A Familiar Pattern? Semantic Memory Contributes to the Enhancement of Visuo-Spatial Memories
ERIC Educational Resources Information Center
Riby, Leigh M.; Orme, Elizabeth
2013-01-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a…
Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.
2011-01-01
Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.
2004-01-01
Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.
Behavioral self-organization underlies the resilience of a coastal ecosystem.
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan
2017-07-25
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.
Behavioral self-organization underlies the resilience of a coastal ecosystem
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.
2017-01-01
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313
NASA Astrophysics Data System (ADS)
Li, Yu-Ye; Ding, Xue-Li
2014-12-01
Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.
Exogenous attention enhances 2nd-order contrast sensitivity
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2011-01-01
Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-09-02
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-01-01
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186
Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex
Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.
2014-01-01
Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272
Luo, Wei; Qi, Yi
2009-12-01
This paper presents an enhancement of the two-step floating catchment area (2SFCA) method for measuring spatial accessibility, addressing the problem of uniform access within the catchment by applying weights to different travel time zones to account for distance decay. The enhancement is proved to be another special case of the gravity model. When applying this enhanced 2SFCA (E2SFCA) to measure the spatial access to primary care physicians in a study area in northern Illinois, we find that it reveals spatial accessibility pattern that is more consistent with intuition and delineates more spatially explicit health professional shortage areas. It is easy to implement in GIS and straightforward to interpret.
USDA-ARS?s Scientific Manuscript database
Structured-illumination reflectance imaging (SIRI) provides a new means for enhanced detection of defects in horticultural products. Implementing the technique relies on retrieving amplitude images by illuminating the object with sinusoidal patterns of single spatial frequencies, which, however, are...
USDA-ARS?s Scientific Manuscript database
This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...
Spatial light modulator array with heat minimization and image enhancement features
Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY
2007-01-30
An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.
Application of Fourier analysis to multispectral/spatial recognition
NASA Technical Reports Server (NTRS)
Hornung, R. J.; Smith, J. A.
1973-01-01
One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.
Zonal wavefront sensing with enhanced spatial resolution.
Pathak, Biswajit; Boruah, Bosanta R
2016-12-01
In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando
2013-01-01
Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135
A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.
Riby, Leigh M; Orme, Elizabeth
2013-03-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics
NASA Astrophysics Data System (ADS)
Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.
Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.
Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor
NASA Astrophysics Data System (ADS)
Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.
2017-05-01
Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.
van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne
2016-06-01
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
NASA Astrophysics Data System (ADS)
Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa
2006-11-01
We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.
Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.
2016-01-01
The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.
Spatial regulation of controlled bioactive factor delivery for bone tissue engineering
Samorezov, Julia E.; Alsberg, Eben
2015-01-01
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank
2017-05-26
Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia
2014-01-01
We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2012-01-01
The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879
Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo
2018-06-18
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
Spatial Control of Condensation using Chemical Micropatterns
NASA Astrophysics Data System (ADS)
Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team
2015-11-01
Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.
Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ
Machida, T.; Kohsaka, Y.; Matsuoka, K.; Iwaya, K.; Hanaguri, T.; Tamegai, T.
2016-01-01
The central issue in the physics of cuprate superconductivity is the mutual relationship among superconductivity, pseudogap and broken-spatial-symmetry states. A magnetic field B suppresses superconductivity, providing an opportunity to investigate the competition among these states. Although various B-induced electronic superstructures have been reported, their energy, spatial and momentum-space structures are unclear. Here, we show using spectroscopic-imaging scanning tunnelling microscopy on Bi2Sr2CaCu2O8+δ that there are two distinct B-induced electronic superstructures, both being localized in the vortex core but appearing at different energies. In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we observe the so-called vortex checkerboard that we identify as the B-enhanced quasiparticle interference pattern. By contrast, in the high-energy region where the pseudogap develops, the broken-spatial-symmetry patterns that pre-exist at B=0 T is locally enhanced in the vortex core. This evidences the competition between superconductivity and the broken-spatial-symmetry state that is associated with the pseudogap. PMID:27230420
Forest fire spatial pattern analysis in Galicia (NW Spain).
Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W
2013-10-15
Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.
Controlling modal interactions in lasers for frequency selection and power enhancement
NASA Astrophysics Data System (ADS)
Ge, Li
2015-03-01
The laser is an out-of-equilibrium non-linear wave system where the interplay of the cavity geometry and non-linear wave interactions determines the self-organized oscillation frequencies and the associated spatial field patterns. Using the correspondence between nonlinear and linear systems, we propose a simple and systematic method to achieve selective excitation of lasing modes that would have been dwarfed by more dominant ones. The key idea is incorporating the control of modal interaction into the spatial pump profile. Our proposal is most valuable in the regime of spatially and spectrally overlapping modes, which can lead to a significant enhancement of laser power as well.
NASA Astrophysics Data System (ADS)
Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed
2015-03-01
The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.
NASA Astrophysics Data System (ADS)
Yang, S. W.; Ma, J. J.; Wang, J. M.
2018-04-01
As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.
Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A
2014-01-31
We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.
Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia
2017-04-01
It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.
Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.
2011-01-01
The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).
Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R
2009-09-01
We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.
Spatial pattern enhances ecosystem functioning in an African savanna.
Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M
2010-05-25
The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng
2014-04-01
Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.
Carasatorre, Mariana; Ochoa-Alvarez, Adrian; Velázquez-Campos, Giovanna; Lozano-Flores, Carlos; Ramírez-Amaya, Víctor; Díaz-Cintra, Sofía Y
2015-01-01
Spatial water maze (WM) overtraining induces hippocampal mossy fiber (MF) expansion, and it has been suggested that spatial pattern separation depends on the MF pathway. We hypothesized that WM experience inducing MF expansion in rats would improve spatial pattern separation in the hippocampal network. We first tested this by using the the delayed non-matching to place task (DNMP), in animals that had been previously trained on the water maze (WM) and found that these animals, as well as animals treated as swim controls (SC), performed better than home cage control animals the DNMP task. The "catFISH" imaging method provided neurophysiological evidence that hippocampal pattern separation improved in animals treated as SC, and this improvement was even clearer in animals that experienced the WM training. Moreover, these behavioral treatments also enhance network reliability and improve partial pattern separation in CA1 and pattern completion in CA3. By measuring the area occupied by synaptophysin staining in both the stratum oriens and the stratun lucidum of the distal CA3, we found evidence of structural synaptic plasticity that likely includes MF expansion. Finally, the measures of hippocampal network coding obtained with catFISH correlate significantly with the increased density of synaptophysin staining, strongly suggesting that structural synaptic plasticity in the hippocampus induced by the WM and SC experience is related to the improvement of spatial information processing in the hippocampus.
Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D
2016-11-01
To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Attention improves encoding of task-relevant features in the human visual cortex
Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank
2011-01-01
When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Particle detector spatial resolution
Perez-Mendez, V.
1992-12-15
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.
Particle detector spatial resolution
Perez-Mendez, Victor
1992-01-01
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.
Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture
NASA Astrophysics Data System (ADS)
Ishihara, Kunihiko; Ikari, Tomofumi; Minamide, Hiroaki; Shikata, Jun-ichi; Ohashi, Keishi; Yokoyama, Hiroyuki; Ito, Hiromasa
2005-07-01
We demonstrate terahertz (THz) near-field imaging using resonantly enhanced transmission of THz-wave radiation (λ˜ 200 μm) through a bull’s eye structure (a single subwavelength aperture surrounded by concentric periodic grooves in a metal plate). The bull’s eye structure shows extremely large enhanced transmission, which has the advantage for a single subwavelength aperture. The spatial resolution for the bull’s eye structure (with an aperture diameter d=100 μm) is evaluated in the near-field region, and a resolution of 50 μm (corresponding to λ/4) is achieved. We obtain the THz near-field images of the subwavelength metal pattern with a spatial resolution below the diffraction limit.
Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method
NASA Astrophysics Data System (ADS)
Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie
2018-07-01
One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
A hierarchical approach to forest landscape pattern characterization.
Wang, Jialing; Yang, Xiaojun
2012-01-01
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-19
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming
Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-01
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860
Tang, Hongliang; Li, Xiaoqing; Zu, Chao; Zhang, Fusuo; Shen, Jianbo
2013-09-15
Acid phosphatases (APases) play a key role in phosphorus (P) acquisition and recycling in plants. White lupin (Lupinus albus L.) forms cluster roots (CRs) and produces large amounts of APases under P deficiency. However, the relationships between the activity of intracellular and extracellular APases (EC 3.1.3.2) and CR development are not fully understood. Here, comparative studies were conducted to examine the spatial variation pattern of APase activity during CR development using the enzyme-labelled fluorescence-97 (ELF-97) and the p-nitrophenyl phosphate methods. The activity of intracellular and extracellular APases was significantly enhanced under P deficiency in the non-CRs and CRs at different developmental stages. These two APases exhibited different spatial distribution patterns during CR development, and these distribution patterns were highly modified by P deficiency. The activity of extracellular APase increased steadily with CR development from meristematic, juvenile, mature to senescent stages under P deficiency. In comparison, P deficiency-induced increase in the activity of intracellular APase remained relatively constant during CR development. Increased activity of intracellular and extracellular APases was associated with enhanced expression of LaSAP1 encoding intracellular APase and LaSAP2 encoding extracellular APase. The expression levels of these two genes were significantly higher at transcriptional level in both mature and senescent CRs. Taken together, these findings demonstrate that both activity and gene expression of intracellular or extracellular APases exhibit a differential response pattern during CR development, depending on root types, CR developmental stages and P supply. Simultaneous in situ determination of intracellular and extracellular APase activity has proved to be an effective approach for studying spatial variation of APases during CR development. Copyright © 2013 Elsevier GmbH. All rights reserved.
Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan
2009-01-01
Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966
NASA Astrophysics Data System (ADS)
Xiong, C.; Shi, J.; Wang, T.
2017-12-01
Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.
Predicting spatial patterns of plant recruitment using animal-displacement kernels.
Santamaría, Luis; Rodríguez-Pérez, Javier; Larrinaga, Asier R; Pias, Beatriz
2007-10-10
For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment.
ERIC Educational Resources Information Center
González Canché, Manuel S.
2018-01-01
This study measures the extent to which student outmigration outside the 4-year sector takes place and posits that the benefits from attracting non-resident students exist regardless of sector of enrollment. The study also provides empirical evidence about the relevance of employing geographical network analysis (GNA) and spatial econometrics in…
Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains
Chuang, Ting-Wu; Hockett, Christine W.; Kightlinger, Lon; Wimberly, Michael C.
2012-01-01
Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003–2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case–control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity. PMID:22492161
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-28
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more.
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-01
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more. PMID:25627480
Application of Geostatistical Simulation to Enhance Satellite Image Products
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David
2004-01-01
With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp
2018-04-01
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T
2014-01-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T
2014-10-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.
Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling
Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.
2014-01-01
Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130
Ambady, Prakash; Fu, Rongwei; Netto, Joao Prola; Kersch, Cymon; Firkins, Jenny; Doolittle, Nancy D; Neuwelt, Edward A
2017-06-02
The radiologic features and patterns of primary central nervous system lymphoma (PCNSL) at initial presentation are well described. High response rates can be achieved with first-line high-dose methotrexate (HD-MTX) based regimens, yet many relapse within 2 years of diagnosis. We describe the pattern of relapse and review the potential mechanisms involved in relapse. We identified 78 consecutive patients who attained complete radiographic response (CR) during or after first-line treatment for newly diagnosed PCNSL (CD20+, diffuse large B cell type). Patients were treated with HD-MTX based regimen in conjunction with blood-brain barrier disruption (HD-MTX/BBBD); 44 subsequently relapsed. Images and medical records of these 44 consecutive patients were retrospectively reviewed. The anatomical location of enhancing lesions at initial diagnosis and at the time of relapse were identified and compared. 37/44 patients fulfilled inclusion criteria and had new measureable enhancing lesions at relapse; the pattern and location of relapse of these 37 patients were identified. At relapse, the new enhancement was at a spatially distinct site in 30 of 37 patients. Local relapse was found only in seven patients. Unlike gliomas, the majority of PCNSL had radiographic relapse at spatially distinct anatomical locations within the brain behind a previously intact neurovascular unit (NVU), and in few cases outside, the central nervous system (CNS). This may suggest either (1) reactivation of occult reservoirs behind an intact NVU in the CNS (or ocular) or (2) seeding from bone marrow or other extra CNS sites. Recognizing patterns of relapse is key for early detection and may provide insight into potential mechanisms of relapse as well as help develop strategies to extend duration of complete response.
Isotropic image in structured illumination microscopy patterned with a spatial light modulator.
Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu
2009-08-17
We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America
Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua
2016-01-01
Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries. PMID:27827459
Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
Lüttgen, Jenna; Heuer, Herbert
2012-10-01
Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.
Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef
2014-10-01
A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya
2017-04-01
Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.
Investigating Geosparql Requirements for Participatory Urban Planning
NASA Astrophysics Data System (ADS)
Mohammadi, E.; Hunter, A. J. S.
2015-06-01
We propose that participatory GIS (PGIS) activities including participatory urban planning can be made more efficient and effective if spatial reasoning rules are integrated with PGIS tools to simplify engagement for public contributors. Spatial reasoning is used to describe relationships between spatial entities. These relationships can be evaluated quantitatively or qualitatively using geometrical algorithms, ontological relations, and topological methods. Semantic web services utilize tools and methods that can facilitate spatial reasoning. GeoSPARQL, introduced by OGC, is a spatial reasoning standard used to make declarations about entities (graphical contributions) that take the form of a subject-predicate-object triple or statement. GeoSPARQL uses three basic methods to infer topological relationships between spatial entities, including: OGC's simple feature topology, RCC8, and the DE-9IM model. While these methods are comprehensive in their ability to define topological relationships between spatial entities, they are often inadequate for defining complex relationships that exist in the spatial realm. Particularly relationships between urban entities, such as those between a bus route, the collection of associated bus stops and their overall surroundings as an urban planning pattern. In this paper we investigate common qualitative spatial reasoning methods as a preliminary step to enhancing the capabilities of GeoSPARQL in an online participatory GIS framework in which reasoning is used to validate plans based on standard patterns that can be found in an efficient/effective urban environment.
