the fractal theory and its application in spatial analysis of soil variability, with the focus on the utilization of moment method in calculating the fractal dimension of soil attributes, the multi-fractal analysis of soil spatial variability, and the scaling up of soil attributes based on multi-fractal parameters. The studies on the application of fractal theory and multi-fractal method in the analysis of soil spatial variability were also reviewed. Fractal theory could be an important tool in quantifying the spatial variability and scaling up of soil attributes.

  17. Application of the attribute recognition method for the evaluation of spatial data quality

    NASA Astrophysics Data System (ADS)

    Sun, Qinghui; Chi, Tianhe; Zhong, Dawei

    2006-10-01

    Evaluation of spatial data quality is an important problem in Geographical Information System (GIS) applications and research. Many evaluation criterions of spatial data are involved in the evaluating process, The criterions for judging the quality of spatial data comes from the evaluation process, using such information as positional accuracy, attribute accuracy, logical consistency, temporal accuracy and so on. How to evaluate the quality of spatial data based on these indexes is a problem we are always confronted within GIS applications. In this paper, we construct a model for determining spatial data quality using attribute recognition principles and methods in Attribute Mathematics, which were founded by Cheng Qiansheng. This model overcomes the defects of current evaluation models, and leads to reasonable and reliable results on spatial data quality in GIS as proved by the results of our tests.

  18. Implementing an SIG based platform of application and service for city spatial information in Shanghai

    NASA Astrophysics Data System (ADS)

    Yu, Bailang; Wu, Jianping

    2006-10-01

    Spatial Information Grid (SIG) is an infrastructure that has the ability to provide the services for spatial information according to users' needs by means of collecting, sharing, organizing and processing the massive distributed spatial information resources. This paper presents the architecture, technologies and implementation of the Shanghai City Spatial Information Application and Service System, a SIG based platform, which is an integrated platform that serves for administration, planning, construction and development of the city. In the System, there are ten categories of spatial information resources, including city planning, land-use, real estate, river system, transportation, municipal facility construction, environment protection, sanitation, urban afforestation and basic geographic information data. In addition, spatial information processing services are offered as a means of GIS Web Services. The resources and services are all distributed in different web-based nodes. A single database is created to store the metadata of all the spatial information. A portal site is published as the main user interface of the System. There are three main functions in the portal site. First, users can search the metadata and consequently acquire the distributed data by using the searching results. Second, some spatial processing web applications that developed with GIS Web Services, such as file format conversion, spatial coordinate transfer, cartographic generalization and spatial analysis etc, are offered to use. Third, GIS Web Services currently available in the System can be searched and new ones can be registered. The System has been working efficiently in Shanghai Government Network since 2005.

  19. Application of spatial filtering techniques to frequency domain imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen P.; Somekh, Michael G.

    1995-12-01

    The application of spatial filtering techniques to frequency domain imaging through scattering media has been investigated using a diffusion model. The criterion used to evaluate the imaging performance of any given system is the trade-off between signal to noise ratio and resolution. Spatial filtering is shown to offer the greatest improvement in system performance for objects positioned near to the detector.

  20. Development and Applications of the Microchannel Spatial Light Modulator.

    DTIC Science & Technology

    1983-06-30

    WORK UNIT NUMBERS Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 1I. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT...processing, Adaptive optics. 20. ABSTRACT (Continue on reveree aide If neceesary and identify by block number ) The Microchannel Spatial Light Modulator (MSLM...wright light on ; (c) Vb switched back to Vbb and the image erased by electron accumulation. Fig 6. Interferometric readout intensity characteristic

  1. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics.

    PubMed

    Breckels, Lisa M; Holden, Sean B; Wojnar, David; Mulvey, Claire M; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W B; Kohlbacher, Oliver; Lilley, Kathryn S; Gatto, Laurent

    2016-05-01

    Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis.

  2. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics

    PubMed Central

    Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent

    2016-01-01

    Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778

  3. Optimizing spatial filters with kernel methods for BCI applications

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacai; Tang, Jianjun; Yao, Li

    2007-11-01

    Brain Computer Interface (BCI) is a communication or control system in which the user's messages or commands do not depend on the brain's normal output channels. The key step of BCI technology is to find a reliable method to detect the particular brain signals, such as the alpha, beta and mu components in EEG/ECOG trials, and then translate it into usable control signals. In this paper, our objective is to introduce a novel approach that is able to extract the discriminative pattern from the non-stationary EEG signals based on the common spatial patterns(CSP) analysis combined with kernel methods. The basic idea of our Kernel CSP method is performing a nonlinear form of CSP by the use of kernel methods that can efficiently compute the common and distinct components in high dimensional feature spaces related to input space by some nonlinear map. The algorithm described here is tested off-line with dataset I from the BCI Competition 2005. Our experiments show that the spatial filters employed with kernel CSP can effectively extract discriminatory information from single-trial EGOG recorded during imagined movements. The high recognition of linear discriminative rates and computational simplicity of "Kernel Trick" make it a promising method for BCI systems.

  4. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.

    PubMed

    Kakkad, Vaibhav; Dahl, Jeremy; Ellestad, Sarah; Trahey, Gregg

    2015-04-01

    Fetal scanning is one of the most common applications of ultrasound imaging and serves as a source of vital information about maternal and fetal health. Visualization of clinically relevant structures, however, can be severely compromised in difficult-to-image patients due to poor resolution and the presence of high levels of acoustical noise or clutter. We have developed novel coherence-based beamforming methods called Short-Lag Spatial Coherence (SLSC) imaging and Harmonic Spatial Coherence imaging (HSCI), and applied them to suppress the effects of clutter in fetal imaging. This method is used to create images of the spatial coherence of the backscattered ultrasound as opposed to images of echo magnitude. We present the results of a patient study to assess the benefits of coherence-based beamforming in the context of first trimester fetal exams. Matched fundamental B-mode, SLSC, harmonic B-mode, and HSCI images were generated using raw radio frequency data collected on 11 volunteers in the first trimester of pregnancy. The images were compared for qualitative differences in image texture and target conspicuity as well as using quantitative imaging metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and contrast. SLSC and HSCI showed statistically significant improvements across all imaging metrics compared with B-mode and harmonic B-mode, respectively. These improvements were greatest for poor quality B-mode images where contrast of anechoic targets was improved from 15 dB in fundamental B-mode to 27 dB in SLSC and 17 dB in harmonic B-mode to 30 dB in HSCI. CNR improved from 1.4 to 2.5 in the fundamental images and 1.4 to 3.1 in the harmonic case. These results exhibit the potential of coherence-based beamforming to improve image quality and target detectability, especially in high noise environments.

  5. [Spatial resolution standardization of payload on board of remote sensing satellite based on application requirements].

    PubMed

    Wei, Xiang-qin; Gu, Xing-fa; Yu, Tao; Meng, Qing-yan; Li, Bin; Guo, Hong

    2012-03-01

    Remote sensing application requirements are the starting point for design of payload on board earth observation satellite. The generalization, standardization and serialization of payload are the future development trend for payload design. In the present paper, based on the analysis of remote sensing application requirements, the spatial resolution standardization of satellite remote sensing payload, which is the main concerned indicator, was investigated. The design standards of national payload spatial resolution of earth observation satellite are presented, which are important to the promotion of satellite payload production and saving in design cost.

  6. ASSET Queries: A Set-Oriented and Column-Wise Approach to Modern OLAP

    NASA Astrophysics Data System (ADS)

    Chatziantoniou, Damianos; Sotiropoulos, Yannis

    Modern data analysis has given birth to numerous grouping constructs and programming paradigms, way beyond the traditional group by. Applications such as data warehousing, web log analysis, streams monitoring and social networks understanding necessitated the use of data cubes, grouping variables, windows and MapReduce. In this paper we review the associated set (ASSET) concept and discuss its applicability in both continuous and traditional data settings. Given a set of values B, an associated set over B is just a collection of annotated data multisets, one for each b(B. The goal is to efficiently compute aggregates over these data sets. An ASSET query consists of repeated definitions of associated sets and aggregates of these, possibly correlated, resembling a spreadsheet document. We review systems implementing ASSET queries both in continuous and persistent contexts and argue for associated sets' analytical abilities and optimization opportunities.

  7. Design of data warehouse in teaching state based on OLAP and data mining

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Wu, Minhua; Li, Shuang

    2009-04-01

    The data warehouse and the data mining technology is one of information technology research hot topics. At present the data warehouse and the data mining technology in aspects and so on commercial, financial industry as well as enterprise's production, market marketing obtained the widespread application, but is relatively less in educational fields' application. Over the years, the teaching and management have been accumulating large amounts of data in colleges and universities, while the data can not be effectively used, in the light of social needs of the university development and the current status of data management, the establishment of data warehouse in university state, the better use of existing data, and on the basis dealing with a higher level of disposal --data mining are particularly important. In this paper, starting from the decision-making needs design data warehouse structure of university teaching state, and then through the design structure and data extraction, loading, conversion create a data warehouse model, finally make use of association rule mining algorithm for data mining, to get effective results applied in practice. Based on the data analysis and mining, get a lot of valuable information, which can be used to guide teaching management, thereby improving the quality of teaching and promoting teaching devotion in universities and enhancing teaching infrastructure. At the same time it can provide detailed, multi-dimensional information for universities assessment and higher education research.

  8. Taylor Spatial Frame application with the aid of a fine wire half frame.

    PubMed

    Whitehouse, Michael R; Livingstone, James A

    2008-04-01

    The Taylor Spatial Frame has become an important part of the trauma and reconstruction surgeon's armamentarium. We describe a technique to assist in the application of this device that does not hinder the use of the image intensifier or rely on an assistant to hold a constant position and aids provisional fracture reduction.

  9. A review of spatial technologies with applications for malaria transmission modelling and control in Africa.

    PubMed

    Gebreslasie, Michael T

    2015-11-26

    Spatial technologies, i.e. geographic information systems, remote sensing, and global positioning systems, offer an opportunity for rapid assessment of malaria endemic areas. These technologies coupled with prevalence/incidence data can provide reliable estimates of population at risk, predict disease distributions in areas that lack baseline data and provide guidance for intervention strategies, so that scarce resources can be allocated in a cost-effective manner. This review focuses on the spatial technology applications that have been used in epidemiology and control of malaria in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geospatial technology OR Geographic Information Systems OR Remote Sensing OR Earth Observation OR Global Positioning Systems OR geospatial modelling OR malaria incidence OR malaria prevalence OR malaria risk prediction OR malaria mapping AND malaria AND Africa were used. These included mapping malaria incidence and prevalence, assessing the relationship between malaria and environmental variables as well as applications for malaria early warning systems. The potential of new spatial technology applications utilising emerging satellite information, as they hold promise to further enhance infectious risk mapping and disease prediction, are outlined. We stress current research needs to overcome some of the remaining challenges of spatial technology applications for malaria so that further and sustainable progress can be made to control and eliminate this disease.

  10. Assessing the quality of open spatial data for mobile location-based services research and applications

    NASA Astrophysics Data System (ADS)

    Ciepłuch, C.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanely, A. C.

    2011-12-01

    New trends in GIS such as Volunteered Geographical Information (VGI), Citizen Science, and Urban Sensing, have changed the shape of the geoinformatics landscape. The OpenStreetMap (OSM) project provided us with an exciting, evolving, free and open solution as a base dataset for our geoserver and spatial data provider for our research. OSM is probably the best known and best supported example of VGI and user generated spatial content on the Internet. In this paper we will describe current results from the development of quality indicators for measures for OSM data. Initially we have analysed the Ireland OSM data in grid cells (5km) to gather statistical data about the completeness, accuracy, and fitness for purpose of the underlying spatial data. This analysis included: density of user contributions, spatial density of points and polygons, types of tags and metadata used, dominant contributors in a particular area or for a particular geographic feature type, etc. There greatest OSM activity and spatial data density is highly correlated with centres of large population. The ability to quantify and assess if VGI, such as OSM, is of sufficient quality for mobile mapping applications and Location-based services is critical to the future success of VGI as a spatial data source for these technologies.

  11. Hybrid modeling of spatial continuity for application to numerical inverse problems

    USGS Publications Warehouse

    Friedel, Michael J.; Iwashita, Fabio

    2013-01-01

    A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.

  12. A Spatially Focused Method for High Density Electrode-Based Functional Brain Mapping Applications.

    PubMed

    Chang, Chih-Wei; Hsin, Yue-Loong; Liu, Wentai

    2016-10-01

    Mapping the electric field of the brain with electrodes benefits from its superior temporal resolution but is prone to low spatial resolution property comparing with other modalities such as fMRI, which can directly impact the precision of clinical diagnosis. Simulations show that dense arrays with straightforwardly miniaturized electrodes in terms of size and pitch may not improve the spatial resolution but only strengthen the cross coupling between adjacent channels due to volume conduction. We present a new spatially focused method to improve the electrode spatial selectivity and consequently suppress the neural signal coupling from the sources in the vicinity. Compared with existing spatial filtering methods with fixed coefficients, the proposed method is adaptively optimized for the geometric parameters of the recording electrode arrays, including electrode size, pitch and source depth. The effective spatial bandwidth, characterized as Radius of Half Power, can be reduced by about 70% for ECoG and the case of distant sources scenarios. The proposed method has been applied to the analysis of high-frequency oscillations (HFOs) in seizures to study the ictal pathway in the epileptogenic region. The results reveal lucid HFO wavefront propagation in both preictal and ictal stages due to a 75% reduction in the coupling effect. The results also show that a specific power threshold of preictal HFOs is needed in order to initiate an epileptic seizure. This demonstrates that our method indeed facilitates the investigation of complex neurobiological signals preprocessing applications.

  13. A Spatially Focused Method for High Density Electrode-Based Functional Brain Mapping Applications.

    PubMed

    Chang, Chih-Wei; Hsin, Yue-Loong; Liu, Wentai

    2016-03-07

    Mapping the electric field of the brain with electrodes benefits from its superior temporal resolution but is prone to low spatial resolution property comparing with other modalities such as fMRI, which can directly impact the precision of clinical diagnosis. Simulations show that dense arrays with straightforwardly miniaturized electrodes in terms of size and pitch may not improve the spatial resolution but only strengthen the cross coupling between adjacent channels due to volume conduction. We present a new spatially focused method to improve the electrode spatial selectivity and consequently suppress the neural signal coupling from the sources in the vicinity. Compared with existing spatial filtering methods with fixed coefficients, the proposed method is adaptively optimized for the geometric parameters of the recording electrode arrays, including electrode size, pitch and source depth. The effective spatial bandwidth, characterized as Radius of Half Power, can be reduced by about 70% for ECoG and the case of distant sources scenarios. The proposed method has been applied to the analysis of high-frequency oscillations (HFOs) in seizures to study the ictal pathway in the epileptogenic region. The results reveal lucid HFO wavefront propagation in both preictal and ictal stages due to a 75% reduction in the coupling effect. The results also show that a specific power threshold of preictal HFOs is needed in order to initiate an epileptic seizure. This demonstrates that our method indeed facilitates the investigation of complex neurobiological signals preprocessing applications.

  14. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  15. The application of inverse methods to spatially-distributed acoustic sources

    NASA Astrophysics Data System (ADS)

    Holland, K. R.; Nelson, P. A.

    2013-10-01

    Acoustic inverse methods, based on the output of an array of microphones, can be readily applied to the characterisation of acoustic sources that can be adequately modelled as a number of discrete monopoles. However, there are many situations, particularly in the fields of vibroacoustics and aeroacoustics, where the sources are distributed continuously in space over a finite area (or volume). This paper is concerned with the practical problem of applying inverse methods to such distributed source regions via the process of spatial sampling. The problem is first tackled using computer simulations of the errors associated with the application of spatial sampling to a wide range of source distributions. It is found that the spatial sampling criterion for minimising the errors in the radiated far-field reconstructed from the discretised source distributions is strongly dependent on acoustic wavelength but is only weakly dependent on the details of the source field itself. The results of the computer simulations are verified experimentally through the application of the inverse method to the sound field radiated by a ducted fan. The un-baffled fan source with the associated flow field is modelled as a set of equivalent monopole sources positioned on the baffled duct exit along with a matrix of complimentary non-flow Green functions. Successful application of the spatial sampling criterion involves careful frequency-dependent selection of source spacing, and results in the accurate reconstruction of the radiated sound field. Discussions of the conditioning of the Green function matrix which is inverted are included and it is shown that the spatial sampling criterion may be relaxed if conditioning techniques, such as regularisation, are applied to this matrix prior to inversion.

  16. Application of a Spatial Intelligent Decision System on Self-Rated Health Status Estimation.

    PubMed

    Calzada, Alberto; Liu, Jun; Wang, Hui; Nugent, Chris; Martinez, Luis

    2015-11-01

    Self- assessed general health status is a commonly-used survey technique since it can be used as a predictor for several public health risks such as mortality, deprivation, and fear of crime or poverty. Therefore, it is a useful alternative measure to help assessing the public health situation of a neighborhood or town, and can be utilized by authorities in many decision support situations related to public health, budget allocation and general policy-making, among others. It can be considered as spatial decision problems, since both data location and spatial relationships make a prominent impact during the decision making process. This paper utilizes a recently-developed spatial intelligent decision system, named, Spatial RIMER(+), to model the self-rated health estimation decision problem using real data in the areas of Northern Ireland, UK. The goal is to learn from past or partial observations on self-rated health status to predict its future or neighborhood behavior and reference it in the map. Three scenarios in line of this goal are discussed in details, i.e., estimation of unknown, downscaling, and predictions over time. They are used to demonstrate the flexibility and applicability of the spatial decision support system and their positive capabilities in terms of accuracy, efficiency and visualization.

  17. Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    NASA Technical Reports Server (NTRS)

    Davis, Bruce E.; Elliot, Gregory

    1989-01-01

    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

  18. Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain

    NASA Astrophysics Data System (ADS)

    Lieberman, J. E.; Cheatham, M.; Varanka, D.

    2015-12-01

    Ontologies are playing an increasing role in facilitating mediation and translation between datasets representing diverse schemas, vocabularies, or knowledge communities. This role is relatively straightforward when there is one ontology comprising all relevant common concepts that can be mapped to entities in each dataset. Frequently, one common ontology has not been agreed to. Either each dataset is represented by a distinct ontology, or there are multiple candidates for commonality. Either the one most appropriate (expressive, relevant, correct) ontology must be chosen, or else concepts and relationships matched across multiple ontologies through an alignment process so that they may be used in concert to carry out mediation or other semantic operations. A resulting alignment can be effective to the extent that entities in in the ontologies represent differing terminology for comparable conceptual knowledge. In cases such as spatial ontologies, though, ontological entities may also represent disparate conceptualizations of space according to the discernment methods and application domains on which they are based. One ontology's wetland concept may overlap in space with another ontology's recharge zone or wildlife range or water feature. In order to evaluate alignment with respect to spatial ontologies, alignment has been applied to a series of ontologies pertaining to surface water that are used variously in hydrography (characterization of water features), hydrology (study of water cycling), and water quality (nutrient and contaminant transport) application domains. There is frequently a need to mediate between datasets in each domain in order to develop broader understanding of surface water systems, so there is a practical as well theoretical value in the alignment. From a domain expertise standpoint, the ontologies under consideration clearly contain some concepts that are spatially as well as conceptually identical and then others with less clear

  19. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.

    PubMed

    Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F

    2016-09-30

    OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force

  20. The market value of cultural heritage in urban areas: an application of spatial hedonic pricing

    NASA Astrophysics Data System (ADS)

    Lazrak, Faroek; Nijkamp, Peter; Rietveld, Piet; Rouwendal, Jan

    2014-01-01

    The current literature often values intangible goods like cultural heritage by applying stated preference methods. In recent years, however, the increasing availability of large databases on real estate transactions and listed prices has opened up new research possibilities and has reduced various existing barriers to applications of conventional (spatial) hedonic analysis to the real estate market. The present paper provides one of the first applications using a spatial autoregressive model to investigate the impact of cultural heritage—in particular, listed buildings and historic-cultural sites (or historic landmarks)—on the value of real estate in cities. In addition, this paper suggests a novel way of specifying the spatial weight matrix—only prices of sold houses influence current price—in identifying the spatial dependency effects between sold properties. The empirical application in the present study concerns the Dutch urban area of Zaanstad, a historic area for which over a long period of more than 20 years detailed information on individual dwellings, and their market prices are available in a GIS context. In this paper, the effect of cultural heritage is analysed in three complementary ways. First, we measure the effect of a listed building on its market price in the relevant area concerned. Secondly, we investigate the value that listed heritage has on nearby property. And finally, we estimate the effect of historic-cultural sites on real estate prices. We find that, to purchase a listed building, buyers are willing to pay an additional 26.9 %, while surrounding houses are worth an extra 0.28 % for each additional listed building within a 50-m radius. Houses sold within a conservation area appear to gain a premium of 26.4 % which confirms the existence of a `historic ensemble' effect.

  1. [Application of Land-use Regression Models in Spatial-temporal Differentiation of Air Pollution].

    PubMed

    Wu, Jian-sheng; Xie, Wu-dan; Li, Jia-cheng

    2016-02-15

    With the rapid development of urbanization, industrialization and motorization, air pollution has become one of the most serious environmental problems in our country, which has negative impacts on public health and ecological environment. LUR model is one of the common methods simulating spatial-temporal differentiation of air pollution at city scale. It has broad application in Europe and North America, but not really in China. Based on many studies at home and abroad, this study started with the main steps to develop LUR model, including obtaining the monitoring data, generating variables, developing models, model validation and regression mapping. Then a conclusion was drawn on the progress of LUR models in spatial-temporal differentiation of air pollution. Furthermore, the research focus and orientation in the future were prospected, including highlighting spatial-temporal differentiation, increasing classes of model variables and improving the methods of model development. This paper was aimed to popularize the application of LUR model in China, and provide a methodological basis for human exposure, epidemiologic study and health risk assessment.

  2. Applications of Spatial Technology in Schistosomiasis Control Programme in The People's Republic of China.

    PubMed

    Wang, X-Y; He, J; Yang, K; Liang, S

    2016-01-01

    Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions.

  3. High dimensional spatial modeling of extremes with applications to United States Rainfalls

    NASA Astrophysics Data System (ADS)

    Zhou, Jie

    2007-12-01

    data sets with extreme value distributions involved. One of the main outcomes of this model is for producing N-year return values and return years for a given value for precipitation at a single location given climate model projections based on a grid. This is very important, because in many applications, detailed precipitation information on pointwise locations is more important that predictions averaged over grids. The second model can be applied to those large data sets and is based on transformed Gaussian processes. These processes are thresholded due to the emphasis on rainfall extremes. Keywords. Block Circulant Matrix; Extreme value theory; Fast Fourier Transform; Generalized Linear Mixed Model; Kriging; Markov Chain Monte Carlo; Spectral Representation; Spatial statistics

  4. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  5. Approaches and Applications of Physically-based, Spatially-distributed Integrated surface / subsurface flow modeling

    NASA Astrophysics Data System (ADS)

    Panday, S.; Huyakorn, P. S.

    2004-12-01

    Physically-based, spatially-distributed (PBSD) modeling of integrated surface water and groundwater flow is necessary for evaluating the complex processes of runoff, recharge, evapotranspiration, subsurface flow, and baseflow, to comprehensively manage water resources for diverse and competing needs such as conjunctive use, aquifer storage and recovery, flood protection, wetland restoration and minimum flow evaluation. Some current approaches to PBSD modeling of integrated surface and subsurface flow will be discussed. Challenges to PBSD integrated modeling will be presented, and application case studies will be presented.

  6. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  7. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  8. Spatial-scanning hyperspectral imaging probe for bio-imaging applications.

    PubMed

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50,000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  9. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  10. A Novel Artificial Immune Algorithm for Spatial Clustering with Obstacle Constraint and Its Applications

    PubMed Central

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect. PMID:25435862

  11. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    PubMed

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  12. A hierarchical spatial model of avian abundance with application to Cerulean Warblers

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.

    2004-01-01

    is counts, such as animal counts, activity (e.g.,nest) counts, or species richness. The most noteworthy practical application of this spatial modeling approach is the ability to map relative species abundance. The functional relationships that we elucidated for the Cerulean Warbler provide a basis for the development of management programs and may serve to focus management and monitoring on areas and habitat variables important to Cerulean Warblers.

  13. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  14. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    PubMed Central

    2011-01-01

    Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This

  15. Multi-storm, multi-catchment investigation of rainfall spatial resolution requirements for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Ochoa Rodriguez, Susana; ten Veldhuis, Marie-Claire; Bruni, Guendalina; Gires, Auguste; van Assel, Johan; Wang, Lipen; Reinoso-Rodinel, Ricardo; Ichiba, Abdellah; Kroll, Stefan; Schertzer, Daniel; Onof, Christian; Willems, Patrick

    2014-05-01

    Rainfall estimates of the highest possible resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made over the last few decades in high resolution measurement of rainfall at urban scales and in the modelling of urban runoff processes, a number of questions as to the actual resolution requirements for input data and models remain to be answered. With the aim of answering some of these questions, this work investigates the impact of rainfall estimates of different spatial resolutions and structures on the hydraulic outputs of models of several urban catchments with different characteristics. For this purpose multiple storm events, including convective and stratiform ones, measured by a polarimetric X-band radar located in Cabauw (NL) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to coarser spatial resolutions of up to 1000 m. These estimates were then applied to the high-resolution semi distributed hydraulic models of four urban catchments of similar size (approx. 7 km2), but different morphological and land use characteristics; these are: the Herent catchment (Belgium), the Cranbrook catchment (UK), the Morée Sausset catchment (France) and the Kralingen District of Rotterdam (The Netherlands). When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. Moreover, the results were analysed considering different points at each catchment, while also taking into account the particular storm and catchment characteristics. The results obtained for the storms used in this study show that flat and less compact catchments (e.g. polder areas) may be more sensitive to the spatial resolution of rainfall estimates, as compared to catchments with higher slopes and compactness, which in general show little sensitivity to changes in spatial resolution

  16. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  17. Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications

    SciTech Connect

    Shverdin, M Y; Anderson, S G; Betts, S M; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; Jovanovic, I; Messerly, M; Pruet, J; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-06-08

    The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps at full width of half-maximum (FWHM) and rise and fall times under 1 ps. The expected pulse energy is 50 {micro}J at 261.75 nm and the spot size diameter of the beam at the photocathode is 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. Spatial shaping is achieved by truncating the beam at the 20% energy level with an iris and relay-imaging the resulting beam profile onto the photocathode. The integration of the system, as well as preliminary laser measurements will be presented.

  18. [Applicability analysis of spatially explicit model of leaf litter in evergreen broad-leaved forests].

    PubMed

    Zhao, Qing-Qing; Liu, He-Ming; Jonard, Mathieu; Wang, Zhang-Hua; Wang, Xi-Hua

    2014-11-01

    The spatially explicit model of leaf litter can help to understand its dispersal process, which is very important to predict the distribution pattern of leaves on the surface of the earth. In this paper, the spatially explicit model of leaf litter was developed for 20 tree species using litter trap data from the mapped forest plot in an evergreen broad-leaved forest in Tiantong, Zhejiang Pro- vince, eastern China. Applicability of the model was analyzed. The model assumed an allometric equation between diameter at breast height (DBH) and leaf litter amount, and the leaf litter declined exponentially with the distance. Model parameters were estimated by the maximum likelihood method. Results showed that the predicted and measured leaf litter amounts were significantly correlated, but the prediction accuracies varied widely for the different tree species, averaging at 49.3% and ranging from 16.0% and 74.0%. Model qualities of tree species significantly correlated with the standard deviations of the leaf litter amount per trap, DBH of the tree species and the average leaf dry mass of tree species. There were several ways to improve the forecast precision of the model, such as installing the litterfall traps according to the distribution of the tree to cover the different classes of the DBH and distance apart from the parent trees, determining the optimal dispersal function of each tree species, and optimizing the existing dispersal function.

  19. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.

    PubMed

    Farhat, N M; Staal, M; Siddiqui, A; Borisov, S M; Bucs, Sz S; Vrouwenvelder, J S

    2015-10-15

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  20. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  1. Detection of spatially extended sources in high energy astrophysics with special application to lunar occultation

    NASA Astrophysics Data System (ADS)

    Jenke, Peter Alexander

    2009-01-01

    Occultation is a technique that enables image reconstruction and source identification with a non-imaging detector. Such an approach is well suited for a future survey mission in nuclear astrophysics. In particular, the Lunar Occultation Technique (LOT) utilizes the Moon as an occulting object and is the basis of a new gamma-ray survey mission concept, the Lunar OCcultation Observer (LOCO). Techniques utilizing the LOT to detect spatially extended emission, from the Galactic plane or Galactic Center region, have been developed. Given knowledge of detector position in lunar orbit, combined with lunar ephemeris and relevant coordinate transformations, occultation time series can be used to reconstruct skymaps of these extended Galactic emitters. Monte-Carlo Markov Chains (MCMC), incorporating the Metropolis-Hastings algorithm for parametric model testing, form the basis of the technique. Performance of the imaging methodology, and its application to nuclear astrophysics will be presented.

  2. The application of geographic information systems and spatial data during Legionnaires disease outbreak responses.

    PubMed

    Bull, M; Hall, I M; Leach, S; Robesyn, E

    2012-12-06

    A literature review was conducted to highlight the application and potential benefit of using geographic information systems (GIS) during Legionnaires' disease outbreak investigations. Relatively few published sources were identified, however, certain types of data were found to be important in facilitating the use of GIS, namely: patient data, locations of potential sources (e.g. cooling towers), demographic data relating to the local population and meteorological data. These data were then analysed to gain a better understanding of the spatial relationships between cases and their environment, the cases' proximity to potential outbreak sources, and the modelled dispersion of contaminated aerosols. The use of GIS in an outbreak is not a replacement for traditional outbreak investigation techniques, but it can be a valuable supplement to a response.

  3. Making digital phantoms with spectral and spatial light modulators for quantitative applications of hyperspectral optical medical imaging devices

    NASA Astrophysics Data System (ADS)

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-03-01

    We present a procedure to generate digital phantoms with a hyperspectral image projector (HIP) consisting of two liquid crystal on silicon (LCoS) spatial light modulators (SLMs). The digital phantoms are 3D image data cubes of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxy-hemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standards to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and inter-laboratory comparisons for quantitative biomedical imaging applications.

  4. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  5. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  6. Modeling diffusion-weighted MRI as a spatially variant Gaussian mixture: Application to image denoising

    PubMed Central

    Gonzalez, Juan Eugenio Iglesias; Thompson, Paul M.; Zhao, Aishan; Tu, Zhuowen

    2011-01-01

    Purpose: This work describes a spatially variant mixture model constrained by a Markov random field to model high angular resolution diffusion imaging (HARDI) data. Mixture models suit HARDI well because the attenuation by diffusion is inherently a mixture. The goal is to create a general model that can be used in different applications. This study focuses on image denoising and segmentation (primarily the former). Methods: HARDI signal attenuation data are used to train a Gaussian mixture model in which the mean vectors and covariance matrices are assumed to be independent of spatial locations, whereas the mixture weights are allowed to vary at different lattice positions. Spatial smoothness of the data is ensured by imposing a Markov random field prior on the mixture weights. The model is trained in an unsupervised fashion using the expectation maximization algorithm. The number of mixture components is determined using the minimum message length criterion from information theory. Once the model has been trained, it can be fitted to a noisy diffusion MRI volume by maximizing the posterior probability of the underlying noiseless data in a Bayesian framework, recovering a denoised version of the image. Moreover, the fitted probability maps of the mixture components can be used as features for posterior image segmentation. Results: The model-based denoising algorithm proposed here was compared on real data with three other approaches that are commonly used in the literature: Gaussian filtering, anisotropic diffusion, and Rician-adapted nonlocal means. The comparison shows that, at low signal-to-noise ratio, when these methods falter, our algorithm considerably outperforms them. When tractography is performed on the model-fitted data rather than on the noisy measurements, the quality of the output improves substantially. Finally, ventricle and caudate nucleus segmentation experiments also show the potential usefulness of the mixture probability maps for

  7. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion.

    PubMed

    Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen

    Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area.

  8. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  9. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  10. Growth and Characterization of Chalcogenide Alloy Nanowires with Controlled Spatial Composition Variation for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Nichols, Patricia

    The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in

  11. Spatial light modulators and applications III; Proceedings of the Meeting, San Diego, CA, Aug. 7, 8, 1989

    NASA Technical Reports Server (NTRS)

    Efron, Uzi (Editor)

    1990-01-01

    Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.

  12. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with

  13. Construction and application of particle swarm optimization algorithm for ecological spatial data mining

    NASA Astrophysics Data System (ADS)

    Fu, ZhongLiang; Wan, Bin

    2009-10-01

    The research of the regional ecological environment becomes more important to regional Sustainable Development in order to achieve the harmonious relationship between the person and the nature. The advent of spatial information technologies, such as GIS, GPS and RS, have great enhanced our capabilities to collect and capture spatial data. How to discover potentially useful information and knowledge from massive amounts of spatial data is becoming a crucial project for spatial analysis and spatial decision making. Particle Swarm Optimization has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to spatial data mining. This paper focuses on construction and learning a Particle Swarm Optimization model for spatial data mining. Firstly, the theory of spatial data mining is introduced and the characteristics of Particle Swarm Optimization are discussed. A framework and process of spatial data mining is proposed. Then we construct a Particle Swarm Optimization model for spatial data mining with the given dataset. The research area is focused on the distribution of pollution sources in Wuhan City. The experimental results demonstrate the feasibility and practical of the proposed approach to spatial data mining. Finally, draw a conclusion and show further avenues for research. Through the empirical study, it has been proved that Particle Swarm Optimization algorithm is feasible and the conclusion can provide instruction for local environmental planning.

  14. DOTAGWA: A CASE STUDY IN WEB-BASED ARCHITECTURES FOR CONNECTING SURFACE WATER MODELS TO SPATIALLY ENABLED WEB APPLICATIONS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, clima...

  15. Wave optics simulation of spatially partially coherent beams: Applications to free space laser communications

    NASA Astrophysics Data System (ADS)

    Xiao, Xifeng

    One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial

  16. Principle and application of high density spatial sampling in seismic migration

    NASA Astrophysics Data System (ADS)

    Li, Zi-Shun

    2012-06-01

    To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 × 10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.

  17. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  18. Lighting up the World The first global application of the open source, spatial electrification toolkit (ONSSET)

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Siyal, Shahid; Broad, Oliver; Zepeda, Eduardo; Bazilian, Morgan

    2016-04-01

    In September 2015, the international community has adopted a new set of targets, following and expanding on the millennium development goals (MDGs), the Sustainable Development Goals (SDGs). Ensuring access to affordable, reliable, sustainable and modern energy for all is one of the 17 set goals that each country should work towards realizing. According to the latest Global Tracking Framework, 15% of the global population live without access to electricity. The majority of those (87%) reside in rural areas. Countries can reach universal access through various electrification options, depending on different levels of energy intensity and local characteristics of the studied areas, such as renewable resources availability, spatially differentiated costs of diesel-fuelled electricity generation, distance from power network and major cities, population density and others, data which are usually inadequate in national databases. This general paucity of reliable energy-related information in developing countries calls for the utilization of geospatial data. This paper presents a Geographic Information Systems (GIS) based electrification analysis for all countries that have not yet reached full access to electricity (Sub-Saharan Africa, Developing Asia, Latin America and Middle East). The cost optimal mix of electrification options ranges from grid extensions to mini-grid and stand-alone applications and is identified for all relevant countries. It is illustrated how this mix is influenced by scrolling through various electrification levels and different oil prices. Such an analysis helps direct donors and investors and inform multinational actions with regards to investments related to energy access.

  19. Fine-pitch high-efficiency spatial optical modulator for mobile display applications

    NASA Astrophysics Data System (ADS)

    Song, Jong Hyeong; Yun, Sang Kyeong; Kim, Hee Yeoun; An, Seungdo; Park, Heung Woo; Choi, Yoon Joon; Yurlov, Victor; Lapchuk, Anatoliy; Yang, Chung Mo; Lee, Sung Jun; Jang, Jae Wook; Lee, Ki Un; Woo, Ki Suk; Bourim, El M.

    2009-02-01

    Diffractive spatial optical modulators (SOM) with fine pitch pixel array were introduced for the mobile applications of laser projection display which requires the small volume, low power consumption and high optical efficiency. Micromechanical designs of piezoelectric (PZT) actuator and mirror ribbon structure were optimized for small volume, but keeping the same level of the other performance. Even though the same design rule and fabrication equipment were used for 10 um pitch SOM and 16 um pitch SOM, the optical efficiency of the fine pitch SOM was 78 % for the 0th order diffraction and is better than that of 16 um pitch SOM (73%). The full on/off contrast ratio has no difference between 10 um pitch and 16 um pitch SOM. All the optical characteristics coincide well with the theoretical estimations. High displacement of 500nm, which is enough to modulate the three Red, Green and Blue colors were achieved by the control of the thicknesses and stresses of constituent structural layers. It was found that the stress of Pt/PZT/Pt actuating layer was the main parameter affecting the initial gap height of the ribbon and also its displacement. For improving the optical properties of the SOM devices, the required ribbon-flatness could be achieved by applying a stress gradient on the SiN layer to compensate for the stress unbalance between Al mirror and SiN supprting layer. The temperature sensitive characteristics of the SOM device, which degrades the image quality, could be minimized by a mechanical compensation method using a thermal expansion effect of Si substrates. This concept could be applied in most of the bridge type MEMS structure. The most critical parameter which limit the SOM device lifetime was found to be the ribbon displacement degradation. By using a temperature accelerating lifetime measurement method based on the displacement degradation the estimated lifetime was more than 4,000 hrs and is of acceptable level in the mobile application. In short, the

  20. Spatial Double Generalized Beta Regression Models: Extensions and Application to Study Quality of Education in Colombia

    ERIC Educational Resources Information Center

    Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente

    2013-01-01

    In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…

  1. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today?