Objective grading of facial paralysis using Local Binary Patterns in video processing.
He, Shu; Soraghan, John J; O'Reilly, Brian F
2008-01-01
This paper presents a novel framework for objective measurement of facial paralysis in biomedial videos. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the Local Binary Patterns (LBP) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of block schemes. A multi-resolution extension of uniform LBP is proposed to efficiently combine the micro-patterns and large-scale patterns into a feature vector, which increases the algorithmic robustness and reduces noise effects while still retaining computational simplicity. The symmetry of facial movements is measured by the Resistor-Average Distance (RAD) between LBP features extracted from the two sides of the face. Support Vector Machine (SVM) is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) Scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
Malinen, Eirik; Rødal, Jan; Knudtsen, Ingerid Skjei; Søvik, Åste; Skogmo, Hege Kippenes
2011-08-01
Molecular and functional imaging techniques such as dynamic positron emission tomography (DPET) and dynamic contrast enhanced computed tomography (DCECT) may provide improved characterization of tumors compared to conventional anatomic imaging. The purpose of the current work was to compare spatiotemporal uptake patterns in DPET and DCECT images. A PET/CT protocol comprising DCECT with an iodine based contrast agent and DPET with (18)F-fluorodeoxyglucose was set up. The imaging protocol was used for examination of three dogs with spontaneous tumors of the head and neck at sessions prior to and after fractionated radiotherapy. Software tools were developed for downsampling the DCECT image series to the PET image dimensions, for segmentation of tracer uptake pattern in the tumors and for spatiotemporal correlation analysis of DCECT and DPET images. DCECT images evaluated one minute post injection qualitatively resembled the DPET images at most imaging sessions. Segmentation by region growing gave similar tumor extensions in DCECT and DPET images, with a median Dice similarity coefficient of 0.81. A relatively high correlation (median 0.85) was found between temporal tumor uptake patterns from DPET and DCECT. The heterogeneity in tumor uptake was not significantly different in the DPET and DCECT images. The median of the spatial correlation was 0.72. DCECT and DPET gave similar temporal wash-in characteristics, and the images also showed a relatively high spatial correlation. Hence, if the limited spatial resolution of DPET is considered adequate, a single DPET scan only for assessing both tumor perfusion and metabolic activity may be considered. However, further work on a larger number of cases is needed to verify the correlations observed in the present study.
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan
Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.
Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.
Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P
2013-10-01
The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.
NASA Astrophysics Data System (ADS)
Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda
2018-05-01
High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.
Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.
2013-01-01
Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388
EMAGE mouse embryo spatial gene expression database: 2010 update
Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Burton, Nicholas; Rao, Jianguo; Fisher, Malcolm; Baldock, Richard A.; Davidson, Duncan R.; Christiansen, Jeffrey H.
2010-01-01
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE. PMID:19767607
Visible diffraction from quasi-crystalline arrays of carbon nanotubes
NASA Astrophysics Data System (ADS)
Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.
2015-08-01
Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.
Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z
2013-12-19
Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Aboveground biomass in Tibetan grasslands
Y.H. Yang; J.Y. Fang; Y.D. Pan; C.J. Ji
2009-01-01
This study investigated spatial patterns and environmental controls of aboveground biomass (AGB) in alpine grasslands on the Tibetan Plateau by integrating AGB data collected from 135 sites during 2001-2004 and concurrent enhanced vegetation index derived from MODIS data sets. The AGB was estimated at 68.8 gm-2, with a larger value (90.8 gm
Modulation of neuronal responses during covert search for visual feature conjunctions
Buracas, Giedrius T.; Albright, Thomas D.
2009-01-01
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385
Modulation of neuronal responses during covert search for visual feature conjunctions.
Buracas, Giedrius T; Albright, Thomas D
2009-09-29
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.
Investigation of multimodal forward scatter phenotyping from bacterial colonies
NASA Astrophysics Data System (ADS)
Kim, Huisung
A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with the 2-D spatial density map from the ICMA. The MS-BARDOT can measure multispectral elastic-light-scatter patterns of the bacterial colony and its spectral OD to overcome the inherent limits of the single-wavelength BARDOT. A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength. Four major pathogenic bacterial genera (Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923) and the seven major Escherichia coli serovar (O26, O45, O103, O111, O121, O145, and O157) with 3-4 strains each are measured and analyzed with the proposed instrument and algorithm. The MM-BARDOT can measure six different modalities: 1) light microscopy, 2) 3D morphology map from confocal microscopy, 3) 3D optical density map, 4) spectral forward scattering pattern, 5) spectral OD, 6) surface backward reflection pattern, and 7) fluorescence of a bacterial colony without moving the specimen. A custom-built confocal microscope with a controller which can be easily attached to an infinity-corrected commercial microscope is designed and built. Since the current BARDOT needs additional information from a bacterial colony to enhance the identification/classification ratio for a lower hierarchy of bacterial taxonomy such as serovar or strain level, the approach can offer a series of coordinates matched and correlated bio-optical characteristics of a colony and enhance the classification accuracy of the previously introduced BARDOT system. Four major pathogenic bacterial genera: Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923 are measured and analyzed with the proposed instrument and algorithm. Also, a feasibility test for a smaller colony (up to 500 mum) classification utilizing a surface backward reflection pattern from the measurement is done, and shows a potential as an additional modality for the bacterial phenotyping.
A discussion of the links between solar variability and high-storm-surge events in Venice
NASA Astrophysics Data System (ADS)
Barriopedro, David; GarcíA-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-07-01
This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
NASA Astrophysics Data System (ADS)
DeHart, J.; Houze, R.
2016-12-01
Airborne radar data and numerical simulations are employed to investigate the structure of Hurricane Karl (2010). Karl peaked in intensity as a major hurricane in the Gulf of Mexico before making landfall on the mountainous coast of Veracruz, Mexico. Multiple aircraft extensively sampled Karl during the NASA GRIP campaign, including NASA's DC-8 aircraft instrumented with the Advanced Precipitation Radar 2 (APR-2), which is a high-resolution, dual-frequency Doppler radar. Data from APR-2 provide a unique opportunity to characterize the precipitation structure of Karl as it underwent orographic modification. As Karl made landfall on 17 September 2010, the vertical structure of the precipitation echo varied spatially around the Mexican terrain. The precipitation variation was linked to several factors: landfall, orientation of flow relative to the topographic features, and differing characteristics inherent to the eyewall and rainbands. Despite the differences in the reflectivity intensity across the storm, we show that low-level reflectivity enhancement occurred only where upslope flow was favorable. The radar data indicate that the processes initially contributing to the reflectivity enhancement were warm-cloud processes, either through collection of orographically-generated cloud water or shallow convection. But as Karl weakened, the low-level enhancement processes were overshadowed by deep convection that developed along the terrain. Analysis of the radar data is complemented by a series of numerical simulations, which reasonably reproduce the track, intensity and structure of Karl. The simulated thermodynamic and kinematic patterns provide a holistic view of Karl's evolution during landfall. We use terrain modification experiments to examine the sensitivity of the orographic enhancement processes to the three-dimensional terrain and land surface characteristics. Consistent with the radar analysis, warm-cloud enhancement processes are visible in the spatial pattern of hydrometeor mixing ratios and in a shift towards greater mixing ratios. We link changes in the microphysical patterns with the thermodynamic and kinematic environments in which the patterns are embedded. We also examine the relative contributions of intense convection and forced ascent to the precipitation totals.
Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems
NASA Astrophysics Data System (ADS)
Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima
2018-03-01
Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.
Signal Enhancement and Suppression During Visual-Spatial Selective Attention
Couperus, J. W.; Mangun, G.R.
2010-01-01
Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target and distracter processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli. PMID:20807513
Analyses and simulation to spatial pattern of land utilization in Guangzhu City
NASA Astrophysics Data System (ADS)
Zhang, Xin-chang; Zhang, Wen-jiang; Ma, Kun
2006-10-01
Based on Landsat TM remote sensing images in 1990 and 2000, we analyses the temporal and spatial pattern Characters of land use in the 1990s in Guangzhou city. We also simulate the scenarios of land-use pattern in 2010 by integrating the Markov process into cellular automata model. The results show that the area of constructions was rapid increasing during the last ten years of the 20th century, at the same time the arable land, woodland and unused land areas were decreasing, the orchard and water areas were rarely changed; In the first ten years of 21st century, land use pattern keep the change trend in the 1990s, land of constructions continue rapid increasing; arable land and unused land areas continue rapid decreasing; woodland, orchard and water areas keep steadily. Research shows that the extent of urban area has increased exponentially in Guangzhou city, no evidences show that the arable land decreasing rate will slow down in the near future. So, it is necessary to enhance the control functions of land use planning and take actives measures to protect arable land.
Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates
NASA Astrophysics Data System (ADS)
Ge, Li; Nersisyan, Ani; Oztop, Baris; Tureci, Hakan
2014-03-01
Exciton-polaritons generated by light-induced potentials can spontaneously condense into macroscopic quantum states that display nontrivial spatial and temporal density modulation. While these patterns and their dynamics can be reproduced through the solution of the generalized Gross-Pitaevskii equation, a predictive theory of their thresholds, oscillation frequencies, and multi-pattern interactions has so far been lacking. Here we represent such an approach based on current-carrying quasi-modes of the non-Hermitian potential induced by the pump. The presented theory allows us to capture the patterns formed in the steady-state directly and account for nonlinearities exactly. We find a simple but powerful expression for thresholds of condensation and the associated frequencies of oscillations, quantifying the contribution of particle formation, leakage, and interactions. We also show that the evolution of the condensate with increasing pump strength is strongly geometry dependent and can display contrasting features such as enhancement or reduction of the spatial localization of the condensate. We acknowledge support by DARPA under Grant No. N66001-11-1-4162 and NSF under CAREER Grant No. DMR-1151810.
Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A
2013-06-07
Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tree-based approach for exploring marine spatial patterns with raster datasets.
Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen
2017-01-01
From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.
Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp
2018-04-27
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A review and guidance for pattern selection in spatiotemporal system
NASA Astrophysics Data System (ADS)
Wang, Chunni; Ma, Jun
2018-03-01
Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.
NASA Astrophysics Data System (ADS)
Li, Jianying; Mao, Jiangyu
2018-04-01
The 30-60-day boreal summer intraseasonal oscillation (BSISO) is a dominant variability of the Asian summer monsoon (ASM), with its intensity being quantified by intraseasonal standard deviations based on OLR data. The spatial and interannual variations of the BSISO intensity are identified via empirical orthogonal function (EOF) analysis for the period 1981-2014. The first EOF mode (EOF1) shows a spatially coherent enhancement or suppression of BSISO activity over the entire ASM region, and the interannual variability of this mode is related to the sea surface temperature anomaly (SSTA) contrast between the central-eastern North Pacific (CNP) and tropical Indian Ocean. In contrast, the second mode (EOF2) exhibits a seesaw pattern between the southeastern equatorial Indian Ocean (EIO) and equatorial western Pacific (EWP), with the interannual fluctuation linked with developing ENSO events. During strong years of EOF1 mode, the enhanced low-level westerlies induced by the summer-mean SSTA contrast between the warmer CNP and cooler tropical Indian Ocean tend to form a wetter moisture background over the eastern EIO, which interacts with intraseasonal low-level convergent flows, leading to stronger equatorial eastward propagation. The intensified easterly shear favors stronger northward propagation over the South Asian and Eastern Asian/Western North Pacific sectors, respectively. Opposite situation is for weak years. For interannual variations of EOF2 mode, the seesaw patterns with enhanced BSISO activity over the southeastern EIO while weakened activity over the EWP mostly occur in the La Niña developing summers, but inverse patterns appear in the El Niño developing summers.
NASA Astrophysics Data System (ADS)
Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.
2015-09-01
The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.
NASA Astrophysics Data System (ADS)
Nugraha, S. B.; Sidiq, W. A. B. N.; Setyowati, D. L.; Martuti, N. K. T.
2018-03-01
This study aims to determine changes in the extent and spatial patterns of mangrove ecosystems in Mangunharjo Sub-district from 2007, 2012 and 2017. The main data source of this research is Digital Globe Imagery of Mangunharjo Sub-district and surrounding area. The extent and spatial pattern of the mangrove ecosystem were obtained from visual interpretation result of the time series image and accuracy tested with field survey data, and then the analysis was conducted quantitatively and qualitatively. The result of time series data analysis shows that there is an enhancement of mangrove forest area in Mangunharjo Sub-district from 2007-2017. In the first five years (2007-2012), the area of mangrove ecosystem increased from 9.01 Ha to 19.78 Ha, and then in the next five years (2012-2017), it was increased significantly from 19.78 Ha to 68.47 Ha. If analyzed from the spatial pattern, in 2007-2012 the mangrove ecosystems were distributed extends along the river border ponds, while in 2012-2017 it already clustered to form a certain area located at the estuary. The increasing of mangrove area in Mangunharjo Sub-district is a result of hard work with various parties, from the government institution, individual and company which launched mangrove ecosystem recovery program especially in the coastal area of Semarang City. With the better mangrove ecosystem is expected to help restore and prevent the occurrence of environmental damage in the coastal area of Semarang City due to abrasion, seawater intrusion, and tidal flood.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Enhancement of laser power-efficiency by control of spatial hole burning interactions
NASA Astrophysics Data System (ADS)
Ge, Li; Malik, Omer; Türeci, Hakan E.
2014-11-01
The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.