    PubMed

    Brüllmann, D; Schulze, R K W

    2015-01-01

    Spatial resolution is one of the most important parameters objectively defining image quality, particularly in dental imaging, where fine details often have to be depicted. Here, we review the current status on assessment parameters for spatial resolution and on published data regarding spatial resolution in CBCT images. The current concepts of visual [line-pair (lp) measurements] and automated [modulation transfer function (MTF)] assessment of spatial resolution in CBCT images are summarized and reviewed. Published measurement data on spatial resolution in CBCT are evaluated and analysed. Effective (i.e. actual) spatial resolution available in CBCT images is being influenced by the two-dimensional detector, the three-dimensional reconstruction process, patient movement during the scan and various other parameters. In the literature, the values range between 0.6 and 2.8 lp mm(-1) (visual assessment; median, 1.7 lp mm(-1)) vs MTF (range, 0.5-2.3 cycles per mm; median, 2.1 lp mm(-1)). Spatial resolution of CBCT images is approximately one order of magnitude lower than that of intraoral radiographs. Considering movement, scatter effects and other influences in real-world scans of living patients, a realistic spatial resolution of just above 1 lp mm(-1) could be expected.

  2. Measuring the value of air quality: application of the spatial hedonic model.

    PubMed

    Kim, Seung Gyu; Cho, Seong-Hoon; Lambert, Dayton M; Roberts, Roland K

    2010-03-01

    This study applies a hedonic model to assess the economic benefits of air quality improvement following the 1990 Clean Air Act Amendment at the county level in the lower 48 United States. An instrumental variable approach that combines geographically weighted regression and spatial autoregression methods (GWR-SEM) is adopted to simultaneously account for spatial heterogeneity and spatial autocorrelation. SEM mitigates spatial dependency while GWR addresses spatial heterogeneity by allowing response coefficients to vary across observations. Positive amenity values of improved air quality are found in four major clusters: (1) in East Kentucky and most of Georgia around the Southern Appalachian area; (2) in a few counties in Illinois; (3) on the border of Oklahoma and Kansas, on the border of Kansas and Nebraska, and in east Texas; and (4) in a few counties in Montana. Clusters of significant positive amenity values may exist because of a combination of intense air pollution and consumer awareness of diminishing air quality.

  3. Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE

    NASA Astrophysics Data System (ADS)

    Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.

    2015-12-01

    The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.

  4. Application Of New Spatial Statistical Stream Models For Precise Downscaling Of Climate Change Effects On Temperatures In River Networks

    NASA Astrophysics Data System (ADS)

    Isaak, D.; Luce, C.; Peterson, E.

    2009-12-01

    A warming climate will bring unprecedented changes to stream and river ecosystems, with temperature considerations being of utmost importance, given that most aquatic organisms are ectothermic. Previous broad-scale assessments of climate impacts to streams have been limited by inadequate availability of stream temperature data and often relied on surrogate relationships between air temperature and elevation that are often imprecise. Mechanistic models have sometimes been used to model stream thermal responses directly, but intensive parameterization limits the spatial scope of these applications. Modeling approaches are needed that address stream temperatures directly at the larger spatial scales commensurate with most conservation and restoration planning efforts. We applied new spatial statistical models that account for network topology (i.e., flow direction and volume) to an extensive, but non-random stream temperature database (n = 780) compiled across a 13 year period (1993-2006) for a large (2,500 km) mountain river network in central Idaho. Four predictors—radiation, elevation, air temperature, and stream flow—were used in the spatial model to represent important geomorphic and climatic effects on mean summer stream temperatures. The spatial models accounted for autocorrelation among sample sites to provide improved parameter estimates and predictive accuracy (R2 = 0.93; RMSPE = 0.74○C) relative to traditional, non-spatial models (R2 = 0.68; RMSPE = 1.53○C). A small bias between observed stream temperatures and those predicted by the spatial models amounted to 0.5○C at the extremes of the observed temperature range (5○C - 20○C) and caused over- (under-) predictions for the coldest (warmest) streams. This bias could have arisen from elevational gradients associated with influxes of cold, snowmelt groundwater or alterations in valley form due to past glacial activity. Better understanding regarding the importance of these and other factors that

  5. Application of input amplitude masks in scheme of optical image encryption with spatially-incoherent illumination

    NASA Astrophysics Data System (ADS)

    Shifrina, A. V.; Evtikhiev, N. N.; Krasnov, V. V.

    2016-08-01

    Optical encryption with spatially incoherent illumination does not have drawbacks of coherent encryption techniques. In this case however, one of the factors affecting decrypted image quality is original image spectrum. In most cases, majority of image energy is concentrated in area of low spatial frequencies. Therefore, only this area in spectrum of encrypted image contains information about original image, while other areas contain only noise. Additional amplitude encoding of input scene can be used for increase of the size of the area of spatial frequencies containing useful information. Numerical simulation demonstrates reduction of decryption error up to 2.7 times.

  6. Application of spatial features to satellite land-use analysis. [spectral signature variations

    NASA Technical Reports Server (NTRS)

    Smith, J.; Hornung, R.; Berry, J.

    1975-01-01

    A Level I land-use analysis of selected training areas of the Colorado Front Range was carried out using digital ERTS-A satellite imagery. Level I land-use categories included urban, agriculture (irrigated and dryland farming), rangeland, and forests. The spatial variations in spectral response for these land-use classes were analyzed using discrete two-dimensional Fourier transforms to isolate and extract spatial features. Analysis was performed on ERTS frame 1352-17134 (July 10, 1973) and frame number 1388-17131 (August 15, 1973). On training sets, spatial features yielded 80 to 100 percent classification accuracies with commission errors ranging from 0 to 20 percent.

  7. Using the deformable mirror as a spatial filter: application to circular beams.

    PubMed

    Tyson, R K

    1982-03-01

    Adaptive optics correction of a wave front by a deformable mirror that acts as a lossless spatial filter is studied. The decomposition of the wave front into Zernike polynomials provides a means for deriving the rms error of a corrected wave front in analytic form. The spatial filter is given in a functional form related to deformable mirror characteristics. A step filter approximation is derived and the conditions where the approximation holds are examined. An example is provided to demonstrate the utility of the spatial filtering concept for adaptive optics systems analysis.

  8. Application of spatial Poisson process models to air mass thunderstorm rainfall

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.

    1987-01-01

    Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.

  9. A SPATIALLY EXPLICIT HIERARCHICAL APPROACH TO MODELING COMPLEX ECOLOGICAL SYSTEMS: THEORY AND APPLICATIONS. (R827676)

    EPA Science Inventory

    Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...

  10. A Key Concept: Spatial Organization

    ERIC Educational Resources Information Center

    Kostrowicki, Jerzy

    1975-01-01

    The application of geography to spatial planning is discussed. Concepts presented include the regional concept, the typological concept, and spatial structure, spatial processes, and spatial organization. For address of journal see SO 504 028. (Author/RM)

  11. Application of spatially weighted Technology for mapping intermediate and felsic igneous rocks in Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Daojun

    2016-04-01

    Magmatic activity is of great significance to mineralization not only for heat and fluid it provides, but also for parts of material source it brings. Due to the cover of soil and vegetation and its spatial nonuniformity detected singals from the ground's surface may be weak and of spatial variability, and this brings serious challenges to mineral exploration in these areas. Two models based on spatially weighted technology, i.e., local singularity analysis (LSA) and spatially weighted logistic regression (SWLR) are applied in this study to deal with this challenge. Coverage cannot block the migration of geochemical elements, it is possible that the geochemical features of soil above concealed rocks can be different from surrounding environment, although this kind of differences are weak; coverage may also weaken the surface expression of geophysical fields. LSA is sensitive to weak changes in density or energy, which makes it effective to map the distribution of concealed igneous rock based on geochemical and geophysical properties. Data integration can produce better classification results than any single data analysis, but spatial variability of spatial variables caused by non-stationary coverage can greatly affect the results since sometimes it is hard to establish a global model. In this paper, SWLR is used to integrate all spatial layers extracted from both geochemical and geophysical data, and the iron polymetallic metallogenic belt in sours-west of Fujian Province is used as s study case. It is found that LSA technique effectively extracts different sources of geologic anomalies; and the spatial distribution of intermediate and felsic igneous rocks delineated by SWLR shows higher accuracy compared with the result obtained via global model.

  12. R-vine models for spatial time series with an application to daily mean temperature.

    PubMed

    Erhardt, Tobias Michael; Czado, Claudia; Schepsmeier, Ulf

    2015-06-01

    We introduce an extension of R-vine copula models to allow for spatial dependencies and model based prediction at unobserved locations. The proposed spatial R-vine model combines the flexibility of vine copulas with the classical geostatistical idea of modeling spatial dependencies using the distances between the variable locations. In particular, the model is able to capture non-Gaussian spatial dependencies. To develop and illustrate our approach, we consider daily mean temperature data observed at 54 monitoring stations in Germany. We identify relationships between the vine copula parameters and the station distances and exploit these in order to reduce the huge number of parameters needed to parametrize a 54-dimensional R-vine model fitted to the data. The new distance based model parametrization results in a distinct reduction in the number of parameters and makes parameter estimation and prediction at unobserved locations feasible. The prediction capabilities are validated using adequate scoring techniques, showing a better performance of the spatial R-vine copula model compared to a Gaussian spatial model.

  13. GWR-PM - Spatial variation relationship analysis with Geographically Weighted Regression (GWR) - An application at Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jamhuri, J.; Azhar, B. M. S.; Puan, C. L.; Norizah, K.

    2016-06-01

    GWR-PM has been developed exclusively for decision makers in Peninsular Malaysia and the purpose is to provide them with additional flexibility in analysing spatial variation. While GWR extension analysis in ArcMap application has a universal coordinate system, GWR-PM is specifically designed with Peninsular Malaysia's coordinate system of Kertau RSO Malaya Meter. This paper presents the development of GWR-PM model by using a model builder, the application of which is to examine the forest fire risk at North Selangor Peat Swamp Forest. This model can be extended and improved by using ArcGIS language of phyton.

  14. Multilevel Modelling with Spatial Interaction Effects with Application to an Emerging Land Market in Beijing, China

    PubMed Central

    Dong, Guanpeng; Harris, Richard; Jones, Kelvyn; Yu, Jianhui

    2015-01-01

    This paper develops a methodology for extending multilevel modelling to incorporate spatial interaction effects. The motivation is that classic multilevel models are not specifically spatial. Lower level units may be nested into higher level ones based on a geographical hierarchy (or a membership structure—for example, census zones into regions) but the actual locations of the units and the distances between them are not directly considered: what matters is the groupings but not how close together any two units are within those groupings. As a consequence, spatial interaction effects are neither modelled nor measured, confounding group effects (understood as some sort of contextual effect that acts ‘top down’ upon members of a group) with proximity effects (some sort of joint dependency that emerges between neighbours). To deal with this, we incorporate spatial simultaneous autoregressive processes into both the outcome variable and the higher level residuals. To assess the performance of the proposed method and the classic multilevel model, a series of Monte Carlo simulations are conducted. The results show that the proposed method performs well in retrieving the true model parameters whereas the classic multilevel model provides biased and inefficient parameter estimation in the presence of spatial interactions. An important implication of the study is to be cautious of an apparent neighbourhood effect in terms of both its magnitude and statistical significance if spatial interaction effects at a lower level are suspected. Applying the new approach to a two-level land price data set for Beijing, China, we find significant spatial interactions at both the land parcel and district levels. PMID:26086913

  15. Multilevel Modelling with Spatial Interaction Effects with Application to an Emerging Land Market in Beijing, China.

    PubMed

    Dong, Guanpeng; Harris, Richard; Jones, Kelvyn; Yu, Jianhui

    2015-01-01

    This paper develops a methodology for extending multilevel modelling to incorporate spatial interaction effects. The motivation is that classic multilevel models are not specifically spatial. Lower level units may be nested into higher level ones based on a geographical hierarchy (or a membership structure--for example, census zones into regions) but the actual locations of the units and the distances between them are not directly considered: what matters is the groupings but not how close together any two units are within those groupings. As a consequence, spatial interaction effects are neither modelled nor measured, confounding group effects (understood as some sort of contextual effect that acts 'top down' upon members of a group) with proximity effects (some sort of joint dependency that emerges between neighbours). To deal with this, we incorporate spatial simultaneous autoregressive processes into both the outcome variable and the higher level residuals. To assess the performance of the proposed method and the classic multilevel model, a series of Monte Carlo simulations are conducted. The results show that the proposed method performs well in retrieving the true model parameters whereas the classic multilevel model provides biased and inefficient parameter estimation in the presence of spatial interactions. An important implication of the study is to be cautious of an apparent neighbourhood effect in terms of both its magnitude and statistical significance if spatial interaction effects at a lower level are suspected. Applying the new approach to a two-level land price data set for Beijing, China, we find significant spatial interactions at both the land parcel and district levels.

  16. Over-constraints and a unified mobility method for general spatial mechanisms Part 2: Application of the principle

    NASA Astrophysics Data System (ADS)

    Lu, Wenjuan; Zeng, Daxing; Huang, Zhen

    2016-01-01

    The pre-research on mobility analysis presented a unified-mobility formula and a methodology based on reciprocal screw theory by HUANG, which focused on classical and modern parallel mechanisms. However its range of application needs to further extend to general multi-loop spatial mechanism. This kind of mechanism is not only more complex in structure but also with strong motion coupling among loops, making the mobility analysis even more complicated, and the relevant research has long been ignored. It is focused on how to apply the new principle for general spatial mechanism to those various multi-loop spatial mechanisms, and some new meaningful knowledge is further found. Several typical examples of the general multi-loop spatial mechanisms with motion couple even strong motion couple are considered. These spatial mechanisms include different closing way: over-constraint appearing in rigid closure, in movable closure, and in dynamic closure as well; these examples also include two different new methods to solve this kind of issue: the way to recognize over-constraints by analyzing relative movement between two connected links and by constructing a virtual loop to recognize over-constraints. In addition, over-constraint determination tabulation is brought to analyze the motion couple. The researches above are all based upon the screw theory. All these multi-loop spatial mechanisms with different kinds of structures can completely be solved by following the directions and examples, and the new mobility theory based on the screw theory is also proved to be valid. This study not only enriches and develops the theory and makes the theory more universal, but also has a special meaning for innovation in mechanical engineering.

  17. Monitoring survival rates of landbirds at varying spatial scales: An application of the MAPS Program

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; Hines, J.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Survivorship is a primary demographic parameter affecting population dynamics, and thus trends in species abundance. The Monitoring Avian Productivity and Survivorship (MAPS) program is a cooperative effort designed to monitor landbird demographic parameters. A principle goal of MAPS is to estimate annual survivorship and identify spatial patterns and temporal trends in these rates. We evaluated hypotheses of spatial patterns in survival rates among a collection of neighboring sampling sites, such as within national forests, among biogeographic provinces, and between breeding populations that winter in either Central or South America, and compared these geographic-specific models to a model of a common survival rate among all sampling sites. We used data collected during 1992-1995 from Swainson's Thrush (Cathorus ustulatus) populations in the western region of the United States. We evaluated the ability to detect spatial and temporal patterns of survivorship with simulated data. We found weak evidence of spatial differences in survival rates at the local scale of 'location,' which typically contained 3 mist-netting stations. There was little evidence of differences in survival rates among biogeographic provinces or between populations that winter in either Central or South America. When data were pooled for a regional estimate of survivorship, the percent relative bias due to pooling 'locations' was 12 years of monitoring. Detection of spatial patterns and temporal trends in survival rates from local to regional scales will provide important information for management and future research directed toward conservation of landbirds.

  18. Application of spatially referenced regression modeling for the evaluation of total nitrogen loading in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Preston, Stephen D.; Brakebill, John W.

    1999-01-01

    The reduction of stream nutrient loads is an important part of current efforts to improve water quality in the Chesapeake Bay. To design programs that will effectively reduce stream nutrient loading, resource managers need spatially detailed information that describes the location of nutrient sources and the watershed factors that affect delivery of nutrients to the Bay. To address this need, the U.S. Geological Survey has developed a set of spatially referenced regression models for the evaluation of nutrient loading in the watershed. The technique applied for this purpose is referred to as ?SPARROW? (SPAtially Referenced Regressions On Watershed attributes), which is a statistical modeling approach that retains spatial referencing for illustrating predictions, and for relating upstream nutrient sources to downstream nutrient loads. SPARROW is based on a digital stream-network data set that is composed of stream segments (reaches) that are attributed with traveltime and connectivity information. Drainage-basin boundaries are defined for each stream reach in the network data set through the use of a digital elevation model. For the Chesapeake Bay watershed, the spatial network was developed using the U.S. Environmental Protection Agency?s River Reach File 1 digital stream network, and is composed of 1,408 stream reaches and watershed segments. To develop a SPARROW model for total nitrogen in the Chesapeake Bay watershed, data sets for sources and basin characteristics were incorporated into the spatial network and related to stream-loading information by using a nonlinear regression model approach. Total nitrogen source variables that were statistically significant in the model include point sources, urban area, fertilizer application, manure generation and atmospheric deposition. Total nitrogen loss variables that were significant in the model include soil permeability and instream-loss rates for four stream-reach classes. Applications of SPARROW for evaluating

  19. Violent crime in San Antonio, Texas: an application of spatial epidemiological methods.

    PubMed

    Sparks, Corey S

    2011-12-01

    Violent crimes are rarely considered a public health problem or investigated using epidemiological methods. But patterns of violent crime and other health conditions are often affected by similar characteristics of the built environment. In this paper, methods and perspectives from spatial epidemiology are used in an analysis of violent crimes in San Antonio, TX. Bayesian statistical methods are used to examine the contextual influence of several aspects of the built environment. Additionally, spatial regression models using Bayesian model specifications are used to examine spatial patterns of violent crime risk. Results indicate that the determinants of violent crime depend on the model specification, but are primarily related to the built environment and neighborhood socioeconomic conditions. Results are discussed within the context of a rapidly growing urban area with a diverse population.

  20. Spatial quantile regression using INLA with applications to childhood overweight in Malawi.

    PubMed

    Mtambo, Owen P L; Masangwi, Salule J; Kazembe, Lawrence N M

    2015-04-01

    Analyses of childhood overweight have mainly used mean regression. However, using quantile regression is more appropriate as it provides flexibility to analyse the determinants of overweight corresponding to quantiles of interest. The main objective of this study was to fit a Bayesian additive quantile regression model with structured spatial effects for childhood overweight in Malawi using the 2010 Malawi DHS data. Inference was fully Bayesian using R-INLA package. The significant determinants of childhood overweight ranged from socio-demographic factors such as type of residence to child and maternal factors such as child age and maternal BMI. We observed significant positive structured spatial effects on childhood overweight in some districts of Malawi. We recommended that the childhood malnutrition policy makers should consider timely interventions based on risk factors as identified in this paper including spatial targets of interventions.

  1. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  2. An impedance method for spatial sensing of 3D cell constructs--towards applications in tissue engineering.

    PubMed

    Canali, C; Mazzoni, C; Larsen, L B; Heiskanen, A; Martinsen, Ø G; Wolff, A; Dufva, M; Emnéus, J

    2015-09-07

    We present the characterisation and validation of multiplexed 4-terminal (4T) impedance measurements as a method for sensing the spatial location of cell aggregates within large three-dimensional (3D) gelatin scaffolds. The measurements were performed using an array of four rectangular chambers, each having eight platinum needle electrodes for parallel analysis. The electrode positions for current injection and voltage measurements were optimised by means of finite element simulations to maximise the sensitivity field distribution and spatial resolution. Eight different 4T combinations were experimentally tested in terms of the spatial sensitivity. The simulated sensitivity fields were validated using objects (phantoms) with different conductivity and size placed in different positions inside the chamber. This provided the detection limit (volume sensitivity) of 16.5%, i.e. the smallest detectable volume with respect to the size of the measurement chamber. Furthermore, the possibility for quick single frequency analysis was demonstrated by finding a common frequency of 250 kHz for all the presented electrode combinations. As final proof of concept, a high density of human hepatoblastoma (HepG2) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering applications providing spatial information of constructs within biologically relevant 3D environments.

  3. SPHARA - A Generalized Spatial Fourier Analysis for Multi-Sensor Systems with Non-Uniformly Arranged Sensors: Application to EEG

    PubMed Central

    Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens

    2015-01-01

    Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications. PMID:25885290

  4. Assessing applicability of SWAT calibrated at multiple spatial scales from field to stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capability of SWAT for simulating long-term hydrology and water quality was evaluated using data collected in subwatershed K of the Little River Experimental watershed located in South Atlantic Coastal Plain of the USA. The SWAT model was calibrated to measurements made at various spatial scales...

  5. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling.

    PubMed

    Brakebill, Jw; Wolock, Dm; Terziotti, Se

    2011-10-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling.

  6. Digital hydrologic networks supporting applications related to spatially referenced regression modeling

    USGS Publications Warehouse

    Brakebill, John W.; Wolock, David M.; Terziotti, Silvia

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based ⁄ statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling.

  7. Bayesian two-part spatial models for semicontinuous data with application to emergency department expenditures.

    PubMed

    Neelon, Brian; Zhu, Li; Neelon, Sara E Benjamin

    2015-07-01

    In health services research, it is common to encounter semicontinuous data characterized by a point mass at zero and a continuous distribution of positive values. Examples include medical expenditures, in which the zeros represent patients who do not use health services, while the continuous distribution describes the level of expenditures among users. Semicontinuous data are customarily analyzed using two-part mixture models. In the spatial analysis of semicontinuous data, two-part models are especially appealing because they provide a joint picture of how health services utilization and associated expenditures vary across geographic regions. However, when applying these models, careful attention must be paid to distributional choices, as model misspecification can lead to biased and imprecise inferences. This paper introduces a broad class of Bayesian two-part models for the spatial analysis of semicontinuous data. Specific models considered include two-part lognormal, log skew-elliptical, and Bayesian non-parametric models. Multivariate conditionally autoregressive priors are used to link model components and provide spatial smoothing across neighboring regions, resulting in a joint spatial modeling framework for health utilization and expenditures. We develop a fully conjugate Gibbs sampling scheme, leading to efficient posterior computation. We illustrate the approach using data from a recent study of emergency department expenditures.

  8. An Analysis of Spatial Configuration and its Application to Research in Higher Education.

    ERIC Educational Resources Information Center

    Cole, Nancy S.; Cole, James W. L.

    This paper presents an analysis of the spatial configuration of variables in a multivariate system. The purpose of the analysis is to make clearer the relationships among the variables by locating them in a minimally-dimensioned space. Similarly, individuals are located in the smaller space and related to each other on the basis of the variables…

  9. Application of spatial pedotransfer functions to understand soil modulation of vegetation response to climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution spatial representation of soil physical and hydraulic properties. We present a novel approach to predict hydraulic soil parameters by combining digital soil mapping techniques with pedotransfer fun...

  10. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling

    USGS Publications Warehouse

    Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E.

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  11. SU-E-P-30: Clinical Applications of Spatially Fractionated Radiation Therapy (GRID) Using Helical Tomotherapy

    SciTech Connect

    Zhang, X; Liang, X; Penagaricano, J; Morrill, S; Corry, P; Paudel, N; Vaneerat, V Ratanatharathorn; Yan, Y; Griffin, R

    2015-06-15

    Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD), GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply

  12. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition.

    PubMed

    Yano, Ken; Suyama, Takayuki

    2016-01-01

    This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI) systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a "bottom-up" manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  13. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    PubMed Central

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  14. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  15. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution.

  16. Efficient sampling for spatial uncertainty qualification in multibody system dynamics applications.

    SciTech Connect

    Schmitt, K.; Anitescu, M.; Negrut, D.; Mathematics and Computer Science; Univ. of Wisconsin

    2009-01-01

    We present two methods for efficiently sampling the response (trajectory space) of multibody systems operating under spatial uncertainty, when the latter is assumed to be representable with Gaussian processes. In this case, the dynamics (time evolution) of the multibody systems depends on spatially indexed uncertain parameters that span infinite-dimensional spaces. This places a heavy computational burden on existing methodologies, an issue addressed herein with two new conditional sampling approaches. When a single instance of the uncertainty is needed in the entire domain, we use a fast Fourier transform technique. When the initial conditions are fixed and the path distribution of the dynamical system is relatively narrow, we use an incremental sampling approach that is fast and has a small memory footprint. Both methods produce the same distributions as the widely used Cholesky-based approaches. We illustrate this convergence at a smaller computational effort and memory cost for a simple non-linear vehicle model.

  17. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    NASA Astrophysics Data System (ADS)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission

  18. Application of neural networks to the dynamic spatial distribution of nodes within an urban wireless network

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1995-04-01

    The optimal location of wireless transceivers or communicating sensor devices in an urban area and within large human-made structures is considered. The purpose of the positioning of the devices is formation of a distributed network, either in a mesh or hub-spoke topology, that achieves robust connectivity of the nodes. Real-world examples include wireless local area networks (LANs) within buildings and radio beacons in an outdoor mobile radio environment. Operating environments contain both fixed and moving interferers that correspond to both stationary and time-varying spatial distributions of path distortion of stationary and transient fading and multipath delays that impede connectivity. The positioning of the autonomous wireless devices in an area with an unknown spatial pattern of interferers would normally be a slow incremental process. The proposed objective is determination of the spatial distribution of the devices to achieve the maximum radio connectivity in a minimal number of iterative steps. Impeding the optimal distribution of wireless nodes is the corresponding distribution of environmental interferers in the area or volume of network operation. The problem of network formation is posed as an adaptive learning problem, in particular, a self-organizing map of locally competitive wireless units that recursively update their positions and individual operating configurations at each iterative step of the neural algorithm. The scheme allows the wireless units to adaptively learn the pattern distribution of interferers in their operating environment based on the level of radio interference measured at each node by an equivalent received signal strength from wireless units within the node's hearing distance. Two cases are considered. The first is an indoor human-made environment where the interference pattern is largely deterministic and stationary and the units are positioned to form a wireless LAN. The second situation applies to an outdoor urban

  19. Application and evaluation of a measured spatially variant system model for PET image reconstruction.

    PubMed

    Alessio, Adam M; Stearns, Charles W; Tong, Shan; Ross, Steven G; Kohlmyer, Steve; Ganin, Alex; Kinahan, Paul E

    2010-03-01

    Accurate system modeling in tomographic image reconstruction has been shown to reduce the spatial variance of resolution and improve quantitative accuracy. System modeling can be improved through analytic calculations, Monte Carlo simulations, and physical measurements. The purpose of this work is to improve clinical fully-3-D reconstruction without substantially increasing computation time. We present a practical method for measuring the detector blurring component of a whole-body positron emission tomography (PET) system to form an approximate system model for use with fully-3-D reconstruction. We employ Monte Carlo simulations to show that a non-collimated point source is acceptable for modeling the radial blurring present in a PET tomograph and we justify the use of a Na22 point source for collecting these measurements. We measure the system response on a whole-body scanner, simplify it to a 2-D function, and incorporate a parameterized version of this response into a modified fully-3-D OSEM algorithm. Empirical testing of the signal versus noise benefits reveal roughly a 15% improvement in spatial resolution and 10% improvement in contrast at matched image noise levels. Convergence analysis demonstrates improved resolution and contrast versus noise properties can be achieved with the proposed method with similar computation time as the conventional approach. Comparison of the measured spatially variant and invariant reconstruction revealed similar performance with conventional image metrics. Edge artifacts, which are a common artifact of resolution-modeled reconstruction methods, were less apparent in the spatially variant method than in the invariant method. With the proposed and other resolution-modeled reconstruction methods, edge artifacts need to be studied in more detail to determine the optimal tradeoff of resolution/contrast enhancement and edge fidelity.

  20. Application of Spatially Distributed Field of Electric Impulses for Correction of Angiogenesis in Ischemic Muscular Tissue

    PubMed Central

    Kublanov, V.S.; Danilova, I.G.; Goette, I.F.; Brykina, I.A.; Shalyagin, M.A.

    2010-01-01

    Influence of spatially distributed field of electric impulses in a projection to cervical ganglions of the sympathetic nervous system on angiogenesis in ischemic muscular tissue of a rat’s shin has been studied. It is revealed that blood supply of animals, influenced by the field, is restored through increase in quantity of capillaries in ischemic tissues, and number of products of endogenous intoxication is reduced. PMID:23675207

  1. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  2. Analysis of auditory spatial receptive fields: An application of virtual auditory space technology

    NASA Astrophysics Data System (ADS)

    Takahashi, Terry T.; Keller, Clifford H.; Euston, David R.; Spezio, Michael L.

    2002-05-01

    Virtual auditory space technology, typically used to simulate acoustical environments, also allows one to vary one sound localization cue independently of others. VAST was used to determine the contributions of interaural time and level differences (ITD, ILD) to the spatial receptive fields (RFs) of neurons in the owl's midbrain. The presentation of noise filtered so that only ITD varied evoked a response along a vertical strip of virtual space, called the ITD-alone RF. Conversely, when ITD was fixed at the cell's optimum and the ILD spectrum of each location was presented, the cell responded along a horizontal strip, called the ILD-alone RF. The spatial RF was at the intersection of the ITD and ILD-alone RFs. The cell's ILD tuning across frequency, combined with individualized head-related transfer functions, was transformed into an ILD-alone RF that predicted half the variance in the measured one. This discrepancy was due partly to the poor response of the neurons to tones, and a new method of inferring frequency-specific ILD tuning from responses to noise explained about 75% of the variance. By understanding how spatial RFs are constructed, it is possible to infer the neural image of complex auditory scenes containing multiple sources and echoes. [Work supported by NIDCD.

  3. Spatial Analysis and GIS Applications for Estimating Monthly Rainfall Totals on Mauritius

    NASA Astrophysics Data System (ADS)

    Staub, C. G.; Stevens, F. R.; Waylen, P. R.

    2015-12-01

    Reliable gridded rainfall data are critical for GIS-based climate change impact assessments, water resources planning and management, design of hydraulic works and urban development. Small Island Developing States (SIDS) are highly dependent on rainfall, more sensitive, and have a lower adaptive capacity to climate change than mainland countries yet are poorly studied. Extensive hydrometeorological records exist in Mauritius, offering a unique opportunity to model rainfall distribution and produce high resolution gridded datasets for GIS-based models. Multiple regression is used to model mean annual and monthly rainfall on the island for the period 1997 - 2011 and derive a physical basis for understanding spatial rainfall patterns. The models incorporate latitude, longitude, slope, distance to coast, elevation and their interactions accounting for 68% of the variance in mean annual rainfall and 55-72% of variance in mean monthly rainfall across the island. Spatial trends are removed from observed monthly rainfall totals and ordinary kriging is applied to the residuals. The regression and kriging results are combined to produce a high resolution, physically consistent gridded time-series dataset. Estimate and variance values from each month are then used to calculate 95% confidence interval surfaces. Cross-validation reveals close correspondence between predicted and observed values. This regression kriging approach captures what is currently understood about the spatial and temporal variability of precipitation in this mountainous sub-tropical location, giving us greater confidence in the reliability of the new rainfall estimates.

  4. Extending Lkn Climate Regionalization with Spatial Regularization: AN Application to Epidemiological Research

    NASA Astrophysics Data System (ADS)

    Liss, Alexander; Gel, Yulia R.; Kulinkina, Alexandra; Naumova, Elena N.

    2016-06-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution of climate regions and thus, to ensure more uniform population coverage across selected climate categories. We demonstrate how the extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision support framework.

  5. In vivo application of short-lag spatial coherence imaging in human liver.

    PubMed

    Jakovljevic, Marko; Trahey, Gregg E; Nelson, Rendon C; Dahl, Jeremy J

    2013-03-01

    We present the results of a patient study conducted to assess the performance of two novel imaging methods, namely short-lag spatial coherence (SLSC) and harmonic spatial coherence imaging (HSCI), in an in vivo liver environment. Similar in appearance to the B-mode images, SLSC and HSCI images are based solely on the spatial coherence of fundamental and harmonic echo data, respectively, and do not depend on the echo magnitude. SLSC and HSCI suppress incoherent echo signals and thus tend to reduce clutter. The SLSC and HSCI images of 17 patients demonstrated sharper delineation of blood vessel walls, suppressed clutter inside the vessel lumen, and showed reduced speckle in surrounding tissue compared to matched B-modes. Target contrast and contrast-to-noise ratio (CNR) show statistically significant improvements between fundamental B-mode and SLSC imaging and between harmonic B-mode and HSCI imaging (in all cases p < 0.001). The magnitude of improvement in contrast and CNR increases as the overall quality of B-mode images decreases. Poor-quality fundamental B-mode images (where image quality classification is based on both contrast and CNR) exhibit the highest improvements in both contrast and CNR (288% improvement in contrast and 533% improvement in CNR).

  6. An Integrative Hierarchical Stepwise Sampling Strategy For Spatial Sampling And Its Application In Digital Soil Mapping

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhu, A.; Qi, F.; Qin, C.; Li, B.; Pei, T.

    2011-12-01

    Sampling design plays an important role in spatial modeling. Existing methods often require large amount of samples to achieve desired mapping accuracy but imply considerable cost. When there are not enough resources for collecting a large set of samples at once, stepwise sampling approach is often the only option for collecting the needed large sample set, especially in the case of field surveying over large areas. This paper proposes an integrative hierarchical stepwise sampling strategy which makes the samples collected at different stages an integrative one. The strategy is based on samples' representativeness of the geographic feature at different scales. The basic idea is to sample at locations that are representative of large-scale spatial patterns first and then add samples that represent more local patterns in a stepwise fashion. Based on the relationships between geographic feature and its environmental covariates, the proposed sampling method approximates a hierarchy of spatial variations of the geographic feature under concern by delineating natural aggregates (clusters) of its relevant environmental covariates at different scales. The natural occurrence of such aggregates is modeled using a fuzzy c-means clustering method. We iterate through different numbers of clusters from only a few to many more to be able to reveal clusters at different spatial scales. At a particular iteration, locations that bear high similarity to the cluster prototypes are identified. If a location is consistently identified at multiple iterations it is then considered to be more representative of the general or large-scale spatial patterns. Locations that are identified less during the iterations are representative of local patterns. The integrative stepwise sampling design then gives higher sampling priority to the locations that are more representative of the large scale patterns than local ones. We applied this sampling design in a digital soil mapping case study

  7. Application of spatial methods to identify areas with lime requirement in eastern Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Kisic, Ivica; Mesic, Milan; Zgorelec, Zeljka; Percin, Aleksandra; Pereira, Paulo

    2016-04-01

    With more than 50% of acid soils in all agricultural land in Croatia, soil acidity is recognized as a big problem. Low soil pH leads to a series of negative phenomena in plant production and therefore as a compulsory measure for reclamation of acid soils is liming, recommended on the base of soil analysis. The need for liming is often erroneously determined only on the basis of the soil pH, because the determination of cation exchange capacity, the hydrolytic acidity and base saturation is a major cost to producers. Therefore, in Croatia, as well as some other countries, the amount of liming material needed to ameliorate acid soils is calculated by considering their hydrolytic acidity. For this research, several interpolation methods were tested to identify the best spatial predictor of hidrolitic acidity. The purpose of this study was to: test several interpolation methods to identify the best spatial predictor of hidrolitic acidity; and to determine the possibility of using multivariate geostatistics in order to reduce the number of needed samples for determination the hydrolytic acidity, all with an aim that the accuracy of the spatial distribution of liming requirement is not significantly reduced. Soil pH (in KCl) and hydrolytic acidity (Y1) is determined in the 1004 samples (from 0-30 cm) randomized collected in agricultural fields near Orahovica in eastern Croatia. This study tested 14 univariate interpolation models (part of ArcGIS software package) in order to provide most accurate spatial map of hydrolytic acidity on a base of: all samples (Y1 100%), and the datasets with 15% (Y1 85%), 30% (Y1 70%) and 50% fewer samples (Y1 50%). Parallel to univariate interpolation methods, the precision of the spatial distribution of the Y1 was tested by the co-kriging method with exchangeable acidity (pH in KCl) as a covariate. The soils at studied area had an average pH (KCl) 4,81, while the average Y1 10,52 cmol+ kg-1. These data suggest that liming is necessary

  8. Application of mobile sampling to investigate spatial variation in fine particle composition

    NASA Astrophysics Data System (ADS)

    Li, Hugh Z.; Dallmann, Timothy R.; Gu, Peishi; Presto, Albert A.