NASA Astrophysics Data System (ADS)
Chang, Chia-Yuan; Chen, Shean-Jen
2017-02-01
Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement (AEC) of a few microns. Herein, a developed TFMPEM with a digital micromirror device (DMD), acting as the blazed grating for light spatial dispersion and simultaneous patterned illumination, has been extended to implement spatially modulated illumination at structured frequency and orientation. By implementing the spatially modulated illumination, the beam coverage at the back-focal aperture of the objective lens can be increased. As a result, the AEC can be condensed from 3.0 μm to 1.5 μm in full width at half maximum for a 2-fold enhancement. Furthermore, by using HiLo microscopy with two structured illuminations at the same spatial frequency but different orientation, biotissue images according to the structured illumination with condensed AEC is obviously superior in contrast and scattering suppression.
Automatic evaluation of interferograms
NASA Technical Reports Server (NTRS)
Becker, F.
1982-01-01
A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given.
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
Filter bank common spatial patterns in mental workload estimation.
Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H
2015-01-01
EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.
Coexistence between wildlife and humans at fine spatial scales.
Carter, Neil H; Shrestha, Binoj K; Karki, Jhamak B; Pradhan, Narendra Man Babu; Liu, Jianguo
2012-09-18
Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal's Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger-human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge-meeting human needs while sustaining wildlife.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
Eddie L. Shea; Lisa A. Schulte; Brian J. Palik
2017-01-01
Structural complexity is widely recognized as an inherent characteristic of unmanaged forests critical to their function and resilience, but often reduced in their managed counterparts. Variable retention harvesting (VRH) has been proposed as a way to restore or enhance structural complexity in managed forests, and thereby sustain attendant biodiversity and ecosystem...
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits
Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.
2018-01-01
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415
Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve
2009-06-01
The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS
One indication of model performance is the comparison of spatial patterns of pollutants, either as concentration or deposition, predicted by the model with spatial patterns derived from measurements. If the spatial patterns produced by the model are similar to the observations i...
Mining Co-Location Patterns with Clustering Items from Spatial Data Sets
NASA Astrophysics Data System (ADS)
Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.
2018-05-01
The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.
NASA Astrophysics Data System (ADS)
C. Franco-Gordo; Godínez-Domínguez, E.; Filonov, A. E.; Tereshchenko, I. E.; Freire, J.
2004-11-01
The temporal and spatial distributions of zooplankton biomass and larval fish recorded during 27 months (December 1995-December 1998) off the Pacific coast of central México are analyzed. A total of 316 samples were obtained by surface (from 40-68 to 0 m) oblique hauls at 12 sampling sites using a Bongo net. Two well-defined periods were observed: a pre-ENSO period (December 1995-march 1997) and an ENSO event (July 1997-September 1998) characterized by impoverishment of the pelagic habitat. The highest biomass concentrations occurred at coastal stations during the pre-ENSO period. During the El Niño period no spatial patterns were found in coastal waters. The months with highest biomass were those in which the lowest sea surface temperature (SST) occurred (January-May), and this pattern was also observed during the ENSO period. A typical, although attenuated, seasonal environmental pattern with enhanced phytoplankton (diatoms and dinoflagellates) was prevalent during the El Niño event in nearshore waters. During the El Niño period the phytoplankton was mainly small diatoms (microphytoplankton), while dinoflagellates were practically absent. The most parsimonious generalized linear models explaining spatial and temporal distribution of larval fish species included the ENSO index (MEI), upwelling index (UI) and distance to the coast. The environmental variability defined on an interannual time-scale by the ENSO event and the seasonal hydroclimatic pattern defined by the UI (intra-annual-scale) controlled the ecosystem productivity patterns. The small-scale distribution patterns (defined by a cross-shore gradient) of plankton were related to the hydroclimatic seasonality and modulated by interannual anomalies.
Visuomotor adaptability in older adults with mild cognitive decline.
Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin
2017-02-01
The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of the noise on the transient dynamics of an ecosystem of interacting species
NASA Astrophysics Data System (ADS)
Spagnolo, B.; La Barbera, A.
2002-11-01
We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.
Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai
2017-01-01
Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.
Spatial and Temporal Patterns of Impervious Cover Relative to Watershed Stream Location
The influence of spatial pattern on ecological processes is a guiding principle of landscape ecology. The guiding principle of spatial pattern was used for a U.S. nationwide assessment of impervious cover (IC). Spatial pattern was measured by comparing IC concentration near strea...
Patterned layers of adsorbed extracellular matrix proteins: influence on mammalian cell adhesion.
Dupont-Gillain, C C; Alaerts, J A; Dewez, J L; Rouxhet, P G
2004-01-01
Three patterned systems aiming at the control of mammalian cell behavior are presented. The determinant feature common to these systems is the spatial distribution of extracellular matrix (ECM) proteins (mainly collagen) on polymer substrates. This distribution differs from one system to another with respect to the scale at which it is affected, from the supracellular to the supramolecular scale, and with respect to the way it is produced. In the first system, the surface of polystyrene was oxidized selectively to form micrometer-scale patterns, using photolithography. Adsorption of ECM proteins in presence of a competitor was enhanced on the oxidized domains, allowing selective cell adhesion to be achieved. In the second system, electron beam lithography was used to engrave grooves (depth and width approximately 1 microm) on a poly(methyl methacrylate) (PMMA) substratum. No modification of the surface chemistry associated to the created topography could be detected. Cell orientation along the grooves was only observed when collagen was preadsorbed on the substratum. In the third system, collagen adsorbed on PMMA was dried in conditions ensuring the formation of a nanometer-scale pattern. Cell adhesion was enhanced on such patterned collagen layers compared to smooth collagen layers.
NASA Astrophysics Data System (ADS)
Rogers, D. B.
2017-12-01
Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings
CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India
NASA Astrophysics Data System (ADS)
Akhter, Javed; Das, Lalu; Deb, Argha
2017-09-01
Performances of the state-of-the-art CMIP5 models in reproducing the spatial rainfall patterns over seven homogeneous rainfall zones of India viz. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), Northeast India (NEI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI) have been assessed using different conventional performance metrics namely spatial correlation (R), index of agreement (d-index), Nash-Sutcliffe efficiency (NSE), Ratio of RMSE to the standard deviation of the observations (RSR) and mean bias (MB). The results based on these indices revealed that majority of the models are unable to reproduce finer-scaled spatial patterns over most of the zones. Thereafter, four bias correction methods i.e. Scaling, Standardized Reconstruction, Empirical Quantile Mapping and Gamma Quantile Mapping have been applied on GCM simulations to enhance the skills of the GCM projections. It has been found that scaling method compared to other three methods shown its better skill in capturing mean spatial patterns. Multi-model ensemble (MME) comprising 25 numbers of better performing bias corrected (Scaled) GCMs, have been considered for developing future rainfall patterns over seven zones. Models' spread from ensemble mean (uncertainty) has been found to be larger in RCP 8.5 than RCP4.5 ensemble. In general, future rainfall projections from RCP 4.5 and RCP 8.5 revealed an increasing rainfall over seven zones during 2020s, 2050s, and 2080s. The maximum increase has been found over southwestern part of NWI (12-30%), northwestern part of WPI (3-30%), southeastern part of NEI (5-18%) and northern and eastern part of SPI (6-24%). However, the contiguous region comprising by the southeastern part of NCI and northeastern part of EPI, may experience slight decreasing rainfall (about 3%) during 2020s whereas the western part of NMI may also receive around 3% reduction in rainfall during both 2050s and 2080s.
Dzialak, Matthew R.; Olson, Chad V.; Harju, Seth M.; Webb, Stephen L.; Mudd, James P.; Winstead, Jeffrey B.; Hayden-Wing, L.D.
2011-01-01
Background Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. Methodology/Principal Findings We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. Conclusions/Significance Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments. PMID:22022587
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.
2012-01-01
We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.
Conformal phased surfaces for wireless powering of bioelectronic microdevices
Agrawal, Devansh R.; Tanabe, Yuji; Weng, Desen; Ma, Andrew; Hsu, Stephanie; Liao, Song-Yan; Zhen, Zhe; Zhu, Zi-Yi; Sun, Chuanbowen; Dong, Zhenya; Yang, Fengyuan; Tse, Hung Fat; Poon, Ada S. Y.; Ho, John S.
2017-01-01
Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm3) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. PMID:29226018
Quantitative analysis of facial paralysis using local binary patterns in biomedical videos.
He, Shu; Soraghan, John J; O'Reilly, Brian F; Xing, Dongshan
2009-07-01
Facial paralysis is the loss of voluntary muscle movement of one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents a novel framework for objective measurement of facial paralysis. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the local binary patterns (LBPs) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of novel block processing schemes. A multiresolution extension of uniform LBP is proposed to efficiently combine the micropatterns and large-scale patterns into a feature vector. The symmetry of facial movements is measured by the resistor-average distance (RAD) between LBP features extracted from the two sides of the face. Support vector machine is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Sasai, Takahiro; Obikawa, Hiroki; Murakami, Kazutaka; Kato, Soushi; Matsunaga, Tsuneo; Nemani, Ramakrishna R.
2016-06-01
The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10 km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9 TgC yr-1) and in future scenarios, the greatest positive (76.4 TgC yr-1) and least negative (-95.9 TgC yr-1) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature.
Molecular insights into seed dispersal mutualisms driving plant population recruitment
NASA Astrophysics Data System (ADS)
García, Cristina; Grivet, Delphine
2011-11-01
Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences of dispersal mutualisms in plant populations.
Coexistence between wildlife and humans at fine spatial scales
Carter, Neil H.; Shrestha, Binoj K.; Karki, Jhamak B.; Pradhan, Narendra Man Babu; Liu, Jianguo
2012-01-01
Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal’s Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger–human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge—meeting human needs while sustaining wildlife. PMID:22949642
Buonocore, Antimo; Fracasso, Alessio; Melcher, David
2017-01-01
We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“un-masking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target. PMID:28614367
Spatially modulated laser pulses for printing electronics.
Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto
2015-11-01
The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.
Probabilistic assessment of beach and dune changes
Sallenger, A.H.; Stockdon, H.; Haines, J.; Krabill, W.; Swift, R.; Brock, J.
2004-01-01
The recent availability of spatially-dense airborne lidar data makes assessment of the vulnerability of beaches and dunes to storm impacts practical over long reaches of coast. As an initial test, elevations of the tops (D high) and bases (Dlow) of foredune ridges along a 55-km reach on the northern Outer Banks, NC were found to have considerable spatial variability suggesting that different parts of the barrier island would respond differently to storms. Comparing statistics of storm wave runup to D high and Dlow, we found that net erosion due to overwash and dune retreat should be greatest at the northern and southern ends of the study area and least in the central section. This predicted spatial pattern of storm-induced erosion is similar to the spatial pattern of long-term erosion of the shoreline which may be controlled by additional processes (such as gradients in longshore transport) as well as the cross-shore processes considered here. However, consider feedback where at erosional hot spots there is a deficit of sand (caused by gradients in longshore transport) which lead to lower dunes and enhanced erosional cross-shore processes, such as overwash. Hence, the erosional hot spots would be exacerbated, further increasing the vulnerability of the beach and dunes to net erosion.
Graham, S L; Barling, K S; Waghela, S; Scott, H M; Thompson, J A
2005-06-10
Environmental factors that enhance either the survivability or dispersion of Salmonella enterica serovar Typhimurium (S. Typhimurium) could result in a spatial pattern of disease risk. The objectives of this study were to: (1) describe herd status based on antibody response to Salmonella Typhimurium as estimated from bulk tank milk samples and (2) to describe the resulting geographical patterns found among Texas dairy herds. Eight hundred and fifty-two bulk milk samples were collected from georeferenced dairy farms and assayed by an indirect enzyme-linked immunosorbent assay (ELISA) using S. Typhimurium lipopolysaccharide (LPS). ELISA signal-to-noise ratios for each bulk tank milk sample were calculated and used for geostatistical analyses. Best-fit parameters for the exponential theoretical variogram included a range of 438.8 km, partial sill of 0.060 and nugget of 0.106. The partial sill is the classical geostatistical term for the variance that can be explained by the herd's location and the nugget is the spatially random component of the variance. We have identified a spatial process in bulk milk tank titers for S. Typhimurium in Texas dairy herds and present a map of the expected smoothed surface. Areas with higher expected titers should be targeted in further studies on controlling Salmonella infection with environmental modifications.
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex
2009-01-01
The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected, independent of these topographic variations; they have a uniform amplitude and phase structure over the entire region. Because the cross-shelf angle of the seabed over most of the Palos Verdes shelf is 1 to 3 degrees, which is critical for the local generation and/or enhancement of nonlinear characteristics in semidiurnal internal tides, some internal tidal-current events have strong asymmetric current oscillations that are enhanced near the seabed. Near-bottom currents in these events are directed primarily offshore with amplitudes that exceed 30 cm/s. The spatial patterns in these energetic near-bottom currents have fairly short-length scales. They are largest over the inner shelf and in the transition region between the Palos Verdes and San Pedro shelves. This spatial pattern is similar to that found in the barotropic tidal currents. Because these baroclinic currents have an approximate tidal frequency, an asymmetric vertical structure, and a somewhat stable phase, they can produce a non-zero depth-mean flow for periods of a few months. These baroclinic currents can interact with the barotropic tidal current and cause an apparent increase (or decrease) in the estimated barotropic tidal-current amplitude. The apparent amplitude of the barotropic tidal current may change by 30 to 80 percent or more in a current record that is less than three months long. The currents and surficial sediments in this region are in dynamic equilibrium in that the spatial patterns in bottom stresses generated by near-bed currents from surface tides, internal tides, and internal bores partly control the spatial patterns in the local sediments. Coarser sediments are found in the regions with enhanced bottom stresses (that is, over the inner shelf and in the region between the Palos Verdes and San Pedro shelves). Finer sediments are found over the northwestern portion of the Palos Verdes shelf, where near-bottom currents are relatively weak. The nonlinear asymmetries in the i
NASA Astrophysics Data System (ADS)
Awumah, A.; Mahanti, P.; Robinson, M. S.
2017-12-01
Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.
Noise reduction and image enhancement using a hardware implementation of artificial neural networks
NASA Astrophysics Data System (ADS)
David, Robert; Williams, Erin; de Tremiolles, Ghislain; Tannhof, Pascal
1999-03-01
In this paper, we present a neural based solution developed for noise reduction and image enhancement using the ZISC, an IBM hardware processor which implements the Restricted Coulomb Energy algorithm and the K-Nearest Neighbor algorithm. Artificial neural networks present the advantages of processing time reduction in comparison with classical models, adaptability, and the weighted property of pattern learning. The goal of the developed application is image enhancement in order to restore old movies (noise reduction, focus correction, etc.), to improve digital television images, or to treat images which require adaptive processing (medical images, spatial images, special effects, etc.). Image results show a quantitative improvement over the noisy image as well as the efficiency of this system. Further enhancements are being examined to improve the output of the system.
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Bilello, Michel; Wolf, Ronald L.; Martinez-Lage, Maria; Biros, George; Alonso-Basanta, Michelle; O’Rourke, Donald M.; Davatzikos, Christos
2016-01-01
Background Glioblastoma is an aggressive and highly infiltrative brain cancer. Standard surgical resection is guided by enhancement on postcontrast T1-weighted (T1) magnetic resonance imaging (MRI), which is insufficient for delineating surrounding infiltrating tumor. Objective To develop imaging biomarkers that delineate areas of tumor infiltration and predict early recurrence in peritumoral tissue. Such markers would enable intensive, yet targeted, surgery and radiotherapy, thereby potentially delaying recurrence and prolonging survival. Methods Preoperative multiparametric MRIs (T1, T1-Gad, T2-weighted [T2], T2-fluid-attenuated inversion recovery [FLAIR], diffusion tensor imaging (DTI), and dynamic susceptibility contrast-enhanced [DSC]-MRI) from 31 patients were combined using machine learning methods, thereby creating predictive spatial maps of infiltrated peritumoral tissue. Cross validation was used in the retrospective cohort to achieve generalizable biomarkers. Subsequently, the imaging signatures learned from the retrospective study were used in a replication cohort of 34 new patients. Spatial maps representing likelihood of tumor infiltration and future early recurrence were compared to regions of recurrence on postresection follow-up studies with pathology confirmation. Results This technique produced predictions of early recurrence with a mean area under the curve (AUC) of 0.84, sensitivity of 91%, specificity of 93%, and odds ratio estimates of 9.29 (99% CI, 8.95–9.65) for tissue predicted to be heavily infiltrated in the replication study. Regions of tumor recurrence were found to have subtle, yet fairly distinctive multiparametric imaging signatures when analyzed quantitatively by pattern analysis and machine learning. Conclusion Visually imperceptible imaging patterns discovered via multiparametric pattern analysis methods were found to estimate the extent of infiltration and location of future tumor recurrence, paving the way for improved targeted treatment. PMID:26813856
Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages
NASA Astrophysics Data System (ADS)
Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça
2017-11-01
Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.
Calcium Signaling enhancement during oocyte maturation
NASA Astrophysics Data System (ADS)
Jung, Peter; Ullah, Ghanim; Machaca, Khaled
2006-03-01
A Ca2+ signal with a special spatial and temporal characteristic universally removes cell-cycle arrest after fertilization of a mature egg cell. The Ca2+ signal is characterized by a fast rise of intracellular Ca2+ and a slow decay on the time scale of minutes. We use computational modeling of Ca2+ release on the microscale (Ca2+ puffs) and cell-scale in conjunction with experimental knowledge of the changes in the Ca2+ signaling apparatus during oocyte maturation and changing signaling patterns to explore the relationship between organization and sensitivity of IP3 receptors and SERCA pumps and the resulting signaling patterns. We hypothesize that potentiation of the IP3 receptors during oocyte maturation is the main cause for the differentiation in the signaling patterns.
Analysis of Spatial Point Patterns in Nuclear Biology
Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.
2012-01-01
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822
Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang
2010-01-01
We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...
Liang, Jia Xin; Li, Xin Ju
2018-02-01
With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.
A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS
RUFINO FERREIRA, ANA S.; ARCAK, MURAT
2017-01-01
We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552
Spatial Patterns of NLCD Land Cover Change Thematic Accuracy (2001 - 2011)
Research on spatial non-stationarity of land cover classification accuracy has been ongoing for over two decades. We extend the understanding of thematic map accuracy spatial patterns by: 1) quantifying spatial patterns of map-reference agreement for class-specific land cover c...
Spatial patterns of development drive water use
Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.
Spatial Patterns of Development Drive Water Use
NASA Astrophysics Data System (ADS)
Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.
2018-03-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M
2016-01-01
Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.
1993-01-01
Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.
Image-plane processing of visual information
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.
1984-01-01
Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.
Spatial-temporal clustering of tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2016-12-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Spatial-Temporal Clustering of Tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2017-04-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Characterizing land surface phenology and responses to rainfall in the Sahara desert
NASA Astrophysics Data System (ADS)
Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.
2016-08-01
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.
GUIDOS: tools for the assessment of pattern, connectivity, and fragmentation
NASA Astrophysics Data System (ADS)
Vogt, Peter
2013-04-01
Pattern, connectivity, and fragmentation can be considered as pillars for a quantitative analysis of digital landscape images. The free software toolbox GUIDOS (http://forest.jrc.ec.europa.eu/download/software/guidos) includes a variety of dedicated methodologies for the quantitative assessment of these features. Amongst others, Morphological Spatial Pattern Analysis (MSPA) is used for an intuitive description of image pattern structures and the automatic detection of connectivity pathways. GUIDOS includes tools for the detection and quantitative assessment of key nodes and links as well as to define connectedness in raster images and to setup appropriate input files for an enhanced network analysis using Conefor Sensinode. Finally, fragmentation is usually defined from a species point of view but a generic and quantifiable indicator is needed to measure fragmentation and its changes. Some preliminary results for different conceptual approaches will be shown for a sample dataset. Complemented by pre- and post-processing routines and a complete GIS environment the portable GUIDOS Toolbox may facilitate a holistic assessment in risk assessment studies, landscape planning, and conservation/restoration policies. Alternatively, individual analysis components may contribute to or enhance studies conducted with other software packages in landscape ecology.
Virtual Human Analogs to Rodent Spatial Pattern Separation and Completion Memory Tasks
ERIC Educational Resources Information Center
Paleja, Meera; Girard, Todd A.; Christensen, Bruce K.
2011-01-01
Spatial pattern separation (SPS) and spatial pattern completion (SPC) have played an increasingly important role in computational and rodent literatures as processes underlying associative memory. SPS and SPC are complementary processes, allowing the formation of unique representations and the reconstruction of complete spatial environments based…
Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.; Reed, P.
2010-12-01
The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).
Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang
2016-05-15
Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B
1995-07-01
Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.
Yitbarek, Senay; Vandermeer, John H; Allen, David
2011-10-01
Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.
High storm surge events in Venice and the 11-yr solar cycle
NASA Astrophysics Data System (ADS)
Barriopedro, David; García-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-05-01
In the last years the Venice lagoon has received much attention as a case of coastal vulnerability, mainly because of relative sea level rise and increase frequency of storm surge events, the so-called "aqua alta", which, particularly during autumn, cause the flooding of the Venice historical city center. Long-term fluctuations in solar activity and large-scale climate patterns have been suggested as feasible factors of flooding variability. This study explores the long-term frequency variability of High Surge Events (HSE) in Venice for the period 1948-2008 and its modulation by the 11-yr solar cycle. A significant decadal variability in the frequency of HSE is found in good correspondence with the 11-yr cycle, solar maxima being associated to a significant increase of the October-November-December HSE frequency. A Storm Surge Pattern (SSP), i.e. the seasonal 1000 hPa height pattern associated to increased frequency of HSE, is identified and found similar to the positive phase of the main variability mode of the regional atmospheric circulation (EOF1). However, further analyses indicate that the increase of HSE in solar maxima cannot be simply explained by a higher recurrence of positive EOF1 phases during high solar years. It rather seems that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Thus, under solar maxima, the occurrence of HSE is enhanced by the EOF1, namely a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated to any EOF during low solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSE by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
Gray, J R
2001-09-01
Emotional states might selectively modulate components of cognitive control. To test this hypothesis, the author randomly assigned 152 undergraduates (equal numbers of men and women) to watch short videos intended to induce emotional states (approach, neutral, or withdrawal). Each video was followed by a computerized 2-back working memory task (spatial or verbal, equated for difficulty and appearance). Spatial 2-back performance was enhanced by a withdrawal state and impaired by an approach state; the opposite pattern held for verbal performance. The double dissociation held more strongly for participants who made more errors than average across conditions. The results suggest that approach-withdrawal states can have selective influences on components of cognitive control, possibly on a hemispheric basis. They support and extend several frameworks for conceptualizing emotion-cognition interactions.
Spatial synchrony of malaria outbreaks in a highland region of Ethiopia.
Wimberly, Michael C; Midekisa, Alemayehu; Semuniguse, Paulos; Teka, Hiwot; Henebry, Geoffrey M; Chuang, Ting-Wu; Senay, Gabriel B
2012-10-01
To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts. © 2012 Blackwell Publishing Ltd.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Spatial Pattern of Standing Timber Value across the Brazilian Amazon
Ahmed, Sadia E.; Ewers, Robert M.
2012-01-01
The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520
NASA Astrophysics Data System (ADS)
Schneider, C.; Buttstädt, M.; Merbitz, H.; Sachsen, T.; Ketzler, G.; Michael, S.; Klemme, M.; Dott, W.; Selle, K.; Hofmeister, H.
2010-09-01
This research initiative CITY 2020+ assesses the risks and opportunities for residents in urban built environments under projected demographic and climate change for the year 2020 and beyond, using the City of Aachen as a case study. CITY 2020+ develops scenarios, options and tools for planning and developing sustainable future city structures. We investigate how urban environment, political structure and residential behavior can best be adapted, with attention to the interactions among structural, political, and sociological configurations and with their consequences on human health. Demographers project that in the EU-25-States by 2050, approximately 30% of the population will be over age 65. Also by 2050, average tem¬peratures are projected to rise by 1 to 2 K. Combined, Europe can expect enhanced thermal stress and higher levels of particulate matter. CITY 2020+ amongst other sub-projects includes research project dealing with (1) a micro-scale assessment of blockages to low-level cold-air drainage flow into the city centre by vegetation and building structures, (2) a detailed analysis of the change of probability density functions related to the occurrence of heat waves during summer and the spatial and temporal structure of the urban heat island (UHI) (3) a meso-scale analysis of particulate matter (PM) concentrations depending on topography, local meteorological conditions and synoptic-scale weather patterns. First results will be presented specifically from sub-projects related to vegetation barriers within cold air drainage, the assessment of the UHI and the temporal and spatial pattern of PM loadings in the city centre. The analysis of the cold air drainage flow is investigated in two consecutive years with a clearing of vegetation stands in the beginning of the second year early in 2010. The spatial pattern of the UHI and its possible enhancement by climate change is addressed employing a unique setup using GPS devices and temperature probes fixed to several public transport units running all across the city. This is accompanied by an analysis of probability density functions (PDF) for heat waves based on recent climate data and climate projections. A dense net of 40 PM measurement sites is operated in order to obtain the spatial pattern of PM concentration as depending on meteorological condition and location. It is lined out how this climate related sub-projects interact with investigations on social networks, governance issues, buildings structure development and health outcome. Related to the later the chemical composition of PM is analyzed in more detail and related to the spatial patterns of health deficiencies. At a later stage City2020+ will propose new strategies based on cooperation from the fields of medicine, geography, sociology, history, civil engineering, and architecture for adapting the city for future needs. The Project CITY 2020+ is part of the interdisciplinary Project House HumTec (Human Sciences and Technology) at RWTH Aachen University funded by the Excellence Initiative of the German federal and state governments through the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG).
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Spatial patterns of recreational impact on experimental campsites
David N. Cole; Christopher A. Monz
2004-01-01
Management of camping impacts in protected areas worldwide is limited by inadequate understanding of spatial patterns of impact and attention to spatial management strategies. Spatial patterns of campsite impact were studied in two subalpine plant communities in the Wind River Mountains, Wyoming, USA (a forest and a meadow). Response to chronic disturbance and recovery...
Women match men when learning a spatial skill.
Spence, Ian; Yu, Jingjie Jessica; Feng, Jing; Marshman, Jeff
2009-07-01
Meta-analytic studies have concluded that although training improves spatial cognition in both sexes, the male advantage generally persists. However, because some studies run counter to this pattern, a closer examination of the anomaly is warranted. The authors investigated the acquisition of a basic skill (spatial selective attention) using a matched-pair two-wave longitudinal design. Participants were screened with the use of an attentional visual field task, with the objective of selecting and matching 10 male-female pairs, over a wide range (30% to 57% correct). Subsequently, 20 participants 17-23 years of age (selected from 43 screened) were trained for 10 hr (distributed over several sessions) by playing a first-person shooter video game. This genre is known to be highly effective in enhancing spatial skills. All 20 participants improved, with matched members of the male-female pairs achieving very similar gains, independent of starting level. This is consistent with the hypothesis that the learning trajectory of women is not inferior to that of men when acquiring a basic spatial skill. Training methods that develop basic spatial skills may be essential to achieve gender parity in both basic and complex spatial tasks.
Zhu, Xin; Rudolf, Heike; Healey, Lucas; François, Paul; Brown, Susan J.; Klingler, Martin; El-Sherif, Ezzat
2017-01-01
During the anterior−posterior fate specification of insects, anterior fates arise in a nonelongating tissue (called the “blastoderm”), and posterior fates arise in an elongating tissue (called the “germband”). However, insects differ widely in the extent to which anterior−posterior fates are specified in the blastoderm versus the germband. Here we present a model in which patterning in both the blastoderm and germband of the beetle Tribolium castaneum is based on the same flexible mechanism: a gradient that modulates the speed of a genetic cascade of gap genes, resulting in the induction of sequential kinematic waves of gap gene expression. The mechanism is flexible and capable of patterning both elongating and nonelongating tissues, and hence converting blastodermal to germband fates and vice versa. Using RNAi perturbations, we found that blastodermal fates could be shifted to the germband, and germband fates could be generated in a blastoderm-like morphology. We also suggest a molecular mechanism underlying our model, in which gradient levels regulate the switch between two enhancers: One enhancer is responsible for sequential gene activation, and the other is responsible for freezing temporal rhythms into spatial patterns. This model is consistent with findings in Drosophila melanogaster, where gap genes were found to be regulated by two nonredundant “shadow” enhancers. PMID:28973882
Foffani, Guglielmo; Uzcategui, Yoryani G; Gal, Beatriz; Menendez de la Prida, Liset
2007-09-20
Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.
Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher
2017-09-05
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.
McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher
2017-01-01
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357
Taffe, Michael A.; Taffe, William J.
2011-01-01
Several nonhuman primate species have been reported to employ a distance-minimizing, traveling salesman-like, strategy during foraging as well as in experimental spatial search tasks involving lesser amounts of locomotion. Spatial sequencing may optimize performance by reducing reference or episodic memory loads, locomotor costs, competition or other demands. A computerized self-ordered spatial search (SOSS) memory task has been adapted from a human neuropsychological testing battery (CANTAB, Cambridge Cognition, Ltd) for use in monkeys. Accurate completion of a trial requires sequential responses to colored boxes in two or more spatial locations without repetition of a previous location. Marmosets have been reported to employ a circling pattern of search, suggesting spontaneous adoption of a strategy to reduce working memory load. In this study the SOSS performance of rhesus monkeys was assessed to determine if the use of a distance-minimizing search path enhances accuracy. A novel strategy score, independent of the trial difficulty and arrangement of boxes, has been devised. Analysis of the performance of 21 monkeys trained on SOSS over two years shows that a distance-minimizing search strategy is associated with improved accuracy. This effect is observed within individuals as they improve over many cumulative sessions of training on the task and across individuals at any given level of training. Erroneous trials were associated with a failure to deploy the strategy. It is concluded that the effect of utilizing the strategy on this locomotion-free, laboratory task is to enhance accuracy by reducing demands on spatial working memory resources. PMID:21840507
Spatio-temporal Analysis for New York State SPARCS Data
Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng
2017-01-01
Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148
A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization.
López-Sauceda, Juan; Rueda-Contreras, Mara D
2017-01-01
We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity . Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.
NASA Astrophysics Data System (ADS)
Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.
2016-12-01
Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.
Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm
Wedding, L.M.; Christopher, L.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S.
2011-01-01
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change. ?? Inter-Research 2011.
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, C.; Koch, J.
2017-12-01
Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.
Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark
2017-05-01
There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.
Niu, Shan Dong; Lyu, Xiao; Shi, Yang Yang
2018-02-01
Under the theoretical framework of sustainable intensification of agricultural land-use (SIALU), We used material flow analysis (MFA) method to establish evaluation index system for SIALU by utilizing data in 2000, 2005, 2010 and 2015 to quantify the level of SIALU of 17 cities in Shandong Province, and analyzed the variation in input-output of resources factors of agricultural land, spatial distribution of resource productivity and environmental economic efficiency, in order to reveal spatial-temporal differentiation of SIALU. Results showed that the direct material input to agricultural lands decreased, whereas hidden flow, stock and pollutant emissions increased gradually from 2000 to 2015. The material productivity of all cities in the province showed that the coastal areas in the peninsula were relatively lower than the southern region, and the level of material productivity in the northwest region was relatively higher. Environmental economic efficiency was gradually enhanced, and the western region was relatively higher than coastal area of the peninsula. During the period examined here, the spatial pattern of SIALU of various cities showed clustered distribution change, with the western region tending to gradually increase and the eastern region tending to gradually reduce. The dynamics of SIALU among different regions were divided into six grades: Northwestern Shandong > Northern Shandong > Southwestern Shandong > Southern Shandong > Central Shandong > Coastal areas of Shandong Peninsula.
Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard
2016-11-15
A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Lijun; Wei Haiyan; Wang Lingqing
2007-06-15
Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq})more » higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, L.J.; Wei, H.Y.; Wang, L.Q.
2007-06-15
Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than themore » threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less
NASA Astrophysics Data System (ADS)
Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.
2018-04-01
Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Q; Xie, S
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutionsmore » for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.« less
The ENSO Effect on the Temporal and Spatial Distribution of Global Lightning Activity
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.
2007-01-01
The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0
Impact of scale on morphological spatial pattern of forest
Katarzyna Ostapowicz; Peter Vogt; Kurt H. Riitters; Jacek Kozak; Christine Estreguil
2008-01-01
Assessing and monitoring landscape pattern structure from multi-scale land-cover maps can utilize morphological spatial pattern analysis (MSPA), only if various influences of scale are known and taken into account. This paper lays part of the foundation for applying MSPA analysis in landscape monitoring by quantifying scale effects on six classes of spatial patterns...
Digital processing of radiographic images
NASA Technical Reports Server (NTRS)
Bond, A. D.; Ramapriyan, H. K.
1973-01-01
Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.
The role of experience in location estimation: Target distributions shift location memory biases.
Lipinski, John; Simmering, Vanessa R; Johnson, Jeffrey S; Spencer, John P
2010-04-01
Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93, 75-97]. This conflicts with earlier results showing that location estimation is biased relative to the spatial distribution of targets [Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131, 16-37]. Here, we resolve this controversy by using a task based on Huttenlocher et al. (Experiment 4) with minor modifications to enhance our ability to detect experience-dependent effects. Results after the first block of trials replicate the pattern reported in Huttenlocher et al. After additional experience, however, participants showed biases that significantly shifted according to the target distributions. These results are consistent with the Dynamic Field Theory, an alternative theory of spatial cognition that integrates long-term memory traces across trials relative to the perceived structure of the task space. Copyright 2009 Elsevier B.V. All rights reserved.
Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin
2016-04-13
It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun
2017-02-01
Developing an efficient strategy for light focusing through scattering media is an important topic in the study of multiple light scattering. The enhancement factor of the light focusing, defined as the ratio between the optimized intensity and the background intensity is proportional to the number of controlling modes in a spatial light modulator (SLM). The demonstrated enhancement factors in previous studies are typically less than 1,000 due to several limiting factors, such as the slow refresh rate of a LCoS SLM, long optimization time, and lack of an efficient algorithm for high controlling modes. A digital micro-mirror device is an amplitude modulator, which is recently widely used for fast optimization through dynamic biological tissues. The fast frame rate of the DMD up to 16 kHz can also be exploited for increasing the number of controlling modes. However, the manipulation of large pattern data and efficient calculation of the optimized pattern remained as an issue. In this work, we demonstrate the enhancement factor more than 100,000 in focusing through scattering media by using 1 Mega controlling modes of a DMD. Through careful synchronization between a DMD, a photo-detector and an additional computer for parallel optimization, we achieved the unprecedented enhancement factor with 75 mins of the optimization time. We discuss the design principles of the system and the possible applications of the enhanced light focusing.
Enhanced disease characterization through multi network functional normalization in fMRI.
Çetin, Mustafa S; Khullar, Siddharth; Damaraju, Eswar; Michael, Andrew M; Baum, Stefi A; Calhoun, Vince D
2015-01-01
Conventionally, structural topology is used for spatial normalization during the pre-processing of fMRI. The co-existence of multiple intrinsic networks which can be detected in the resting brain are well-studied. Also, these networks exhibit temporal and spatial modulation during cognitive task vs. rest which shows the existence of common spatial excitation patterns between these identified networks. Previous work (Khullar et al., 2011) has shown that structural and functional data may not have direct one-to-one correspondence and functional activation patterns in a well-defined structural region can vary across subjects even for a well-defined functional task. The results of this study and the existence of the neural activity patterns in multiple networks motivates us to investigate multiple resting-state networks as a single fusion template for functional normalization for multi groups of subjects. We extend the previous approach (Khullar et al., 2011) by co-registering multi group of subjects (healthy control and schizophrenia patients) and by utilizing multiple resting-state networks (instead of just one) as a single fusion template for functional normalization. In this paper we describe the initial steps toward using multiple resting-state networks as a single fusion template for functional normalization. A simple wavelet-based image fusion approach is presented in order to evaluate the feasibility of combining multiple functional networks. Our results showed improvements in both the significance of group statistics (healthy control and schizophrenia patients) and the spatial extent of activation when a multiple resting-state network applied as a single fusion template for functional normalization after the conventional structural normalization. Also, our results provided evidence that the improvement in significance of group statistics lead to better accuracy results for classification of healthy controls and schizophrenia patients.
COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS
To evaluate the Models-3/Community Multiscale Air Quality (CMAQ) modeling system in reproducing the spatial patterns of aerosol concentrations over the country on timescales of months and years, the spatial patterns of model output are compared with those derived from observation...
Amazonian forest-savanna bistability and human impact
NASA Astrophysics Data System (ADS)
Wuyts, Bert; Champneys, Alan R.; House, Joanna I.
2017-05-01
A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.
Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?
USDA-ARS?s Scientific Manuscript database
The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...
Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz
2011-01-01
The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...
Spatial reconstruction of single-cell gene expression data.
Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv
2015-05-01
Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Spatial reconstruction of single-cell gene expression
Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv
2015-01-01
Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923
Aniracetam improves radial maze performance in rats.
Martin, J R; Cumin, R; Aschwanden, W; Moreau, J L; Jenck, F; Haefely, W E
1992-01-01
The memory enhancing effect of the pyrrolidinone derivative aniracetam was investigated in rats trained in a delayed-response task in an 8-arm radial maze. Oral administration of aniracetam (100, 200, 400, or 800 mg kg-1) 16 h and again 1 h prior to a first trial of exposure to a given configuration of 4 baited arms resulted in a significant improvement in performance during a second trial in the maze given 3 h later in which there was access to all 8 arms but only the other 4 arms were baited. The pattern of baited arms was varied daily. The performance enhancement was greatest for the highest doses. These results extend the demonstration of the cognition enhancing effects of aniracetam to a spatial memory task in rats.
Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina
2017-05-01
A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Spatial arrangement of faults and opening-mode fractures
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.
2018-03-01
Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in the subsurface through coupled spatial, size, and pattern analysis.
Temporal and spatial correlation patterns of air pollutants in Chinese cities
Dai, Yue-Hua
2017-01-01
As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599
Understanding relationships among ecosystem services across spatial scales and over time
NASA Astrophysics Data System (ADS)
Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.
2018-05-01
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.
Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study
NASA Technical Reports Server (NTRS)
Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.;
2013-01-01
The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.
Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River
NASA Astrophysics Data System (ADS)
Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao
2018-03-01
The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.
Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment.
Li, Ting; Zhang, Jinhua; Xue, Tao; Wang, Baozeng
2017-01-01
We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills.
Enhanced visual statistical learning in adults with autism
Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József
2014-01-01
Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115
Liu, Junbo; Ma, Jun
2014-01-01
The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning, but it is poorly understood how its ability to activate a target gene may impact this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear co-factor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is due to a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fates-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd. PMID:24336107
Control and near-field detection of surface plasmon interference patterns.
Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš
2013-06-12
The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.
Heat exposure in cities: combining the dynamics of temperature and population
NASA Astrophysics Data System (ADS)
Hu, L.; Wilhelmi, O.; Uejio, C. K.
2017-12-01
Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and response strategies.
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
Mapping spatial patterns with morphological image processing
Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham
2006-01-01
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...
Kim, Yong-Hwan; Kim, Junghoe; Lee, Jong-Hwan
2012-12-01
This study proposes an iterative dual-regression (DR) approach with sparse prior regularization to better estimate an individual's neuronal activation using the results of an independent component analysis (ICA) method applied to a temporally concatenated group of functional magnetic resonance imaging (fMRI) data (i.e., Tc-GICA method). An ordinary DR approach estimates the spatial patterns (SPs) of neuronal activation and corresponding time courses (TCs) specific to each individual's fMRI data with two steps involving least-squares (LS) solutions. Our proposed approach employs iterative LS solutions to refine both the individual SPs and TCs with an additional a priori assumption of sparseness in the SPs (i.e., minimally overlapping SPs) based on L(1)-norm minimization. To quantitatively evaluate the performance of this approach, semi-artificial fMRI data were created from resting-state fMRI data with the following considerations: (1) an artificially designed spatial layout of neuronal activation patterns with varying overlap sizes across subjects and (2) a BOLD time series (TS) with variable parameters such as onset time, duration, and maximum BOLD levels. To systematically control the spatial layout variability of neuronal activation patterns across the "subjects" (n=12), the degree of spatial overlap across all subjects was varied from a minimum of 1 voxel (i.e., 0.5-voxel cubic radius) to a maximum of 81 voxels (i.e., 2.5-voxel radius) across the task-related SPs with a size of 100 voxels for both the block-based and event-related task paradigms. In addition, several levels of maximum percentage BOLD intensity (i.e., 0.5, 1.0, 2.0, and 3.0%) were used for each degree of spatial overlap size. From the results, the estimated individual SPs of neuronal activation obtained from the proposed iterative DR approach with a sparse prior showed an enhanced true positive rate and reduced false positive rate compared to the ordinary DR approach. The estimated TCs of the task-related SPs from our proposed approach showed greater temporal correlation coefficients with a reference hemodynamic response function than those of the ordinary DR approach. Moreover, the efficacy of the proposed DR approach was also successfully demonstrated by the results of real fMRI data acquired from left-/right-hand clenching tasks in both block-based and event-related task paradigms. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bradshaw, G. A.
1995-01-01
There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.
Long-term consistency in spatial patterns of primate seed dispersal.
Heymann, Eckhard W; Culot, Laurence; Knogge, Christoph; Noriega Piña, Tony Enrique; Tirado Herrera, Emérita R; Klapproth, Matthias; Zinner, Dietmar
2017-03-01
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long-term consistency of spatial patterns of seed dispersal. We examined the long-term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis , the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial-genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long-term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.