    2016-10-01

    Long-term exposure to particulate matter (PM) is a major contributor to air pollution related deaths. Evidence indicates that metals play an important role in harming human health due to their redox potential. We conducted a mobile sampling campaign in 2013 summer and winter in Pittsburgh, PA to characterize spatial variation in PM2.5 mass and composition. Thirty-six sites were chosen based on three stratification variables: traffic density, proximity to point sources, and elevation. We collected filters in three time sessions (morning, afternoon, and overnight) in each season. X-ray fluorescence (XRF) was used to analyze concentrations of 26 elements: Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, and Pb. Trace elements had a broad range of concentrations from 0 to 300 ng/m3. Comparison of data from mobile sampling filters with stationary monitors suggested that the mobile sampling strategy did not lead to a biased dataset. We developed Land Use Regression (LUR) models to describe spatial variation of PM2.5, Si, S, Cl, K, Ca, Ti, Cr, Fe, Cu, and Zn. Using ArcGIS-10.3 (ESRI, Redlands, CA), we extracted different independent variables related to traffic influence, land-use type, and facility emissions based on the National Emission Inventory (NEI). To validate LUR models, we used regression diagnostics such as leave-one-out cross validation (LOOCV), mean studentized prediction residual (MSPR), and root mean square of studentized residuals (RMS). The number of predictors in final LUR models ranged from 1 to 6. Models had an average R2 of 0.57 (SD = 0.16). Traffic related variables explained the most variability with an average R2 contribution of 0.20 (SD = 0.20). Overall, these results demonstrated significant intra-urban spatial variability of fine particle composition.

  9. A new spatially constrained NMF with application to fMRI.

    PubMed

    Ferdowsi, Saideh; Abolghasemi, Vahid; Makkiabadi, Bahador; Sanei, Saeid

    2011-01-01

    In this paper the problem of BOLD detection is addressed. The focus here is on non-negative matrix factorization (NMF), which is a data driven method and able to provide part-based representation of data. A new constrained optimization problem is proposed for the purpose of BOLD detection. The proposed constraint imposes some prior spatial information of active area inside the brain, on the decomposition process. The constraint is built up based on the type of stimulus and available physiological knowledge of the brain performance. The simulation results on both synthetic and real fMRI data show that applying the proposed constraint improves the BOLD detection performance.

  10. Joint Variable Spatial Downscaling (JVSD): A New Downscaling Method with Application to the Southeast US

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Georgakakos, A. P.

    2011-12-01

    Joint Variable Spatial Downscaling (JVSD) is a new downscaling method developed to produce high resolution gridded hydrological datasets suitable for regional watershed modeling and assessments. JVSD differs from other statistical downscaling methods in that multiple climatic variables are downscaled simultaneously to produce realistic and consistent climate fields. JVSD includes two major steps: bias correction and spatial downscaling. In the bias correction step, JVSD uses a differencing process to create stationary joint cumulative frequency statistics of the variables being downscaled. Bias correction is then based on quantile-to-quantile mapping of these stationary frequency distributions probability space. The functional relationship between these statistics and those of the historical observation period is subsequently used to remove GCM bias. The original variables are recovered through summation of bias corrected differenced sequences. In the spatial disaggregation step, JVSD uses a historical analogue approach, with historical analogues identified simultaneously for all atmospheric fields and over all areas of the basin under study. Analysis and comparisons with 20th Century Climate in Coupled Models (20C3M) data show that JVSD reproduces the sub-grid climatic features as well as their temporal/spatial variability in the historical periods. Comparisons are also performed for precipitation and temperature with the North American regional climate change assessment program (NARCCAP) and other statistical downscaling methods over the southeastern US. The results show that JVSD performs favorably. JVSD is applied for all A1B and A2 CMIP3 GCM scenarios in the Apalachicola-Chattahoochee-Flint River Basin (southeast US) with the following general findings: (i) Mean monthly temperature exhibits increasing trends over the ACF basin for all seasons and all A1B and A2 scenarios; Most significant are the A2 temperature increases in the 2050 - 2099 time periods; (ii

  11. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Spatial separation of HR rawinsonde data is directly correlated with climatological tropospheric wind environment over ER. Stronger winds in the winter result in further downrange drift. Lighter winds in the summer result in the less horizontal drift during ascent. Maximum downrange distance can exceed 200 km during winter months. Data could misrepresent the environment the vehicle will experience during ascent. PRESTO uses all available data sources to produce the best representative, vertically complete atmosphere for launch vehicle DOL operations. Capability planned for use by NASA Space Launch System vehicle's first flight scheduled for Fall 2018.

  12. Likelihood-free simulation-based optimal design with an application to spatial extremes.

    PubMed

    Hainy, Markus; Müller, Werner G; Wagner, Helga

    In this paper we employ a novel method to find the optimal design for problems where the likelihood is not available analytically, but simulation from the likelihood is feasible. To approximate the expected utility we make use of approximate Bayesian computation methods. We detail the approach for a model on spatial extremes, where the goal is to find the optimal design for efficiently estimating the parameters determining the dependence structure. The method is applied to determine the optimal design of weather stations for modeling maximum annual summer temperatures.

  13. The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes.

    PubMed

    Pearson, Diane M

    2002-01-01

    This paper tests the use of a spatial analysis technique, based on the calculation of local spatial autocorrelation, as a possible approach for modelling and quantifying structure in northern Australian savanna landscapes. Unlike many landscapes in the world, northern Australian savanna landscapes appear on the surface to be intact. They have not experienced the same large-scale land clearance and intensive land management as other landscapes across Australia. Despite this, natural resource managers are beginning to notice that processes are breaking down and declines in species are becoming more evident. With future declines of species looking more imminent it is particularly important that models are available that can help to assess landscape health, and quantify any structural change that takes place. GIS and landscape ecology provide a useful way of describing landscapes both spatially and temporally and have proved to be particularly useful for understanding vegetation structure or pattern in landscapes across the world. There are many measures that examine spatial structure in the landscape and most of these are now available in a GIS environment (e.g. FRAGSTATS* ARC, r.le, and Patch Analyst). All these methods depend on a landscape described in terms of patches, corridors and matrix. However, since landscapes in northern Australia appear to be relatively intact they tend to exist as surfaces of continuous variation rather than in clearly defined homogeneous units. As a result they cannot be easily described using entity-based models requiring patches and other essentially cartographic approaches. This means that more appropriate methods need to be developed and explored. The approach examined in this paper enables clustering and local pattern in the data to be identified and forms a generic method for conceptualising the landscape structure where patches are not obvious and where boundaries between landscape features are difficult to determine. Two sites

  14. SEHR-ECHO v1.0: a Spatially Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Nicótina, L.; Imfeld, C.; Da Ronco, P.; Bertuzzo, E.; Rinaldo, A.

    2014-11-01

    This paper presents the Spatially Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation of hydrological processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions through gravity-driven transitions among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at the subcatchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The model thus breaks down the complexity of the hydrologic response into an explicit geomorphological combination of dominant spatial patterns of precipitation input and of hydrologic process controls. Nonstationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil layer. We present here the basic model set-up for precipitation-runoff simulation and a detailed discussion of its parameter estimation and of its performance for the Dischma River (Switzerland), a snow-dominated catchment with a small glacier cover.

  15. Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System.

    PubMed

    Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun

    2017-01-17

    This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions.

  16. Development and application of a spatial hydrology model of Okefenokee Swamp, Georgia

    USGS Publications Warehouse

    Loftin, C.S.; Kitchens, W.M.; Ansay, N.

    2001-01-01

    The model described herein was used to assess effects of the Suwannee River sill (a low earthen dam constructed to impound the Suwannee River within the Okefenokee National Wildlife Refuge to eliminate wildfires) on the hydrologic environment of Okefenokee Swamp, Georgia. Developed with Arc/Info Macro Language routines in the GRID environment, the model distributes water in the swamp landscape using precipitation, inflow, evapotranspiration, outflow, and standing water. Water movement direction and rate are determined by the neighborhood topographic gradient, determined using survey grade Global Positioning Systems technology. Model data include flow rates from USGS monitored gauges, precipitation volumes and water levels measured within the swamp, and estimated evapotranspiration volumes spatially modified by vegetation type. Model output in semi-monthly time steps includes water depth, water surface elevation above mean sea level, and movement direction and volume. Model simulations indicate the sill impoundment affects 18 percent of the swamp during high water conditions when wildfires are scarce and has minimal spatial effect (increasing hydroperiods in less than 5 percent of the swamp) during low water and drought conditions when fire occurrence is high but precipitation and inflow volumes are limited.

  17. A mobile system for quantifying the spatial variability of the surface energy balance: design and application.

    PubMed

    Wohlfahrt, Georg; Tasser, Erich

    2015-05-01

    We present a mobile device for the quantification of the small-scale (a few square meters) spatial variability in the surface energy balance components and several auxiliary variables of short-statured (<1 m) canopies. The key element of the mobile device is a handheld four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (1) land use and (2) slope and aspect of the underlying surface, (3) controls on landscape-scale variability in soil temperature and albedo and (4) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  18. A mobile system for quantifying the spatial variability of the surface energy balance: design and application

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Tasser, Erich

    2015-05-01

    We present a mobile device for the quantification of the small-scale (a few square meters) spatial variability in the surface energy balance components and several auxiliary variables of short-statured (<1 m) canopies. The key element of the mobile device is a handheld four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (1) land use and (2) slope and aspect of the underlying surface, (3) controls on landscape-scale variability in soil temperature and albedo and (4) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  19. A mobile system for quantifying the spatial variability of the surface energy balance: design and application

    NASA Astrophysics Data System (ADS)

    Tasser, Erich; Wohlfahrt, Georg

    2014-05-01

    We present a mobile device for the quantification of the small-scale spatial variability in the surface energy balance components and several auxiliary variables of short-statured canopies. The key element of the mobile device is a hand-held four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (i) land use and (ii) slope and aspect of the underlying surface, (iii) controls on landscape-scale variability in soil temperature and albedo, and (iv) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  20. Spatial analysis of electricity demand patterns in Greece: Application of a GIS-based methodological framework

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2016-04-01

    We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).

  1. Application of Geo-Spatial Techniques for Precise Demarcation of Village/Panchayat Boundaries

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Banu, V.; Tiwari, A.; Bahuguna, S.; Uniyal, S.; Chavan, S. B.; Murthy, M. V. R.; Arya, V. S.; Nagaraja, R.; Sharma, J. R.

    2014-11-01

    In order to achieve the overall progress of the country with active and effective participation of all sections of society, the 12th Five Year Plan (FYP) would bring Panchayats centre-stage and achieve the inclusive growth agenda through inclusive governance. The concept of 'democratic decentralization' in the form of a three-tier administration was introduced in the name of "Panchayat Raj". Horizontally, it is a network of village Panchayats. Vertically, it is an organic growth of Panchayats rising up to national level. The Ministry of Panchayati Raj has three broad agenda: Empowerment, Enablement and Accountability. Space based Information Support for Decentralized Planning (SIS-DP) is one of the initiatives taken by Govt. of India with ISRO/DOS for generation and dissemination of spatial information for planning at the grass root level. The boundary layer for villages across different states/district/block is available with line departments. Most of these data exist at a much generalized scale. These boundaries do not overlay exactly with that of ground realities and may not be suitable for accurate analysis in terms of area, shape, position, etc. To deal with this problem, a strategy is adopted, which makes use of High Resolution Satellite Imagery (HRSI) from Indian Remote sensing satellites and cadastral maps at 1:4000 scale integrated with GIS techniques to enhance the accuracy of geo-spatial depiction of Village/Panchayat boundaries. Cadastral maps are used to depict the boundaries of land parcels and other features at the village level. These maps are registered to ortho products of HRSI using Ground Control Points. The cadastral maps are precisely overlaid on ortho-rectified HRSI and each parcel vertex is tagged with the real-world geographical coordinates. Village boundaries are extracted from the geo-referenced village cadastral maps. These boundaries are fine-tuned by considering under lap and overlap of neighboring villages and a mosaic is generated at

  2. Developments in optical system evaluation, spatial modeling, chemometrics and applications with atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Rider, Michael Eugene

    1998-11-01

    High temperature plasma emission sources have spatial characteristics. The Abel inversion calculates radial responses from lateral measurements of cylindrically symmetric emission sources. This dissertation presents three aspects of making spatial measurements: (1) Evaluation of an optical setup; (2) New numerically exact routine for improved spatial modeling; and (3) Radial and lateral measurements. Optical ray tracing software was been used for critical evaluation of the design of a unique imaging spectrometer. Position, area, and angles of view are calculated as a function of position of a translating lens and the optical properties of the quartz tube. The translating lens imaging spectrometer is compared to the more common alternative of moving the source or detector and found to perform comparatively well. A new Abel inversion technique, based on numerical improvements in a matrix-based algorithm, is described. The new approach (Mabel) combines exact computation of area terms for the Abel inversion with matrix calculation capabilities present in the MATLAB TM computational environment to generate radial profiles from lateral scans of the plasma with the best accuracy possible. Results of four 1000 ring Mabel inversions are presented. Comparisons between Mabel and two other numerical methods are made for test cases commonly cited in literature and for test cases having radial and lateral profiles with analytic solutions. The effects of noise propagation and of incomplete viewing of the plasma are also presented. Temperature is one of the most fundamental characteristic of high temperature plasmas. Lateral and radial temperatures measured from different views result in different values for a given plasma emission source. Four radial temperature profiles were used to generate radial intensities of five different wavelengths on the basis of a Boltzmann distribution of energies at each temperature. Forward Mabel transforms were performed on the radial intensities

  3. Documentation of a spatial data-base management system for monitoring pesticide application in Washington

    USGS Publications Warehouse

    Schurr, K.M.; Cox, S.E.

    1994-01-01

    The Pesticide-Application Data-Base Management System was created as a demonstration project and was tested with data submitted to the Washington State Department of Agriculture by pesticide applicators from a small geographic area. These data were entered into the Department's relational data-base system and uploaded into the system's ARC/INFO files. Locations for pesticide applica- tions are assigned within the Public Land Survey System grids, and ARC/INFO programs in the Pesticide-Application Data-Base Management System can subdivide each survey section into sixteen idealized quarter-quarter sections for display map grids. The system provides data retrieval and geographic information system plotting capabilities from a menu of seven basic retrieval options. Additionally, ARC/INFO coverages can be created from the retrieved data when required for particular applications. The Pesticide-Application Data-Base Management System, or the general principles used in the system, could be adapted to other applica- tions or to other states.

  4. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  5. Application of different techniques to obtain spatial estimates of debris flows erosion and deposition depths

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    In Alpine regions, debris flows endanger settlements and human life. Danger mitigation strategies based on the preparation of hazard maps are necessary tools for the current land planning. To date, hazard maps are obtained by using one- or two-dimensional numerical models that are able to forecast the potential inundated areas, after careful calibration of those input parameters that directly affect the flow motion and its interaction with the ground surface (sediments entrainment or deposition). In principle, the reliability of these numerical models can be tested by flume experiments in laboratory using, for example, particles and water mixtures. However, for more realistic materials including coarse particles, the scaling effects are still difficult to account for. In some cases, where there are enough data (for example, point measures of flow depths and velocities or spatial estimation of erosion and deposition depths), these models can be tested against field observations. As it regards the spatial estimates of debris flows erosion and deposition depths, different approaches can be followed to obtain them, mainly depending on both the type and accuracy of the available initial data. In this work, we explain the methods that have been employed to obtain the maps of erosion and deposition depths for three occurred debris flows in the Dolomites area (North-Eastern Italian Alps). The three events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006 and at Rio Val Molinara (Trento) on the 15th of August 2010. For each case study, we present the available initial data and the related problems, the techniques that have been used to overcome them and finally the results obtained.

  6. Thermal characterization of defects in aircraft structures via spatially controlled heat application

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Winfree, William P.

    1996-03-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post- processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administrations's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper presents a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the detectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples are presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results are compared with these models to demonstrate the utility of such an approach.

  7. Spatial distribution of potential in a flat cell. Application to the catfish horizontal cell layers.

    PubMed

    Marmarelis, P Z; Naka, K I

    1972-11-01

    An analytical solution is obtained for the three-dimensional spatial distribution of potential inside a flat cell, such as the layer of horizontal cells, as a function of its geometry and resistivity characteristics. It was found that, within a very large range of parameter values, the potential is given by [Formula: see text] where r = rho/rho(0), z = z/rho(0), rho = (R(i)/R(m)).rho(0), delta = h/rho(0); K is a constant; J is the assumed synaptic current; rho, z are cylindrical coordinates; rho(0) is the radius of the synaptic area of excitation; h is the cell thickness; and R(i), R(m) are the intracellular and membrane resistivities, respectively. Formula A closely fits data for the spatial decay of potential which were obtained from the catfish internal and external horizontal cells. It predicts a decay which is exponential down to about 40% of the maximum potential but is much slower than exponential below that level, a characteristic also exhibited by the data. Such a feature in the decay mode allows signal integration over the large retinal areas which have been observed experimentally both at the horizontal and ganglion cell stages. The behavior of the potential distribution as a function of the flat cell parameters is investigated, and it is found that for the range of the horizontal cell thicknesses (10-50 mu) the decay rate depends solely on the ratio R(m)/R(i). Data obtained from both types of horizontal cells by varying the diameter of the stimulating spot and for three widely different intensity levels were closely fitted by equation A. In the case of the external horizontal cell, the fit for different intensities was obtained by varying the ratio R(m)/R(i); in the case of the internal horizontal cell it was found necessary, in order to fit the data for different intensities, to vary the assumed synaptic current J.

  8. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2017-01-01

    Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3–4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.

  9. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    PubMed Central

    van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  10. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources.

    PubMed

    Zonneveld, Maarten van; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  11. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    PubMed

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m(2) areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (p<0.01) positive correlation with R(2)=0.7109 and y=0.1544 x. This correlation equation was used to describe spatial distribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm(-2)d(-1) higher than 38.3gm(-2)d(-1) from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill.

  12. Application of an extended equalization-cancellation model to speech intelligibility with spatially distributed maskers.

    PubMed

    Wan, Rui; Durlach, Nathaniel I; Colburn, H Steven

    2010-12-01

    An extended version of the equalization-cancellation (EC) model of binaural processing is described and applied to speech intelligibility tasks in the presence of multiple maskers. The model incorporates time-varying jitters, both in time and amplitude, and implements the equalization and cancellation operations in each frequency band independently. The model is consistent with the original EC model in predicting tone-detection performance for a large set of configurations. When the model is applied to speech, the speech intelligibility index is used to predict speech intelligibility performance in a variety of conditions. Specific conditions addressed include different types of maskers, different numbers of maskers, and different spatial locations of maskers. Model predictions are compared with empirical measurements reported by Hawley et al. [J. Acoust. Soc. Am. 115, 833-843 (2004)] and by Marrone et al. [J. Acoust. Soc. Am. 124, 1146-1158 (2008)]. The model succeeds in predicting speech intelligibility performance when maskers are speech-shaped noise or broadband-modulated speech-shaped noise but fails when the maskers are speech or reversed speech.

  13. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    SciTech Connect

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-04-19

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  14. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    NASA Astrophysics Data System (ADS)

    Hespel, Camille; Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles

    2012-07-01

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals.

  15. Applications of Full-Field X-ray Microscopy for High Spatial Resolution Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Fischer, Peter; Kusinski, Greg; Le Gros, Mark; Pearson, Angelic; Schneider, Gerd

    2001-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has recently been established as a tool for high-resolution imaging of magnetic domains. It is a "conventional" full-field transmission microscope which is able to achieve a resolution of 25 nm by using high-precision zone plates. It uses off-axis bend magnet radiation to illuminate samples with elliptically polarized light. When the illumination energy is tuned to absorption edges of specific elements, it can be used as an element-specific probe of magnetism on a 25 nm scale with a contrast provided by magnetic circular dichroism. The illumination energy can be tuned between 250-850 eV. This allows imaging of specific elements including chromium, iron and cobalt. The spectral resolution has been shown to be E/DE = 500-700. This spectral resolution allows a high sensitivity so that magnetization has been imaged within layers as thin as 3 nm. Since this is a photon based magnetic microscopy, fields can be applied to the sample even during imaging without affect ng the spatial resolution. Recent magnetic imaging results will be shown.

  16. Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis

    PubMed Central

    Baladandayuthapani, Veerabhadran; Mallick, Bani K.; Hong, Mee Young; Lupton, Joanne R.; Turner, Nancy D.; Carroll, Raymond J.

    2009-01-01

    Summary In this article, we present new methods to analyze data from an experiment using rodent models to investigate the role of p27, an important cell-cycle mediator, in early colon carcinogenesis. The responses modeled here are essentially functions nested within a two-stage hierarchy. Standard functional data analysis literature focuses on a single stage of hierarchy and conditionally independent functions with near white noise. However, in our experiment, there is substantial biological motivation for the existence of spatial correlation among the functions, which arise from the locations of biological structures called colonic crypts: this possible functional correlation is a phenomenon we term crypt signaling. Thus, as a point of general methodology, we require an analysis that allows for functions to be correlated at the deepest level of the hierarchy. Our approach is fully Bayesian and uses Markov chain Monte Carlo methods for inference and estimation. Analysis of this data set gives new insights into the structure of p27 expression in early colon carcinogenesis and suggests the existence of significant crypt signaling. Our methodology uses regression splines, and because of the hierarchical nature of the data, dimension reduction of the covariance matrix of the spline coefficients is important: we suggest simple methods for overcoming this problem. PMID:17608780

  17. Michaelis-Menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics.

    PubMed

    Kosmidis, Kosmas; Karalis, Vangelis; Argyrakis, Panos; Macheras, Panos

    2004-09-01

    Two different approaches were used to study the kinetics of the enzymatic reaction under heterogeneous conditions to interpret the unusual nonlinear pharmacokinetics of mibefradil. Firstly, a detailed model based on the kinetic differential equations is proposed to study the enzymatic reaction under spatial constraints and in vivo conditions. Secondly, Monte Carlo simulations of the enzyme reaction in a two-dimensional square lattice, placing special emphasis on the input and output of the substrate were applied to mimic in vivo conditions. Both the mathematical model and the Monte Carlo simulations for the enzymatic reaction reproduced the classical Michaelis-Menten (MM) kinetics in homogeneous media and unusual kinetics in fractal media. Based on these findings, a time-dependent version of the classic MM equation was developed for the rate of change of the substrate concentration in disordered media and was successfully used to describe the experimental plasma concentration-time data of mibefradil and derive estimates for the model parameters. The unusual nonlinear pharmacokinetics of mibefradil originates from the heterogeneous conditions in the reaction space of the enzymatic reaction. The modified MM equation can describe the pharmacokinetics of mibefradil as it is able to capture the heterogeneity of the enzymatic reaction in disordered media.

  18. Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications.

    PubMed

    Gemayel, Pierre; Colicchio, Bruno; Dieterlen, Alain; Ambs, Pierre

    2016-02-01

    Beam-propagation-based phase recovery approaches, also known as phase retrieval methods, retrieve the amplitude and the phase of arbitrary complex-valued fields. We present and experimentally demonstrate a simple and robust iterative method using a liquid crystal spatial light modulator located at an object diffraction plane. M random phase masks are applied between the object and the image sensor using the modulator, and then M diffraction patterns are collected in the Fourier plane. An iterative algorithm using these patterns and simulating the propagation of the light between the two planes allow us to recover the object wavefront. The use of this type of dynamic modulator makes the experimental setup simpler and more flexible. We need no a priori knowledge about the object field, and the convergence rate is high. Simulation results show that the method exhibits high immunity to noise and does not suffer any stagnation problem. However, experimental results have shown that the technique is sensitive to the cross talk of the modulator. We propose a method for compensating these modulator defects that are validated by experimental results.

  19. Natural, Persistent Oscillations in a Spatial Multi-Strain Disease System with Application to Dengue

    PubMed Central

    Lourenço, José; Recker, Mario

    2013-01-01

    Many infectious diseases are not maintained in a state of equilibrium but exhibit significant fluctuations in prevalence over time. For pathogens that consist of multiple antigenic types or strains, such as influenza, malaria or dengue, these fluctuations often take on the form of regular or irregular epidemic outbreaks in addition to oscillatory prevalence levels of the constituent strains. To explain the observed temporal dynamics and structuring in pathogen populations, epidemiological multi-strain models have commonly evoked strong immune interactions between strains as the predominant driver. Here, with specific reference to dengue, we show how spatially explicit, multi-strain systems can exhibit all of the described epidemiological dynamics even in the absence of immune competition. Instead, amplification of natural stochastic differences in disease transmission, can give rise to persistent oscillations comprising semi-regular epidemic outbreaks and sequential dominance of dengue's four serotypes. Not only can this mechanism explain observed differences in serotype and disease distributions between neighbouring geographical areas, it also has important implications for inferring the nature and epidemiological consequences of immune mediated competition in multi-strain pathogen systems. PMID:24204241

  20. Spatial organization of cilia tufts governs airways mucus transport: Application to severe asthma

    NASA Astrophysics Data System (ADS)

    Khelloufi, Mustapha Kamel; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2014-11-01

    We study the coupling between both density and spatial repartition of beating cilia tufts, and the coordinated transport of mucus in an in-vitro epithelial model. We use a fully differentiated model epithelium in air liquid interface (ALI) obtained from endo-bronchial biopsies from healthy subjects and patients with asthma. The asthma phenotype is known to persist in the model. Mucus transport is characterized by the trajectories and velocities of microscopic beads incorporated in the mucus layer. When the beating cilia tufts density is higher than dc = 11/100 × 100 μm2 a spherical spiral coordinated mucus transport is observed over the whole ALI chamber (radius = 6 mm). Below dc, local mucus coordinated transport is observed on small circular domains on the epithelium surface. We reveal that the radii of these domains scale with the beating cilia tufts density with a power 3.7. Surprisingly, this power law is independent on cilia beat frequency, concentration and rheological properties of mucus for healthy subject and patient with asthma. The rotating or linear mucus transport is related to dispersion of the cilia tufts on the epithelium surface. We show that impaired mucus transport observed in severe asthma model epithelia is due to a drastic lack and dysfunction of cilia tufts. The author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-BSV5-0015-01.

  1. Digital image correlation with gray gradient constraints: Application to spatially variant speckle images

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhan, Qin; Huang, Jianyong; Fang, Jing; Xiong, Chunyang

    2016-02-01

    As a carrier of local deformation information, speckle pattern inside a subset is usually crucial for surface displacement acquisition based upon a digital image correlation (DIC) method, since both accuracy and precision of DIC method are closely related to the amount of speckle information in a subset. Although some comprehensive theoretical frameworks have been developed to estimate the quality of local speckle patterns, it is still a great challenge how to effectively integrate the subset speckle information into the well-developed correlation criteria used for DIC. By means of a well-designed square window function, we here propose the concept of continuous subset in order to modulate subset size in a continuously derivable manner. Afterwards, we further develop a new constrained zero-normalized sum-of-squared differences (CZNSSD) criterion and construct the corresponding iterative algorithm, based on which the subset size involved can be automatically determined according to the necessary amount of speckle information. Numerical results of synthetic speckle images indicate that the set of algorithm can enhance the accuracy and precision of displacement measurement, especially for spatially variant speckle images.

  2. Spatial-Temporal Reasoning Applications of Computational Intelligence in the Game of Go and Computer Networks

    DTIC Science & Technology

    2012-01-01

    Mueller et. al. introduce a method by which to analyze a Ko threat situation for endgames with thermography , i.e. a tool for analyzing combinatorial...Spight Martin Mueller, "Generalized Thermography : Algorithms, Implementation, and Application to Go Endgame," International Computer Science Institute...ICSI Technical Report TR-96-030 October 1996. [103] Martin Mueller, "Generalized thermography : A new approach to evaluation in computer Go," in

  3. Development of a web GIS application for emissions inventory spatial allocation based on open source software tools

    NASA Astrophysics Data System (ADS)

    Gkatzoflias, Dimitrios; Mellios, Giorgos; Samaras, Zissis

    2013-03-01

    Combining emission inventory methods and geographic information systems (GIS) remains a key issue for environmental modelling and management purposes. This paper examines the development of a web GIS application as part of an emission inventory system that produces maps and files with spatial allocated emissions in a grid format. The study is not confined in the maps produced but also presents the features and capabilities of a web application that can be used by every user even without any prior knowledge of the GIS field. The development of the application was based on open source software tools such as MapServer for the GIS functions, PostgreSQL and PostGIS for the data management and HTML, PHP and JavaScript as programming languages. In addition, background processes are used in an innovative manner to handle the time consuming and computational costly procedures of the application. Furthermore, a web map service was created to provide maps to other clients such as the Google Maps API v3 that is used as part of the user interface. The output of the application includes maps in vector and raster format, maps with temporal resolution on daily and hourly basis, grid files that can be used by air quality management systems and grid files consistent with the European Monitoring and Evaluation Programme Grid. Although the system was developed and validated for the Republic of Cyprus covering a remarkable wide range of pollutant and emissions sources, it can be easily customized for use in other countries or smaller areas, as long as geospatial and activity data are available.

  4. Spatialized Application of Remotely Sensed Data Assimilation Methods for Farmland Drought Monitoring Using Two Different Crop Models

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang

    2016-08-01

    The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.

  5. Cryogen spray cooling for spatially selective photocoagulation: a feasibility study with potential application for treatment of hemangiomas

    NASA Astrophysics Data System (ADS)

    Anvari, Bahman; Tanenbaum, B. S.; Milner, Thomas E.; Hoffman, Wendy; Said, Samireh; Chang, Cheng-Jen; Liaw, Lih-Huei L.; Kimel, Sol; Nelson, J. Stuart

    1996-12-01

    The clinical objective in laser treatment of hemangiomas is to photocoagulate the dilated cutaneous blood vessels, while at the same time minimizing nonspecific thermal injury to the overlying epidermis. We present an in-vivo experimental procedure, using a chicken comb animal model, and an infrared feedback system to deliver repetitive cryogen spurts during continuous Nd:YAG laser irradiation. Gross and histologic observations are consistent with calculated thicknesses of protected and damaged tissues, and demonstrate the feasibility of inducing spatially selective photocoagulation when using cryogen spray cooling in conjunction with laser irradiation. Experimental observation of epidermal protection in the chicken comb model suggests selective photocoagulation of subsurface targeted blood vessels for successful treatment of hemangiomas can be achieved by repetitive applications of a cryogen spurt during continuous Nd:YAG laser irradiation.

  6. Applications of high-resolution spatial discretization scheme and Jacobian-free Newton–Krylov method in two-phase flow problems

    SciTech Connect

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2015-09-01

    The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.

  7. Teledetection passive et processus decisionnel a reference spatiale: Application a l'aquaculture en milieu marin

    NASA Astrophysics Data System (ADS)

    Habbane, Mohamed

    L'objectif de cette etude est d'elaborer un processus decisionnel a reference spatiale (PDRS) pour la mariculture. Le PDRS est applique aux eaux cotieres de la baie des Chaleurs, dans le golfe du Saint-Laurent (Canada). Une carte preliminaire regionale d'indices du potentiel maricole, d'une limite de resolution spatiale de 1 kmsp2, est produite avec des parametres du niveau 1. Ces parametres englobent la temperature de l'eau de surface, extraite des images AVHRR, la salinite, les courants ainsi que les pigments chlorophylliens, quantifies a l'aide de mesures in situ. Les images AVHRR, prises en 1994, ont ete utiliees comme reference primaire pour selectionner des aires pouvant supporter une activite maricole sur la cote nord de la baie des Chaleurs. La temperature de surface extraite de ces images permet une analyse mesoechelle a la fois qualitative et quantitative des processus cotiers observes pendant la periode d'acquisition des donnees. Les autres donnees, soit la salinite, les courants et les concentrations en pigments chlorophylliens, sont analysees de facon a identifier la variabilite spatio-temporelle des caracteristiques des eaux de surface. L'ensemble des informations permet de produire une carte preliminaire regionale d'indices du potentiel maricole de la partie centrale de la baie des Chaleurs. Selon cet indice (defini entre 0 et 1), le secteur de potentiel aquicole de 0,5 a 0,75 s'etend sur une superficie d'environ 300 kmsp2. La localisation de cette aire potentielle est en accord avec les fortes concentrations en pigments chlrophylliens, presentant des conditions environnementales ideales a une haute productivite biologique. Par la suite la carte preliminaire est modifiee en tenant compte des parametres du niveau 2. Ces parametres sont la geomorphologie littorale, la bathymetrie, les sediments en suspension, les vents, les vagues, le debit d'eau douce, la glace marine, le carbone organique dissous, les aires de peche et les sources de pollution. Ces

  8. Modeling the temporal, spatial and chemical variability in bioaccumulation: Issues and applications

    SciTech Connect

    Thomann, R.V.

    1995-12-31

    As new data are generated, it is becoming increasingly clear that there is considerable variability of chemical concentrations in aquatic organisms over time, space and chemical classes. Examples include the Bioaccumulation Factor (BAF) of PCB congeners in Green Bay and the Hudson estuary, PAHs in river systems, and mercury speciation over trophic space in lakes as well as chemical variability in organs of aquatic animals. Understanding the causes of such variability through food web transfer models is important in predicting the impacts of chemical accumulation on the aquatic and wildlife related ecosystems. Variability is considered from three sources: bioavailable water and sediment concentrations, ecosystem dynamics and chemical type and structure. BAF models are used to evaluate the contribution of these sources of variability to the observed BAF. For example: (1) for the Hudson estuary PCB congeners in the blue fish, a time variable BAF model indicates the significance of organism weight changes on uptake and deputation during migration into the estuary, (2) for methyl Hg in upper trophic levels, a BAF model indicates the potential for methylation by top predators, (3) for Green Bay PCB congeners, a BAF model as a function of log Kow does not explain observed variability within a Kow sub-class, and (4) for cadmium in fish, a pharmacokinetic model shows the significance of within-organism metal transfers. The current BAF models aid significantly in understanding the variability in organism chemical concentrations and also indicate gaps in predicting chemical-specific (e.g., PCB congener) behavior. Since toxicity effects and ecosystem health are ultimately determined by temporal and spatial exposure to specific chemicals, BAF models must be further developed to explain the variability in observed data.

  9. Spatial Frequency Domain Imaging: Applications in Preclinical Models of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Lin, Alexander Justin

    A clinical challenge in Alzheimer's disease (AD) is diagnosing and treating patients earlier, before symptoms of cognitive dysfunction occur. A good screening test would be sensitive to the AD brain pathology, safe, and cost-effective. Diffuse optical imaging, which measures how non-ionizing light is absorbed and scattered in tissue, may fulfill these three parameters. We imaged the brains of transgenic AD mouse models in vivo with a quantitative, camera-based, diffuse optical imaging technology called spatial frequency domain imaging (SFDI) to characterize near-infrared (650-970nm) optical biomarkers of AD. Compared to age-matched control mice, we found a decrease in light absorption --- due to lower oxygenated and total hemoglobin concentrations in the brain --- correlating to decreased blood vessel volume and density in histology. Light scattering also increased in AD mice, correlating to brain structural changes caused by neuron loss and activation of inflammatory cells. Furthermore, inhaled gas challenges revealed brain vascular function was diminished. To investigate how AD affects the small changes in blood perfusion caused by increased brain activity, we built a new SFDI system from a commercial light-emitting diode microprojector and off-the-shelf optical components and cameras to measure optical properties in the visible range (460-632nm). Our measurements showed a reduced amplitude and duration of blood vessel dilation to increased brain activity in the AD mice. Altogether, this work increased our understanding of AD pathogenesis, explored optical biomarkers of AD, and improved technology access to other research labs. These results and technologies can further be used to facilitate longitudinal drug therapy trials in mice and provide a roadmap to diffuse optical spectroscopy studies in humans.

  10. The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study

    SciTech Connect

    Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.

    1999-03-15

    This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap

  11. Characterization of a spatial light modulator and its application in phase retrieval.

    PubMed

    Kohler, C; Zhang, F; Osten, Wolfgang

    2009-07-10

    Recently a phase retrieval method using a movable phase plate as modulator has been proposed [Phys. Rev. A75, 043805 (2007)]. This method is applicable to general complex-valued fields and exhibits rapid convergence and high robustness to noise. In this paper, we demonstrate how to use this technique to characterize the phase shifting properties of a liquid-crystal modulator, and in turn we use the characterized modulator as the modulation device in the presented phase retrieval method. The adoption of a dynamic modulator gives a much more robust and flexible setup.

  12. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    SciTech Connect

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to

  13. Optimising the Application of Multiple-Capture Traps for Invasive Species Management Using Spatial Simulation

    PubMed Central

    Warburton, Bruce; Gormley, Andrew M.

    2015-01-01

    Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single

  14. Optimising the application of multiple-capture traps for invasive species management using spatial simulation.

    PubMed

    Warburton, Bruce; Gormley, Andrew M

    2015-01-01

    Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single

  15. Spatial scale invariance of aggregated dynamics - Application to crops cycle observed from space

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Le Jean, F.