NASA Astrophysics Data System (ADS)
Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.
2011-10-01
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.
Tree species exhibit complex patterns of distribution in bottomland hardwood forests
Luben D Dimov; Jim L Chambers; Brian R. Lockhart
2013-01-01
& Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...
Spatial image modulation to improve performance of computed tomography imaging spectrometer
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)
2010-01-01
Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.
Mapping the bycatch seascape: multispecies and multi-scale spatial patterns of fisheries bycatch.
Lewison, Rebecca L; Soykan, Candan U; Franklin, Janet
2009-06-01
Fisheries bycatch is a worldwide conservation issue. Despite a growing awareness of bycatch problems in particular ocean regions, there have been few efforts to identify spatial patterns in bycatch events. Furthermore, many studies of fisheries bycatch have been myopic, focusing on a single species or a single region. Using a range of analytical approaches to identify spatial patterns in bycatch data, we demonstrate the utility and applications of area and point pattern analyses to single and multispecies bycatch seascapes of pelagic longline fisheries in the Atlantic and Pacific Oceans. We find clear evidence of spatial clustering within bycatch species in both ocean basins, both in terms of the underlying pattern of the locations of bycatch events relative to fishing locations and for areas of high bycatch rates. Furthermore, we find significant spatial overlap in the pattern of bycatch across species relative to the spatial distribution in fishing effort and target catch. These results point to the importance of considering spatial patterns of both single and multispecies bycatch to meet the ultimate goal of reducing bycatch encounters. These analyses also highlight the importance of considering bycatch relative to target catch as a way of identifying areas where fishing effort reduction may help to reduce multispecies bycatch with minimal impact on target catch.
Three-dimensional reconstruction of tetraploid↔diploid chimaeric mouse blastocysts
EVERETT, CLARE A.; STARK, MARGARET H.; WEST, JOHN D.; DAVIDSON, DUNCAN; BALDOCK, RICHARD A.
2000-01-01
Studies of tetraploid↔diploid (4n↔2n) mouse chimaeras have demonstrated unequal contributions of 4n cells to different tissues of the midgestation conceptus. Such a pattern has also been reported in chimaeras as early as E3.5d, which show an enhanced contribution of 4n cells to the mural trophectoderm (Everett & West, 1996). In this study, sectioned 4n↔2n and 2n↔2n control chimaeric blastocysts were digitised and reconstructed in 3 dimensions (3-D). The 3-D images revealed only limited mixing of cells from the 2 contributing embryos of individual blastocysts in both chimaera groups. Consequently, the distribution pattern of the 2 cell types was dependent on the spatial relationship between the orientation of the blastocyst and the boundary between the 2 clusters of cells. The distribution patterns observed were not strikingly different for 4n↔2n and 2n↔2n chimaeras, each showing some transgenic positive cell contribution in all 3 identifiable developmental lineages. It was notable, however, that in all 4n↔2n blastocysts at least some 4n cells were located adjacent to the blastocyst cavity. Such a consistent pattern was not evident in 2n↔2n chimaeras. This study has demonstrated the value of 3-D reconstructions for the analysis of spatial relationships of 2 cell populations in chimaeric mouse blastocysts. PMID:10853956
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
Boakes, Elizabeth H; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B; Haklay, Muki
2016-09-13
The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers' recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets - from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers' personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species' abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species' detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers' interests and the needs of scientific projects.
NASA Astrophysics Data System (ADS)
Lasaponara, Rosa; Masini, Nicola
2014-02-01
The aim of this paper is to investigate the cultural landscape of the archaeological area of Tiwanaku (Bolivia) using multiscale, multispectral and multitemporal satellite data. Geospatial analysis techniques were applied to the satellite data sets in order to enhance and map traces of past human activities and perform a spatial characterization of environmental and cultural patterns. In particular, in the Tiwanaku area, the approach based on local indicators of spatial autocorrelation (LISA) applied to ASTER data allowed us to identify traces of a possible ancient hydrographic network with a clear spatial relation with the well-known moat surrounding the core of the monumental area. The same approach applied to QuickBird data, allowed us to identify numerous traces of archaeological interest, in Mollo Kontu mound, less investigated than the monumental area. Some of these traces were in perfect accordance with the results of independent studies, other were completely unknown. As a whole, the detected features, composing a geometric pattern with roughly North-South orientation, closely match those of the other residential contexts at Tiwanaku. These new insights, captured from ASTER and QuickBird data processing, suggested new questions on the ancient landscape and provided important information for planning future field surveys and archaeogeophyical investigations.
Boakes, Elizabeth H.; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B.; Haklay, Muki
2016-01-01
The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers’ recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets – from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers’ personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species’ abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species’ detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers’ interests and the needs of scientific projects. PMID:27619155
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
2010-01-01
Background We conducted spatial analyses to determine the geographic variation of cancer at the neighbourhood level (dissemination areas or DAs) within the area of a single Ontario public health unit, Wellington-Dufferin-Guelph, covering a population of 238,326 inhabitants. Cancer incidence data between 1999 and 2003 were obtained from the Ontario Cancer Registry and were geocoded down to the level of DA using the enhanced Postal Code Conversion File. The 2001 Census of Canada provided information on the size and age-sex structure of the population at the DA level, in addition to information about selected census covariates, such as average neighbourhood income. Results Age standardized incidence ratios for cancer and the prevalence of census covariates were calculated for each of 331 dissemination areas in Wellington-Dufferin-Guelph. The standardized incidence ratios (SIR) for cancer varied dramatically across the dissemination areas. However, application of the Moran's I statistic, a popular index of spatial autocorrelation, suggested significant spatial patterns for only two cancers, lung and prostate, both in males (p < 0.001 and p = 0.002, respectively). Employing Bayesian hierarchical models, areas in the urban core of the City of Guelph had significantly higher SIRs for male lung cancer than the remainder of Wellington-Dufferin-Guelph; and, neighbourhoods in the urban and surrounding rural areas of Orangeville exhibited significantly higher SIRs for prostate cancer. After adjustment for age and spatial dependence, average household income attenuated much of the spatial pattern of lung cancer, but not of prostate cancer. Conclusion This paper demonstrates the feasibility and utility of a systematic approach to identifying neighbourhoods, within the area served by a public health unit, that have significantly higher risks of cancer. This exploratory, ecologic study suggests several hypotheses for these spatial patterns that warrant further investigations. To the best of our knowledge, this is the first Canadian study published in the peer-reviewed literature estimating the risk of relatively rare public health outcomes at a very small areal level, namely dissemination areas. PMID:20459738
NASA Astrophysics Data System (ADS)
Edwards, Clinton B.; Eynaud, Yoan; Williams, Gareth J.; Pedersen, Nicole E.; Zgliczynski, Brian J.; Gleason, Arthur C. R.; Smith, Jennifer E.; Sandin, Stuart A.
2017-12-01
For sessile organisms such as reef-building corals, differences in the degree of dispersion of individuals across a landscape may result from important differences in life-history strategies or may reflect patterns of habitat availability. Descriptions of spatial patterns can thus be useful not only for the identification of key biological and physical mechanisms structuring an ecosystem, but also by providing the data necessary to generate and test ecological theory. Here, we used an in situ imaging technique to create large-area photomosaics of 16 plots at Palmyra Atoll, central Pacific, each covering 100 m2 of benthic habitat. We mapped the location of 44,008 coral colonies and identified each to the lowest taxonomic level possible. Using metrics of spatial dispersion, we tested for departures from spatial randomness. We also used targeted model fitting to explore candidate processes leading to differences in spatial patterns among taxa. Most taxa were clustered and the degree of clustering varied by taxon. A small number of taxa did not significantly depart from randomness and none revealed evidence of spatial uniformity. Importantly, taxa that readily fragment or tolerate stress through partial mortality were more clustered. With little exception, clustering patterns were consistent with models of fragmentation and dispersal limitation. In some taxa, dispersion was linearly related to abundance, suggesting density dependence of spatial patterning. The spatial patterns of stony corals are non-random and reflect fundamental life-history characteristics of the taxa, suggesting that the reef landscape may, in many cases, have important elements of spatial predictability.
Spatial patterns of development drive water use
G. M. Sanchez; J. W. Smith; A. Terando; G. Sun; R. K. Meentemeyer
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land...
Behavioral states may be associated with distinct spatial patterns in electrocorticogram.
Panagiotides, Heracles; Freeman, Walter J; Holmes, Mark D; Pantazis, Dimitrios
2011-03-01
To determine if behavioral states are associated with unique spatial electrocorticographic (ECoG) patterns, we obtained recordings with a microgrid electrode array applied to the cortical surface of a human subject. The array was constructed with the intent of extracting maximal spatial information by optimizing interelectrode distances. A 34-year-old patient with intractable epilepsy underwent intracranial ECoG monitoring after standard methods failed to reveal localization of seizures. During the 8-day period of invasive recording, in addition to standard clinical electrodes a square 1 × 1 cm microgrid array with 64 electrodes (1.25 mm separation) was placed on the right inferior temporal gyrus. Careful review of video recordings identified four extended naturalistic behaviors: reading, conversing on the telephone, looking at photographs, and face-to-face interactions. ECoG activity recorded with the microgrid that corresponded to these behaviors was collected and ECoG spatial patterns were analyzed. During periods of ECoG selected for analysis, no electrographic seizures or epileptiform patterns were present. Moments of maximal spatial variance are shown to cluster by behavior. Comparisons between conditions using a permutation test reveal significantly different spatial patterns for each behavior. We conclude that ECoG recordings obtained on the cortical surface with optimal high spatial frequency resolution reveal distinct local spatial patterns that reflect different behavioral states, and we predict that similar patterns will be found in many if not most cortical areas on which a microgrid is placed.
2015-05-01
annuals are able to spread into the areas between the shrubs by employing population strategies that sharply contrast with those of native species. This...greatly increases the fuel load in the matrix, which has historically produced a natural firebreak between shrubs . Our particular aims were to: (1... shrubs with respect to key interactions and the development of spatial pattern that may influence fire risk. It also provides insights into the
Evaluation and Improvement of Earth Radiation Budget Data Sets
NASA Technical Reports Server (NTRS)
Haeffelin, Martial P. A.
2001-01-01
The tasks performed during this grant are as follows: (1) Advanced scan patterns for enhanced spatial and angular sampling of ground targets; (2) Inter-calibration of polar orbiter in low Earth orbits (LEO) and geostationary (GEO) broadband radiance measurements; (3) Synergism between CERES on TRMM and Terra; (4) Improved surface solar irradiance measurements; (5) SW flux observations from Ultra Long Duration Balloons at 35 km altitude; (6) Nighttime cloud property retrieval algorithm; (7) Retrievals of overlapped and mixed-phase clouds.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.
2013-01-01
We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.
NASA Astrophysics Data System (ADS)
Lercari, D.; Defeo, O.
1999-10-01
Sandy beaches are ecosystems which are heavily affected by human activities. An example of this is freshwater discharges, which are known to change salinity, temperature and nutrient regimes and degrade nearshore environments. However, the effects of this kind of disturbance on sandy beach fauna have been little studied. This paper reports the spatial effects of a man-made freshwater canal discharge on the population structure, abundance and reproductive characteristics of the sandy beach mole crab Emerita brasiliensis. Along the 22 km of sandy beach sampled, the mole crab showed a marked longshore variability in population structure and abundance. Abundance of different population components (juveniles, males, females and ovigerous females) significantly decreased towards the canal. Population structure by sex and size, individual weight, fecundity and female maturity patterns at size also displayed a non-linear response to the distance from the freshwater discharge. Only the size structure of males did not follow this pattern. For males, spatial heterogeneity enhanced the detection of density-dependence at less disturbed sites. The authors conclude that artificial freshwater discharges could significantly influence the distribution, abundance and life-history traits of the biota of sandy beaches, and that further study of these ecosystems should include human activities as important factors affecting spatial and temporal trends. The need to consider different spatial and temporal scales in order to detect the effect of anthropogenically-driven impacts in sandy beach populations is stressed.
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats
2013-10-01
Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.
Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Spatial Patterns of Inshore Marine Soundscapes.
McWilliam, Jamie
2016-01-01
Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.
Boundary-induced pattern formation from uniform temporal oscillation
NASA Astrophysics Data System (ADS)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2018-04-01
Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.
NASA Astrophysics Data System (ADS)
Tao, Ye; Gu, Huaguang; Ding, Xueli
2017-10-01
Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.
Integrating spatial and numerical structure in mathematical patterning
NASA Astrophysics Data System (ADS)
Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.
2018-03-01
This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.
NASA Astrophysics Data System (ADS)
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949
Spatial scaling patterns and functional redundancies in a changing boreal lake landscape
Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.
2015-01-01
Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.
2011-01-01
Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462
Galaiduk, Ronen; Radford, Ben T; Harvey, Euan S
2018-06-21
Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at different life-history stages is a significant knowledge gap. Species distribution models were used to examine patterns in the relative abundance, individual biomass estimates and environmental niche associations of different life stages of three iconic West Australian fishes. Continuous predictive maps describing the spatial distribution of abundance and individual biomass of the study species were created as well predictive hotspot maps that identify possible areas for aggregation of individuals of similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The models and maps indicate that processes driving the abundance patterns could be different from the body size associated demographic processes throughout an individual's life cycle. Incorporating life-history in the spatially explicit management plans can ensure that critical habitat of the vulnerable stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance connectivity between various functional areas (e.g. nursery areas and adult populations) which, in turn, can improve the abundance of targeted species as well as other fish species relying on healthy ecosystem functioning.
Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Xia, Youlong; Caldwell, Todd G.; Hao, Zengchao
2018-02-01
Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills, but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatiotemporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based, complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event synchronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network measures and a community detection algorithm. SM-P coupling is examined using a directional event coincidence analysis measure that takes the order of event occurrences into account. The complex network approach is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the SM-P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics for other regions.