    2014-12-01

    Observational data is always associated to specific time and space scales. When the observed area of study is homogeneous, the same dynamics can be expected at different observed scales. It is generally not the case. This is a common obstacle when comparing data or products of different resolution. This question is investigated here considering the cycles of rainfed crops observed from space in semi-arid regions. In such context, the rainfed crops are coupled to the climatic dynamics in a synchronized way, the observational signal can thus be seen as an aggregation of phase synchronized dynamics. In the first part of this work, a case study is implemented. Rössler chaotic systems are used for this purpose as elementary oscillators relating to homogeneous behavior. The 'observational' signal is obtained by aggregating additively the signals of several elementary chaotic systems. Analytically, it is found that the aggregated signal can be approximated by the Rössler system itself but with some parameterization changes. This result can be generalized to any system for which a canonical approximation is possible. Using the global modeling technique [1], this theoretical result is then illustrated practically, by showing that an approximation of the Rössler dynamics can be retrieved, without any a priori knowledge, from the aggregated signal. In the second part, the cycle of cereal crops observed from space in semi-arid conditions is investigated from real observational data (the GIMMS product of Normalized Difference Vegetation Index [2] is used for this purpose). A low-dimensional chaotic model could recently be obtained from a spatially aggregated signal which presents properties never observed from real data before: a toroidal and weakly dissipative dynamics [3]. These unusual properties are then retrieved at various places and scales. [1] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., 2012. Polynomial search and Global modelling: two algorithms for modeling

  16. New fluorescence imaging probe with high spatial resolution for in vivo applications.

    PubMed

    Bonnans, V; Gharbi, T; Pieralli, C; Wacogne, B; Humbert, Ph

    2004-01-01

    A new fiberized fluorescence imaging probe is presented. This device can potentially be used for a wide range of biological or medical applications. By exploiting the chromatic aberrations of gradient index lenses, the excitation blue or near-UV excitation light is focused on the sample surface, while the red fluorescence signal is efficiently launched back to collecting fibers. The excitation fiber is single mode at the working wavelength so that a resolution of 5 microm is obtained over a scanning area of several square millimeters. Experimental fluorescence images are presented. They concern either self-fabricated fluorescent microsamples or views of leaves that constitute an example of biological tissues analysis. The probe can also be adapted for spectroscopic investigations.

  17. Spatially Targeted Applications of Reduced-Risk Insecticides for Economical Control of Grape Berry Moth, Paralobesia viteana (Lepidoptera: Tortricidae).

    PubMed

    Mason, Keith S; Roubos, Craig R; Teixeira, Luis A F; Isaacs, Rufus

    2016-07-19

    The grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae), is a key economic pest of vineyards in eastern North America, and prevention of fruit infestation is particularly challenging along vineyard borders that are adjacent to wooded areas containing wild grape (Vitis spp.). For three years, infestation and damage in vineyards where reduced-risk insecticides were applied to borders at timings based on a degree day model (Integrated Pest Management program) were compared to that in vineyards where broad-spectrum insecticides were applied across the whole vineyard (Standard program). Infestation at vineyard borders immediately prior to harvest was consistently lower in IPM vineyards than in Standard program vineyards, and in two of the years this was also true at veraison (fruit coloring). Grape berry moth infestation was similar between treatments at vineyard interiors throughout the study, despite no insecticide applications to the interiors of the IPM program vineyards. Populations of two other key vineyard pests, the eastern grape leafhopper, Erythroneura comes (Say) (Hemiptera: Cicadellidae), and Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), were not significantly different between programs, and natural enemy captures on yellow sticky traps were also similar. The per hectare cost of insecticides applied in the IPM program was consistently lower than for the Standard program, with a significant difference in the third year of this study. We demonstrate how spatially selective applications of reduced-risk insecticides can provide improved control of grape berry moth at lower cost than standard broad-spectrum insecticide-based programs.

  18. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Akondi, Vyas; Jewel, Md. Atikur Rahman; Vohnsen, Brian

    2014-09-01

    Sensing and compensating of optical aberrations in closed-loop mode using a single spatial light modulator (SLM) for ophthalmic applications is demonstrated. Notwithstanding the disadvantages of the SLM, in certain cases, this multitasking capability of the device makes it advantageous over existing deformable mirrors (DMs), which are expensive and in general used for aberration compensation alone. A closed-loop adaptive optics (AO) system based on a single SLM was built. Beam resizing optics were used to utilize the large active area of the device and hence make it feasible to generate 137 active subapertures for wavefront sensing. While correcting Zernike aberrations up to fourth order introduced with the help of a DM (for testing purposes), diffraction-limited resolution was achieved. It is shown that matched filter and intensity-weighted centroiding techniques stand out among others. Closed-loop wavefront correction of aberrations in backscattered light from the eyes of three healthy human subjects was demonstrated after satisfactory results were obtained using an artificial eye, which was simulated with a short focal length lens and a sheet of white paper as diffuser. It is shown that the closed-loop AO system based on a single SLM is capable of diffraction-limited correction for ophthalmic applications.

  19. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  20. Application of spectral and spatial indices for specific class identification in Airborne Prism EXperiment (APEX) imaging spectrometer data for improved land cover classification

    NASA Astrophysics Data System (ADS)

    Kallepalli, Akhil; Kumar, Anil; Khoshelham, Kourosh; James, David B.

    2016-10-01

    Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches fail to process data along many contiguous bands due to inadequate training samples. Another challenge of successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed pixels, with an objective to improve the accuracy of class identification. In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the classification accuracy using the Possibilistic c-Means (PCM) algorithm. This was used for the formulation of spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes. Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific class information. The classification of the dataset was performed in two stages; spectral and a combination of spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy, while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved, against 65% (spectral indices only) and

  1. The effect of application method on the temporal and spatial distribution of neonicotinoid insecticides in greenhouse zinnia and impact on aphid populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse trials were designed to evaluate the effect the application technique would have on temporal and spatial movement of neonicotinoid insecticides imidacloprid and thiamethoxam through plant tissue. Mature Zinnia elegans plants were treated by either a soil drench of neonicotinoid insectici...

  2. DotAGWA: A case study in web-based architectures for connecting surface water models to spatially enabled web applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, climate, and land-cover ...

  3. Spatial variation of soil salinity in the Mexicali Valley, Mexico: application of a practical method for agricultural monitoring.

    PubMed

    Judkins, Gabriel; Myint, Soe

    2012-09-01

    The degradation of irrigated lands through the process of soil salinization, or the buildup of salts in the soil, has hampered recent increases in agricultural productivity and threatens the sustainability of large-scale cultivation in critical agricultural regions of the world. Rapid detection of soil salinity on a regional basis has been identified as key for effective mitigation of such land degradation. The ability to detect regional patterns of soil salinity at an accuracy sufficient for regional-scale resource management is demonstrated using Landsat 5 Thematic Mapper (TM) imagery. A case study of the Mexicali Valley of Baja California, Mexico was selected due to the region's agricultural significance and concern for future soil salinity increases. Surface soil salinity was mapped using georeferenced field measurements of electrical conductivity (EC), collected concurrently with Landsat 5 TM imagery. Correlations between EC measurements and common indices derived from the satellite imagery were used to produce a model of soil salinity through regression analysis. Landsat band 7, TNDVI, PCA 1, Tasseled Cap 3 and Tasseled Cap 5 were found to offer the most promising correlations with surface soil salinity. Generally low levels of soil salinity were detected, however, distinct areas of elevated surface salinity were detected at levels potentially impacting sensitive crops cultivated within the region. The difficulty detecting low levels of salinity and the mid-range spatial resolution of Landsat 5 TM imagery restrict the applicability of this methodology to the study of broad regional patterns of degradation most appropriate for use by regional resource managers.

  4. Design optimization of the sensor spatial arrangement in a direct magnetic field-based localization system for medical applications.

    PubMed

    Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L

    2015-08-01

    Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.

  5. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    SciTech Connect

    De Sapio, Vincent

    2010-09-01

    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  6. Spatial Variation of Soil Salinity in the Mexicali Valley, Mexico: Application of a Practical Method for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Judkins, Gabriel; Myint, Soe

    2012-09-01

    The degradation of irrigated lands through the process of soil salinization, or the buildup of salts in the soil, has hampered recent increases in agricultural productivity and threatens the sustainability of large-scale cultivation in critical agricultural regions of the world. Rapid detection of soil salinity on a regional basis has been identified as key for effective mitigation of such land degradation. The ability to detect regional patterns of soil salinity at an accuracy sufficient for regional-scale resource management is demonstrated using Landsat 5 Thematic Mapper (TM) imagery. A case study of the Mexicali Valley of Baja California, Mexico was selected due to the region's agricultural significance and concern for future soil salinity increases. Surface soil salinity was mapped using georeferenced field measurements of electrical conductivity (EC), collected concurrently with Landsat 5 TM imagery. Correlations between EC measurements and common indices derived from the satellite imagery were used to produce a model of soil salinity through regression analysis. Landsat band 7, TNDVI, PCA 1, Tasseled Cap 3 and Tasseled Cap 5 were found to offer the most promising correlations with surface soil salinity. Generally low levels of soil salinity were detected, however, distinct areas of elevated surface salinity were detected at levels potentially impacting sensitive crops cultivated within the region. The difficulty detecting low levels of salinity and the mid-range spatial resolution of Landsat 5 TM imagery restrict the applicability of this methodology to the study of broad regional patterns of degradation most appropriate for use by regional resource managers.

  7. An application of spatially constrained inversion using FD Helicopter EM data to characterise spatial variations in groundwater salinity across the floodplains of the Murray River in South-eastern Australia

    NASA Astrophysics Data System (ADS)

    Munday, T. J.; Viezzoli, A.; Fitzpatrick, A.

    2008-12-01

    The floodplains of the Murray River, situated in the southeast of Australia, have become extensively salinised, related in part to the discharge of naturally saline groundwater linked to increased recharge from land clearing and irrigation adjacent to the river. This problem has been compounded by extended drought conditions that prevail across the Murray Basin, resulting in increase in the accumulation and concentration of salt within the floodplain soils and an increase in salt loads to the river. Consequently in many floodplain areas along the Murray, the native riparian vegetation communities are in severe decline and Eucalyptus largiflorens (Black Box) and E. camaldulensis (Red Gum) communities are being significantly affected. A range management strategies are being employed to manage these issues, the manipulation of river flows to enhance biodiversity values (ie restore vegetation health) and the development of a hydro-dynamic models to better understand surface flows and the role of soils and elevation in floodplain vegetation health. Integral to these strategies is the acquisition of detailed spatial data on the distribution of salinity in floodplain soils and groundwater, thereby indicating patterns of groundwater evapotranspiration and baseflow across these areas. Hydrogeophysical data from electrical (inductive) methods have considerable potential to provide such data. We present an application of the Spatially Constrained Inversion (SCI) of RESOLVE FDHEM (airborne EM) data for defining spatial patterns of salinisation in the sunraysia irrigation area located in the lower Murray Basin of South Australia. Spatially Constrained Inversion uses Delaunay triangulation to set three dimensional constraints between neighbouring soundings, taking advantage of the spatial coherency that may be present in the data set. Conductivity information for individual soundings is linked through the spatial constraints, from well determined parameters to locally poorly

  8. Flow of Funds Modeling for Localized Financial Markets: An Application of Spatial Price and Allocation Activity Analysis Models.

    DTIC Science & Technology

    1981-01-01

    equilibrium theory to include spatially and tempor- ally separated economic activities. Takayama and Judge (156) provide an historical sketch of...nonprice rationing in financial markets (72). The degree to which such activity limits the usefulness of the spatial equilibrium model is mitigated by a...15th ed. S.v. "Operations Research," by Russell L. Ackoff. 55. Enke, Stephen. " Equilibrium Among Spatially Separated Markets: Solution by Electric

  9. Enhancing a Low-Cost Virtual Reality Application through Constructivist Approach: The Case of Spatial Training of Middle Graders

    ERIC Educational Resources Information Center

    Samsudin, Khairulanuar; Rafi, Ahmad; Mohamad Ali, Ahmad Zamzuri; Abd. Rashid, Nazre

    2014-01-01

    The aim of this study is to develop and to test a low-cost virtual reality spatial trainer in terms of its effectiveness in spatial training. The researchers adopted three features deriving from the constructivist perspective to guide the design of the trainer, namely interaction, instruction, and support. The no control pre test post test…

  10. Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic

    NASA Astrophysics Data System (ADS)

    Urban, Aleš; Kyselý, Jan

    2015-09-01

    Spatial synoptic classification (SSC) is here first employed in assessing heat-related mortality and morbidity in Central Europe. It is applied for examining links between weather patterns and cardiovascular (CVD) mortality and morbidity in an extended summer season (16 May-15 September) during 1994-2009. As in previous studies, two SSC air masses (AMs)—dry tropical (DT) and moist tropical (MT)—are associated with significant excess CVD mortality in Prague, while effects on CVD hospital admissions are small and insignificant. Excess mortality for ischaemic heart diseases is more strongly associated with DT, while MT has adverse effect especially on cerebrovascular mortality. Links between the oppressive AMs and excess mortality relate also to conditions on previous days, as DT and MT occur in typical sequences. The highest CVD mortality deviations are found 1 day after a hot spell's onset, when temperature as well as frequency of the oppressive AMs are highest. Following this peak is typically DT- to MT-like weather transition, characterized by decrease in temperature and increase in humidity. The transition between upward (DT) and downward (MT) phases is associated with the largest excess CVD mortality, and the change contributes to the increased and more lagged effects on cerebrovascular mortality. The study highlights the importance of critically evaluating SSC's applicability and benefits within warning systems relative to other synoptic and epidemiological approaches. Only a subset of days with the oppressive AMs is associated with excess mortality, and regression models accounting for possible meteorological and other factors explain little of the mortality variance.

  11. Identifying Spatial Clusters of Schistosomiasis in Anhui Province of China: A Study from the Perspective of Application.

    PubMed

    Sun, Liqian; Chen, Yue; Lynn, Henry; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Xia, Congcong; Jiang, Qingwu; Hu, Yi; Gao, Fenghua; Zhang, Zhijie

    2015-09-18

    With the strategy shifting from morbidity control to transmission interruption, the burden of schistosomiasis in China has been declining over the past decade. However, further controls of the epidemic in the lake and marshland regions remain a challenge. Prevalence data at county level were obtained from the provincial surveillance system in Anhui during 1997-2010. Spatial autocorrelation analysis and spatial scan statistics were combined to assess the spatial pattern of schistosomiasis. The spatial-temporal cluster analysis based on retrospective space-time scan statistics was further used to detect risk clusters. The Global Moran's I coefficients were mostly statistically significant during 1997-2004 but not significant during 2005-2010. The clusters detected by two spatial cluster methods occurred in Nanling, Tongling, Qingyang and Wuhu during 1997-2004, and Guichi and Wuhu from 2005 to 2010, respectively. Spatial-temporal cluster analysis revealed 2 main clusters, namely Nanling (1999-2002) and Guichi (2005-2008). The clustering regions were significantly narrowed while the spatial extent became scattered during the study period. The high-risk areas shifted from the low reaches of the Yangtze River to the upper stream, suggesting the focus of schistosomiasis control should be shifted accordingly and priority should be given to the snail habitats within the high-risk areas of schistosomiasis.

  12. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  13. A design and application of a multi-agent system for simulation of multi-actor spatial planning.

    PubMed

    Ligtenberg, Arend; Wachowicz, Monica; Bregt, Arnold K; Beulens, Adrie; Kettenis, Dirk L

    2004-08-01

    Multi-agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. The main goal is to explore the use of MAS to simulate spatial scenarios based on modelling multi-actor decision-making within a spatial planning process. We demonstrate MAS that consists of agents representing organizations and interest groups involved in an urban allocation problem during a land use planning process. The multi-actor based decision-making is modelled by generating beliefs and preferences of actors about the location of and relation between spatial objects. This allows each agent to confront these beliefs and preferences with it's own desires and with that of other agents. The MAS loosely resembles belief, desire and intentions architecture. Based on a case study for a hypothetical land use planning situation in a study area in the Netherlands we discuss the potential and limitations of the MAS to build models that enable spatial planners to include the 'actor factor' in their analysis and design of spatial scenarios. In addition, our experiments revealed the need for further research on the representation of spatial objects and reasoning, learning and communication about allocation problems using MAS.

  14. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.

    PubMed

    Gunson, Kari E; Mountrakis, Giorgos; Quackenbush, Lindi J

    2011-04-01

    In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique

  15. Relative impacts of the fragmentation and spatial structure of habitats on freshwater fish distributions: application on French watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.

    2009-12-01

    Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities

  16. An application of GIS and Bayesian network in studying spatial-causal relations between enterprises and environmental factors

    NASA Astrophysics Data System (ADS)

    Shen, Tiyan; Li, Xi; Li, Maiqing

    2009-10-01

    The paper intends to employ Geographic Information System (GIS) and Bayesian Network to discover the spatial causality between enterprises and environmental factors in Beijing Metropolis. The census data of Beijing was spatialized by means of GIS in the beginning, and then the training data was made using density mapping technique. Base on the training data, the structure of a Bayesian Network was learnt with the help of Maximum Weight Spanning Tree. Eight direct relations were discussed in the end, of which, the most exciting discovery, "Enterprise-Run Society", as the symbol of the former planned economy, was emphasized in the spatial relations between heavy industry and schools. Though the final result is not so creative in economic perspective, it is of significance in technique view due to all discoveries were drawn from data, therefore leading to the realization of the importance of GIS and data mining to economic geography research.

  17. The design and application of data warehouse during modern enterprises environment

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Liu, Chi; Wang, Chunying

    2006-04-01

    The interest in analyzing data has grown tremendously in recent years. To analyze data, a multitude of technologies is need, namely technologies from the fields of Data Warehouse, Data Mining, On-line Analytical Processing (OLAP). This paper proposes the system structure model of the data warehouse during modern enterprises environment according to the information demand for enterprises and the actual demand of user's, and also analyses the benefit of this kind of model in practical application, and provides the setting-up course of the data warehouse model. At the same time it has proposes the total design plans of the data warehouses of modern enterprises. The data warehouse that we build in practical application can be offered: high performance of queries; efficiency of the data; independent characteristic of logical and physical data. In addition, A Data Warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support, OLAP queries or data mining. One of the most important decisions in designing a data warehouse is selection of right views to be materialized. In this paper, we also have designed algorithms for selecting a set of views to be materialized in a data warehouse.First, we give the algorithms for selecting materialized views. Then we use experiments do demonstrate the power of our approach. The results show the proposed algorithm delivers an optimal solution. Finally, we discuss the advantage and shortcoming of our approach and future work.

  18. Study and application of data mining and data warehouse in CIMS

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Liu, Chi; Liu, Daxin

    2003-03-01

    The interest in analyzing data has grown tremendously in recent years. To analyze data, a multitude of technologies is need, namely technologies from the fields of Data Warehouse, Data Mining, On-line Analytical Processing (OLAP). This paper gives a new architecture of data warehouse in CIMS according to CRGC-CIMS application engineering. The data source of this architecture comes from database of CRGC-CIMS system. The data is put in global data set by extracting, filtrating and integrating, and then the data is translated to data warehouse according information request. We have addressed two advantages of the new model in CRGC-CIMS application. In addition, a Data Warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support, OLAP queries or data mining. It is important to select the right view to materialize that answer a given set of queries. In this paper, we also have designed algorithms for selecting a set of views to be materialized in a data warehouse in order to answer the most queries under the constraint of given space. First, we give a cost model for selecting materialized views. Then we give the algorithms that adopt gradually recursive method from bottom to top. We give description and realization of algorithms. Finally, we discuss the advantage and shortcoming of our approach and future work.

  19. [Application of carrying capacity assessment in spatial allocation of regional population: a case of Changzhou City of East China].

    PubMed

    Chen, Shuang; Wang, Dan; Li, Guang-Yu; Liu, Deng-E; Wu, Song

    2012-02-01

    Based on the spatial differences in urban ecosystem carrying capacity, and by using geographic information system (GIS) spatial analysis technology and system dynamics (SD) model, this paper ascertained the moderate population size in urban area and its subareas, and presented an alternative method for quantitatively allocate the population. This method was applied in Changzhou, a city with more than three million populations in East China. A SD model consisted of population, economy, land and environment modules for the city was established and scenario analysis was made. The results showed that under the requirements of satisfying both economic development and environmental protection, the total population in the city in 2050 would reach nearly 4 million, and according to the differences in the urban ecosystem carrying capacity, a spatial allocation pattern of 2.4 million populations in main city and 150000-400000 populations in each of 5 new towns was proposed. This study could provide scientific support for the spatial allocation of population and economy in country land development and management.

  20. Correlation and heritability in neuroimaging datasets: a spatial decomposition approach with application to an fMRI study of twins.

    PubMed

    Park, Joonkoo; Shedden, Kerby; Polk, Thad A

    2012-01-16

    Advances in modern neuroimaging in combination with behavioral genetics have allowed neuroscientists to investigate how genetic and environmental factors shape human brain structure and function. Estimating the heritability of brain structure and function via twin studies has become one of the major approaches in studying the genetics of the brain. In a classical twin study, heritability is estimated by computing genetic and phenotypic variation based on the similarity of monozygotic and dizygotic twins. However, heritability has traditionally been measured for univariate, scalar traits, and it is challenging to assess the heritability of a spatial process, such as a pattern of neural activity. In this work, we develop a statistical method to estimate phenotypic variance and covariance at each location in a spatial process, which in turn can be used to estimate the heritability of a spatial dataset. The method is based on a dimensionally-reduced model of spatial variation in paired images, in which adjusted least squares estimates can be used to estimate the key model parameters. The advantage of the proposed method compared to conventional methods such as voxelwise or mean-ROI approaches is demonstrated in both a simulation study and a real data study assessing genetic influence on patterns of brain activity in the visual and motor cortices in response to a simple visuomotor task.

  1. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    NASA Astrophysics Data System (ADS)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  2. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    DTIC Science & Technology

    1993-03-17

    11 E4962.0-93-1-0181 S6. AUTHOR(S) i Dr Jar us W Quinn 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8~. PERFORMING ORGANIZATION Optical Society...represen. gallium-arsenide-based MOW modulators by flip chip bonding are tatives from different countries with direct experience in organizing described The...00 pm SWD2 Photoanisotropic organic volume holograms for spatial light modulation, Tizhi Huang Samuel Weaver, Steve Blair. Kelvin Wagner, Univ Colorado

  3. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh.

    PubMed

    Hassan, M Manzurul; Atkins, Peter J

    2011-01-01

    This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.

  4. Spatial Data Analysis.

    PubMed

    Banerjee, Sudipto

    2016-01-01

    With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains.

  5. SEHR-ECHO v1.0: a Spatially-Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, Bettina; Nicótina, Ludovico; Da Ronco, Pierfrancesco; Bertuzzo, Enrico; Rinaldo, Andrea

    2015-04-01

    We present here the SEHR-ECHO model, which stands for Spatially Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology (ECHO) of the Ecole Polytechnique Fédérale de Lausanne. The model is being developed for the spatially-explicit simulation of streamflow and transport processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions: the mobilization of water (and possibly dissolved solutes) is simulated at the subcatchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The Matlab source code of the current version for alpine streamflow simulation is already freely available. A truly free open source version using Python will become available in the future.

  6. SAS macro programs for geographically weighted generalized linear modeling with spatial point data: applications to health research.

    PubMed

    Chen, Vivian Yi-Ju; Yang, Tse-Chuan

    2012-08-01

    An increasing interest in exploring spatial non-stationarity has generated several specialized analytic software programs; however, few of these programs can be integrated natively into a well-developed statistical environment such as SAS. We not only developed a set of SAS macro programs to fill this gap, but also expanded the geographically weighted generalized linear modeling (GWGLM) by integrating the strengths of SAS into the GWGLM framework. Three features distinguish our work. First, the macro programs of this study provide more kernel weighting functions than the existing programs. Second, with our codes the users are able to better specify the bandwidth selection process compared to the capabilities of existing programs. Third, the development of the macro programs is fully embedded in the SAS environment, providing great potential for future exploration of complicated spatially varying coefficient models in other disciplines. We provided three empirical examples to illustrate the use of the SAS macro programs and demonstrated the advantages explained above.

  7. Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data

    NASA Technical Reports Server (NTRS)

    Hood, Kenneth Brown (Inventor); Seal, Michael R. (Inventor); Lewis, Mark David (Inventor); Johnson, James William (Inventor)

    2007-01-01

    Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.

  8. Method and apparatus for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data

    NASA Technical Reports Server (NTRS)

    Hood, Kenneth Brown (Inventor); Seal, Michael R. (Inventor); Lewis, Mark David (Inventor); Johnson, James William (Inventor)

    2004-01-01

    Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.

  9. Spatial distribution and accessibility to public sector tertiary care teaching hospitals in Karachi: A Geographic Information Systems application.

    PubMed

    Shaikh, Masood Ali; Ali, Mir Shabbar

    2016-07-01

    Optimal utilization of specialized curative healthcare services is contingent on spatial access to tertiary-care hospitals by the targeted population. The objectives of this study were to determine the spatial distribution of public sector tertiary-care teaching hospitals in Karachi, and to use GIS and network analysis for modeling the accessibility to these hospitals for Karachi residents. Maps of three, six, and nine kilometer buffers were created around the five selected hospitals to determine which towns of Karachi are either entirely or partially covered/accessible. Most of the towns in Karachi were covered either partially or completely by the three buffers and service areas of 3,6, and 9 kilometers around the five selected hospitals. This study highlights the limitations of using publicly available data for road network, and the need for creating and making available in public domain, comprehensive road network vector dataset in conjunction with population breakdowns by administrative subdivisions.

  10. Enabling multi-disciplinary climate science through the application of GIS and high-resolution spatial data

    NASA Astrophysics Data System (ADS)

    Altmann, G.; Wilson, C. J.; Gangodagamage, C.; Wullschleger, S. D.

    2013-12-01

    Multidisciplinary field studies in climate science require effective methods for communicating data needs across a broad range of spatial and temporal scales. The Next Generation Ecosystem Experiment-Arctic seeks to reduce uncertainty in climate prediction by investigating critical land-atmosphere interactions in terrestrial ecosystems of Alaska. Using high-resolution LiDAR imagery and GIS, we applied geographic visualization principles to synthesize spatial data and facilitate cross-discipline communication for field planning, instrument implementation and model data integration. We hypothesized that providing three-dimensional (3D) representation of arctic landscape features would enhance perception and provide an effective medium to better optimize further field studies and analyses. Results indicate that key landscape features, such as polygonal ground and drained thaw lake basins (DTLB), represented in 3D maps offered superior recognition and differentiation among these features than traditional 2D maps. When overlaying 3D landscape features with high-resolution spatial data, such as WorldView-2 panchromatic imagery, digital elevation models (DEM), remotely derived indexes such as NDVI, or site instrumentation, further recognition and quantification of landscape processes was attained. Conversely, we observed that data inclusion in excess resulted in poor cognition of key features and/or themes. At various scales, 3D visualization proved to be effective at characterizing both large-scale (1:50) site level characteristics (polygon/trough), as well as small-scale (1:500) regional features (high vs. low polygon terrain). We conclude that applying GIS and high-resolution spatial data to create 3D visualizations is highly effective in representing key arctic landscape features across a wide range of scales. When combining multiple data layers (in moderation), these visualizations prove to be a valuable tool for communicating data needs, refining field

  11. On the local field method with the account of spatial dispersion. Application to the optical activity theory

    NASA Astrophysics Data System (ADS)

    Tyu, N. S.; Ekhilevsky, S. G.

    1992-07-01

    For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.

  12. Regional Variation in the Severity of Pesticide Exposure Outcomes: Applications of Geographic Information Systems and Spatial Scan Statistics

    PubMed Central

    Sudakin, Daniel L.

    2009-01-01

    Introduction In a previous study, Geographic Information Systems (GIS) and spatial scan statistics were utilized to assess regional clustering of symptomatic pesticide exposure incidents that were reported to a state Poison Control Center (PCC) during a single year. In the current study, we analyzed five subsequent years of PCC data to test whether there are significant geographic differences in pesticide exposure incidents resulting in serious (moderate, major, and fatal) medical outcomes. Methods A Poison Control Center provided data on unintentional pesticide exposure incidents for the time period 2001−2005. Data were abstracted to identify the geographic location of the caller, the location where the exposure occurred, the exposure route, and the medical outcome. Results The results yielded 273 incidents resulting in moderate (n=261), major effects (n=10), or fatalities (n=2). Analysis of these data using spatial scan statistics resulted in the identification of a geographic area consisting of 2 adjacent counties (one urban, one rural) where statistically significant clustering of serious outcomes was observed. The relative risk of moderate, major, and fatal outcomes was 2.0 in this spatial cluster (p=0.0005). Conclusions Poison Control Center data, GIS, and spatial scan statistics can be effectively utilized to identify clustering of serious incidents involving human exposure to pesticides. These analyses may be useful for public health officials to target preventive interventions. Further investigation is warranted to better understand the potential explanations for geographical clustering, and to assess whether preventive interventions have an impact on reducing pesticide exposure incidents resulting in serious medical outcomes. PMID:19306192

  13. Detecting Spatial Interactions and Interdependence of Moisture - Outflow Relations Among Regional Sites: a Statistical Method and its Application

    NASA Astrophysics Data System (ADS)

    Saleem, J. A.; Salvucci, G. D.

    2002-05-01

    Components of root zone outflow (evapotranspiration, drainage, and runoff processes) are dependent on soil moisture. In some cases, this dependence can be reasonably described at the point scale (e.g. the Darcy and Richards equations). However, as scale increases, these interrelationships become increasingly complex and uncertain. Small-scale processes are one of many factors that may influence large-scale behavior. Furthermore, these processes are often observed and measurable only at relatively large scales; such measurements are not suitable for simple point-scale analyses. One issue that can arise in large-scale investigations is spatial dependence among sites within a region. One can conceive of two possible models for soil moisture - outflow relationships at a given site. A simpler model is an "independent columns" approach; i.e. outflow at a site can be described as a function of the soil moisture at that site only. However, in many cases this is a not valid model; lateral interactions and flow among sites may exist and influence the components of outflow at measured point. In such cases, some sort of spatial aspect must be incorporated and addressed if moisture relations are to be successfully described, predicted or aggregated. Here we describe a test designed to detect such spatial dependence that uses precipitation as a surrogate for less available outflow data and applies methods used in multivariable regression. The long-time average dependence of root zone outflow on point soil moisture is measured using an estimation technique based on conditional averaging of precipitation according to soil moisture level. Using multivariable statistics, the residuals of this relationship are evaluated for dependence on variability remaining in spatially averaged moisture. A statistically significant relationship implies that lateral processes may be influencing the outflow processes and should be accounted for in attempts at describing or predicting such

  14. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  15. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Wellman, Tristan P.; Poeter, Eileen P.

    2006-08-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large-scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data-conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.

  16. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    USGS Publications Warehouse

    Wellman, T.P.; Poeter, E.P.

    2006-01-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large-scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data-conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN)- We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex. Copyright 2006 by the American Geophysical Union.

  17. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean

    PubMed Central

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I.; Brdicka, Radim; Jodice, Carla

    2016-01-01

    Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools. PMID:27898725

  18. Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia

    PubMed Central

    Gopal, Shruti; Miller, Robyn L.; Baum, Stefi A.; Calhoun, Vince D.

    2016-01-01

    Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher

  19. Application of the artificial neural network for reconstructing the internal-structure image of a random medium by spatial characteristics of backscattered optical radiation

    SciTech Connect

    Veksler, B A; Meglinskii, I V

    2008-06-30

    The feasibility of using an artificial neural network (ANN), which is the standard Matlab tool, for non-invasive (based on the data of backscattering) diagnostics of macro-inhomogeneities, localised at subsurface layers of the turbid strongly scattering medium was shown. The spatial and angle distribution of the backscattered optical radiation was calculated by using the Monte-Carlo method combining the modelling of effective optical paths and the use of statistical weights. It was shown that application of the backscattering method together with the ANN allows solving inverse problems for determining the average radius of the scattering particles and for reconstructing the images of structural elements within the medium with a high accuracy. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  20. Experimental Characterisation and Multi-Physic Modelling of Direct Bonding Mechanical Behaviour: Application to Spatial Optical Systems

    NASA Astrophysics Data System (ADS)

    Cocheteau, N.; Maurel-Pantel, A.; Lebon, F.; Rosu, I.; Ait-Zaid, S.; Savin de Larclause, I.; Salaun, Y.

    2014-06-01

    Direct bonding is a well-known process. However in order to use this process in spatial instrument fabrication the mechanical resistance needs to be quantified precisely. In order to improve bonded strength, optimal parameters of the process are found by studying the influence of annealing time, temperature and roughness which are studied using three experimental methods: double shear, cleavage and wedge tests. Those parameters are chosen thanks to the appearance of time/temperature equivalence. All results brought out the implementation of a multi-physic model to predict the mechanical behavior of direct bonding interface.

  1. A comparison of the spatial linear model to Nearest Neighbor (k-NN) methods for forestry applications.

    PubMed

    Ver Hoef, Jay M; Temesgen, Hailemariam

    2013-01-01

    Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model (SLM) and k-NN (k-Nearest Neighbor) are compared, theoretically, through simulations, and as applied to real forestry data. While both methods have desirable properties, a review shows that the SLM has prediction optimality properties, and can be quite robust. Simulations of artificial populations and resamplings of real forestry data show that the SLM has smaller empirical root-mean-squared prediction errors (RMSPE) for a wide variety of data types, with generally less bias and better interval coverage than k-NN. These patterns held for both point predictions and for population totals or averages, with the SLM reducing RMSPE from 9% to 67% over some popular k-NN methods, with SLM also more robust to spatially imbalanced sampling. Estimating prediction standard errors remains a problem for k-NN predictors, despite recent attempts using model-based methods. Our conclusions are that the SLM should generally be used rather than k-NN if the goal is accurate mapping or estimation of population totals or averages.

  2. SEHR-ECHO v1.0: a Spatially-Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Nicótina, L.; Imfeld, C.; Da Ronco, P.; Bertuzzo, E.; Rinaldo, A.

    2014-03-01

    This paper presents the Spatially-Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation of hydrological processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions through gravity-driven transitions among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at the sub-catchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The model thus breaks down the complexity of the hydrologic response into an explicit geomorphological combination of dominant spatial patterns of precipitation input and of hydrologic process controls. Nonstationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil layer. We present here the basic model set-up for precipitation-runoff simulation. The performance of the model is illustrated for a snow-dominated catchment in Switzerland with a small glacier cover.

  3. A Community Needs Index for Adolescent Pregnancy Prevention Program Planning: Application of Spatial Generalized Linear Mixed Models.

    PubMed

    Johnson, Glen D; Mesler, Kristine; Kacica, Marilyn A

    2017-02-06

    Objective The objective is to estimate community needs with respect to risky adolescent sexual behavior in a way that is risk-adjusted for multiple community factors. Methods Generalized linear mixed modeling was applied for estimating teen pregnancy and sexually transmitted disease (STD) incidence by postal ZIP code in New York State, in a way that adjusts for other community covariables and residual spatial autocorrelation. A community needs index was then obtained by summing the risk-adjusted estimates of pregnancy and STD cases. Results Poisson regression with a spatial random effect was chosen among competing modeling approaches. Both the risk-adjusted caseloads and rates were computed for ZIP codes, which allowed risk-based prioritization to help guide funding decisions for a comprehensive adolescent pregnancy prevention program. Conclusions This approach provides quantitative evidence of community needs with respect to risky adolescent sexual behavior, while adjusting for other community-level variables and stabilizing estimates in areas with small populations. Therefore, it was well accepted by the affected groups and proved valuable for program planning. This methodology may also prove valuable for follow up program evaluation. Current research is directed towards further improving the statistical modeling approach and applying to different health and behavioral outcomes, along with different predictor variables.

  4. A Critical Examination of Spatial Biases Between MODIS and MISR Aerosol Products - Application for Potential AERONET Deployment

    NASA Technical Reports Server (NTRS)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.

    2011-01-01

    AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.

  5. High-Field fMRI for Human Applications: An Overview of Spatial Resolution and Signal Specificity

    PubMed Central

    Olman, Cheryl A; Yacoub, Essa

    2011-01-01

    In the last decade, dozens of 7 Tesla scanners have been purchased or installed around the world, while 3 Tesla systems have become a standard. This increased interest in higher field strengths is driven by a demonstrated advantage of high fields for available signal-to-noise ratio (SNR) in the magnetic resonance signal. Functional imaging studies have additional advantages of increases in both the contrast and the spatial specificity of the susceptibility based BOLD signal. One use of this resultant increase in the contrast to noise ratio (CNR) for functional MRI studies at high field is increased image resolution. However, there are many factors to consider in predicting exactly what kind of resolution gains might be made at high fields, and what the opportunity costs might be. The first part of this article discusses both hardware and image quality considerations for higher resolution functional imaging. The second part draws distinctions between image resolution, spatial specificity, and functional specificity of the fMRI signals that can be acquired at high fields, suggesting practical limitations for attainable resolutions of fMRI experiments at a given field, given the current state of the art in imaging techniques. Finally, practical resolution limitations and pulse sequence options for studies in human subjects are considered. PMID:22216080

  6. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications.

    PubMed

    Kalantari, Zahra; Cavalli, Marco; Cantone, Carolina; Crema, Stefano; Destouni, Georgia

    2017-03-01

    Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability.

  7. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  8. Achievements of the DOT-NASA Joint Program on Remote Sensing and Spatial Information Technologies: Application to Multimodal Transportation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing

  9. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Hiemer, Stefan

    2015-07-01

    In this paper we present a penalized likelihood-based method for spatial estimation of Gutenberg-Richter's b value. Our method incorporates a nonarbitrary partitioning scheme based on Voronoi tessellation, which allows for the optimal partitioning of space using a minimum number of free parameters. By random placement of an increasing number of Voronoi nodes, we are able to explore the whole solution space in terms of model complexity. We obtain an overall likelihood for each model by estimating the b values in all Voronoi regions and calculating its joint likelihood using Aki's formula. Accounting for the number of free parameters, we then calculate the Bayesian Information Criterion for all random realizations. We investigate the ensemble of the best performing models and demonstrate the robustness and validity of our method through extensive synthetic tests. We apply our method to the seismicity of California using two different time spans of the Advanced National Seismic System catalog (1984-2014 and 2004-2014). The results show that for the last decade, the b value variation in the well-instrumented parts of mainland California is limited to the range of (0.94 ± 0.04-1.15 ± 0.06). Apart from the Geysers region, the observed variation can be explained by network-related discrepancies in the magnitude estimations. Our results suggest that previously reported spatial b value variations obtained using classical fixed radius or nearest neighbor methods are likely to have been overestimated, mainly due to subjective parameter choices. We envision that the likelihood-based model selection criteria used in this study can be a useful tool for generating improved earthquake forecasting models.

  10. Mapping Spatial Variations of Absorption and Scattering in the Crust: Sensitivity Kernels and Preliminary Application to the Alps

    NASA Astrophysics Data System (ADS)

    Margerin, L.; Mayor, J.; Calvet, M.

    2015-12-01

    Among the physical processes that affect the amplitude of seismic waves, attenuation is one of the most poorly understood and undetermined factor. Two basic mechanisms control seismic attenuation in the crust: scattering by small-scale heterogeneities, and absorption of seismic energy by inelastic and irreversible processes. A number of techniques have been devised to retrieve attenuation information from the modeling of direct seismic waves emitted by earthquakes. However, a major issue with the use of ballistic signals lies in the fact that their amplitude is affected by multiple factors that are difficult to disentangle in practice: radiation pattern, focussing/defocussing or site effects. Moreover, since both scattering and absorption manifest themselves as an approximately exponential decay of direct wave amplitude with distance, it is not possible to separate their effects from attenuation measurements based on ballistic waves only. In this work, we propose a multiple scattering approach to map independently scattering and absorption properties of the crust using seismic coda waves. To this end, we introduce a model of energy transport of seismic energy known as radiative transfer and use perturbation theory to derive sensitivity kernels for the intensity detected in the coda. Numerical evaluation of these kernels demonstrates that coda waves possess distinct spatial sensitivities to absorption and scattering. These results pave the way for the development of a genuine tomographic approach to the mapping of absorption and scattering in the crust. Preliminary results on the absorption structure of the Alps in the 1-32 Hz frequency reveal some interesting correlations with the geology at spatial scales ranging from a few tens to a few thousand kilometers. Regions of high absorption delineate sedimentary structures such as basins, grabens and alluvial valleys while localized zones of weak absorption correlate with mantellic or plutonic intrusions such as the

  11. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    PubMed

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high

  12. Application of Serological Tools and Spatial Analysis to Investigate Malaria Transmission Dynamics in Highland Areas of Southwest Uganda

    PubMed Central

    Lynch, Caroline A.; Cook, Jackie; Nanyunja, Sarah; Bruce, Jane; Bhasin, Amit; Drakeley, Chris; Roper, Cally; Pearce, Richard; Rwakimari, John B.; Abeku, Tarekegn A.; Corran, Patrick; Cox, Jonathan

    2016-01-01

    Serological markers, combined with spatial analysis, offer a comparatively more sensitive means by which to measure and detect foci of malaria transmission in highland areas than traditional malariometric indicators. Plasmodium falciparum parasite prevalence, seroprevalence, and seroconversion rate to P. falciparum merozoite surface protein-119 (MSP-119) were measured in a cross-sectional survey to determine differences in transmission between altitudinal strata. Clusters of P. falciparum parasite prevalence and high antibody responses to MSP-119 were detected and compared. Results show that P. falciparum prevalence and seroprevalence generally decreased with increasing altitude. However, transmission was heterogeneous with hotspots of prevalence and/or seroprevalence detected in both highland and highland fringe altitudes, including a serological hotspot at 2,200 m. Results demonstrate that seroprevalence can be used as an additional tool to identify hotspots of malaria transmission that might be difficult to detect using traditional cross-sectional parasite surveys or through vector studies. Our study findings identify ways in which malaria prevention and control can be more effectively targeted in highland or low transmission areas via serological measures. These tools will become increasingly important for countries with an elimination agenda and/or where malaria transmission is becoming patchy and focal, but receptivity to malaria transmission remains high. PMID:27022156

  13. Applications of UV Spatial Heterodyne Spectroscopy for High Spectral Resolution Studies of Diffuse Emission Line Sources in the Solar System

    NASA Astrophysics Data System (ADS)

    Harris, W.; Roesler, F.; Mierkiewicz, E.; Corliss, J.

    2003-05-01

    A Spatial Heterodyne Spectrometer (SHS) instrument combines high etendue and high spectral resolution in a compact package that is very effective for the study of diffuse low surface brightness emissions. SHS instruments require no telescope to achieve high sensitivity on extended sources and may be designed with fields of view exceeding 1 degree and spectral resolutions exceeding 100000. This combination makes them well suited to many solar system targets including comets, the interplanetary medium, and planetary atmospheres/coronas, using platforms from sounding rockets to remote probes. We are currently developing two variations of the SHS. The first of these is a new form of all-reflective, common-path SHS optimized for the study of FUV emission lines where transmitting optics will introduce an unacceptable attenuation of the incident beam. Secondly we are developing a multiorder variation of the SHS, where a customized high order grating is used to overlap integer orders of multiple target emission lines that can then be separated using a transform technique or with order separation filters. In this presentation we will describe the basic SHS technique, the design variations we are pursuing, and their rationale, both technical and scientific.

  14. Positive circuits and d-dimensional spatial differentiation: application to the formation of sense organs in Drosophila.

    PubMed

    Crumière, Anne; Sablik, Mathieu

    2008-01-01

    We discuss a rule proposed by the biologist Thomas according to which the possibility for a genetic network (represented by a signed directed graph called a regulatory graph) to have several stable states implies the existence of a positive circuit. This result is already known for different models, differential or discrete formalism, but always with a network of genes contained in a single cell. Thus, we can ask about the validity of this rule for a system containing several cells and with intercellular genetic interactions. In this paper, we consider the genetic interactions between several cells located on a d-dimensional lattice, i.e., each point of lattice represents a cell to which we associate the expression level of n genes contained in this cell. With this configuration, we show that the existence of a positive circuit is a necessary condition for a specific form of multistationarity, which naturally corresponds to spatial differentiation. We then illustrate this theorem through the example of the formation of sense organs in Drosophila.

  15. Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems

    NASA Astrophysics Data System (ADS)

    Geslain, A.; Raetz, S.; Hiraiwa, M.; Abi Ghanem, M.; Wallen, S. P.; Khanolkar, A.; Boechler, N.; Laurent, J.; Prada, C.; Duclos, A.; Leclaire, P.; Groby, J.-P.

    2016-10-01

    We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatiotemporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the method enables the recovery of viscoelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where the method demonstrates the effect of leakage on the splitting of the forward S1 and backward S2 modes around the Zero-Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a substrate near 100 MHz, where the method reveals the complex wavenumbers for an out-of-plane translational and two in-plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique tool for analyzing spatiotemporal measurements of propagating waves.

  16. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect

    Jun, Ji Hyun

    2012-01-01

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial

  17. Investigation of detailed spatial structure of the Moscow urban heat island with application of the newest meteorological observations and regional climate modelling

    NASA Astrophysics Data System (ADS)

    Varentsov, Mikhail; Pavel, Konstantinov; Timofey, Samsonov

    2016-04-01

    During the last years, the network of metrological observation in Moscow megacity and its neighborhoods, forming the biggest urban agglomeration in Europe, was significantly extended. Several new weather stations and completely new dense network of air-quality monitoring appears during the last decade. In addition, several microwave meteorological profilers MTP 5, which are available to measure temperature at the heights from 0 to 1000 meters with 50-m resolution, were installed in the city and its surrounding. All these measurements allow revealing undiscovered features of Moscow urban climate and urban heat island (UHI). In our research, bases on this data, we covered several topics related to urban climatology: - Investigation of detailed spatial structure of Moscow UHI and its relationships with building features, such as land use and morphology of the street canyons, obtained by GIS-algorithms according (Samsonov et. al, 2015); - Investigation of three-dimensional structure of the UHI, including its vertical extend and influence on the stratification of the atmosphere, and three-dimensional structure of the urban heat island advection and urban heat plumes; - Application of the newest data for validation of the regional climate model COSMO-CLM, coupled with TEB urban scheme (Masson, 2000; Trusilova et. al., 2013), launched for Moscow region with 1-km spatial resolution. References: 1. Masson V. A. Physically-Based Scheme for the Urban Energy Budget in Atmospheric models. Bound. Layer Meteor. 2000. V. 94 (3). P. 357-397. 2. Trusilova K., Früh B., Brienen S., Walter A., Masson V., Pigeon G., Becker P. Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM. J. Appl. Meteor. Climatol. V. 52. P. 2296-2311. 3. Samsonov T.E., Konstantinov P.I., Varentsov M.I. Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate. 2015. Vol. 13. P. 122-139.

  18. A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning.

    PubMed

    Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N

    2013-03-05

    On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.

  19. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

    PubMed

    Sadat, M E; Patel, Ronak; Sookoor, Jason; Bud'ko, Sergey L; Ewing, Rodney C; Zhang, Jiaming; Xu, Hong; Wang, Yilong; Pauletti, Giovanni M; Mast, David B; Shi, Donglu

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.

  20. Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks

    NASA Astrophysics Data System (ADS)

    Walker, Joan Marie

    Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for

  1. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    SciTech Connect

    Sadat, M E; Patel, Ronak; Sookoor, Jason; Bud'ko, Sergey L; Ewing, Rodney C; Zhang, Jiaming; Xu, Hong; Wang, Yilong; Pauletti, Giovanni M; Mast, David B; Shi, Donglu

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.

  2. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation

  3. Spatial and Temporal Analysis of Human Movements and Applications for Disaster Response Management Utilizing Cell Phone Usage Data

    NASA Astrophysics Data System (ADS)

    Yasumiishi, M.; Renschler, C. S.; Bittner, T. E.

    2015-07-01

    As cell phone usage becomes a norm in our daily lives, analysis and application of the data has become part of various research fields. This study focuses on the application of cell phone usage data to disaster response management. Cell phones work as a communication link between emergency responders and victims during and after a major disaster. This study recognizes that there are two kinds of disasters, one with an advance warning, and one without an advance warning. Different movement distance between a day with a blizzard (advanced warning) and a normal weather day was identified. In the scenario of a day with an extreme event without advanced warning (earthquake), factors that alter the phone users' movements were analyzed. Lastly, combining both cases, a conceptual model of human movement factors is proposed. Human movements consist of four factors that are push factors, movement-altering factors, derived attributes and constraint factors. Considering each category of factors in case of emergency, it should be necessary that we prepare different kinds of emergency response plans depending on the characteristics of a disaster.

  4. Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with Applications to Indicators of Adverse Birth Outcomes.

    PubMed

    Molitor, John; Coker, Eric; Jerrett, Michael; Ritz, Beate; Li, Arthur

    2016-04-01

    obtained by the estimation process generally yields smaller standard errors while inconsistent clustering is generally associated with larger errors. These multivariate methods are applied to a range of different problems related to air pollution exposures, namely an association of multipollutant profiles with indicators of poverty and to an assessment of the association between measures of various air pollutants, patterns of socioeconomic status (SES), and birth outcomes. All of these studies involve an examination of regional-level exposures, at the census tract (CT) and census block group (CBG) levels, and individual-level outcomes throughout Los Angeles (LA) County. Results indicate that effects of pollutants vary spatially and vary in a complex interconnected manner that cannot be discerned using standard additive line ar models. Results obtaine d from these studies can be used to efficiently use limited resources to inform policies in targeting are as where air pollution reductions result in maximum health benefits.

  5. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  6. Planetary Spatial Analyst

    NASA Technical Reports Server (NTRS)

    Keely, Leslie

    2008-01-01

    This is a status report for the project entitled Planetary Spatial Analyst (PSA). This report covers activities from the project inception on October 1, 2007 to June 1, 2008. Originally a three year proposal, PSA was awarded funding for one year and required a revised work statement and budget. At the time of this writing the project is well on track both for completion of work as well as budget. The revised project focused on two objectives: build a solid connection with the target community and implement a prototype software application that provides 3D visualization and spatial analysis technologies for that community. Progress has been made for both of these objectives.

  7. Calibrating R-LINE model results with observational data to develop annual mobile source air pollutant fields at fine spatial resolution: Application in Atlanta

    NASA Astrophysics Data System (ADS)

    Zhai, Xinxin; Russell, Armistead G.; Sampath, Poornima; Mulholland, James A.; Kim, Byeong-Uk; Kim, Yunhee; D'Onofrio, David

    2016-12-01

    The Research LINE-source (R-LINE) dispersion model for near-surface releases is a dispersion model developed to estimate the impacts of line sources, such as automobiles, on primary air pollutant levels. In a multiyear application in Atlanta, R-LINE simulations overestimated concentrations and spatial gradients compared to measurements. In this study we present a computationally efficient procedure for calculating annual average spatial fields and develop an approach for calibrating R-LINE concentrations with observational data. Simulated hourly concentrations of PM2.5, CO and NOx from mobile sources at 250 m resolution in the 20-county Atlanta area based on average diurnal emission profiles and meteorological categories were used to estimate annual averages. Compared to mobile source PM2.5 impacts estimated by chemical mass balance with gas constraints (CMB-GC), a source apportionment model based on PM2.5 speciation measurements, R-LINE estimates of traffic-generated PM2.5 impacts were found to be higher by a factor of 1.8 on average across all sites. Compared to observations of daily 1 h maximum CO and NOx, R-LINE estimates were higher by factors of 1.3 and 4.2 on average, respectively. Annual averages estimated by R-LINE were calibrated by regression with observations from 2002 to 2011 at multiple sites for daily 1 h maximum CO and NOx and with measurement-based mobile source impacts estimated by CMB-GC for PM2.5. The calibration reduced normalized mean bias (NMB) from 29% to 0.3% for PM2.5, from 22% to -1% for CO, and from 303% to 49% for NOx. Cross-validation analysis (withholding sites one at a time) leads to NMB of 13%, 1%, and 69% for PM2.5, CO, and NOx, respectively. The observation-calibrated R-LINE annual average spatial fields were compared with pollutant fields from observation-blended, 12 km resolution Community Multi-scale Air Quality (CMAQ) model fields for CO and NOx, with Pearson correlation R2 values of 0.55 for CO and 0.54 for NOx found. The

  8. Elucidating the impact of nitrate and labile carbon application on spatial heterogeneity of denitrification by 15N modelling

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Dixon, Liz; Matthews, Peter; Gilsanz, Claudia; Bol, Roland; Lewicka-Szczebak, Dominika; Well, Reinhard

    2016-04-01

    N2O is considered to be an important GHG with soils representing its major source and accounting for approximately 6% of the current global warming and is also implicated in the depletion of stratospheric ozone. The atmospheric N2O concentration has been increasing since the Industrial Revolution making the understanding of its sources and removal processes very important for development of mitigation strategies. Bergstermann et al. (2011) found evidence of the existence of more than one pool of nitrate undergoing denitrification in a silty clay loam arable soil amended with glucose/nitrate solution. The Rayleigh type model was used to simulate d15N of N2O using process rates and associated fractionation factors, but assumptions for some of the model parameters had to be made due to lack of available data. In this study we carried out 2 incubation experiments in order to parameterise the model. To restrict the volume of soil reached by the amendment, we used blocks containing 3 soil cores that were incubated in one vessel to measure emissions of NO, N2O, N2 and CO2 from a clay grassland soil amended with KNO3 (N) and glucose (C) in three treatments: '1C' only 1 core received N and C (the other 2 received water), '3C' 3 cores received N and C, and 'Control' (received water only). The results showed changes in the d15Nbulk trends after day 6 post amendment application, coinciding with the decrease of N2O fluxes. We also report the results in the 15N site preference (SP) and d18O. We will show the results from the model validation based on this data.

  9. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.

    2001-01-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius

  10. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source.

    PubMed

    Armoundas, A A; Feldman, A B; Sherman, D A; Cohen, R J

    2001-09-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius

  11. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    USGS Publications Warehouse

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  12. Development of a statistical model to identify spatial and meteorological drivers of elevated O3 in Nevada and its application to other rural mountainous regions.

    PubMed

    Fine, Rebekka; Miller, Matthieu B; Gustin, Mae Sexauer

    2015-10-15

    Measurements of O3 at relatively remote monitoring sites are useful for quantifying baseline O3, and subsequently the magnitude of O3 not controllable by local regulations. As the National Ambient Air Quality Standard (NAAQS) for O3 becomes more stringent, there is an increased need to quantify baseline O3 particularly in the Western US, where regional and global sources can significantly enhance O3 measured at surface sites, yielding baseline mixing ratios approaching or exceeding the NAAQS threshold. Past work has indicated that meteorological conditions as well as site specific spatial characteristics (e.g. elevation, basin size, gradient) are significantly correlated with O3 intercepted at rural monitoring sites. Here, we use 3 years of measurements from sites throughout rural Nevada to develop a categorical tree model to identify spatial and meteorological characteristics that are associated with elevated baseline O3. Data from other sites in the Intermountain Western US are used to test the applicability of the model for sites throughout the region. Our analyses indicate that increased elevation and basin size were associated with increased frequency of elevated O3. On a daily time scale, relative humidity had the strongest association with observed MDA8 O3. Seventy-four percent of MDA8 O3 observations>60 ppbv occurred when daily minimum relative humidity was <15%. Further, we found that including ancillary pollutant data did not improve the predictive accuracy for measurements >60 ppbv whereas including upper air meteorological measurements improved the accuracy of predicting periods when O3 was >60 ppbv. These findings indicate that transport, rather than local production, influences O3 measurements in Nevada, and that high elevation sites in rural Nevada, are representative of baseline conditions in the Intermountain Western US.

  13. A new protocol for evaluating putative causes for multiple variables in a spatial setting, illustrated by its application to European cancer rates.

    PubMed

    Sokal, Robert R; Oden, Neal L; Rosenberg, Michael S; Thomson, Barbara A

    2004-01-01

    We introduce a statistical protocol for analyzing spatially varying data, including putative explanatory variables. The procedures comprise preliminary spatial autocorrelation analysis (from an earlier study), path analysis, clustering of the resulting set of path diagrams, ordination of these diagrams, and confirmatory tests against extrinsic information. To illustrate the application of these methods, we present incidence and mortality rates of 31 organ- and sex-specific cancers in Europe; these rates vary markedly with geography and type of cancer. Additionally, we investigated three factors (ethnohistory, genetics, and geography) putatively affecting these rates. The five variables were correlated separately for the 31 cancers over European reporting stations. We analyzed the correlations by path analysis, k-means clustering, and nonmetric multidimensional scaling; coefficients of the 31 path diagrams modeling the correlations vary substantially. To simplify interpretation, we grouped the diagrams into five clusters, for which we describe the differential effects of the three putative causes on incidence and mortality. When scaled, the path coefficients intergrade without marked gaps between clusters. Ethnic differences make for differences in cancer rates, even when the populations tested are ancient and complex mixtures. Path analysis usefully decomposes a structural model involving effects and putative causes, and estimates the magnitude of the model's components. Smooth intergradation of the path coefficients suggests the putative causes are the results of multiple forces. Despite this continuity of the path diagrams of the 31 cancers, clustering offers a useful segmentation of the continuum. Etiological and other extrinsic information on the cancers map significantly into the five clusters, demonstrating their epidemiological relevance.

  14. Spatial data interoperability for multi-platform GIS based on Oracle Spatial

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Zhu, Xinyan

    2006-10-01

    Spatial data sharing among multiple GIS (Geographic Information System) platforms is a fundamental requirement of many GIS applications, yet conventional methods of spatial data interoperability don't adequately consider practical application circumstance, which now becomes a primary barrier to more efficient spatial data sharing among multiple GIS platforms. In this paper, after analyzing the disadvantages of conventional methods and the causation of the disadvantages, and analyzing the principle of spatial data access of ArcGIS, MapInfo and GeoStar based on Oracle Spatial storage, the authors propose a new spatial data interoperability method called Different meta information and Same spatial data Method. This method is based on Oracle Spatial, through which spatial data interoperability for multi-platform of GIS is available. The results of experiments demonstrate that this method is a new simple practical approach adapted for current application circumstance, and it provides us a new idea for spatial data interoperability.

  15. Spatial Computation

    DTIC Science & Technology

    2003-12-01

    particular program, synthesized under compiler control from the application source code . The translation is illustrated in Figure 1.4. From now on, when we use...very efficient method of exploring the design of complex application-specific system-on-a-chip devices using only the application source code . • New...computation gates. This frees, but also complicates, the com- pilation process. In order to handle the great semantic gap between the source code and the

  16. Spatially Enabling the Health Sector

    PubMed Central

    Weeramanthri, Tarun Stephen; Woodgate, Peter

    2016-01-01

    Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings. PMID:27867933

  17. Deriving Extensional Spatial Composition Tables

    NASA Astrophysics Data System (ADS)

    El-Geresy, Baher; Abdelmoty, Alia I.; Ware, Andrew J.

    Spatial composition tables are fundamental tools for the realisation of qualitative spatial reasoning techniques. Studying the properties of these tables in relation to the spatial calculi they are based on is essential for understanding the applicability of these calculi and how they can be extended and generalised. An extensional interpretation of a spatial composition table is an important property that has been studied in the literature and is used to determine the validity of the table for the models it is proposed for. It provides means for consistency checking of ground sets of relations and for addressing spatial constraint satisfaction problems. Furthermore, two general conditions that can be used to test for extensionality of spatial composition tables are proposed and applied to the RCC8 composition table to verify the allowable models in this calculus.

  18. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran.

    PubMed

    Rahmati, Omid; Melesse, Assefa M

    2016-10-15

    Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need.

  19. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4.

    PubMed

    Zhao, Shulan; Shang, Xiaojuan; Duo, Lian

    2013-02-01

    Municipal solid waste compost can be used to cropland as soil amendment to supply nutrients and improve soil physical properties. But long-term application of municipal solid waste (MSW) compost may result in accumulation of toxic metals in amended soil. Phytoremediation, especially phytoextraction, is a novel, cost-effective, and environmentally friendly approach that uses metal-accumulating plants to concentrate and remove metals from contaminated soils. Ethylenediaminetetraacetate (EDTA) was applied to metal-contaminated soil to increase the mobility and phytoavailability of metals in soil, thereby increasing the amount of toxic metals accumulated in the upper parts of phytoextracting plants. The objectives of this study were (1) to investigate the accumulation and spatial distribution of toxic metals (Cd, Cr, and Pb) in mulberry from MSW compost with the application of EDTA and (NH(4))(2)SO(4), (2) to examine the effectiveness of EDTA and (NH(4))(2)SO(4) applied together on toxic metals (Cd, Cr, and Pb) removal by mulberry under field conditions, and (3) to evaluate the potential of mulberry for phytoextraction of toxic metals from MSW compost. The tested plant-mulberry had been grown in MSW compost field for 4 years. EDTA solution at five rates (0, 50, 100, 50 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4), and 100 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4)) was added into mulberry root medium in September 2009. Twenty days later, the plants were harvested and separated into six parts according to plant height. Cd, Cr, and Pb contents in plant samples and MSW compost were analyzed using an atomic absorption spectrophotometer. In the same treatment, Cd, Cr, and Pb concentrations in mulberry shoot were all higher than those in root, and Cd and Pb concentrations in shoot increased from lower to upper parts, reaching the highest in leaves. Significant increases were found in toxic metal concentration in different parts of mulberry with increasing EDTA concentration

  20. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  1. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Adaptive compensation of atmospheric phase distortions using the spatial spectrum of images

    NASA Astrophysics Data System (ADS)

    Anufriev, A. V.; Zimin, Yu A.; Tolmachev, Alexei I.

    1987-10-01

    A theoretical investigation is reported of an algorithm for adaptive compensation of atmospheric phase distortions using the spatial spectrum of images. This algorithm can be used to reconstruct images of incoherently illuminated objects of arbitrary shape.

  2. A Bayesian Nonparametric Model for Spatially Distributed Multivariate Binary Data with Application to a Multidrug-Resistant Tuberculosis (MDR-TB) Study

    PubMed Central

    Zhang, Nanhua; Shi, Ran

    2015-01-01

    Summary There has been an increasing interest in the analysis of spatially distributed multivariate binary data motivated by a wide range of research problems. Two types of correlations are usually involved: the correlation between the multiple outcomes at one location and the spatial correlation between the locations for one particular outcome. The commonly used regression models only consider one type of correlations while ignoring or modeling inappropriately the other one. To address this limitation, we adopt a Bayesian nonparametric approach to jointly modeling multivariate spatial binary data by integrating both types of correlations. A multivariate probit model is employed to link the binary outcomes to Gaussian latent variables; and Gaussian processes are applied to specify the spatially correlated random effects. We develop an efficient Markov chain Monte Carlo algorithm for the posterior computation. We illustrate the proposed model on simulation studies and a multidrug-resistant tuberculosis case study. PMID:24975716

  3. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    PubMed

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse.

  4. Development of a spatially universal framework for classifying stream assemblages with application to conservation planning for Great Lakes lotic fish communities

    USGS Publications Warehouse

    McKenna, James E.; Schaeffer, Jeffrey S.; Stewart, Jana S.; Slattery, Michael T.

    2015-01-01

    Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology-guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish-guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.

  5. Spatial-temporal data mining

    NASA Astrophysics Data System (ADS)

    Pokrajac, Dragoljub Milos

    Spatial-temporal data mining techniques have become increasingly important in emerging fields such as remote sensing, precision agriculture, geoscience and brain imaging. In this Thesis, novel spatial-temporal data mining methods and algorithms are presented. After the introductory remarks, modeling spatial-temporal attributes with short observation history using spatial-temporal autoregressive models on uniform grid is explored. Model specifications (including covariance structure and stationarity) are discussed as well as issues in model identification, estimation and forecasting on three different sampling schedules. The proposed technique is experimentally evaluated on simulated spatial-temporal processes that confirm to model assumptions as well as on real-life agricultural data. Subsequently, we proceed with spatial-temporal prediction of a response variable with a partial observability of influential attributes. After mathematical definition of the proposed model, evaluation of the estimation technique on synthetic data that conform to the modeling assumptions is performed and a model is assessed on simulated realistic spatial-temporal data, obtained using the proposed data generator. The following part of the Thesis is dedicated to spatial-temporal profit optimization using neural network modeling. Profit optimization is proposed using a two-phase process that consists of estimation of response/attribute dependence and profit optimization for a particular tuple of attribute values. The proposed method is evaluated on simulated precision agriculture data. Next, we introduce a spatial-temporal data simulator, which is an important tool for evaluation of knowledge discovery methods for spatial-temporal domains. Various aspects of the proposed data generator are discussed, including generation of features and simulation of response variable as well as a practical implementation of the proposed method and its application on experiments with simulated data. The

  6. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    PubMed

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  7. SMART: A Spatially Explicit Bio-Economic Model for Assessing and Managing Demersal Fisheries, with an Application to Italian Trawlers in the Strait of Sicily

    PubMed Central

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  8. Development of "Laser Ablation Direct Analysis in Real Time Imaging" Mass Spectrometry: Application to Spatial Distribution Mapping of Metabolites Along the Biosynthetic Cascade Leading to Synthesis of Atropine and Scopolamine in Plant Tissue.

    PubMed

    Fowble, Kristen L; Teramoto, Kanae; Cody, Robert B; Edwards, David; Guarrera, Donna; Musah, Rabi A

    2017-03-21

    Methods for the accomplishment of small-molecule imaging by mass spectrometry are challenged by the need for sample pretreatment steps, such as cryo-sectioning, dehydration, chemical fixation, or application of a matrix or solvent, that must be performed to obtain interpretable spatial distribution data. Furthermore, these steps along with requirements of the mass analyzer such as high vacuum, can severely limit the range of sample types that can be analyzed by this powerful method. Here, we report the development of a laser ablation-direct analysis in real time imaging mass spectrometry approach which couples a 213 nm Nd:YAG solid state UV laser to a direct analysis in a real time ion source and high-resolution time-of-flight mass spectrometer. This platform enables facile determination of the spatial distribution of small-molecules spanning a range of polarities in a diversity of sample types and requires no matrix, vacuum, solvent, or complicated sample pretreatment steps. It furnishes high-resolution data, can be performed under ambient conditions on samples in their native form, and results in little to no fragmentation of analytes. We demonstrate its application through determination of the spatial distribution of molecules involved in the biosynthetic cascade leading to formation of the clinically relevant alkaloids atropine and scopolamine in Datura leichhardtii seed tissue.

  9. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  10. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  11. Alternative spatial configurations to reflect landscape structure in a hydrological model: SUMMA applications to the Reynolds Creek Watershed and the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Clark, Martyn; Mizukami, Naoki; Chegwidden, Oriana

    2016-04-01

    Most existing hydrological models use a fixed representation of landscape structure. For example, high-resolution, spatially-distributed models may use grid cells that exchange moisture through the saturated subsurface or may divide the landscape into hydrologic response units that only exchange moisture through surface channels. Alternatively, many regional models represent the landscape through coarse elements that do not model any moisture exchange between these model elements. These spatial organizations are often represented at a low-level in the model code and its data structures, which makes it difficult to evaluate different landscape representations using the same hydrological model. Instead, such experimentation requires the use of multiple, different hydrological models, which in turn complicates the analysis, because differences in model outcomes are no longer constrained by differing spatial representations. This inflexibility in the representation of landscape structure also limits a model's capability for scaling local processes to regional outcomes. In this study, we used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to evaluate different model spatial configurations to represent landscape structure and to evaluate scaling behavior. SUMMA can represent the moisture exchange between arbitrarily shaped landscape elements in a number of different ways, while using the same model parameterizations for vertical fluxes. This allows us to isolate the effects of changes in landscape representations on modeled hydrological fluxes and states. We examine the effects of spatial configuration in Reynolds Creek, Idaho, USA, which is a research watershed with gaged areas from 1-20 km2. We then use the same modeling system to evaluate scaling behavior in simulated hydrological fluxes in the Columbia River Basin, Pacific Northwest, USA. This basin drains more than 500,000 km2 and includes the Reynolds Creek Watershed.

  12. Comparing the performances of Diggle's tests of spatial randomness for small samples with and without edge-effect correction: application to ecological data.

    PubMed

    Gignoux, J; Duby, C; Barot, S

    1999-03-01

    Diggle's tests of spatial randomness based on empirical distributions of interpoint distances can be performed with and without edge-effect correction. We present here numerical results illustrating that tests without the edge-effect correction proposed by Diggle (1979, Biometrics 35, 87-101) have a higher power for small sample sizes than those with correction. Ignoring the correction enables detection of departure from spatial randomness with smaller samples (down to 10 points vs. 30 points for the tests with correction). These results are confirmed by an example with ecological data consisting of maps of two species of trees in a West African savanna. Tree numbers per species per map were often less than 20. For one of the species, for which maps strongly suggest an aggregated pattern, tests without edge-effect correction enabled rejection of the null hypothesis on three plots out of five vs. on only one for the tests with correction.

  13. [Spatial Distribution of Type 2 Diabetes Mellitus in Berlin: Application of a Geographically Weighted Regression Analysis to Identify Location-Specific Risk Groups].

    PubMed

    Kauhl, Boris; Pieper, Jonas; Schweikart, Jürgen; Keste, Andrea; Moskwyn, Marita

    2017-02-16

    Understanding which population groups in which locations are at higher risk for type 2 diabetes mellitus (T2DM) allows efficient and cost-effective interventions targeting these risk-populations in great need in specific locations. The goal of this study was to analyze the spatial distribution of T2DM and to identify the location-specific, population-based risk factors using global and local spatial regression models. To display the spatial heterogeneity of T2DM, bivariate kernel density estimation was applied. An ordinary least squares regression model (OLS) was applied to identify population-based risk factors of T2DM. A geographically weighted regression model (GWR) was then constructed to analyze the spatially varying association between the identified risk factors and T2DM. T2DM is especially concentrated in the east and outskirts of Berlin. The OLS model identified proportions of persons aged 80 and older, persons without migration background, long-term unemployment, households with children and a negative association with single-parenting households as socio-demographic risk groups. The results of the GWR model point out important local variations of the strength of association between the identified risk factors and T2DM. The risk factors for T2DM depend largely on the socio-demographic composition of the neighborhoods in Berlin and highlight that a one-size-fits-all approach is not appropriate for the prevention of T2DM. Future prevention strategies should be tailored to target location-specific risk-groups.

  14. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  15. Spatial attention systems in spatial neglect.

    PubMed

    Karnath, Hans-Otto

    2015-08-01

    It has been established that processes relating to 'spatial attention' are implemented at cortical level by goal-directed (top-down) and stimulus-driven (bottom-up) networks. Spatial neglect in brain-damaged individuals has been interpreted as a distinguished exemplar for a disturbance of these processes. The present paper elaborates this assumption. Functioning of the two attentional networks seem to dissociate in spatial neglect; behavioral studies of patients' orienting and exploration behavior point to a disturbed stimulus-driven but preserved goal-directed attention system. When a target suddenly appears somewhere in space, neglect patients demonstrate disturbed detection and orienting if it is located in contralesional direction. In contrast, if neglect patients explore a scene with voluntarily, top-down controlled shifts of spatial attention, they perform movements that are oriented into all spatial directions without any direction-specific disturbances. The paper thus argues that not the top-down control of spatial attention itself, rather a body-related matrix on top of which this process is executed, seems affected. In that sense, the traditional role of spatial neglect as a stroke model for 'spatial attention' requires adjustment. Beyond its insights into the human stimulus-driven attentional system, the disorder most notably provides vistas in how our brain encodes topographical information and organizes spatially oriented action - including the top-down control of spatial attention - in relation to body position.

  16. Spatial analysis of soybean canopy response to soybean cyst nematodes (Heterodera glycines) in eastern Arkansas: An approach to future precision agriculture technology application

    NASA Astrophysics Data System (ADS)

    Kulkarni, Subodh

    2008-10-01

    Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused

  17. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  18. Spatial Encryption under Simpler Assumption

    NASA Astrophysics Data System (ADS)

    Zhou, Muxin; Cao, Zhenfu

    Spatial encryption was first proposed by Boneh and Hamburg. They showed that many useful encryption systems can be derived from it. In this paper, we describe two variants of spatial encryption. First we present a scheme that can be proved to be secure under the decisional bilinear Diffie-Hellman assumption, which is much simpler than the BDHE assumption used by Boneh and Hamburg. However, as a compromise, our ciphertext size and private key size are larger. We also discuss some techniques to shrink the private key of this scheme in a real application. Finally, we provide a hybrid construction which allows an optimal tradeoff between efficiency and security.

  19. A spatially explicit risk approach to support marine spatial planning in the German EEZ.

    PubMed

    Gimpel, Antje; Stelzenmüller, Vanessa; Cormier, Roland; Floeter, Jens; Temming, Axel

    2013-05-01

    An ecosystem approach to marine spatial planning (MSP) promotes sustainable development by organizing human activities in a geo-spatial and temporal context. (1) This study develops and tests a spatially explicit risk assessment to support MSP. Using the German exclusive economic zone (EEZ) of the North Sea as a case study area, current and future spatial management scenarios are assessed. (2) Different tools are linked in order to carry out a comprehensive spatial risk assessment of current and future spatial management scenarios for ecologic and economic ecosystem components, i.e. Pleuronectes platessa nursery grounds. With the identification of key inputs and outputs the suitability of each tool is tested. (3) Here, the procedure as well as the main findings of the spatially explicit risk approach are summarised to demonstrate the applicability of the framework and the need for an ecosystem approach to risk management techniques using geo-spatial tools.

  20. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  1. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  2. Integrating GIS components with knowledge discovery technology for environmental health decision support.

    PubMed

    Bédard, Yvan; Gosselin, Pierre; Rivest, Sonia; Proulx, Marie-Josée; Nadeau, Martin; Lebel, Germain; Gagnon, Marie-France

    2003-04-01

    This paper presents a new category of decision-support tools that builds on today's Geographic Information Systems (GIS) and On-Line Analytical Processing (OLAP) technologies to facilitate Geographic Knowledge Discovery (GKD). This new category, named Spatial OLAP (SOLAP), has been an R&D topic for about 5 years in a few university labs and is now being implemented by early adopters in different fields, including public health where it provides numerous advantages. In this paper, we present an example of a SOLAP application in the field of environmental health: the ICEM-SE project. After having presented this example, we describe the design of this system and explain how it provides fast and easy access to the detailed and aggregated data that are needed for GKD and decision-making in public health. The SOLAP concept is also described and a comparison is made with traditional GIS applications.

  3. Application of a liquid crystal spatial light modulator on optical roughness measurements by a speckle correlation method using two refractive indices

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Eiju, T.; Shirai, T.; Matsuda, K.

    1997-07-01

    A system of roughness measurements using a CCD camera and a liquid crystal spatial light modulator (LCSLM) has been developed. The scattered light patterns from the surface, which is covered by liquids with several different refractive indices, are acquired by the CCD camera and stored in a frame grabber in a computer. The superposition of two arbitrary patterns is calculated by the computer and displayed on the LCSLM. It is then illuminated by coherent light to produce interference fringes of equal inclination at infinity. The surface roughness can be determined through the relationship between the fringe visibility and the difference of refractive indices. The performance of this system is estimated by experiments.