Hennig, Patrick; Egelhaaf, Martin
2011-01-01
We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly's visual system. The model circuit successfully reproduces the FD1 cell's most conspicuous property: its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly's saccadic flight and gaze strategy: the FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects—irrespective of the features by which the objects are defined—by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble. PMID:22461769
Balancing geo-privacy and spatial patterns in epidemiological studies.
Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien
2017-11-08
To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.
Pattern transitions in spatial epidemics: Mechanisms and emergent properties.
Sun, Gui-Quan; Jusup, Marko; Jin, Zhen; Wang, Yi; Wang, Zhen
2016-12-01
Infectious diseases are a threat to human health and a hindrance to societal development. Consequently, the spread of diseases in both time and space has been widely studied, revealing the different types of spatial patterns. Transitions between patterns are an emergent property in spatial epidemics that can serve as a potential trend indicator of disease spread. Despite the usefulness of such an indicator, attempts to systematize the topic of pattern transitions have been few and far between. We present a mini-review on pattern transitions in spatial epidemics, describing the types of transitions and their underlying mechanisms. We show that pattern transitions relate to the complexity of spatial epidemics by, for example, being accompanied with phenomena such as coherence resonance and cyclic evolution. The results presented herein provide valuable insights into disease prevention and control, and may even be applicable outside epidemiology, including other branches of medical science, ecology, quantitative finance, and elsewhere. Copyright © 2016 Elsevier B.V. All rights reserved.
An exploration of spatial patterns of seasonal diarrhoeal morbidity in Thailand.
McCormick, B J J; Alonso, W J; Miller, M A
2012-07-01
Studies of temporal and spatial patterns of diarrhoeal disease can suggest putative aetiological agents and environmental or socioeconomic drivers. Here, the seasonal patterns of monthly acute diarrhoeal morbidity in Thailand, where diarrhoeal morbidity is increasing, are explored. Climatic data (2003-2006) and Thai Ministry of Health annual reports (2003-2009) were used to construct a spatially weighted panel regression model. Seasonal patterns of diarrhoeal disease were generally bimodal with aetiological agents peaking at different times of the year. There is a strong association between daily mean temperature and precipitation and the incidence of hospitalization due to acute diarrhoea in Thailand leading to a distinct spatial pattern in the seasonal pattern of diarrhoea. Model performance varied across the country in relation to per capita GDP and population density. While climatic factors are likely to drive the general pattern of diarrhoeal disease in Thailand, the seasonality of diarrhoeal disease is dampened in affluent urban populations.
Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108
Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon
2012-03-06
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael
2018-01-01
Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Stochastic population dynamics in spatially extended predator-prey systems
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.
2018-02-01
Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.
Describing spatial pattern in stream networks: A practical approach
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
A geostatistical approach for describing spatial pattern in stream networks
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
NASA Astrophysics Data System (ADS)
McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.
1994-06-01
Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.
2016-01-01
Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
Point pattern analysis of FIA data
Chris Woodall
2002-01-01
Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...
Study on temporal variation and spatial distribution for rural poverty in China based on GIS
NASA Astrophysics Data System (ADS)
Feng, Xianfeng; Xu, Xiuli; Wang, Yingjie; Cui, Jing; Mo, Hongyuan; Liu, Ling; Yan, Hong; Zhang, Yan; Han, Jiafu
2009-07-01
Poverty is one of the most serious challenges all over the world, is an obstacle to hinder economics and agriculture in poverty area. Research on poverty alleviation in China is very useful and important. In this paper, we will explore the comprehensive poverty characteristics in China, analyze the current poverty status, spatial distribution and temporal variations about rural poverty in China, and to category the different poverty types and their spatial distribution. First, we achieved the gathering and processing the relevant data. These data contain investigation data, research reports, statistical yearbook, censuses, social-economic data, physical and anthrop geographical data, etc. After deeply analysis of these data, we will get the distribution of poverty areas by spatial-temporal data model according to different poverty given standard in different stages in China to see the poverty variation and the regional difference in County-level. Then, the current poverty status, spatial pattern about poverty area in villages-level will be lucubrated; the relationship among poverty, environment (including physical and anthrop geographical factors) and economic development, etc. will be expanded. We hope our research will enhance the people knowledge of poverty in China and contribute to the poverty alleviation in China.
NASA Astrophysics Data System (ADS)
Podgornova, O.; Leaney, S.; Liang, L.
2018-07-01
Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.
Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan
2016-12-01
Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Evers, Jochem B; Bastiaans, Lammert
2016-05-01
Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.
Jeffrey R. Garnas; David R. Houston; Mark J. Twery; Matthew P. Ayres; Celia Evans
2013-01-01
Spatial pattern in the distribution and abundance of organisms is an emergent property of collective rates of reproduction, survival and movement of individuals in a heterogeneous environment. The form, intensity and scale of spatial patterning can be used to test hypotheses regarding the relative importance of candidate processes to population dynamics. Using 84 plots...
Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849
Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.
Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark
2016-08-01
An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latychevskaia, Tatiana; Fink, Hans-Werner
Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less
Paths and patterns: the biology and physics of swimming bacterial populations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.
1995-01-01
The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.
NASA Astrophysics Data System (ADS)
Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun
2018-04-01
Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido
2013-05-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.
Summertime aerosol optical thickness (AOT) over the Southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation affecting the satellite AOT, but is removed in mass measurements at routine surface monitoring sites.more » We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at IMRPOVE sites using measured ion mass concentrations and NARR meteorological data. Our findings suggest ALW provides a plausible explanation for the geographical and seasonal patterns in AOT and can reconcile previously noted discrepancies with surface mass measurements.« less
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido
2013-01-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1999-01-01
A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Theories of Simplification and Scaling of Spatially Distributed Processes. Chapter 12
NASA Technical Reports Server (NTRS)
Levin, Simon A.; Pacala, Stephen W.
1997-01-01
The problem of scaling is at the heart of ecological theory, the essence of understanding and of the development of a predictive capability. The description of any system depends on the spatial, temporal, and organizational perspective chosen; hence it is essential to understand not only how patterns and dynamics vary with scale, but also how patterns at one scale are manifestations of processes operating at other scales. Evolution has shaped the characteristics of species in ways that result in scale displacement: Each species experiences the environment at its own unique set of spatial and temporal scales and interfaces the biota through unique assemblages of phenotypes. In this way, coexistence becomes possible, and biodiversity is enhanced. By averaging over space, time, and biological interactions, a genotype filters variation at fine scales and selects the arena in which it will face the vicissitudes of nature. Variation at finer scales is then noise, of minor importance to the survival and dynamics of the species, and consequently of minor importance in any attempt at description. In attempting to model ecological interactions in space, contributors throughout this book have struggled with a trade-off between simplification and "realistic" complexity and detail. Although the challenge of simplification is widely recognized in ecology, less appreciated is the intertwining of scaling questions and scaling laws with the process of simplification. In the context of this chapter simplification will in general mean the use of spatial or ensemble means and low-order moments to capture more detailed interactions by integrating over given areas. In this way, one can derive descriptions of the system at different spatial scales, which provides the essentials for the extraction of scaling laws by examination of how system properties vary with scale.
Emotional cues enhance the attentional effects on spatial and temporal resolution.
Bocanegra, Bruno R; Zeelenberg, René
2011-12-01
In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.
Contour junctions defined by dynamic image deformations enhance perceptual transparency.
Kawabe, Takahiro; Nishida, Shin'ya
2017-11-01
The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.
Garcia, A G; Godoy, W A C
2017-06-01
Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang
2015-01-01
Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848
Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc
2011-01-01
In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999-2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999-2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.
NASA Astrophysics Data System (ADS)
Balss, Karin Maria
The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.
NASA Astrophysics Data System (ADS)
Walsh, J. P.; Corbett, D. R.; Kiker, J. M.; Orpin, A. R.; Hale, R. P.; Ogston, A. S.
2014-09-01
The stratigraphic record is the manifestation of a wide range of processes, interactions and responses to environmental drivers. Understanding the functioning of river sediment dispersal systems is necessary to determine the fate of sediment and associated material in the marine environment and differentiate key influences in the development of the stratigraphic record. To that end, this study uses sediment cores collected on four successive cruises (January, May and September 2010 and February 2011) on the Waipaoa River margin, New Zealand, to provide insight into spatial and temporal variability in sediment deposition and seabed character. The Waipaoa River discharges a large sediment load into an energetic coast that has a complex margin morphology. Several flood and wave events occurred during the study, and sedimentation varied spatially and temporally. X-radiographs and short-lived radioisotopes indicate emplacement of new event layers prior to all cruises. Notable variation in surficial seabed character (grain-size composition, loss-on-ignition percentage) was apparent on the inner shelf (water depths <40 m), but mid-shelf areas and seaward had more homogeneous sediment properties. 7Be inventories indicate variable patterns of deposition related to fluvial and oceanographic conditions prior to cruises. Ephemeral sediment storage occurs on the inner-shelf of Poverty Bay, into which the Waipaoa River discharges directly, and subsequent export and dispersal patterns are linked to the relative timing and size of flood and wave events. Surficial deposits with characteristics of fluid muds and wave-enhanced sediment gravity flows were noted at some (<25 sites total) mid-shelf and shallower sites from all cruises. During the last cruise considerable inter- and intra-site seabed variability occurred in the interbedded river-proximal inner-shelf deposits over spatial scales of less than a few kilometers. Evidence from earlier sidescan data infer that this could be related to variation in bedform development or influence. Contrasts in the observed event layering recorded over the experiment with the longer pattern of accumulation suggests stochastic dispersal behavior and reworking over time must shape the seabed to produce the time-averaged pattern of shelf sediment accumulation. This research highlights our improved ability to comprehend strata development and sheds light on the challenge of interpreting historical and ancient strata across spatial and temporal scales.
Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.
Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian
2017-11-15
Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon
2016-04-01
Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.
Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment
Xue, Tao
2017-01-01
We present a methodology for a hybrid brain-computer interface (BCI) system, with the recognition of motor imagery (MI) based on EEG and blink EOG signals. We tested the BCI system in a 3D Tetris and an analogous 2D game playing environment. To enhance player's BCI control ability, the study focused on feature extraction from EEG and control strategy supporting Game-BCI system operation. We compared the numerical differences between spatial features extracted with common spatial pattern (CSP) and the proposed multifeature extraction. To demonstrate the effectiveness of 3D game environment at enhancing player's event-related desynchronization (ERD) and event-related synchronization (ERS) production ability, we set the 2D Screen Game as the comparison experiment. According to a series of statistical results, the group performing MI in the 3D Tetris environment showed more significant improvements in generating MI-associated ERD/ERS. Analysis results of game-score indicated that the players' scores presented an obvious uptrend in 3D Tetris environment but did not show an obvious downward trend in 2D Screen Game. It suggested that the immersive and rich-control environment for MI would improve the associated mental imagery and enhance MI-based BCI skills. PMID:28572817
Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken
2012-12-01
Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.
Optimization of landscape pattern [Chapter 8
John Hof; Curtis Flather
2007-01-01
A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Observed and Modeled Trends in Southern Ocean Sea Ice
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2003-01-01
Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong record of temperature increases. Still, although the patterns of the temperature and ice changes match fairly well, there is a substantial ways to go before these patterns are understood (and can be modeled) in the full context of global change.
Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids
Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E.
2015-01-01
The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes. PMID:25778677
Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T
2015-10-01
Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatial pattern and ecological process in the coffee agroforestry system.
Perfecto, Ivette; Vandermeer, John
2008-04-01
The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.
Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency.
Forrest, Barrie M; Creese, Robert G
2006-01-01
An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on ;general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a ;general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.
Context-aware pattern discovery for moving object trajectories
NASA Astrophysics Data System (ADS)
Sharif, Mohammad; Asghar Alesheikh, Ali; Kaffash Charandabi, Neda
2018-05-01
Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.
Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678
Multi-Dimensional Pattern Discovery of Trajectories Using Contextual Information
NASA Astrophysics Data System (ADS)
Sharif, M.; Alesheikh, A. A.
2017-10-01
Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon
2018-05-01
The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun
NASA Technical Reports Server (NTRS)
Habbal, S. R.
1992-01-01
The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.
LCD-based digital eyeglass for modulating spatial-angular information.
Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan
2015-05-04
Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.
Development of a distributed air pollutant dry deposition modeling framework.
Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J
2012-12-01
A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.
Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D
2017-09-01
We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.
Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.
Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li
2013-03-01
Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. © 2012 Blackwell Publishing Ltd.
Integrating the statistical analysis of spatial data in ecology
A. M. Liebhold; J. Gurevitch
2002-01-01
In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...
H. H. Welsh; C. A. Wheeler; A. J. Lind
2010-01-01
Spatial patterns of animals have important implications for population dynamics and can reveal other key aspects of a species' ecology. Movements and the resulting spatial arrangements have fitness and genetic consequences for both individuals and populations. We studied the spatial and dispersal patterns of the Oregon Gartersnake, Thamnophis atratus...
Spatial scaling of non-native fish richness across the United States
Qinfeng Guo; Julian D. Olden
2014-01-01
A major goal and challenge of invasion ecology is to describe and interpret spatial and temporal patterns of species invasions. Here, we examined fish invasion patterns at four spatially structured and hierarchically nested scales across the contiguous United States (i.e., from large to small: region, basin, watershed, and sub-watershed). All spatial relationships in...
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Rezayan, F.
2014-10-01
Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.
NASA Astrophysics Data System (ADS)
Iisaka, Joji; Sakurai-Amano, Takako
1994-08-01
This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.
Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall
NASA Astrophysics Data System (ADS)
Lucero, O. A.; Rodriguez, N. C.
In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2
NASA Astrophysics Data System (ADS)
Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias
2017-11-01
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.
Spatial patterns in vegetation fires in the Indian region.
Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu
2008-12-01
In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.