  4. THE SPATIAL AND TEMPORAL DISTRIBUTION OF CHLORPYRIFOS IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE FOLLOWING CRACK AND CREVICE TYPE APPLICATIONS

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, air exchange, temperature and humidity. Insect...

  5. Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications

    NASA Astrophysics Data System (ADS)

    Ayachi, Boubakeur; Aviles, Thomas; Vilcot, Jean-Pierre; Sion, Cathy

    2016-03-01

    Room temperature deposited aluminium-doped zinc oxide thin films on glass substrate, using pulsed-DC magnetron sputtering, have shown high optical transmittance and low electrical resistivity with high uniformity of its spatial distribution after they were exposed to a rapid thermal annealing process at 400 °C under N2H2 atmosphere. It is particularly interesting to note that such an annealing process of AZO thin films for only 30 s was sufficient, on one hand to improve their optical transmittance from 73% to 86%, on the other hand to both decrease their resistivity from 1.7 × 10-3 Ω cm to 5.1 × 10-4 Ω cm and achieve the highest uniformity spatial distribution. To understand the mechanisms behind such improvements of the optoelectronic properties, electrical, optical, structural and morphological changes as a function of annealing time have been investigated by using hall measurement, UV-visible spectrometry, X-ray diffraction and scanning electron microscope imaging, respectively.

  6. Evaluation of spatially resolved diffuse reflectance imaging for subsurface pattern visualization towards applicability for fiber optic lensless imaging setup: phantom experiments and simulation

    NASA Astrophysics Data System (ADS)

    Schelkanova, I.; Pandya, A.; Saiko, G.; Nacy, L.; Babar, H.; Shah, D.; Lilge, L.; Douplik, A.

    2015-07-01

    A portable, spatially resolved diffuse reflectance (SRDR) lensless imaging technique based on the charge coupled device (CCD), or complementary metal-oxide semiconductor (CMOS) sensor directly coupled with fiber optic bundle can be proposed for visualization of subsurface structures such as intrapapillary capillary loops (IPCLs). In this article, we discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiberoptic cable (where image is relayed onto the sensor surface through a fiber-optic cable equivalent to coupling a fiber optic conduit directly onto the sensor surface without any lenses) over a microfluidic phantom containing periodic hemoglobin absorption contrast. For mimicking scattering properties of turbid media, a diffusive layer formed of polydimethylsiloxane (PDMS) and titanium dioxide (TiO2) was placed atop of the microfluidic phantom. Thickness of the layers ranged from 0.2-0.7mm, and the μs` value of the layers were in the range of 0.85 mm-1 - 4.25mm-1. The results demonstrate that a fiber-optic bundle/plate coupled lensless imaging setup has a high potential to recover intensity modulations from the subsurface patterns. Decreasing of the interrogation volumes leads to enhanced spatial resolution of diffuse reflectance imaging, and hence, can potentially overcome the scattering caused blurring.

  7. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  8. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    NASA Astrophysics Data System (ADS)

    Mendoza Lebrun, Daniel

    Onroad CO2 emissions were analyzed as part of overall GHG emissions, but those studies have suffered from one or more of these five shortcomings: 1) the spatial resolution was coarse, usually encompassing a region, or the entire U.S.; 2) the temporal resolution was coarse (annual or monthly); 3) the study region was limited, usually a metropolitan planning organization (MPO) or state; 4) fuel sales were used as a proxy to quantify fuel consumption instead of focusing on travel; 5) the spatial heterogeneity of fleet and road network composition was not considered and instead national averages are used. Normalized vehicle-type state-level spatial biases range from 2.6% to 8.1%, while the road type classification biases range from -6.3% to 16.8%. These biases are found to cause errors in reduction estimates as large as ±60%, corresponding to ±0.2 MtC, for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class. Temporal analysis shows distinct emissions seasonality that is particularly visible in the northernmost latitudes, demonstrating peak-to-peak deviations from the annual mean of up to 50%. The hourly structure shows peak-to-peak deviation from a weekly average of up to 200% for heavy-duty (HD) vehicles and 140% for light-duty (LD) vehicles. The present study focuses on reduction of travel and fuel economy improvements by putting forth several mitigation scenarios aimed at reducing VMT and increasing vehicle fuel efficiency. It was found that the most effective independent reduction strategies are those that increase fuel efficiency by extending standards proposed by the corporate average fuel economy (CAFE) or reduction of fuel consumption due to price increases. These two strategies show cumulative emissions reductions of approximately 11% and 12%, respectively, from a business as usual (BAU) approach over the 2000-2050 period. The U.S. onroad transportation sector is long overdue a comprehensive study

  9. Successful application of spatial difference technique to electron energy-loss spectroscopy studies of Mo/SrTiO3 interfaces.

    PubMed

    Gao, M; Scheu, C; Tchernychova, E; Rühle, M

    2003-04-01

    The electron energy-loss near-edge structure (ELNES) of Mo/SrTiO3 interfaces has been studied using high spatial resolution electron energy-loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope. Thin films of Mo with a thickness of 50 nm were grown on (001)-orientated SrTiO3 surfaces by molecular beam epitaxy at 600 degrees C. High-resolution transmission electron microscopy revealed that the interfaces were atomically abrupt with the (110)Mo plane parallel to the substrate surface. Ti-L2,3 ( approximately 460 eV), O-K ( approximately 530 eV), Sr-L2,3 ( approximately 1950 eV) and Mo-L2,3 ( approximately 2500 eV) absorption edges were acquired by using the Gatan Enfina parallel EELS system with a CCD detector. The interface-specific components of the ELNES were extracted by employing the spatial difference method. The interfacial Ti-L2,3 edge shifted to lower energy values and the splitting due to crystal field became less pronounced compared to bulk SrTiO3, which indicated that the Ti atoms at the interface were in a reduced oxidation state and that the symmetry of the TiO6 octahedra was disturbed. No interfacial Sr-L2,3 edge was observed, which may demonstrate that Sr atoms do not participate in the interfacial bonding. An evident interface-specific O-K edge was found, which differs from that of the bulk in both position (0.8 +/- 0.2 eV positive shift) and shape. In addition, a positive shift (0.9 +/- 0.3 eV) occurred for the interfacial Mo-L2,3, revealing an oxidized state of Mo at the interface. Our results indicated that at the interface SrTiO3 was terminated with TiO2. The validity of the spatial difference technique is discussed and examined by introducing subchannel drift intentionally.

  10. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  11. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  12. Spatial coherence measurement of a scanning laser system and applicability of the Zernike's approximation to the exit pupil on the scan mirror

    NASA Astrophysics Data System (ADS)

    Kubota, Shigeo

    2012-11-01

    Spatial coherence of the scanning laser beam was observed on the Young's experimental set up using 50-μm-wide, 200-μm-separation double slits, which measured the less than unity fringe visibility in the Fraunhofer diffraction pattern of the double slits illuminated by the scanning laser beam at horizontal scan frequency 21 kHz, while approximately unity in case of the illumination by the laser beam at rest. This fact allow us to use the Zernike's approximation when applying the van Cittert Zernike theorem to the scanning laser system such as the laser pico-projectors in order to estimate its speckle contrast in the projected image on the screen diffuser. The predicted and measured speckle contrasts showed excellent agreement on the screen illuminated by the laser projector.

  13. Application of global positioning system methods for the study of obesity and hypertension risk among low-income housing residents in New York City: a spatial feasibility study.

    PubMed

    Duncan, Dustin T; Regan, Seann D; Shelley, Donna; Day, Kristen; Ruff, Ryan R; Al-Bayan, Maliyhah; Elbel, Brian

    2014-11-01

    The purpose of this study was to evaluate the feasibility of using global positioning system (GPS) methods to understand the spatial context of obesity and hypertension risk among a sample of low-income housing residents in New York City (n = 120). GPS feasibility among participants was measured with a pre- and post-survey as well as adherence to a protocol which included returning the GPS device as well as objective data analysed from the GPS devices. We also conducted qualitative interviews with 21 of the participants. Most of the sample was overweight (26.7%) or obese (40.0%). Almost one-third (30.8%) was pre-hypertensive and 39.2% was hypertensive. Participants reported high ratings of GPS acceptability, ease of use and low levels of wear-related concerns in addition to few concerns related to safety, loss or appearance, which were maintained after the baseline GPS feasibility data collection. Results show that GPS feasibility increased over time. The overall GPS return rate was 95.6%. Out of the total of 114 participants with GPS, 112 (98.2%) delivered at least one hour of GPS data for one day and 84 (73.7%) delivered at least one hour on 7 or more days. The qualitative interviews indicated that overall, participants enjoyed wearing the GPS devices, that they were easy to use and charge and that they generally forgot about the GPS device when wearing it daily. Findings demonstrate that GPS devices may be used in spatial epidemiology research in low-income and potentially other key vulnerable populations to understand geospatial determinants of obesity, hypertension and other diseases that these populations disproportionately experience.

  14. Application of spatial analysis technology to the planning of access to oral health care for at-risk populations in Australian capital cities.

    PubMed

    Almado, Haidar; Kruger, Estie; Tennant, Marc

    2015-01-01

    Australians are one of the healthiest populations in the world but there is strong evidence that health inequalities exist. Australia has 23.1 million people spread very unevenly over -20 million square kilometres. This study aimed to apply spatial analysis tools to measure the spatial distribution of fixed adult public dental clinics in the eight metropolitan capital cities of Australia. All population data for metropolitan areas of the eight capital cities were integrated with socioeconomic data and health-service locations, using Geographic Information Systems, and then analysed. The adult population was divided into three subgroups according to age, consisting of 15-year-olds and over (n = 7.2 million), retirees 65 years and over (n = 1.2 million), and the elderly, who were 85 years and over (n = 0.15 million). It was evident that the States fell into two groups; Tasmania, Northern Territory, Australian Capital Territory and Western Australia in one cluster, and Victoria, New South Wales, Queensland and South Australia in the other. In the first group, the average proportion of the population of low socioeconomic status living in metropolitan areas within 2.5 km of a government dental clinic is 13%, while for the other cluster, it is 42%. The clustering remains true at 5 km from the clinics. The first cluster finds that almost half (46%) of the poorest 30% of the population live within 5km of a government dental clinic. The other cluster of States finds nearly double that proportion (86%). The results from this study indicated that access distances to government dental services differ substantially in metropolitan areas of the major Australian capital cities.

  15. Application of global positioning system methods for the study of obesity and hypertension risk among low-income housing residents in New York City: a spatial feasibility study

    PubMed Central

    Duncan, Dustin T.; Regan, Seann D.; Shelley, Donna; Day, Kristen; Ruff, Ryan R.; Al-Bayan, Maliyhah; Elbel, Brian

    2016-01-01

    The purpose of this study was to evaluate the feasibility of using global positioning system (GPS) methods to understand the spatial context of obesity and hypertension risk among a sample of low-income housing residents in New York City (n = 120). GPS feasibility among participants was measured with a pre- and post-survey as well as adherence to a protocol which included returning the GPS device as well as objective data analysed from the GPS devices. We also conducted qualitative interviews with 21 of the participants. Most of the sample was overweight (26.7%) or obese (40.0%). Almost one-third (30.8%) was pre-hypertensive and 39.2% was hypertensive. Participants reported high ratings of GPS acceptability, ease of use and low levels of wear-related concerns in addition to few concerns related to safety, loss or appearance, which were maintained after the baseline GPS feasibility data collection. Results show that GPS feasibility increased over time. The overall GPS return rate was 95.6%. Out of the total of 114 participants with GPS, 112 (98.2%) delivered at least one hour of GPS data for one day and 84 (73.7%) delivered at least one hour on 7 or more days. The qualitative interviews indicated that overall, participants enjoyed wearing the GPS devices, that they were easy to use and charge and that they generally forgot about the GPS device when wearing it daily. Findings demonstrate that GPS devices may be used in spatial epidemiology research in low-income and potentially other key vulnerable populations to understand geospatial determinants of obesity, hypertension and other diseases that these populations disproportionately experience. PMID:25545926

  16. Spatial Language Learning

    ERIC Educational Resources Information Center

    Fu, Zhengling

    2016-01-01

    Spatial language constitutes part of the basic fabric of language. Although languages may have the same number of terms to cover a set of spatial relations, they do not always do so in the same way. Spatial languages differ across languages quite radically, thus providing a real semantic challenge for second language learners. The essay first…

  17. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    NASA Astrophysics Data System (ADS)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  18. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    SciTech Connect

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.; Brookmeyer, P.; Weil, G. J.; Sultan, M.; Harb, M.; Environmental Research; Washington Univ.; Utah State Univ.; Egyptian Ministry of Health

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasis prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.

  19. Towards a Methodology for Estimating Surface Pollutant Mixing Ratios from High Spatial and Temporal Resolution Retrievals, and its Applicability to High-Resolution Space Based Observations

    NASA Astrophysics Data System (ADS)

    Knepp, T.; Pippin, M.; Crawford, J.; Szykman, J.; Long, R.; Neil, D.; Fishman, J.

    2012-11-01

    A ground-based sun-tracking spectrometer system (Pandora) is used to retrieve high time and spatial resolution total-column nitrogen dioxide. These column observations are compared with data from a surface NOx instrument that employs a photolytic converter. The column data are inverted (via the EDAS-40 model) to yield surface mole fractions (i.e.ppb) that have typically high coefficients of correlation (e.g. R = 0.80) with surface data. Translating these column observations into boundary-layer mole fractions provides a direct NO2 data set that can significantly improve the understanding of emission, chemical transportation, effectiveness of control strategies, and predictive capabilities. Preliminary results regarding the relation of surface and column NO2 were presented. Total-column NO2 was recorded using a Pandora sun-tracking spectrometer system [1]. The Pandora instrument provides high-temporal resolution data, with a retrieval done every ~90s under clear-sky conditions. Surface NO2 was recorded using a Teledyne API 200EU with a photolytic converter.

  20. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    PubMed Central

    Privat-Maldonado, Angela; O’Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-01-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections. PMID:27759098

  1. On the computation of long-range interactions in fluids under confinement: Application to pore systems with various types of spatial periodicity

    NASA Astrophysics Data System (ADS)

    Pantatosaki, Evangelia; Papadopoulos, George K.

    2007-10-01

    The problem of computing accurately the long-range Coulomb interactions in physical systems is investigated focusing mainly on the atomistic simulation of fluids sorbed in porous solids. Several articles involving theory and computation of long-range interactions in charged systems are reviewed, in order to explore the possibility of adapting or developing methodology in the field of computer simulation of sorbate molecules inside nanostructures modeled through a three-dimensional (crystal frameworks), two-dimensional (slit-shaped pores), or one-dimensional (cylindrical pores) replication of their unit cell. For this reason we digitally reconstruct selected paradigms of three-dimensional microporous structures which exhibit different spatial periodicities such as the zeolite crystals of MFI and FAU type, graphitic slit-shaped pores, and single-wall carbon nanotubes in order to study the sorption of CO2, N2, and H2 via grand canonical Monte Carlo simulation; the predicted data are compared with experimental measurements found elsewhere. Suitable technical adjustments to the use of conventional Ewald technique, whenever it is possible, prove to be effective in the computation of electrostatic field of all the categories studied in this work.

  2. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    PubMed Central

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  3. Analysing urban resilience through alternative stormwater management options: application of the conceptual Spatial Decision Support System model at the neighbourhood scale.

    PubMed

    Balsells, M; Barroca, B; Amdal, J R; Diab, Y; Becue, V; Serre, D

    2013-01-01

    Recent changes in cities and their environments, caused by rapid urbanisation and climate change, have increased both flood probability and the severity of flooding. Consequently, there is a need for all cities to adapt to climate and socio-economic changes by developing new strategies for flood risk management. Following a risk paradigm shift from traditional to more integrated approaches, and considering the uncertainties of future urban development, one of the main emerging tasks for city managers becomes the development of resilient cities. However, the meaning of the resilience concept and its operability is still not clear. The goal of this research is to study how urban engineering and design disciplines can improve resilience to floods in urban neighbourhoods. This paper presents the conceptual Spatial Decision Support System (DS3) model which we consider a relevant tool to analyse and then implement resilience into neighbourhood design. Using this model, we analyse and discuss alternative stormwater management options at the neighbourhood scale in two specific areas: Rotterdam and New Orleans. The results obtained demonstrate that the DS3 model confirmed in its framework analysis that stormwater management systems can positively contribute to the improved flood resilience of a neighbourhood.

  4. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  5. Discussing State-of-the-Art Spatial Visualization Techniques Applicable for the Epidemiological Surveillance Data on the Example of Campylobacter spp. in Raw Chicken Meat.

    PubMed

    Plaza-Rodríguez, C; Appel, B; Kaesbohrer, A; Filter, M

    2016-08-01

    Within the European activities for the 'Monitoring and Collection of Information on Zoonoses', annually EFSA publishes a European report, including information related to the prevalence of Campylobacter spp. in Germany. Spatial epidemiology becomes here a fundamental tool for the generation of these reports, including the representation of prevalence as an essential element. Until now, choropleth maps are the default visualization technique applied in epidemiological monitoring and surveillance reports made by EFSA and German authorities. However, due to its limitations, it seems to be reasonable to explore alternative chart type. Four maps including choropleth, cartogram, graduated symbols and dot-density maps were created to visualize real-world sample data on the prevalence of Campylobacter spp. in raw chicken meat samples in Germany in 2011. In addition, adjacent and coincident maps were created to visualize also the associated uncertainty. As an outcome, we found that there is not a single data visualization technique that encompasses all the necessary features to visualize prevalence data alone or prevalence data together with their associated uncertainty. All the visualization techniques contemplated in this study demonstrated to have both advantages and disadvantages. To determine which visualization technique should be used for future reports, we recommend to create a dialogue between end-users and epidemiologists on the basis of sample data and charts. The final decision should also consider the knowledge and experience of end-users as well as the specific objective to be achieved with the charts.

  6. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    SciTech Connect

    Volfbeyn, P.; Bekefi, G.

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  7. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Privat-Maldonado, Angela; O’Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-10-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections.

  8. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  9. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  10. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  11. Application of Spatial and Closed Capture-Recapture Models on Known Population of the Western Derby Eland (Taurotragus derbianus derbianus) in Senegal

    PubMed Central

    Jůnek, Tomáš; Jůnková Vymyslická, Pavla; Hozdecká, Kateřina; Hejcmanová, Pavla

    2015-01-01

    Camera trapping with capture-recapture analyses has provided estimates of the abundances of elusive species over the last two decades. Closed capture-recapture models (CR) based on the recognition of individuals and incorporating natural heterogeneity in capture probabilities are considered robust tools; however, closure assumption is often questionable and the use of an Mh jackknife estimator may fail in estimations of real abundance when the heterogeneity is high and data is sparse. A novel, spatially explicit capture-recapture (SECR) approach based on the location-specific capture histories of individuals overcomes the limitations of closed models. We applied both methods on a closed population of 16 critically endangered Western Derby elands in the fenced 1,060-ha Fathala reserve, Senegal. We analyzed the data from 30 cameras operating during a 66-day sampling period deployed in two densities in grid and line arrays. We captured and identified all 16 individuals in 962 trap-days. Abundances were estimated in the programs CAPTURE (models M0, Mh and Mh Chao) and R, package secr (basic Null and Finite mixture models), and compared with the true population size. We specified 66 days as a threshold in which SECR provides an accurate estimate in all trapping designs within the 7-times divergent density from 0.004 to 0.028 camera trap/ha. Both SECR models showed uniform tendency to overestimate abundance when sampling lasted shorter with no major differences between their outputs. Unlike the closed models, SECR performed well in the line patterns, which indicates promising potential for linear sampling of properly defined habitats of non-territorial and identifiable herbivores in dense wooded savanna conditions. The CR models provided reliable estimates in the grid and we confirmed the advantage of Mh Chao estimator over Mh jackknife when data appeared sparse. We also demonstrated the pooling of trapping occasions with an increase in the capture probabilities

  12. Spatial coherence of random laser emission

    NASA Astrophysics Data System (ADS)

    Redding, B.; Choma, M. A.; Cao, H.

    2011-09-01

    Lasing action in disordered media has been studied extensively in recent years and many of its properties are well understood. However, few studies have considered the spatial coherence in these systems, despite initial observations indicating that random lasers exhibit much lower spatial coherence than conventional lasers. We performed a systematic, experimental investigation of the spatial coherence of random laser emission as a function of the scattering mean free path and the excitation volume. Lasing was achieved under optical excitation and spatial coherence was characterized by imaging the emission spot onto a Young's double slit and collecting the interference fringes in the far field. We observed dramatic differences in the spatial coherence within our parameter space. Specifically, we found that samples with a shorter mean free path relative to the excitation volume exhibited reduced spatial coherence. We provide a qualitative explanation of our experimental observations in terms of the number of excited modes and their spatial orientation. This work provides a means to realize intense, spatially incoherent laser emission for applications in which speckle or spatial cross talk limits performance.

  13. Development of online Spatial Multi-Criteria Decision Analyst application: Case study on determining area suitability for school location in Surabaya, Indonesia

    NASA Astrophysics Data System (ADS)

    HaryPrasetyo, Daniel; Muhamad, Jamilah; Fauzi, Rosmadi

    2016-06-01

    A decision sometimes needs to consider many aspects and to be judged by many people. Presenting a case of finding a suitable location for a new school this research proposes seven factors which its emphasis will be differently sorted by various people perspective. Each factor comes in a form of a multi-polygon layer that valued from 0 to 9, representing the suitability value of the certain aspect in the whole city area. The Public and some expert will judge by using the pair-wise comparison of those aspects. This research will provide web GIS application that will use by the public and the expert in this justification process and analyzing the result.

  14. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  15. Spatial Coherence of Synchrotron Radiation

    SciTech Connect

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  16. Application of thermal analysis to measure the spatial heterogeneity of organic matter degradation after wildfire: implications for post-fire rehabilitation treatments

    NASA Astrophysics Data System (ADS)

    Merino, Agustin; Fonturbel, M. Teresa; Vega, Jose A.

    2015-04-01

    Severe wildfires can cause drastic changes in SOM content and quality with important implications for soil conservation and global C balance. Soil heating usually leads to loss of the most labile SOM compounds (e.g. carbohydrates, lipids and peptides) and to generation of aromatic substances. However, these fire-related damages are not uniform over large areas, because of the spatial heterogeneity of different factors such as fire type and environmental conditions. Rapid diagnosis of soil burn severity is required to enable the design of emergency post-fire rehabilitation treatments. The study was conducted in soils from NW Spain, an Atlantic-climate zone that is particularly prone to wildfires. Intact soil cores (forest floor and uppermost mineral soil layer) were taken from a soil developed under granitic rock and subjected to experimental burning (in a bench positioned at the outlet of a wind tunnel). Soil temperature during fire was monitorised and five visual levels of soil burn severity (SBS) were recorded immediately after fire. Solid-state 13C CP-MAS NMR spectroscopy analyses were performed in an Agilent (Varian) VNMRS-500-WB spectrometer. The samples were analyzed by differential scanning calorimetry and thermogravimetry (TGA/DSC, Mettler-Toledo Intl. Inc.). The analyses were performed with 4 mg of samples placed in open aluminium pans under dry air (flow rate, 50 mL-1) and at a scanning rate of 10 °C min-1. The temperature ranged between 50 and 600 °C. In the organic layer, the temperature reached during fire influenced the formation and characteristics of charred material. These materials showed an increasing degree of carbonization/aromatization in relation to the increase of temperature during burning. Burning also led to compounds of higher thermal recalcitrance (increases in T50 values -the temperature at which 50% of the energy stored in SOM is released-). However, values recorded in some samples were lower than those measured in highly

  17. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    SciTech Connect

    Mays, Gary T; Belles, Randy; Blevins, Brandon R; Hadley, Stanton W; Harrison, Thomas J; Jochem, Warren C; Neish, Bradley S; Omitaomu, Olufemi A; Rose, Amy N

    2012-05-01

    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the

  18. SPATIAL AND SPECTRAL RESOLUTION IN GEOBOTANY.

    USGS Publications Warehouse

    Milton, Nancy M.; Mouat, D.A.

    1984-01-01

    Remotely sensed data are now available from a wide variety of instruments, each data set having a particular spectral and spatial resolution. The changes in vegetation associated with changes in lithology or the presence of mineral deposits can also occur at different scales. The task of geobotanical remote sensing is to choose or adapt the remotely sensed data to the appropriate geobotanical technique to solve the geological problem of interest. Examples are given of a number of applications of data sets of different spectral and spatial resolution. The relative importance of spectral and spatial resolution is discussed.

  19. Spatial capture-recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth

    2013-01-01

    Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.

  20. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  1. Parcellating connectivity in spatial maps

    PubMed Central

    Beck, Diane M.; Fei-Fei, Li

    2015-01-01

    A common goal in biological sciences is to model a complex web of connections using a small number of interacting units. We present a general approach for dividing up elements in a spatial map based on their connectivity properties, allowing for the discovery of local regions underlying large-scale connectivity matrices. Our method is specifically designed to respect spatial layout and identify locally-connected clusters, corresponding to plausible coherent units such as strings of adjacent DNA base pairs, subregions of the brain, animal communities, or geographic ecosystems. Instead of using approximate greedy clustering, our nonparametric Bayesian model infers a precise parcellation using collapsed Gibbs sampling. We utilize an infinite clustering prior that intrinsically incorporates spatial constraints, allowing the model to search directly in the space of spatially-coherent parcellations. After showing results on synthetic datasets, we apply our method to both functional and structural connectivity data from the human brain. We find that our parcellation is substantially more effective than previous approaches at summarizing the brain’s connectivity structure using a small number of clusters, produces better generalization to individual subject data, and reveals functional parcels related to known retinotopic maps in visual cortex. Additionally, we demonstrate the generality of our method by applying the same model to human migration data within the United States. This analysis reveals that migration behavior is generally influenced by state borders, but also identifies regional communities which cut across state lines. Our parcellation approach has a wide range of potential applications in understanding the spatial structure of complex biological networks. PMID:25737822

  2. Merging OLTP and OLAP - Back to the Future

    NASA Astrophysics Data System (ADS)

    Lehner, Wolfgang

    When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.

  3. Minimising mortality in endangered raptors due to power lines: the importance of spatial aggregation to optimize the application of mitigation measures.

    PubMed

    Guil, Francisco; Fernández-Olalla, Mariana; Moreno-Opo, Rubén; Mosqueda, Ignacio; Gómez, María Elena; Aranda, Antonio; Arredondo, Angel; Guzmán, José; Oria, Javier; González, Luis Mariano; Margalida, Antoni

    2011-01-01

    Electrocution by power lines is one of the main causes of non-natural mortality in birds of prey. In an area in central Spain, we surveyed 6304 pylons from 333 power lines to determine electrocution rates, environmental and design factors that may influence electrocution and the efficacy of mitigation measures used to minimise electrocution cases. A total of 952 electrocuted raptors, representing 14 different species, were observed. Electrocuted raptors were concentrated in certain areas and the environmental factors associated with increased electrocution events were: greater numbers of prey animals; greater vegetation cover; and shorter distance to roads. The structural elements associated with electrocutions were shorter strings of insulators, one or more phases over the crossarm, cross-shaped design and pylon function. Of the 952 carcasses found, 148 were eagles, including golden eagle (Aquila chrysaetos), Spanish imperial eagle (Aquila adalberti) and Bonelli's eagle (Aquila fasciata). Electrocuted eagles were clustered in smaller areas than other electrocuted raptors. The factors associated with increased eagle electrocution events were: pylons function, shorter strings of insulators, higher slopes surrounding the pylon, and more numerous potential prey animals. Pylons with increased string of insulators had lower raptor electrocution rates than unimproved pylons, although this technique was unsuccessful for eagles. Pylons with cable insulation showed higher electrocution rates than unimproved pylons, both for raptors and eagles, despite this is the most widely used and recommended mitigation measure in several countries. To optimize the application of mitigation measures, our results recommend the substitution of pin-type insulators to suspended ones and elongating the strings of insulators.

  4. Minimising Mortality in Endangered Raptors Due to Power Lines: The Importance of Spatial Aggregation to Optimize the Application of Mitigation Measures

    PubMed Central

    Guil, Francisco; Fernández-Olalla, Mariana; Moreno-Opo, Rubén; Mosqueda, Ignacio; Gómez, María Elena; Aranda, Antonio; Arredondo, Ángel; Guzmán, José; Oria, Javier; González, Luis Mariano; Margalida, Antoni

    2011-01-01

    Electrocution by power lines is one of the main causes of non-natural mortality in birds of prey. In an area in central Spain, we surveyed 6304 pylons from 333 power lines to determine electrocution rates, environmental and design factors that may influence electrocution and the efficacy of mitigation measures used to minimise electrocution cases. A total of 952 electrocuted raptors, representing 14 different species, were observed. Electrocuted raptors were concentrated in certain areas and the environmental factors associated with increased electrocution events were: greater numbers of prey animals; greater vegetation cover; and shorter distance to roads. The structural elements associated with electrocutions were shorter strings of insulators, one or more phases over the crossarm, cross-shaped design and pylon function. Of the 952 carcasses found, 148 were eagles, including golden eagle (Aquila chrysaetos), Spanish imperial eagle (Aquila adalberti) and Bonelli's eagle (Aquila fasciata). Electrocuted eagles were clustered in smaller areas than other electrocuted raptors. The factors associated with increased eagle electrocution events were: pylons function, shorter strings of insulators, higher slopes surrounding the pylon, and more numerous potential prey animals. Pylons with increased string of insulators had lower raptor electrocution rates than unimproved pylons, although this technique was unsuccessful for eagles. Pylons with cable insulation showed higher electrocution rates than unimproved pylons, both for raptors and eagles, despite this is the most widely used and recommended mitigation measure in several countries. To optimize the application of mitigation measures, our results recommend the substitution of pin-type insulators to suspended ones and elongating the strings of insulators. PMID:22140549

  5. Part I: temporal and spatial distribution of multiclass pesticide residues in lake waters of Northern Greece: application of an optimized SPE-UPLC-MS/MS pretreatment and analytical method.

    PubMed

    Kalogridi, Eleni-Chrysoula; Christophoridis, Christophoros; Bizani, Erasmia; Drimaropoulou, Garyfallia; Fytianos, Konstantinos

    2014-06-01

    The present work describes the application of an analytical procedure, utilizing ultra performance liquid chromatography (UPLC) coupled with mass spectrometry instrumentation, for the determination of 253 multiclass pesticides, classified in six different groups. Solid phase extraction was applied for the isolation and pre-concentration of target compounds in water samples. Surface waters of the lakes located in Northern Greece (Volvi, Doirani, and Kerkini), were collected in two time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methods. Spatial distribution of detected pesticides was visualized using interpolation methods and geographical information systems (GIS). Pesticides with maximum concentrations were amitrole, propoxur, simazine, chlorpyrifos, carbendazim, triazophos, disulfoton-sulfone, pyridaben, sebuthylazine, terbuthylazine, atrazine, atrazine-desethyl, bensulfuron-methyl, metobromuron, metribuzin, rotenone, pyriproxyfen, and rimsulfuron. In Lake Kerkini, mainly carbamates and triazines were determined at elevated concentrations, near the coastal point of the NW side of the lake. Seasonal variations were strong among the applied pesticide classes and determined concentrations, indicating the contribution of pesticide application patterns and rainfall. Lake Doirani exhibited organophosphate pesticides at higher concentrations mainly at coastal points, while triazines emerged as the main pollutant during spring sampling. Lake Volvi exhibited the highest pesticide concentrations, mostly triazines and ureas at the central part of the lake. The occurrence of extreme values and nonconstant seasonal variations indicated that the concentrations were increased disproportionately during the second sampling, as a result of the varying contribution of pollution sources right after the application period. In all cases, the total concentration of pesticides increased during the second sampling period.

  6. Dyslexia and Spatial Thinking.

    ERIC Educational Resources Information Center

    Benton, Arthur L.

    1984-01-01

    Research on spatial thinking impairments, with special reference to right-left orientation, visuomotor and visuoconstructive performances, and finger recognition are examined. It is concluded that, although some dyslexic children do show spatial disabilities, there is little evidence to support the existence of a visuospatial type of developmental…

  7. Individual Differences in Spatial Text Processing: High Spatial Ability Can Compensate for Spatial Working Memory Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana

    2009-01-01

    The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…

  8. Spatial heterogeneity in medulloblastoma.

    PubMed

    Morrissy, A Sorana; Cavalli, Florence M G; Remke, Marc; Ramaswamy, Vijay; Shih, David J H; Holgado, Borja L; Farooq, Hamza; Donovan, Laura K; Garzia, Livia; Agnihotri, Sameer; Kiehna, Erin N; Mercier, Eloi; Mayoh, Chelsea; Papillon-Cavanagh, Simon; Nikbakht, Hamid; Gayden, Tenzin; Torchia, Jonathon; Picard, Daniel; Merino, Diana M; Vladoiu, Maria; Luu, Betty; Wu, Xiaochong; Daniels, Craig; Horswell, Stuart; Thompson, Yuan Yao; Hovestadt, Volker; Northcott, Paul A; Jones, David T W; Peacock, John; Wang, Xin; Mack, Stephen C; Reimand, Jüri; Albrecht, Steffen; Fontebasso, Adam M; Thiessen, Nina; Li, Yisu; Schein, Jacqueline E; Lee, Darlene; Carlsen, Rebecca; Mayo, Michael; Tse, Kane; Tam, Angela; Dhalla, Noreen; Ally, Adrian; Chuah, Eric; Cheng, Young; Plettner, Patrick; Li, Haiyan I; Corbett, Richard D; Wong, Tina; Long, William; Loukides, James; Buczkowicz, Pawel; Hawkins, Cynthia E; Tabori, Uri; Rood, Brian R; Myseros, John S; Packer, Roger J; Korshunov, Andrey; Lichter, Peter; Kool, Marcel; Pfister, Stefan M; Schüller, Ulrich; Dirks, Peter; Huang, Annie; Bouffet, Eric; Rutka, James T; Bader, Gary D; Swanton, Charles; Ma, Yusanne; Moore, Richard A; Mungall, Andrew J; Majewski, Jacek; Jones, Steven J M; Das, Sunit; Malkin, David; Jabado, Nada; Marra, Marco A; Taylor, Michael D

    2017-04-10

    Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.

  9. Semantic Metadata for Heterogeneous Spatial Planning Documents

    NASA Astrophysics Data System (ADS)

    Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.

    2016-09-01

    Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  10. Modeling of Students' Profile and Learning Chronicle with Data Cubes

    ERIC Educational Resources Information Center

    Ola, Ade G.; Bai, Xue; Omojokun, Emmanuel E.

    2014-01-01

    Over the years, companies have relied on On-Line Analytical Processing (OLAP) to answer complex questions relating to issues in business environments such as identifying profitability, trends, correlations, and patterns. This paper addresses the application of OLAP in education and learning. The objective of the research presented in the paper is…

  11. Entropy, complexity, and spatial information

    NASA Astrophysics Data System (ADS)

    Batty, Michael; Morphet, Robin; Masucci, Paolo; Stanilov, Kiril

    2014-10-01

    We pose the central problem of defining a measure of complexity, specifically for spatial systems in general, city systems in particular. The measures we adopt are based on Shannon's (in Bell Syst Tech J 27:379-423, 623-656, 1948) definition of information. We introduce this measure and argue that increasing information is equivalent to increasing complexity, and we show that for spatial distributions, this involves a trade-off between the density of the distribution and the number of events that characterize it; as cities get bigger and are characterized by more events—more places or locations, information increases, all other things being equal. But sometimes the distribution changes at a faster rate than the number of events and thus information can decrease even if a city grows. We develop these ideas using various information measures. We first demonstrate their applicability to various distributions of population in London over the last 100 years, then to a wider region of London which is divided into bands of zones at increasing distances from the core, and finally to the evolution of the street system that characterizes the built-up area of London from 1786 to the present day. We conclude by arguing that we need to relate these measures to other measures of complexity, to choose a wider array of examples, and to extend the analysis to two-dimensional spatial systems.

  12. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  13. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  14. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  15. Robustness of spatial micronetworks.

    PubMed

    McAndrew, Thomas C; Danforth, Christopher M; Bagrow, James P

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  16. Applications

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  17. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  18. Application of time-spatial labeling inversion pulse magnetic resonance imaging in the diagnosis of spontaneous intracranial hypotension due to high-flow cerebrospinal fluid leakage at C1-2

    PubMed Central

    Hattori, Natsuki; Inamasu, Joji; Nakae, Shunsuke; Hirose, Yuichi; Murayama, Kazuhiro

    2016-01-01

    Background: Spontaneous intracranial hypotension (SIH) due to cerebrospinal fluid (CSF) leakage at C1-2 poses diagnostic and therapeutic challenges to spine surgeons. Although computed tomography (CT) myelography has been the diagnostic imaging modality of choice for identifying the CSF leakage point, extradural CSF collection at C1-2 on conventional CT myelography or magnetic resonance imaging (MRI) may often be a false localizing sign. Case Description: The present study reports the successful application of time-spatial labeling inversion pulse (T-SLIP) MRI, which enabled the precise identification of the CSF leakage point at C1-2 in a 28-year-old woman with intractable SIH. After identifying the leakage point using both CT myelography and T-SLIP MRI, surgery was performed to seal the CSF leak. Intraoperatively, a pouch suggestive of an extradural arachnoid cyst around the left C2 nerve root was found, which was repaired by packing the pouch with muscle and fibrin glue. Clinical improvement was observed shortly after surgery, and postoperative imaging revealed the disappearance of the CSF leakage. Conclusions: T-SLIP MRI may provide useful information on the flow dynamics of CSF in SIH patients due to high-flow leakage. However, further experience is required to assess its sensitivity and specificity as an imaging modality for identifying CSF leakage points. PMID:28144490

  19. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  20. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  1. Architectural Implications for Spatial Object Association Algorithms

    SciTech Connect

    Kumar, V S; Kurc, T; Saltz, J; Abdulla, G; Kohn, S R; Matarazzo, C

    2009-01-29

    Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).

  2. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  3. Embodied spatial cognition.

    PubMed

    Trafton, J Gregory; Harrison, Anthony M

    2011-10-01

    We present a spatial system called Specialized Egocentrically Coordinated Spaces embedded in an embodied cognitive architecture (ACT-R Embodied). We show how the spatial system works by modeling two different developmental findings: gaze-following and Level 1 perspective taking. The gaze-following model is based on an experiment by Corkum and Moore (1998), whereas the Level 1 visual perspective-taking model is based on an experiment by Moll and Tomasello (2006). The models run on an embodied robotic system.

  4. Spatial language and converseness.

    PubMed

    Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot

    2016-12-01

    Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.

  5. Acquired spatial dyslexia.

    PubMed

    Siéroff, E

    2015-08-10

    Acquired spatial dyslexia is a reading disorder frequently occurring after left or right posterior brain lesions. This article describes several types of spatial dyslexia with an attentional approach. After right posterior lesions, patients show left neglect dyslexia with errors on the left side of text, words, and non-words. The deficit is frequently associated with left unilateral spatial neglect. Severe left neglect dyslexia can be detected with unlimited exposure duration of words or non-words. Minor neglect dyslexia is detected with brief presentation of bilateral words, one in the left and one in the right visual field (phenomenon of contralesional extinction). Neglect dyslexia can be explained as a difficulty in orienting attention to the left side of verbal stimuli. With left posterior lesions, spatial dyslexia is also frequent but multiform. Right neglect dyslexia is frequent, but right unilateral spatial neglect is rare. Attentional dyslexia represents difficulty in selecting a stimulus, letter or word among other similar stimuli; it is a deficit of attentional selection, and the left hemisphere plays a crucial role in selection. Two other types of spatial dyslexia can be found after left posterior lesions: paradoxical ipsilesional extinction and stimulus-centred neglect dyslexia. Disconnections between left or right parietal attentional areas and the left temporal visual word form area could explain these deficits. Overall, a model of attention dissociating modulation, selection control, and selection positioning can help in understanding these reading disorders.

  6. Extreme Learning Machines for spatial environmental data

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2015-12-01

    The use of machine learning algorithms has increased in a wide variety of domains (from finance to biocomputing and astronomy), and nowadays has a significant impact on the geoscience community. In most real cases geoscience data modelling problems are multivariate, high dimensional, variable at several spatial scales, and are generated by non-linear processes. For such complex data, the spatial prediction of continuous (or categorical) variables is a challenging task. The aim of this paper is to investigate the potential of the recently developed Extreme Learning Machine (ELM) for environmental data analysis, modelling and spatial prediction purposes. An important contribution of this study deals with an application of a generic self-consistent methodology for environmental data driven modelling based on Extreme Learning Machine. Both real and simulated data are used to demonstrate applicability of ELM at different stages of the study to understand and justify the results.

  7. Remote Sensing Technologies and Spatial Data Applications.

    DTIC Science & Technology

    1987-12-01

    Evaluation of PC- Based Image Processing/GIS Systems sections. Dr. Robert Ragan of the University of Maryland produced the hydrologic modeling studies...which it occurs in order to make the optimum classification. -25- • . 4- . 4.0 EVALUATION OF PC- BASED IMAGE PROCESSING/GIS SYSTEMS Dramatic increases...auspices of the Corps’ study, EarthSat evaluated two commer- cially available PC- based image processing/GIS systems developed by ERDAS Inc.2 / and

  8. Teaching Spatial Awareness to Children

    ERIC Educational Resources Information Center

    Stevens-Smith, Deborah

    2004-01-01

    An important component in the early stages of skill development is spatial awareness. This article discusses how good spatial awareness in children results from concepts that are reinforced throughout the school's curriculum. Activities for developing spatial awareness are also provided.

  9. Centre National d'Etudes Spatiales

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Centre National d'Etudes Spatiales (CNES) draws up, proposes and conducts France's space policy. Its role is to develop the uses of space, to meet the civilian and military needs of public bodies and of the scientific community, and to foster the development and dissemination of new applications, designed to create wealth and jobs....

  10. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  11. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    PubMed

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  12. Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Fang-Xing; Hung, Sung-Fu; Tao, Hua Bing; Miao, Jianwei; Yang, Hong Bin; Liu, Bin

    2014-11-01

    Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as photoelectrocatalytic performances of the well-defined ZnO NRs/NP-TNTAs heterostructures were systematically explored to clarify the structure-property correlation. It was found that the ZnO NRs/NP-TNTAs heterostructure exhibits significantly enhanced photocatalytic and photoelectrocatalytic performances, along with favorable photostability toward degradation of organic pollutants under UV light irradiation, as compared to the single component counterparts. The remarkably enhanced photoactivity of ZnO NRs/NP-TNTAs heterostructure is ascribed to the intimate interfacial integration between ZnO NRs and NP-TNTAs substrate imparted by the unique spatially branched hierarchical structure, thereby contributing to the efficient transfer and separation of photogenerated electron-hole charge carriers. Moreover, the specific active species during the photocatalytic process was unambiguously determined and photocatalytic mechanism was tentatively presented. It is anticipated that our work could provide new insights for the construction of various hierarchical 1D-1D hybrid nanocomposites for extensive photocatalytic applications.Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as

  13. Spatial ecology across scales.

    PubMed

    Hastings, Alan; Petrovskii, Sergei; Morozov, Andrew

    2011-04-23

    The international conference 'Models in population dynamics and ecology 2010: animal movement, dispersal and spatial ecology' took place at the University of Leicester, UK, on 1-3 September 2010, focusing on mathematical approaches to spatial population dynamics and emphasizing cross-scale issues. Exciting new developments in scaling up from individual level movement to descriptions of this movement at the macroscopic level highlighted the importance of mechanistic approaches, with different descriptions at the microscopic level leading to different ecological outcomes. At higher levels of organization, different macroscopic descriptions of movement also led to different properties at the ecosystem and larger scales. New developments from Levy flight descriptions to the incorporation of new methods from physics and elsewhere are revitalizing research in spatial ecology, which will both increase understanding of fundamental ecological processes and lead to tools for better management.

  14. The Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J, Jr.

    2006-01-01

    The spatial standard observer is a computational model that provides a measure of the visibility of a target in a uniform background image or of the visual discriminability of two images. Standard observers have long been used in science and industry to quantify the discriminability of colors. Color standard observers address the spectral characteristics of visual stimuli, while the spatial standard observer (SSO), as its name indicates, addresses spatial characteristics. The SSO is based on a model of human vision. The SSO was developed in a process that included evaluation of a number of earlier mathematical models that address optical, physiological, and psychophysical aspects of spatial characteristics of human visual perception. Elements of the prior models are incorporated into the SSO, which is formulated as a compromise between accuracy and simplicity. The SSO operates on a digitized monochrome still image or on a pair of such images. The SSO consists of three submodels that operate sequentially on the input image(s): 1. A contrast model, which converts an input monochrome image to a luminance contrast image, wherein luminance values are expressed as excursions from, and normalized to, a mean; 2. A contrast-sensitivity-filter model that includes an oblique-effect filter (which accounts for the decline in contrast sensitivity at oblique viewing angles); and 3. A spatial summation model, in which responses are spatially pooled by raising each pixel to the power beta, adding the results, and raising the sum to the 1/b power. In this model, b=2.9 was found to be a suitable value. The net effect of the SSO is to compute a numerical measure of the perceptual strength of the single image, or of the visible difference (denoted the perceptual distance) between two images. The unit of a measure used in the SSO is the just noticeable difference (JND), which is a standard measure of perceptual discriminability. A target that is just visible has a measure of 1 JND.

  15. Multivariate semiparametric spatial methods for imaging data.

    PubMed

    Chen, Huaihou; Cao, Guanqun; Cohen, Ronald A

    2017-04-01

    Univariate semiparametric methods are often used in modeling nonlinear age trajectories for imaging data, which may result in efficiency loss and lower power for identifying important age-related effects that exist in the data. As observed in multiple neuroimaging studies, age trajectories show similar nonlinear patterns for the left and right corresponding regions and for the different parts of a big organ such as the corpus callosum. To incorporate the spatial similarity information without assuming spatial smoothness, we propose a multivariate semiparametric regression model with a spatial similarity penalty, which constrains the variation of the age trajectories among similar regions. The proposed method is applicable to both cross-sectional and longitudinal region-level imaging data. We show the asymptotic rates for the bias and covariance functions of the proposed estimator and its asymptotic normality. Our simulation studies demonstrate that by borrowing information from similar regions, the proposed spatial similarity method improves the efficiency remarkably. We apply the proposed method to two neuroimaging data examples. The results reveal that accounting for the spatial similarity leads to more accurate estimators and better functional clustering results for visualizing brain atrophy pattern.Functional clustering; Longitudinal magnetic resonance imaging (MRI); Penalized B-splines; Region of interest (ROI); Spatial penalty.

  16. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  17. Differentiating spatial light modulator

    NASA Astrophysics Data System (ADS)

    Armitage, D.

    1985-04-01

    A differentiating spatial light modulator device in which a photoreceptor and an electro-optic crystal are isolated by a dielectric mirror is discussed. The electro-optic crystal is configured to have low or zero longitudinal response, yet is sensitive to transverse electric fields. The fringe field generated by the photoreceptor (photodiode) modulates the crystal birefringence. Readout via a polarizing beamsplitter gives an output light related to the spatial gradient of the input light. In a liquid crystal embodiment of the invention, reversal of the applied voltage gives a driven off state which speeds the erasure. Storage is possible in the smectic liquid crystal phase.

  18. MAPPING SPATIAL ACCURACY AND ESTIMATING LANDSCAPE INDICATORS FROM THEMATIC LAND COVER MAPS USING FUZZY SET THEORY

    EPA Science Inventory

    The accuracy of thematic map products is not spatially homogenous, but instead variable across most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic map accuracy would provide valuable user information for assessing appropriate applic...

  19. Reconstructing Spatial Distributions from Anonymized Locations

    SciTech Connect

    Horey, James L; Forrest, Stephanie; Groat, Michael

    2012-01-01

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

  20. Heredity Factors in Spatial Visualization.

    ERIC Educational Resources Information Center

    Vandenberg, S. G.

    Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…

  1. Spatial reasoning in remotely sensed data

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Ehrich, R. W.; Elliott, D.; Haralick, R. M.; Wang, S.

    1981-01-01

    Photointerpreters employ a variety of implicit spatial models to provide interpretations from remotely sensed aerial or satellite imagery. In this paper one application is illustrated: how ridges and valleys can be automatically interpreted from Landsat imagery of a mountainous area, and how a relative elevation terrain model can be constructed from this interpretation. How to examine valleys for the possible presence of streams or rivers is shown, and how a spatial relational model can be set up to make a final interpretation of the river drainage network is explored.

  2. Site characterization: a spatial estimation approach

    SciTech Connect

    Candy, J.V.; Mao, N.

    1980-10-01

    In this report the application of spatial estimation techniques or kriging to groundwater aquifers and geological borehole data is considered. The adequacy of these techniques to reliably develop contour maps from various data sets is investigated. The estimator is developed theoretically in a simplified fashion using vector-matrix calculus. The practice of spatial estimation is discussed and the estimator is then applied to two groundwater aquifer systems and used also to investigate geological formations from borehole data. It is shown that the estimator can provide reasonable results when designed properly.

  3. The research and application of the power big data

    NASA Astrophysics Data System (ADS)

    Zhang, Suxiang; Zhang, Dong; Zhang, Yaping; Cao, Jinping; Xu, Huiming

    2017-01-01

    Facing the increasing environment crisis, how to improve energy efficiency is the important problem. Power big data is main support tool to realize demand side management and response. With the promotion of smart power consumption, distributed clean energy and electric vehicles etc get wide application; meanwhile, the continuous development of the Internet of things technology, more applications access the endings in the grid power link, which leads to that a large number of electric terminal equipment, new energy access smart grid, and it will produce massive heterogeneous and multi-state electricity data. These data produce the power grid enterprise's precious wealth, as the power big data. How to transform it into valuable knowledge and effective operation becomes an important problem, it needs to interoperate in the smart grid. In this paper, we had researched the various applications of power big data and integrate the cloud computing and big data technology, which include electricity consumption online monitoring, the short-term power load forecasting and the analysis of the energy efficiency. Based on Hadoop, HBase and Hive etc., we realize the ETL and OLAP functions; and we also adopt the parallel computing framework to achieve the power load forecasting algorithms and propose a parallel locally weighted linear regression model; we study on energy efficiency rating model to comprehensive evaluate the level of energy consumption of electricity users, which allows users to understand their real-time energy consumption situation, adjust their electricity behavior to reduce energy consumption, it provides decision-making basis for the user. With an intelligent industrial park as example, this paper complete electricity management. Therefore, in the future, power big data will provide decision-making support tools for energy conservation and emissions reduction.

  4. Cartography: LACIE's spatial processor

    NASA Technical Reports Server (NTRS)

    Rader, M. L.; Vela, R. R. (Principal Investigator)

    1979-01-01

    The spatial processing needs of LACIE include the location of agricultural test sites, and the registration of ground truth to LANDSAT imagery. The technological aspects of LACIE cartographic support, the need for cartography in satellite crop surveys, and proposed improvements which would enhance support of future programs are discussed.

  5. Diagonal spatial neglect

    PubMed Central

    Mark, V.; Heilman, K.

    1998-01-01

    OBJECTIVE—To determine whether stroke patients with diagonal neglect on cancellation may show diagonal neglect on line bisection, and hence to indicate whether diagonal neglect may be related solely to the type of test used or whether instead it may reflect a fundamental spatial disorder.
METHODS—Nine patients with subacute right hemispheric stroke who neglected targets primarily in the near left direction on line cancellation bisected diagonal lines of two opposing orientations: near left to far right and far left to near right. The errors were assessed to determine whether line orientation significantly affected bisection error.
RESULTS—Eight patients had significant bisection errors. One of these showed no effect of line orientation on error, consistent with lateral neglect. The remaining seven patients had a line orientation effect, indicating a net diagonal spatial bias. For the group, cancellation errors were significantly correlated with the line orientation effect on bisection errors.
CONCLUSIONS—A significant diagonal bias on two tests of spatial attention may appear in stroke patients, although the directions of the biases may differ within individual patients. None the less, diagonal neglect may be a fundamental spatial attentional disturbance of right hemispheric stroke. Greater severity of stroke deficit as indicated by cancellation error score may be associated with a greater degree of diagonal neglect on line bisection.

 PMID:9728947

  6. Handbook of Spatial Cognition

    ERIC Educational Resources Information Center

    Waller, David, Ed.; Nadel, Lynn, Ed.

    2012-01-01

    Spatial cognition is a branch of cognitive psychology that studies how people acquire and use knowledge about their environment to determine where they are, how to obtain resources, and how to find their way home. Researchers from a wide range of disciplines, including neuroscience, cognition, and sociology, have discovered a great deal about how…

  7. Holographic analogy of the spatial radial carrier analysis of interferograms

    NASA Astrophysics Data System (ADS)

    Garcia-Marquez, Jorge L.; Malacara-Hernandez, Daniel

    1996-07-01

    A holographic analogy ofthe analysis of thterferograms with a spatial radial carrier introduced by means of defocusing and its practical applications is describei Special emphasis is made ofthe conditions imposed on the Fourier spectra ofthe interferogram.

  8. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator.

    PubMed

    Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui

    2016-11-15

    Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.

  9. Natural Resources and Spatial Spillovers

    NASA Astrophysics Data System (ADS)

    Batbold, Dulguun

    Regions going through a natural resource boom tend to have higher average incomes and employment relative to the rest of the country. For policy analysis, a question that often needs to be answered is to what extent the economic growth in the extraction region spills over to neighboring areas. This thesis develops a detailed methodology for analyzing the economic effects of geographically localized shocks within the framework of a parsimonious spatial general equilibrium model, including various methods for estimating key parameters. This model-based approach is being offered as a complementary tool for applied researchers conducting economic impact analysis. Existing empirical methods such as input-output analysis or difference-in-difference estimation techniques are often not optimal for analyzing spatially correlated data, and this model-based methodology can be used to overcome their limitations. Another important advantage of this methodology is that it is computationally tractable and has a relatively low data requirement, which can make a particularly big difference in studying developing countries where data quality and availability can often be an insurmountable challenge. Following the exposition of the methodology, this thesis presents two separate applications, one involving a developed nation and the other a developing one. In the first case, the methodology is applied to analyze the economic impact of the shale energy boom that's been occurring in and around Bakken counties in western North Dakota and eastern Montana over the past decade. In the second case, the methodology is used to analyze the economic impact of the Oyu Tolgoi copper-gold mining project in the Southern Gobi region of Mongolia. A common conclusion that is drawn from the two applications mentioned above is that economic booms fueled by natural resource extracting industries are largely local and have limited spillover effects on neighboring regions.

  10. Spatial strategies for managing visitor impacts in National Parks

    USGS Publications Warehouse

    Leung, Y.-F.; Marion, J.L.

    1999-01-01

    effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.

  11. Highly accurate spatial mode generation using spatial cross modulation method for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroki; Okamoto, Atsushi; Shibukawa, Atsushi; Goto, Yuta; Tomita, Akihisa

    2016-02-01

    We propose a spatial mode generation technology using spatial cross modulation (SCM) for mode division multiplexing (MDM). The most well-known method for generating arbitrary complex amplitude fields is to display an off-axis computer-generated hologram (CGH) on a spatial light modulator (SLM). However, in this method, a desired complex amplitude field is obtained with first order diffraction light. This critically lowers the light utilization efficiency. On the other hand, in the SCM, the desired complex field is provided with zeroth order diffraction light. For this reason, our technology can generate spatial modes with large light utilization efficiency in addition to high accuracy. In this study, first, a numerical simulation was performed to verify that the SCM is applicable for spatial mode generation. Next, we made a comparison from two view points of the coupling efficiency and the light utilization between our technology and the technology using an off-axis amplitude hologram as a representative complex amplitude generation method. The simulation results showed that our technology can achieve considerably high light utilization efficiency while maintaining the enough coupling efficiency comparable to the technology using an off-axis amplitude hologram. Finally, we performed an experiment on spatial modes generation using the SCM. Experimental results showed that our technology has the great potential to realize the spatial mode generation with high accuracy.

  12. Making a Place for Space: Spatial Thinking in Social Science.

    PubMed

    Logan, John R

    2012-08-01

    New technologies and multilevel data sets that include geographic identifiers have heightened sociologists' interest in spatial analysis. I review several of the key concepts, measures, and methods that are brought into play in this work, and offer examples of their application in a variety of substantive fields. I argue that the most effective use of the new tools requires greater emphasis on spatial thinking. A device as simple as an illustrative map requires some understanding of how people respond to visual cues; models as complex as HLM with spatial lags require thoughtful measurement decisions and raise questions about what a spatial effect represents.

  13. Making a Place for Space: Spatial Thinking in Social Science

    PubMed Central

    Logan, John R.

    2013-01-01

    New technologies and multilevel data sets that include geographic identifiers have heightened sociologists’ interest in spatial analysis. I review several of the key concepts, measures, and methods that are brought into play in this work, and offer examples of their application in a variety of substantive fields. I argue that the most effective use of the new tools requires greater emphasis on spatial thinking. A device as simple as an illustrative map requires some understanding of how people respond to visual cues; models as complex as HLM with spatial lags require thoughtful measurement decisions and raise questions about what a spatial effect represents. PMID:24273374

  14. Measuring subwavelength spatial coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Morrill, Drew; Li, Dongfang; Pacifici, Domenico

    2016-10-01

    Optical interferometry has enabled quantification of the spatial and temporal correlations of electromagnetic fields, which laid the foundations for the theory of optical coherence. Despite significant advances in fundamental theories and applications, the measurement of nanoscale coherence lengths for highly incoherent optical fields has remained elusive. Here, we employ plasmonic interferometry (that is, optical interferometry with surface plasmons) to characterize the spatial degree of coherence of light beams down to subwavelength scales, with measured coherence lengths as low as ∼330 nm for an incident wavelength of 500 nm. Furthermore, we demonstrate a compact coherence meter that integrates this method with an image sensor. Precise determination of spatial coherence can advance high-resolution imaging and tomographic schemes, and provide an experimental platform for the development and testing of optical coherence theories at the nanoscale.

  15. Some topics in the spatial bispectra

    SciTech Connect

    Sullivan, E.

    1994-11-15

    The bispectrum can be defined as the triple fourier transform of the third order cumulant of a data series. Up to the present, except in image analysis, most work on the bispectrum has treated time series. Recently, however, there has been interest in using the bispectrum in acoustic array processing. After a look at some issues involving sampling frequencies and symmetries of the bispectrum in general, two applications of the spatial bispectrum to underwater acoustic array processing will be discussed. One is a method of processing against loss of spatial coherence in towed arrays, which takes the form of a one-dimensional image, and the other is a look at the role of spatial bispectra in matched-field processing, which is a form of model-based processing used for the localization of acoustic sound sources.

  16. Compatible Spatial Discretizations for Partial Differential Equations

    SciTech Connect

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  17. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  18. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  19. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  20. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  1. Spatially ordered treemaps.

    PubMed

    Wood, Jo; Dykes, Jason

    2008-01-01

    Existing treemap layout algorithms suffer to some extent from poor or inconsistent mappings between data order and visual ordering in their representation, reducing their cognitive plausibility. While attempts have been made to quantify this mismatch, and algorithms proposed to minimize inconsistency, solutions provided tend to concentrate on one-dimensional ordering. We propose extensions to the existing squarified layout algorithm that exploit the two-dimensional arrangement of treemap nodes more effectively. Our proposed spatial squarified layout algorithm provides a more consistent arrangement of nodes while maintaining low aspect ratios. It is suitable for the arrangement of data with a geographic component and can be used to create tessellated cartograms for geovisualization. Locational consistency is measured and visualized and a number of layout algorithms are compared. CIELab color space and displacement vector overlays are used to assess and emphasize the spatial layout of treemap nodes. A case study involving locations of tagged photographs in the Flickr database is described.

  2. Microchannel spatial light modulator

    NASA Technical Reports Server (NTRS)

    Warde, C.

    1981-01-01

    The Microchannel Spatial Light Modulator (MSLM), a versatile, highly sensitive, and optically addressed device being developed for real time optical information processing is discussed. The MSLM operates by converting an input optical image into a charge distribution at the surface of an electro-optic crystal. The charge distribution generates an electric field which modulates the refractive index of the crystal and thereby the phase or intensity of an image readout beam. Prototype devices employing 250 micron thick crystals exhibited a spatial resolution of 5 cycles/mm at 50% contrast, an exposure sensitivity of 2.2 nJ/cu cm and framing rates of 40 Hz with full modulation depth. The image processing operations that have been achieved using the internal processing mode of the MSLM include contrast reversal, contrast enhancement, edge enhancement, image addition and subtraction, analog and digital intensity thresholding, and binary level logic operations such as AND, OR, EXCLUSIVE OR, and NOR.

  3. Spatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Haining, Robert

    2003-06-01

    Are there geographic clusters of disease cases, or hotspots of crime? Can the geography of air quality be matched to where people hospitalized for respiratory complaints actually live? Spatial data is data about the world where the attribute of interest and its location on the earth's surface are recorded. This comprehensive overview of the subject shows how the above questions can be tackled. It is written for students and researchers in geography, economics, social science, the environmental sciences and statistics.

  4. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  5. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  6. Detecting spatial regimes in ecosystems | Science Inventory ...

    EPA Pesticide Factsheets

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning

  7. Dynamic Scene Classification Using Redundant Spatial Scenelets.

    PubMed

    Du, Liang; Ling, Haibin

    2016-09-01

    Dynamic scene classification started drawing an increasing amount of research efforts recently. While existing arts mainly rely on low-level features, little work addresses the need of exploring the rich spatial layout information in dynamic scene. Motivated by the fact that dynamic scenes are characterized by both dynamic and static parts with spatial layout priors, we propose to use redundant spatial grouping of a large number of spatiotemporal patches, named scenelet, to represent a dynamic scene. Specifically, each scenelet is associated with a category-dependent scenelet model to encode the likelihood of a specific scene category. All scenelet models for a scene category are jointly learned to encode the spatial interactions and redundancies among them. Subsequently, a dynamic scene sequence is represented as a collection of category likelihoods estimated by these scenelet models. Such presentation effectively encodes the spatial layout prior together with associated semantic information, and can be used for classifying dynamic scenes in combination with a standard learning algorithm such as k -nearest neighbor or linear support vector machine. The effectiveness of our approach is clearly demonstrated using two dynamic scene benchmarks and a related application for violence video classification. In the nearest neighbor classification framework, for dynamic scene classification, our method outperforms previous state-of-the-arts on both Maryland "in the wild" dataset and "stabilized" dynamic scene dataset. For violence video classification on a benchmark dataset, our method achieves a promising classification rate of 87.08%, which significantly improves previous best result of 81.30%.

  8. Spatial symmetry breaking in rapidly rotating convective spherical shells

    NASA Technical Reports Server (NTRS)

    Zhang, Keke; Schubert, Gerald

    1995-01-01

    Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.

  9. Spatial Bell-State Generation without Transverse Mode Subspace Postselection

    NASA Astrophysics Data System (ADS)

    Kovlakov, E. V.; Bobrov, I. B.; Straupe, S. S.; Kulik, S. P.

    2017-01-01

    Spatial states of single photons and spatially entangled photon pairs are becoming an important resource in quantum communication. This additional degree of freedom provides an almost unlimited information capacity, making the development of high-quality sources of spatial entanglement a well-motivated research direction. We report an experimental method for generation of photon pairs in a maximally entangled spatial state. In contrast to existing techniques, the method does not require postselection of a particular subspace of spatial modes and allows one to use the full photon flux from the nonlinear crystal, providing a tool for creating high-brightness sources of pure spatially entangled photons. Such sources are a prerequisite for emerging applications in free-space quantum communication.

  10. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  11. Spatial analysis of hemorrhagic fever with renal syndrome in China

    PubMed Central

    Fang, Liqun; Yan, Lei; Liang, Song; de Vlas, Sake J; Feng, Dan; Han, Xiaona; Zhao, Wenjuan; Xu, Bing; Bian, Ling; Yang, Hong; Gong, Peng; Richardus, Jan Hendrik; Cao, Wuchun

    2006-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is endemic in many provinces with high incidence in mainland China, although integrated intervention measures including rodent control, environment management and vaccination have been implemented for over ten years. In this study, we conducted a geographic information system (GIS)-based spatial analysis on distribution of HFRS cases for the whole country with an objective to inform priority areas for public health planning and resource allocation. Methods Annualized average incidence at a county level was calculated using HFRS cases reported during 1994–1998 in mainland China. GIS-based spatial analyses were conducted to detect spatial autocorrelation and clusters of HFRS incidence at the county level throughout the country. Results Spatial distribution of HFRS cases in mainland China from 1994 to 1998 was mapped at county level in the aspects of crude incidence, excess hazard and spatial smoothed incidence. The spatial distribution of HFRS cases was nonrandom and clustered with a Moran's I = 0.5044 (p = 0.001). Spatial cluster analyses suggested that 26 and 39 areas were at increased risks of HFRS (p < 0.01) with maximum spatial cluster sizes of ≤ 20% and ≤ 10% of the total population, respectively. Conclusion The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit HFRS risks and to further identify environmental factors responsible for the increasing disease risks. We demonstrate a new perspective of integrating such spatial analysis tools into the epidemiologic study and risk assessment of HFRS. PMID:16638156

  12. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  13. Spatial heterodyne interferometry with polarization gratings.

    PubMed

    Kudenov, Michael W; Miskiewicz, Matthew N; Escuti, Michael J; Dereniak, Eustace L

    2012-11-01

    The implementation of a polarization-based spatial heterodyne interferometer (SHI) is described. While a conventional SHI uses a Michelson interferometer and diffraction gratings, our SHI exploits mechanically robust Wollaston prisms and polarization gratings. A theoretical model for the polarization SHI is provided and validated with data from our proof of concept experiments. This device is expected to provide a compact monolithic sensor for subangstrom resolution spectroscopy in remote sensing, biomedical imaging, and machine vision applications.

  14. Indoor air: Spatial variations of chlorinated pesticides

    NASA Astrophysics Data System (ADS)

    Anderson, David J.; Hites, Ronald A.

    The concentrations of two classes of chlorinated pesticides were measured in various locations within four homes. The prevalent compounds were chlorinated derivatives of cyclopentadiene which had been used as termiticides. These compounds were found in basement areas at higher concentrations than in upstairs areas of the homes. Another class of chlorinated pesticide was represented by chlorpyrifos; its spatial profile was consistent with its application in upstairs areas.

  15. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and

  16. Spatial Data Transfer Standard (SDTS)

    USGS Publications Warehouse

    ,

    1999-01-01

    The American National Standards Institute?s (ANSI) Spatial Data Transfer Standard (SDTS) is a mechanism for archiving and transferring of spatial data (including metadata) between dissimilar computer systems. The SDTS specifies exchange constructs, such as format, structure, and content, for spatially referenced vector and raster (including gridded) data. The SDTS includes a flexible conceptual model, specifications for a quality report, transfer module specifications, data dictionary specifications, and definitions of spatial features and attributes.

  17. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  18. Spatial Premise Integration in Hindi

    ERIC Educational Resources Information Center

    Mishra, Ramesh Kumar

    2007-01-01

    Spatial reasoning or locating objects in a spatial space has long been an important area of research in cognitive science because analyzing space categorically and finding objects is a fundamental act of mental perception and cognition. Premise integration in tasks of spatial reasoning has recently received considerable research attention. This is…

  19. Spatial homogeneity of benthic macrofaunal biodiversity across small spatial scales.

    PubMed

    Barnes, R S K

    2016-12-01

    Spatial heterogeneity of biodiversity has been extensively researched, but its spatial homogeneity is virtually unstudied. An intertidal seagrass system at Knysna (South Africa) known to display spatially homogeneous macrobenthic species density at scales ≥0.0275 m(2) was re-investigated at four smaller spatial grains (0.0015 m(2) - 0.0095 m(2)) via a lattice of 8 × 8 stations within a 0.2 ha area. The aim was to investigate the null hypothesis that spatial homogeneity of species density is not a fixed emergent assemblage property but breaks down at small spatial grains within given spatial extents. Although assemblage abundance was significantly heterogeneous at all spatial grains investigated, both species density and functional-group density were significantly homogeneous across those same scales; observed densities not departing from those expected on the basis of independent assortment. Spatial homogeneity is therefore an emergent assemblage property within given spatial extents at Knysna and probably at equivalent sites elsewhere. Equivalent species density in South Africa, Australia and the UK at spatial grains <0.03 m(2), however, is a scale-related sampling artefact, as may be temporal homogeneity of species density at Knysna over a 3 year period, but close similarity in shape of their species occupancy distributions remains unexplained.

  20. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  1. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response

    NASA Astrophysics Data System (ADS)

    Zoccatelli, D.; Borga, M.; Viglione, A.; Chirico, G. B.; Blöschl, G.

    2011-06-01

    This paper provides a general analytical framework for assessing the dependence existing between spatial rainfall organisation, basin morphology and runoff response. The analytical framework builds upon a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall") which describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of storm velocity at the catchment scale. The paper illustrates the development of the analytical framework and explains the conceptual meaning of the statistics by means of application to five extreme flash floods occurred in various European regions in the period 2002-2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide essential information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.

  2. Measuring the spatial accuracy of the spatial scan statistic.

    PubMed

    Read, Simon; Bath, Peter; Willett, Peter; Maheswaran, Ravi

    2011-06-01

    The spatial scan statistic is well established in spatial epidemiology. However, studies of its spatial accuracy are infrequent and vary in approach, often using multiple measures which complicate the objective ranking of different implementations of the statistic. We address this with three novel contributions. Firstly, a modular framework into which different definitions of spatial accuracy can be compared and hybridised. Secondly, we derive a new single measure, Ω, which takes account of all true and detected clusters, without the need for arbitrary weightings and irrespective of any chosen significance threshold. Thirdly, we demonstrate the new measure, alongside existing ones, in a study of the six output filter options provided by SaTScan™. The study suggests filtering overlapping detected clusters tends to reduce spatial accuracy, and visualising overlapping clusters may be better than filtering them out. Although we only address spatial accuracy, the framework and Ω may be extendible to spatio-temporal accuracy.

  3. Spatial organization of cooperation

    NASA Astrophysics Data System (ADS)

    Desprat, Nicolas

    The structure of the environment spatially confines bacteria inside groups where they live and evolve with their siblings. This population structure may not only select for individual abilities but also for group properties that would eventually enhance the fitness of the colony. In poor media, we might think that maximizing the contact with the environment would maximize the fitness of individual cells. However, we will show that the microcolony of P. aeruginosa adapts its morphogenesis to maximize cell-cell contacts rather than cell-environment interactions when iron becomes scarce in the environment. In this case, reducing the surface of exchange with the environment allows to limit the loss of secreted molecules required to efficiently fetch extracelllular iron at very low concentration.

  4. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  5. Non-uniform spatial response of the LCoS spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lopez, Víctor; González-Vega, Arturo; Aguilar, Alberto; Landgrave, J. E. A.; García-Márquez, Jorge

    2016-05-01

    Liquid crystal on silicon (LCoS) spatial light modulators have been considered for a wide variety of scientific applications, due to their phase modulation capability and high spatial resolution. Nevertheless, their intrinsic characteristics, like the extensively studied depolarization and phase shift fluctuations, can make their behavior significantly distant from the ideal and somewhat unpredictable. Here, we present the characterization of a different source of uncertainty: the non-uniform spatial response of the LCoS, which is fundamentally different to the static aberrations of the panel. We measured local deviations of ±22% from the expected phase shift, resulting in non-negligible effects for phase modulation measurements, phase shifting interferometry, wavefront correction, and speckle interferometry.

  6. Phase demodulation from a spatial carrier fringe pattern by spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Lan, Bin; Feng, Guoying; Zhang, Tao; Zhou, Shouhuan

    2016-12-01

    Phase extraction from a single fringe pattern is a valuable but challenging task. In this paper, a spatial carrier phase-shifting algorithm based on spatial-temporal fringes method is proposed to demodulate the phase from a single carrier interfergram. Firstly, two phase-shifted fringe patterns are composed from the original interferogram shifting by several pixels their starting position. Secondly, these two phase shift fringes are fused into one spatial-temporal fringes (STF) image. Then, the modulating phase is calculated from the frequency spectrum of the STF image. Meanwhile, the main factors, such as the level of random noise, the carrier frequency values and angle of fringe pattern are analyzed and discussed in the simulations, and experimental results are given to demonstrate the validity of the proposed method. The proposed method is effective, accurate and immune to external disturbance and vibration, which greatly promotes the application in the on-line detection fields.

  7. A spatial standard observer for visual technology

    NASA Astrophysics Data System (ADS)

    Watson, Andrew B.

    2005-03-01

    The Spatial Standard Observer (SSO) was developed in response to a need for a simple, practical tool for measurement of visibility and discriminability of spatial patterns. The SSO is a highly simplified model of human spatial vision, based on data collected in a large cooperative multi-lab project known as ModelFest. It incorporates only a few essential components, such as a local contrast transformation, contrast sensitivity function, local masking, and local pooling. The SSO may be useful in a wide variety of applications, such as evaluating vision from unmanned aerial vehicles, measuring visibility of damage to aircraft and to the shuttle orbiter, predicting outcomes of corrective laser eye surgery, inspection of displays during the manufacturing process, estimation of the quality of compressed digital video, evaluation of legibility of text, and predicting discriminability of icons or symbols in a graphical user interface. In this talk I will describe the development of the SSO, and will discuss in detail a number of these potential applications.

  8. Chemistry with spatial control using particles and streams†

    PubMed Central

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  9. Advances in spatial epidemiology and geographic information systems.

    PubMed

    Kirby, Russell S; Delmelle, Eric; Eberth, Jan M

    2017-01-01

    The field of spatial epidemiology has evolved rapidly in the past 2 decades. This study serves as a brief introduction to spatial epidemiology and the use of geographic information systems in applied research in epidemiology. We highlight technical developments and highlight opportunities to apply spatial analytic methods in epidemiologic research, focusing on methodologies involving geocoding, distance estimation, residential mobility, record linkage and data integration, spatial and spatio-temporal clustering, small area estimation, and Bayesian applications to disease mapping. The articles included in this issue incorporate many of these methods into their study designs and analytical frameworks. It is our hope that these studies will spur further development and utilization of spatial analysis and geographic information systems in epidemiologic research.

  10. Modeling structural change in spatial system dynamics: A Daisyworld example

    PubMed Central

    Neuwirth, C.; Peck, A.; Simonović, S.P.

    2015-01-01

    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems’ spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed. PMID:26109906

  11. Application of XAD-2 resin-based passive samplers and SPME-GC-MS/MS analysis for the monitoring of spatial and temporal variations of atmospheric pesticides in Luxembourg.

    PubMed

    Schummer, Claude; Tuduri, Ludovic; Briand, Olivier; Appenzeller, Brice M; Millet, Maurice

    2012-11-01

    Passive air sampling has been shown to be a very interesting alternative to high-volume sampling by overcoming its disadvantages (size, weight, expensiveness). However, to date, only limited data is available about passive air sampling of current-use pesticides. In order to test if passive samplers allow monitoring of spatial and temporal variations of atmospheric pesticide concentrations, five XAD-2-resin based passive air samplers were deployed at five locations in Luxembourg. Samplers were analyzed using accelerated solvent extraction coupled to solid-phase microextraction and gas chromatography with tandem mass spectrometry. Collected data was used to study the spatial and temporal variations of the concentrations of the compounds. Twenty two pesticides were detected between March and October, while no pesticides were detected from November to February. Highest concentrations were measured on the rural sites, suggesting that the used XAD-2 resin-based passive samplers allow the simultaneous monitoring of multiple current-use pesticides and identifying spatial and temporal variations.

  12. Prototype Spatial Reasoning System.

    DTIC Science & Technology

    1986-01-22

    makegensym makes a gensym make~lisp..namo makes a lisp name (a list of atoms) out of a naneptr variable wakoenamosym calls Dmksym with an Indexing... gensym print-hash.table prints Information about constants, primitives, application objects, and Initial models that have been parsed retrieve-slot

  13. SPATIAL NEGLECT AND ATTENTION NETWORKS

    PubMed Central

    Corbetta, Maurizio; Shulman, Gordon L.

    2013-01-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries to ventral fronto-parietal cortex. We propose that neglect reflects deficits in the coding of saliency, control of spatial attention, and representation within an egocentric frame of reference, in conjunction with non-spatial deficits of reorienting, target detection, and arousal/vigilance. In contrast to theories that link spatial neglect to structural damage of specific brain regions, we argue that neglect is better explained by the physiological dysfunction of distributed cortical networks. The ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair non-spatial functions and hypoactivate the right hemisphere, inducing abnormalities in task-evoked activity and functional connectivity of a dorsal frontal-parietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follows from the anatomy and laterality of the ventral regions that interact with the dorsal attention network. PMID:21692662

  14. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  15. Spatially controlled amyloid reactions using organic electronics.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Hammarström, Per; Berggren, Magnus; Nilsson, K Peter R

    2010-10-04

    Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.

  16. Linearization of manipulator dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1993-01-01

    Linearized dynamics models for manipulators are useful in robot analysis, motion planning, and control applications. Techniques from the spatial operator algebra are used to obtain closed form operator expressions for two types of linearized dynamics models, the linearized inverse and forward dynamics models. Spatially recursive algorithms of O(n) and O(n-squared) complexity for the computation of the perturbation vector and coefficient matrices for the linearized inverse dynamics model are developed first. Subsequently, operator factorization and inversion identities are used to develop corresponding closed-form expressions for the linearized forward dynamics model (LFDM). Once again, these are used to develop algorithms of O(n) and O(n-squared) complexity for the computation of the perturbation vector and the coefficient matrices. The algorithms for the LFDM do not require the explicit computation of the mass matrix nor its numerical inversion and are also of lower complexity than the conventional O(n-cubed) algorithms.

  17. Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models

    USGS Publications Warehouse

    Phillips, D.L.; Marks, D.G.

    1996-01-01

    In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated

  18. Solutions for medical databases optimal exploitation.

    PubMed

    Branescu, I; Purcarea, V L; Dobrescu, R

    2014-03-15

    The paper discusses the methods to apply OLAP techniques for multidimensional databases that leverage the existing, performance-enhancing technique, known as practical pre-aggregation, by making this technique relevant to a much wider range of medical applications, as a logistic support to the data warehousing techniques. The transformations have practically low computational complexity and they may be implemented using standard relational database technology. The paper also describes how to integrate the transformed hierarchies in current OLAP systems, transparently to the user and proposes a flexible, "multimodel" federated system for extending OLAP querying to external object databases.

  19. Digital phantoms generated by spectral and spatial light modulators

    PubMed Central

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-01-01

    Abstract. A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications. PMID:26502383

  20. Digital phantoms generated by spectral and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-12-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications.

  1. ALGORITHM DEVELOPMENT FOR SPATIAL OPERATORS.

    USGS Publications Warehouse

    Claire, Robert W.

    1984-01-01

    An approach is given that develops spatial operators about the basic geometric elements common to spatial data structures. In this fashion, a single set of spatial operators may be accessed by any system that reduces its operands to such basic generic representations. Algorithms based on this premise have been formulated to perform operations such as separation, overlap, and intersection. Moreover, this generic approach is well suited for algorithms that exploit concurrent properties of spatial operators. The results may provide a framework for a geometry engine to support fundamental manipulations within a geographic information system.

  2. Spatial Aspects of Interspecific Competition

    NASA Technical Reports Server (NTRS)

    Durrett, Rick; Levin, Simon

    1998-01-01

    Using several variants of a stochastic spatial model introduced by Silvertown et al., we investigate the effect of spatial distribution of individuals on the outcome of competition. First, we prove rigorously that if one species has a competitive advantage over each of the others, then eventually it takes over all the sites in the system. Second, we examine tradeoffs between competition and dispersal distance in a two-species system. Third, we consider a cyclic competitive relationship between three types. In this case, a nonspatial treatment leads to densities that follow neutrally stable cycles or even unstable spiral solutions, while a spatial model yields a stationary distribution with an interesting spatial structure.

  3. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  4. A spatial-temporal covariance model for rainfall analysis

    NASA Astrophysics Data System (ADS)

    Li, Sha; Shu, Hong; Xu, Zhengquan

    2009-10-01

    Many environmental phenomena are regarded as realizations of random functions which possess both spatial and temporal characteristics. In particular, Geostatistics with an extension of the existing spatial techniques into the space-time domain offers some kinds of methods to model such processes. Although these methods for the analysis of spatial-temporal data are becoming more important for many areas of application, they are less developed than those for the analysis of purely spatial or purely temporal data. In this paper, two kinds of spatial-temporal stationary covariance models are introduced. And the differences between spatial domain and time domain are examined. A product-sum covariance model originally given by De Cesare is extended for spatial-temporal analysis on daily rainfall measurements in the three provinces of Northeast China. Remarkably, this generalized non-separable model does not correspond to the use of a metric one in space-time. The rainfall measurements used for this experiment are taken at 104 monitoring stations from January 2000 to December 2005. In the experiment, the product-sum variogram model is employed for developing ordinary kriging and its application to interpolation of the monthly rainfall data from January 2000 to December 2004 has been used to predict the monthly rainfall of 2005. The true values and the predicted ones are compared. The experimental results have shown that this product-sum covariance model is very effective for rainfall analysis.

  5. MGlu5 antagonism impairs exploration and memory of spatial and non-spatial stimuli in rats.

    PubMed

    Christoffersen, Gert R J; Simonyi, Agnes; Schachtman, Todd R; Clausen, Bettina; Clement, David; Bjerre, Vicky K; Mark, Louise T; Reinholdt, Mette; Schmith-Rasmussen, Kati; Zink, Lena V B

    2008-08-22

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in memory processing in some but not all learning tasks. The reason why this receptor is involved in some tasks but not in others remains to be determined. The present experiments using rats examined effects of the mGlu5-antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)--applied systemically i.p. (1-10mg/kg) or bilaterally into the prelimbic cortex (1-10 microg)---on the ability of rats to explore and remember new stimuli. A cross-maze, open field, and object recognition task were used to evaluate exploration and memory and it was found that: (1) locomotion during exploration of spatial environments and exploration time at novel objects were reduced by i.p. but not by prelimbic administration of MPEP, (2) spatial short-term memory was impaired in cross-maze and object discrimination was reduced after both types of administration, (3) long-term retention of spatial conditioning in the cross-maze was inhibited after i.p. applications which (4) also inhibited spontaneous alternation performance during maze-exploration. Reduced exploratory locomotion and exploration time after i.p. injections may have contributed to the observed retention impairments. However, the fact that prelimbic administration of MPEP inhibited retention without reducing exploration shows that memory formation was also impacted directly by prelimbic mGlu5 in both spatial and non-spatial learning.

  6. One Spatial Map or Many? Spatial Coding of Connected Environments

    ERIC Educational Resources Information Center

    Han, Xue; Becker, Suzanna

    2014-01-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will…

  7. Spatially explicit modeling in ecology: A review

    USGS Publications Warehouse

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  8. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  9. Spatial Disorientation - A Perspective

    DTIC Science & Technology

    2003-02-01

    requirement of normal vestibular function in potential aviators. This led to the use of the Barany rotation test in the medical selection of pilots. Applicants...found no correlation between performance on the Barany test and flying ability. Indeed, experienced pilots were found, on average, to have a shorter...Ocker WC (1930) Blind Flying. J. Aviat. Med., 1, 132-150. Parsons RP & Segar LH (1918) Barany chair tests and flying ability. J. Amer. Med. Assoc

  10. Spatial vulnerability assessments by regression kriging

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor

    2016-04-01

    information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  11. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.

    PubMed

    Shibukawa, Atsushi; Okamoto, Atsushi; Takabayashi, Masanori; Tomita, Akihisa

    2014-02-24

    We propose a spatial cross modulation method using a random diffuser and a phase-only spatial light modulator (SLM), by which arbitrary complex-amplitude fields can be generated with higher spatial resolution and diffraction efficiency than off-axis and double-phase computer-generated holograms. Our method encodes the original complex object as a phase-only diffusion image by scattering the complex object using a random diffuser. In addition, all incoming light to the SLM is consumed for a single diffraction order, making a diffraction efficiency of more than 90% possible. This method can be applied for holographic data storage, three-dimensional displays, and other such applications.

  12. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  13. Analyzing spatial and temporal (222)Rn trends in Maine.

    PubMed

    Farah, Christopher; Beard, Kate; Hess, C T; Hock, Janet M

    2012-02-01

    Prolonged radon exposure has been linked to lung cancer. Cancer registry data indicates excess risk for age-adjusted lung cancer in Maine. Maine's mean residential radon activity exceeds the EPA maximum contaminant level (MCL). This paper describes the application of spatial autocorrelation methods to retrospective data as a means of analyzing radon activity in Maine. Retrospective air and well water radon activity data, sampled throughout Maine between 1993 and 2008, are standardized and geocoded for analysis. Three spatial autocorrelation algorithms-local Getis-Ord, local Moran, and spatial scan statistic-are used to identify spatial, temporal, and spatiotemporal radon activity clusters and/or outliers. Spatial clusters of high air- and well water-Rn activity are associated with Maine's Lucerne and Sebago granitic formations. Spatial clusters of low air- and well water-Rn activity are associated with Biddeford Granite and the metamorphic bedrock formation Silurian Ordovician Vassalboro. Space-time analysis indicates that most spatial clusters persist over the period of sampling. No significant temporal clusters are identified. Persistent spatial variations in radon may help to better understand and predict radon-related health risks associated with Maine residences.

  14. A performance evaluation framework for association mining in spatial data.

    PubMed

    Wang, Qiang; Megalooikonomou, Vasileios

    2010-12-01

    The evaluation of the process of mining associations is an important and challenging problem in database systems and especially those that store critical data and are used for making critical decisions. Within the context of spatial databases we present an evaluation framework in which we use probability distributions to model spatial regions, and Bayesian networks to model the joint probability distribution and the structural relationships among spatial and non-spatial predicates. We demonstrate the applicability of the proposed framework by evaluating representatives from two well-known approaches that are used for learning associations, i.e., dependency analysis (using statistical tests of independence) and Bayesian methods. By controlling the parameters of the framework we provide extensive comparative results of the performance of the two approaches. We obtain measures of recovery of known associations as a function of the number of samples used, the strength, number and type of associations in the model, the number of spatial predicates associated with a particular non-spatial predicate, the prior probabilities of spatial predicates, the conditional probabilities of the non-spatial predicates, the image registration error, and the parameters that control the sensitivity of the methods. In addition to performance we investigate the processing efficiency of the two approaches.

  15. The addition of computer simulated noise to investigate radiation dose and image quality in images with spatial correlation of statistical noise: an example application to X-ray CT of the brain.

    PubMed

    Britten, A J; Crotty, M; Kiremidjian, H; Grundy, A; Adam, E J

    2004-04-01

    This study validates a method to add spatially correlated statistical noise to an image, applied to transaxial X-ray CT images of the head to simulate exposure reduction by up to 50%. 23 patients undergoing routine head CT had three additional slices acquired for validation purposes, two at the same clinical 420 mAs exposure and one at 300 mAs. Images at the level of the cerebrospinal fluid filled ventricles gave readings of noise from a single image, with subtraction of image pairs to obtain noise readings from non-uniform tissue regions. The spatial correlation of the noise was determined and added to the acquired 420 mAs image to simulate images at 340 mAs, 300 mAs, 260 mAs and 210 mAs. Two radiologists assessed the images, finding little difference between the 300 mAs simulated and acquired images. The presence of periventricular low density lesions (PVLD) was used as an example of the effect of simulated dose reduction on diagnostic accuracy, and visualization of the internal capsule was used as a measure of image quality. Diagnostic accuracy for the diagnosis of PVLD did not fall significantly even down to 210 mAs, though visualization of the internal capsule was poorer at lower exposure. Further work is needed to investigate means of measuring statistical noise without the need for uniform tissue areas, or image pairs. This technique has been shown to allow sufficiently accurate simulation of dose reduction and image quality degradation, even when the statistical noise is spatially correlated.

  16. The Space in Spatial Language

    ERIC Educational Resources Information Center

    Carlson, Laura A.; Van Deman, Shannon R.

    2004-01-01

    Projective spatial terms such as ''below'' specify the location of one object by indicating its spatial relation with respect to a reference object. These relations are defined via a reference frame that consists of a number of parameters (orientation, direction, origin, and distance) whose settings configure the space surrounding the reference…

  17. Auditory Spatial Perception without Vision

    PubMed Central

    Voss, Patrice

    2016-01-01

    Valuable insights into the role played by visual experience in shaping spatial representations can be gained by studying the effects of visual deprivation on the remaining sensory modalities. For instance, it has long been debated how spatial hearing evolves in the absence of visual input. While several anecdotal accounts tend to associate complete blindness with exceptional hearing abilities, experimental evidence supporting such claims is, however, matched by nearly equal amounts of evidence documenting spatial hearing deficits. The purpose of this review is to summarize the key findings which support either enhancements or deficits in spatial hearing observed following visual loss and to provide a conceptual framework that isolates the specific conditions under which they occur. Available evidence will be examined in terms of spatial dimensions (horizontal, vertical, and depth perception) and in terms of frames of reference (egocentric and allocentric). Evidence suggests that while early blind individuals show superior spatial hearing in the horizontal plane, they also show significant deficits in the vertical plane. Potential explanations underlying these contrasting findings will be discussed. Early blind individuals also show spatial hearing impairments when performing tasks that require the use of an allocentric frame of reference. Results obtained with late-onset blind individuals suggest that early visual experience plays a key role in the development of both spatial hearing enhancements and deficits. PMID:28066286

  18. Spatial resolution considerations for urban hydrological modelling

    NASA Astrophysics Data System (ADS)

    Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H.

    2014-05-01

    Hydrological model simulations can be applied to evaluate the performance of low impact development (LID) tools in urban areas. However, the assessment for large-scale urban areas remains a challenge due to the required high spatial resolution and limited availability of field measurements for model calibration. This study proposes a methodology to parameterize a hydrological model (SWMM) with sufficiently high spatial resolution and direct accessibility of model parameters for LID performance simulation applicable to a large-scale ungauged urban area. Based on calibrated high-resolution models for three small-scale study catchments (6-12 ha), we evaluated how constraints implied by large-scale urban modelling, such as data limitations, affect the model results. The high-resolution surface representation, resulting in subcatchments of uniform surface types, reduced the number of calibration parameters. Calibration conducted independently for all catchments yielded similar parameter values for same surface types in each study catchment. These results suggest the applicability of the parameter values calibrated for high resolution models to be regionalized to larger, ungauged urban areas. The accessibility of surface specific model parameters for LID simulation is then also retained. Conducted perturbations in spatial resolution through sewer network truncation showed that while the runoff volume was mostly unaffected by resolution perturbations, lower resolutions resulted in over-simulation of peak flows due to excessively rapid catchment response to storm events. Our results suggest that a hydrological model where parameter values are adopted from high-resolution models and that is developed based on a minimum conduit diameter of 300 mm provides good simulation performance and is applicable to large-scale urban areas with reasonable effort.

  19. Mechanisms for Human Spatial Competence

    NASA Astrophysics Data System (ADS)

    Gunzelmann, Glenn; Lyon, Don R.

    Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.

  20. Fractals and Spatial Methods for Mining Remote Sensing Imagery

    NASA Technical Reports Server (NTRS)

    Lam, Nina; Emerson, Charles; Quattrochi, Dale

    2003-01-01

    The rapid increase in digital remote sensing and GIS data raises a critical problem -- how can such an enormous amount of data be handled and analyzed so that useful information can be derived quickly? Efficient handling and analysis of large spatial data sets is central to environmental research, particularly in global change studies that employ time series. Advances in large-scale environmental monitoring and modeling require not only high-quality data, but also reliable tools to analyze the various types of data. A major difficulty facing geographers and environmental scientists in environmental assessment and monitoring is that spatial analytical tools are not easily accessible. Although many spatial techniques have been described recently in the literature, they are typically presented in an analytical form and are difficult to transform to a numerical algorithm. Moreover, these spatial techniques are not necessarily designed for remote sensing and GIS applications, and research must be conducted to examine their applicability and effectiveness in different types of environmental applications. This poses a chicken-and-egg problem: on one hand we need more research to examine the usability of the newer techniques and tools, yet on the other hand, this type of research is difficult to conduct if the tools to be explored are not accessible. Another problem that is fundamental to environmental research are issues related to spatial scale. The scale issue is especially acute in the context of global change studies because of the need to integrate remote-sensing and other spatial data that are collected at different scales and resolutions. Extrapolation of results across broad spatial scales remains the most difficult problem in global environmental research. There is a need for basic characterization of the effects of scale on image data, and the techniques used to measure these effects must be developed and implemented to allow for a multiple scale assessment of

  1. Marine spatial planning in practice

    NASA Astrophysics Data System (ADS)

    Collie, Jeremy S.; (Vic) Adamowicz, W. L.; Beck, Michael W.; Craig, Bethany; Essington, Timothy E.; Fluharty, David; Rice, Jake; Sanchirico, James N.

    2013-01-01

    Multiple competing uses of continental-shelf environments have led to a proliferation of marine spatial planning initiatives, together with expert guidance on marine spatial planning. This study provides an empirical review of marine spatial plans, their attributes, and the extent to which the expert guidance is actually being followed. We performed a structured review of 16 existing marine spatial plans and created an idealized marine spatial plan from the steps included in recent expert papers. A cluster analysis of the yes/no answers to 28 questions was used to ordinate the 16 marine spatial plans and to compare them with the idealized plan. All the plans that have been implemented have a high-level government mandate and the authority to implement spatial planning vested in existing institutions. Almost all the plans used data with clear criteria for data inclusion. Stakeholders were included in almost all the plans; they did not participate in all stages of the planning process but their roles were generally clearly defined. Decision-support tools were applied inconsistently across plans and were seldom used dynamically over time. Most spatial planning processes did not select specific outcomes, such as preferred use scenarios. Success is defined inconsistently across plans; in half the cases there are no metrics of success with reference benchmarks. Although monitoring is included in the majority of plans, only in some cases do monitoring results feed back into management decisions. The process of marine spatial planning had advanced in that some of the more recent plans were developed more quickly and contain more desirable attributes than earlier plans. Even so, existing marine spatial plans are heterogeneous—there are essential ingredients, but no single recipe for success.

  2. Six Myths About Spatial Thinking

    NASA Astrophysics Data System (ADS)

    Newcombe, Nora S.; Stieff, Mike

    2012-04-01

    Visualizations are an increasingly important part of scientific education and discovery. However, users often do not gain knowledge from them in a complete or efficient way. This article aims to direct research on visualizations in science education in productive directions by reviewing the evidence for widespread assumptions that learning styles, sex differences, developmental stages, and spatial language determine the impact of visualizations on science learning. First, we examine the assumption that people differ in their verbal versus visual learning style. Due to the lack of rigorous evaluation, there is no current support for this distinction. Future research should distinguish between two different kinds of visual learning style. Second, we consider the belief that there are large and intractable sex differences in spatial ability resultant from immutable biological reasons. Although there are some spatial sex differences (in some types of spatial tests although not all), there is actually only very mixed support for biological causation. Most important, there is conclusive evidence that spatial skills can be improved through training and education. Third, we explore educators' use of Piaget's ideas about spatial development to draw conclusions about 'developmental appropriateness'. However, recent research on spatial development has focused on identifying sequences that begin with early starting points of skill, and spatial education is possible in some form at all ages. Fourth, although spatial language does not determine spatial thought, it does frame attention in a way that can have impact on learning and understanding. We examine the empirical support for each assumption and its relevance to future research on visualizations in science education.

  3. Super-resolved spatial light interference microscopy.

    PubMed

    Chu, Kaiqin; Smith, Zachary J; Wachsmann-Hogiu, Sebastian; Lane, Stephen

    2012-03-01

    We report a scheme to achieve resolution beyond the diffraction limit in spatial light interference microscopy (SLIM). By adding a grating to the optical path, the structured illumination technique can be used to improve the resolution by a factor of 2. We show that a direct application of the structured illumination technique, however, has proved to be unsuccessful. Through two crucial modifications, namely, one to the pupil plane of the objective and the other to the demodulation procedure, faithful phase information of the object is recovered and the resolution is improved by a factor of 2.

  4. Spatial contrast sensitivity in benign intracranial hypertension.

    PubMed Central

    Bulens, C; Meerwaldt, J D; Koudstaal, P J; Van der Wildt, G J

    1988-01-01

    Spatial Contrast Sensitivity (CS) was studied in 20 patients with benign intracranial hypertension (BIH). At presentation CS loss was found in 43% of the eyes, and impairment of visual acuity attributed to BIH in only 16%. Nine patients had blurred vision or visual obscurations, all of whom had abnormal CS. The clinical application of CS measurement in BIH for monitoring the progression or regression of the disease is illustrated by serial measurements in 11 patients. Progressive visual loss in longstanding papilloedema and improvement of visual function in subsiding papilloedema can occur without any change in Snellen acuity or visual field charting. PMID:3225588

  5. Spatial contrast sensitivity in benign intracranial hypertension.

    PubMed

    Bulens, C; Meerwaldt, J D; Koudstaal, P J; Van der Wildt, G J

    1988-10-01

    Spatial Contrast Sensitivity (CS) was studied in 20 patients with benign intracranial hypertension (BIH). At presentation CS loss was found in 43% of the eyes, and impairment of visual acuity attributed to BIH in only 16%. Nine patients had blurred vision or visual obscurations, all of whom had abnormal CS. The clinical application of CS measurement in BIH for monitoring the progression or regression of the disease is illustrated by serial measurements in 11 patients. Progressive visual loss in longstanding papilloedema and improvement of visual function in subsiding papilloedema can occur without any change in Snellen acuity or visual field charting.

  6. Predicting brain activity using a Bayesian spatial model.

    PubMed

    Derado, Gordana; Bowman, F Dubois; Zhang, Lijun

    2013-08-01

    Increasing the clinical applicability of functional neuroimaging technology is an emerging objective, e.g. for diagnostic and treatment purposes. We propose a novel Bayesian spatial hierarchical framework for predicting follow-up neural activity based on an individual's baseline functional neuroimaging data. Our approach attempts to overcome some shortcomings of the modeling methods used in other neuroimaging settings, by borrowing strength from the spatial correlations present in the data. Our proposed methodology is applicable to data from various imaging modalities including functional magnetic resonance imaging and positron emission tomography, and we provide an illustration here using positron emission tomography data from a study of Alzheimer's disease to predict disease progression.

  7. Wave optics simulation approach for partial spatially coherent beams.

    PubMed

    Xiao, Xifeng; Voelz, David

    2006-08-07

    A numerical wave optics approach for simulating a partial spatially coherent beam is presented. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model beam. The approach can be used for modeling applications such as free space optical laser links that utilize partially coherent beams.

  8. Predicting cognitive styles from spatial abilities.

    PubMed

    Nori, Raffaella; Giusberti, Fiorella

    2006-01-01

    Previous studies on spatial memory reveal that people represent spatial information in 3 different forms: landmark, route, and survey. The aim of this work was to assess spatial abilities in order to predict a person's cognitive style. In order to do this we used 9 different spatial tasks, which were linked with these 3 forms of spatial representations. We found that the 9 spatial tasks are able to distinguish different levels of spatial ability.

  9. Black Sea spectral bio-optical models based on satellite data and their applications for assessment of spatial and temporal variability in waters transparency, chlorophyll a content and primary production

    NASA Astrophysics Data System (ADS)

    Churilova, T.; Suslin, V.

    2012-04-01

    Satellite observations of ocean color provide a unique opportunity in oceanography to assess productivity of the sea on different spatial and temporal scales. However it has been shown that the standard SeaWiFS algorithm generally overestimates summer chlorophyll concentration and underestimates pigment content during spring phytoplankton bloom in comparison with in situ measurements. It is required to develop regional algorithms which are based on biooptical characteristics typical for the Sea and consequently could be used for correct transformation of spectral features of water-leaving radiance to chlorophyll a concentrations (Chl), light absorption features of suspended and dissolved organic matter (CDM), downwelling light attenuation coefficient/euphotic zone depth (PAR1%) and rate of primary synthesis of organic substances (PP). The numerous measurements of light absorption spectra of phytoplankton, non-algal particles and coloured dissolved organic matter carried out since 1996 in different seasons and regions of the Black Sea allowed to make a parameterization of the light absorption by all optically active components. Taking into account regional peculiarities of the biooptical parameters, their difference between seasons, shallow and deep-waters, their depth-dependent variability within photosynthetic zone regional spectral models for estimation of chlorophyll a concentration (Chl Model), colored dissolved and suspended organic matter absorption (CDM Model), downwelling irradiance (PAR Model) and primary production (PP Model) have been developed based on satellite data. Test of validation of models showed appropriate accuracy of the models. The developed models have been applied for estimation of spatial/temporal variability of chlorophyll a, dissolved organic matter concentrations, waters transparency, euphotic zone depth and primary production based on SeaWiFS data. Two weeks averaged maps of spatial distribution of these parameters have been composed

  10. Complex Networks Unveiling Spatial Patterns in Turbulence

    NASA Astrophysics Data System (ADS)

    Scarsoglio, Stefania; Iacobello, Giovanni; Ridolfi, Luca

    2016-12-01

    Numerical and experimental turbulence simulations are nowadays reaching the size of the so-called big data, thus requiring refined investigative tools for appropriate statistical analyses and data mining. We present a new approach based on the complex network theory, offering a powerful framework to explore complex systems with a huge number of interacting elements. Although interest in complex networks has been increasing in the past years, few recent studies have been applied to turbulence. We propose an investigation starting from a two-point correlation for the kinetic energy of a forced isotropic field numerically solved. Among all the metrics analyzed, the degree centrality is the most significant, suggesting the formation of spatial patterns which coherently move with similar vorticity over the large eddy turnover time scale. Pattern size can be quantified through a newly-introduced parameter (i.e. average physical distance) and varies from small to intermediate scales. The network analysis allows a systematic identification of different spatial regions, providing new insights into the spatial characterization of turbulent flows. Based on present findings, the application to highly inhomogeneous flows seems promising and deserves additional future investigation.

  11. Non-equilibrium spatial dynamics of ecosystems.

    PubMed

    Guichard, Frederic; Gouhier, Tarik C

    2014-09-01

    Ecological systems show tremendous variability across temporal and spatial scales. It is this variability that ecologists try to predict and that managers attempt to harness in order to mitigate risk. However, the foundations of ecological science and its mainstream agenda focus on equilibrium dynamics to describe the balance of nature. Despite a rich body of literature on non-equilibrium ecological dynamics, we lack a well-developed set of predictions that can relate the spatiotemporal heterogeneity of natural systems to their underlying ecological processes. We argue that ecology needs to expand its current toolbox for the study of non-equilibrium ecosystems in order to both understand and manage their spatiotemporal variability. We review current approaches and outstanding questions related to the study of spatial dynamics and its application to natural ecosystems, including the design of reserves networks. We close by emphasizing the importance of ecosystem function as a key component of a non-equilibrium ecological theory, and of spatial synchrony as a central phenomenon for its inference in natural systems.

  12. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  13. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  14. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging.

  15. Routing Algorithm Exploits Spatial Relations

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Jennings, Esther

    2004-01-01

    A recently developed routing algorithm for broadcasting in an ad hoc wireless communication network takes account of, and exploits, the spatial relationships among the locations of nodes, in addition to transmission power levels and distances between the nodes. In contrast, most prior algorithms for discovering routes through ad hoc networks rely heavily on transmission power levels and utilize limited graph-topology techniques that do not involve consideration of the aforesaid spatial relationships. The present algorithm extracts the relevant spatial-relationship information by use of a construct denoted the relative-neighborhood graph (RNG).

  16. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  17. Spatial features register: toward standardization of spatial features

    USGS Publications Warehouse

    Cascio, Janette

    1994-01-01

    As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

  18. Spatial data discretization methods for geocomputation

    NASA Astrophysics Data System (ADS)

    Cao, Feng; Ge, Yong; Wang, Jinfeng

    2014-02-01

    Geocomputation provides solutions to complex geographic problems. Continuous and discrete spatial data are involved in the geocomputational process; however, geocomputational methods for discrete spatial data cannot be directly applied to continuous or mixed spatial data. Therefore, discretization methods for continuous or mixed spatial data are involved in the process. Since spatial data has spatial features, such as association, heterogeneity and spatial structure, these features cannot be handled by traditional discretization methods. Therefore, this work develops feature-based spatial data discretization methods that achieve optimal discretization results for spatial data using spatial information implicit in those features. Two discretization methods considering the features of spatial data are presented. One is an unsupervised method considering autocorrelation of spatial data and the other is a supervised method considering spatial heterogeneity. Discretization processes of the two methods are exemplified using neural tube defects (NTD) for Heshun County in Shanxi Province, China. Effectiveness is also assessed.

  19. Extinction and the spatial dynamics of biodiversity

    PubMed Central

    Jablonski, David

    2008-01-01

    The fossil record amply shows that the spatial fabric of extinction has profoundly shaped the biosphere; this spatial dimension provides a powerful context for integration of paleontological and neontological approaches. Mass extinctions evidently alter extinction selectivity, with many factors losing effectiveness except for a positive relation between survivorship and geographic range at the clade level (confirmed in reanalyses of end-Cretaceous extinction data). This relation probably also holds during “normal” times, but changes both slope and intercept with increasing extinction. The strong geographical component to clade dynamics can obscure causation in the extinction of a feature or a clade, owing to hitchhiking effects on geographic range, so that multifactorial analyses are needed. Some extinctions are spatially complex, and regional extinctions might either reset a diversity ceiling or create a diversification debt open to further diversification or invasion. Evolutionary recoveries also exhibit spatial dynamics, including regional differences in invasibilty, and expansion of clades from the tropics fuels at least some recoveries, as well as biodiversity dynamics during normal times. Incumbency effects apparently correlate more closely with extinction intensities than with standing diversities, so that regions with higher local and global extinctions are more subject to invasion; the latest Cenozoic temperate zones evidently received more invaders than the tropics or poles, but this dynamic could shift dramatically if tropical diversity is strongly depleted. The fossil record can provide valuable insights, and their application to present-day issues will be enhanced by partitioning past and present-day extinctions by driving mechanism rather than emphasizing intensity. PMID:18695229

  20. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  1. Mining Co-Location Patterns from Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Xiao, W. D.; Tang, D. Q.

    2016-06-01

    Due to the widespread application of geographic information systems (GIS) and GPS technology and the increasingly mature infrastructure for data collection, sharing, and integration, more and more research domains have gained access to high-quality geographic data and created new ways to incorporate spatial information and analysis in various studies. There is an urgent need for effective and efficient methods to extract unknown and unexpected information, e.g., co-location patterns, from spatial datasets of high dimensionality and complexity. A co-location pattern is defined as a subset of spatial items whose instances are often located together in spatial proximity. Current co-location mining algorithms are unable to quantify the spatial proximity of a co-location pattern. We propose a co-location pattern miner aiming to discover co-location patterns in a multidimensional spatial data by measuring the cohesion of a pattern. We present a model to measure the cohesion in an attempt to improve the efficiency of existing methods. The usefulness of our method is demonstrated by applying them on the publicly available spatial data of the city of Antwerp in Belgium. The experimental results show that our method is more efficient than existing methods.

  2. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  3. Early warning signals of ecological transitions: methods for spatial patterns.

    PubMed

    Kéfi, Sonia; Guttal, Vishwesha; Brock, William A; Carpenter, Stephen R; Ellison, Aaron M; Livina, Valerie N; Seekell, David A; Scheffer, Marten; van Nes, Egbert H; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data.

  4. Evaluation methods for association rules in spatial knowlegde base

    NASA Astrophysics Data System (ADS)

    Niu, X.; Ji, X.

    2014-04-01

    Association rule is an important model in data mining. It describes the relationship between predicates in transactions, makes the expression of knowledge hidden in data more specific and clear. While the developing and applying of remote sensing technology and automatic data collection tools in recent decades, tremendous amounts of spatial and non-spatial data have been collected and stored in large spatial database, so association rules mining from spatial database becomes a significant research area with extensive applications. How to find effective, reliable and interesting association rules from vast information for helping people analyze and make decision has become a significant issue. Evaluation methods measure spatial association rules with evaluation criteria. On the basis of analyzing the existing evaluation criteria, this paper improved the novelty evaluation method, built a spatial knowledge base, and proposed a new evaluation process based on the support-confidence evaluation system. Finally, the feasibility of the new evaluation process was validated by an experiment with real-world geographical spatial data.

  5. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  6. Sampling and kriging spatial means: efficiency and conditions.

    PubMed

    Wang, Jin-Feng; Li, Lian-Fa; Christakos, George

    2009-01-01

    Sampling and estimation of geographical attributes that vary across space (e.g., area temperature, urban pollution level, provincial cultivated land, regional population mortality and state agricultural production) are common yet important constituents of many real-world applications. Spatial attribute estimation and the associated accuracy depend on the available sampling design and statistical inference modelling. In the present work, our concern is areal attribute estimation, in which the spatial sampling and Kriging means are compared in terms of mean values, variances of mean values, comparative efficiencies and underlying conditions. Both the theoretical analysis and the empirical study show that the mean Kriging technique outperforms other commonly-used techniques. Estimation techniques that account for spatial correlation (dependence) are more efficient than those that do not, whereas the comparative efficiencies of the various methods change with surface features. The mean Kriging technique can be applied to other spatially distributed attributes, as well.

  7. Sampling and Kriging Spatial Means: Efficiency and Conditions

    PubMed Central

    Wang, Jin-Feng; Li, Lian-Fa; Christakos, George

    2009-01-01

    Sampling and estimation of geographical attributes that vary across space (e.g., area temperature, urban pollution level, provincial cultivated land, regional population mortality and state agricultural production) are common yet important constituents of many real-world applications. Spatial attribute estimation and the associated accuracy depend on the available sampling design and statistical inference modelling. In the present work, our concern is areal attribute estimation, in which the spatial sampling and Kriging means are compared in terms of mean values, variances of mean values, comparative efficiencies and underlying conditions. Both the theoretical analysis and the empirical study show that the mean Kriging technique outperforms other commonly-used techniques. Estimation techniques that account for spatial correlation (dependence) are more efficient than those that do not, whereas the comparative efficiencies of the various methods change with surface features. The mean Kriging technique can be applied to other spatially distributed attributes, as well. PMID:22346694

  8. Lateralization of Spatial Relation Processing in Natural Scenes

    PubMed Central

    van der Ham, Ineke J. M.; van Zandvoort, Martine J. E.; Postma, Albert

    2013-01-01

    Spatial relations between objects can be represented in a categorical and in a coordinate manner. Categorical representations reflect abstract relations, like ‘left of’ or ‘under’, whereas coordinate representations concern exact metric distances between objects. These two types of spatial relations are thought to be linked to a left hemisphere and a right hemisphere advantage, respectively. This lateralization pattern was examined in a visual search task, making use of natural scenes, in patients with unilateral brain damage and healthy controls. In addition, all participants performed a low-level spatial relation processing task. The results suggest that the lateralization pattern commonly found for spatial relation processing in low-level perceptual tasks is also applicable to the processing of complex visual scenes. PMID:22713416

  9. Pattern transitions in spatial epidemics: Mechanisms and emergent properties.

    PubMed<