Roberto, M C; Santana, N N; Thomaz, S M
2009-06-01
Knowledge of abiotic limnological factors is important to monitor changes caused by humans, and to explain the structure and dynamics of populations and communities in a variety of inland water ecosystems. In this study, we used a long term data-set (eight years) collected in 10 habitats with different features (river channels, and connected and isolated lakes) to describe the spatial and temporal patterns of some of the principal limnological factors. In general, the degree of connectivity of the lakes, together with the rivers to which the lakes are connected, were important determinants of their limnological characteristics. These differences are expected, because rivers entering the floodplain come from different geological regions and are subject to different human impacts. At large spatial scales, these differences contribute to the increased habitat diversity of the floodplain and thus to its high biodiversity. With regard to temporal variation, Secchi-disk transparency increased, and total phosphorus decreased in the Paraná River main channel during the last 20 years. Although these changes are directly attributed to the several reservoir cascades located upstream, the closing of the Porto Primavera dam in 1998 enhanced this effect. The increase in water transparency explains biotic changes within the floodplain. The lower-phosphorus Paraná River water probably dilutes concentrations of this element in the floodplain waterbodies during major floods, with future consequences for their productivity.
Hugall, Andrew; Moritz, Craig; Moussalli, Adnan; Stanisic, John
2002-04-30
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Hugall, Andrew; Moritz, Craig; Moussalli, Adnan; Stanisic, John
2002-01-01
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them. PMID:11972064
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.
2018-01-01
Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.
Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films.
Geldmeier, Jeffrey; Rile, Lexy; Yoon, Young Jun; Jung, Jaehan; Lin, Zhiqun; Tsukruk, Vladimir V
2017-12-19
A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.
Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins
2013-01-01
Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...
Schoor, Michael; Mortlock, Doug P.; Reddi, A. Hari; Kingsley, David M.
2016-01-01
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. PMID:27902701
Recurrence Methods for the Identification of Morphogenetic Patterns
Facchini, Angelo; Mocenni, Chiara
2013-01-01
This paper addresses the problem of identifying the parameters involved in the formation of spatial patterns in nonlinear two dimensional systems. To this aim, we perform numerical experiments on a prototypical model generating morphogenetic Turing patterns, by changing both the spatial frequency and shape of the patterns. The features of the patterns and their relationship with the model parameters are characterized by means of the Generalized Recurrence Quantification measures. We show that the recurrence measures Determinism and Recurrence Entropy, as well as the distribution of the line lengths, allow for a full characterization of the patterns in terms of power law decay with respect to the parameters involved in the determination of their spatial frequency and shape. A comparison with the standard two dimensional Fourier transform is performed and the results show a better performance of the recurrence indicators in identifying a reliable connection with the spatial frequency of the patterns. Finally, in order to evaluate the robustness of the estimation of the power low decay, extensive simulations have been performed by adding different levels of noise to the patterns. PMID:24066062
Yuan, Wei; Zhang, Jie; Tan Ji-qiang; Zhou, Bo; Kang, Rui-cun; Wang, Ai-hong; Liu, Wei; Zhang, Lu
2015-09-01
It is an effective way for natural reserves to enhance self-supportive ability and realize sustainable development by developing ecotourism. Taking the experimental zone of Langxiang Natural Reserve in Heilongjiang Province as research object, the forest sub-compartment as research unit, and spatial pattern of environmental suitability of camping sites as research content, an evaluation index system taking natural environment, geographical security, infrastructure and traffic as project levels was built. Delphi and AHP methods were used to determine index weights. A spatial distribution map of camping environmental suitability in Langxiang Natural Reserve was drawn using the GIS spatial information processing technology based on "3S" measurement and the survey data. The results showed that the highest score for quantification of environmental suitability was 90, while the lowest score was 78, and the average value was 83.66 in the 1067 forest sub-compartments for test. The area of forest sub-compartments which were suitable for camping was 1094.44 hm2, being 12.2% of the experimental zone. The forest sub-compartments which had high environmental suitability in the research area were distributed uniformly and centralized with low degree of fragmentation. It was suggested that the contiguous forest sub-compartments with high scores of environmental suitability could be integrated for camping tourism. Due to the high level of environmental suitability for camping, the experimental zone of Langxiang Natural Reserve is suitable for developing camping tourism. Based on "3S" technology, the land use conditions of ecotourism environment of a natural reserve could be evaluated quickly and quantitatively by mathematical model.
Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle
2015-12-01
Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.
[Spatial analysis of mortality from cardiovascular diseases in Madrid City, Spain].
Gómez-Barroso, Diana; Prieto-Flores, María-Eugenia; Mellado San Gabino, Ana; Moreno Jiménez, Antonio
2015-01-01
Cardiovascular disease is the leading cause of death worldwide, but its spatial distribution is not homogeneous. The objective of this study is to analyze the spatial pattern of mortality from these diseases for men and women, in the populated urban area (AUP) of the municipality of Madrid, and to identify spatial aggregations. An ecological study was carried out by census tract, for men and women in 2010. Standardized Mortality Ratio (SMR), Relative Risk Smoothing (RRS) and Posterior Probability (PP) were calculated to consider the spatial pattern of the disease. To identify spatial clusters the Moran index (Moran I) and the Local Index of Spatial Autocorrelation (LISA) were used. The results were mapped. SMR higher than 1.1 was observed mainly in central areas among men and in peripheral areas among women. The PP that RRS was higher than 1 surpassed 0.8 in the center and in the periphery, in both men and women. Moran's I was 0.04 for men and 0.03 for women (p <0.05 in both cases). Sex differences were observed in the spatial distribution of mortality cases. RME RRS and PP maps showed a heterogeneous pattern in men, whereas in women a clearer pattern was detected, with a relatively higher risk in peripheral areas of the AUP. The LISA method showed similar patterns to those previously observed.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.
Guenther, Catherine; Pantalena-Filho, Luiz; Kingsley, David M
2008-12-01
Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.
Fries, Pascal; Womelsdorf, Thilo; Oostenveld, Robert; Desimone, Robert
2008-04-30
Selective attention lends relevant sensory input priority access to higher-level brain areas and ultimately to behavior. Recent studies have suggested that those neurons in visual areas that are activated by an attended stimulus engage in enhanced gamma-band (30-70 Hz) synchronization compared with neurons activated by a distracter. Such precise synchronization could enhance the postsynaptic impact of cells carrying behaviorally relevant information. Previous studies have used the local field potential (LFP) power spectrum or spike-LFP coherence (SFC) to indirectly estimate spike synchronization. Here, we directly demonstrate zero-phase gamma-band coherence among spike trains of V4 neurons. This synchronization was particularly evident during visual stimulation and enhanced by selective attention, thus confirming the pattern inferred from LFP power and SFC. We therefore investigated the time course of LFP gamma-band power and found rapid dynamics consistent with interactions of top-down spatial and feature attention with bottom-up saliency. In addition to the modulation of synchronization during visual stimulation, selective attention significantly changed the prestimulus pattern of synchronization. Attention inside the receptive field of the recorded neuronal population enhanced gamma-band synchronization and strongly reduced alpha-band (9-11 Hz) synchronization in the prestimulus period. These results lend further support for a functional role of rhythmic neuronal synchronization in attentional stimulus selection.
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Tempo-spatial analysis of Fennoscandian intraplate seismicity
NASA Astrophysics Data System (ADS)
Roberts, Roland; Lund, Björn
2017-04-01
Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
Direct Harmonic Linear Navier-Stokes Methods for Efficient Simulation of Wave Packets
NASA Technical Reports Server (NTRS)
Streett, C. L.
1998-01-01
Wave packets produced by localized disturbances play an important role in transition in three-dimensional boundary layers, such as that on a swept wing. Starting with the receptivity process, we show the effects of wave-space energy distribution on the development of packets and other three-dimensional disturbance patterns. Nonlinearity in the receptivity process is specifically addressed, including demonstration of an effect which can enhance receptivity of traveling crossflow disturbances. An efficient spatial numerical simulation method is allowing most of the simulations presented to be carried out on a workstation.
Spatial super-resolution of colored images by micro mirrors
NASA Astrophysics Data System (ADS)
Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev
2018-06-01
In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.
NASA Astrophysics Data System (ADS)
Baránek, M.; Běhal, J.; Bouchal, Z.
2018-01-01
In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
Peña, Daniel; Contreras, María José; Shih, Pei Chun; Santacreu, José
2008-05-01
When individuals perform spatial tasks, individual differences emerge in accuracy and speed as well as in the response patterns used to cope with the task. The purpose of this study is to identify, through empirical criteria, the different response patterns or strategies used by individuals when performing the dynamic spatial task presented in the Spatial Orientation Dynamic Test-Revised (SODT-R). Results show that participants can be classified according to their response patterns. Three different ways of solving a task are described, and their relation to (a) performance factors (response latency, response frequency, and invested time) and (b) ability tests (analytical reasoning, verbal reasoning, and spatial estimation) are investigated. Sex differences in response patterns and performance are also analyzed. It is found that the frequency with which men and women employ each one of the strategies described here, is different and statistically significant. Thus, employed strategy plays an important role when interpreting sex differences on dynamic spatial tasks.
Pixelated camouflage patterns from the perspective of hyperspectral imaging
NASA Astrophysics Data System (ADS)
Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav
2016-10-01
Pixelated camouflage patterns fulfill the role of both principles the matching and the disrupting that are exploited for blending the target into the background. It means that pixelated pattern should respect natural background in spectral and spatial characteristics embodied in micro and macro patterns. The HS imaging plays the similar, however the reverse role in the field of reconnaissance systems. The HS camera fundamentally records and extracts both the spectral and spatial information belonging to the recorded scenery. Therefore, the article deals with problems of hyperspectral (HS) imaging and subsequent processing of HS images of pixelated camouflage patterns which are among others characterized by their specific spatial frequency heterogeneity.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis
Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.
2016-01-01
Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217
Charreire, Hélène; Weber, Christiane; Chaix, Basile; Salze, Paul; Casey, Romain; Banos, Arnaud; Badariotti, Dominique; Kesse-Guyot, Emmanuelle; Hercberg, Serge; Simon, Chantal; Oppert, Jean-Michel
2012-05-23
Socio-ecological models suggest that both individual and neighborhood characteristics contribute to facilitating health-enhancing behaviors such as physical activity. Few European studies have explored relationships between local built environmental characteristics, recreational walking and cycling and weight status in adults. The aim of this study was to identify built environmental patterns in a French urban context and to assess associations with recreational walking and cycling behaviors as performed by middle-aged adult residents. We used a two-step procedure based on cluster analysis to identify built environmental patterns in the region surrounding Paris, France, using measures derived from Geographic Information Systems databases on green spaces, proximity facilities (destinations) and cycle paths. Individual data were obtained from participants in the SU.VI.MAX cohort; 1,309 participants residing in the Ile-de-France in 2007 were included in this analysis. Associations between built environment patterns, leisure walking/cycling data (h/week) and measured weight status were assessed using multinomial logistic regression with adjustment for individual and neighborhood characteristics. Based on accessibility to green spaces, proximity facilities and availability of cycle paths, seven built environmental patterns were identified. The geographic distribution of built environmental patterns in the Ile-de-France showed that a pattern characterized by poor spatial accessibility to green spaces and proximity facilities and an absence of cycle paths was found only in neighborhoods in the outer suburbs, whereas patterns characterized by better spatial accessibility to green spaces, proximity facilities and cycle paths were more evenly distributed across the region. Compared to the reference pattern (poor accessibility to green areas and facilities, absence of cycle paths), subjects residing in neighborhoods characterized by high accessibility to green areas and local facilities and by a high density of cycle paths were more likely to walk/cycle, after adjustment for individual and neighborhood sociodemographic characteristics (OR = 2.5 95%CI 1.4-4.6). Body mass index did not differ across patterns. Built environmental patterns were associated with walking and cycling among French adults. These analyses may be useful in determining urban and public health policies aimed at promoting a healthy lifestyle.
Cooperation in Harsh Environments and the Emergence of Spatial Patterns.
Smaldino, Paul E
2013-11-01
This paper concerns the confluence of two important areas of research in mathematical biology: spatial pattern formation and cooperative dilemmas. Mechanisms through which social organisms form spatial patterns are not fully understood. Prior work connecting cooperation and pattern formation has often included unrealistic assumptions that shed doubt on the applicability of those models toward understanding real biological patterns. I investigated a more biologically realistic model of cooperation among social actors. The environment is harsh, so that interactions with cooperators are strictly needed to survive. Harshness is implemented via a constant energy deduction. I show that this model can generate spatial patterns similar to those seen in many naturally-occuring systems. Moreover, for each payoff matrix there is an associated critical value of the energy deduction that separates two distinct dynamical processes. In low-harshness environments, the growth of cooperator clusters is impeded by defectors, but these clusters gradually expand to form dense dendritic patterns. In very harsh environments, cooperators expand rapidly but defectors can subsequently make inroads to form reticulated patterns. The resulting web-like patterns are reminiscent of transportation networks observed in slime mold colonies and other biological systems.
NASA Astrophysics Data System (ADS)
Oster, J. L.; Weisman, I. E.; Sharp, W. D.; Ibarra, D. E.
2017-12-01
The synthesis of hydrologically sensitive proxy records across western North America reveals spatial patterns of variability that persist, with some variation, over multiple temporal scales. For example, tree ring records from the last century highlight a distinct north-south dipole pattern in the response of regional precipitation anomalies to ENSO and the PDO, while a similar dipole pattern of wet and dry precipitation anomalies developed across the region in response to climate forcing at the Last Glacial Maximum (LGM). Hydrologically sensitive proxy records from the intervening transition zone can shed light on the stationarity and spatial scale of this pattern over time. Here we present records of δ18O and δ13C from a Lake Shasta Caverns stalagmite (LSC3) from Northern California that grew from 36 to 14 ka. This cave, located at 40.8°N, is situated within the transition zone and is well-positioned to enhance our understanding of regional precipitation patterns and moisture transport variability during the last glacial period and deglaciation. Six years of weekly rain isotope data indicate that varying atmospheric temperatures and moisture sources are primary controls on δ18O in Northern California precipitation. Increased δ18O and δ13C in LSC3 and slower stalagmite growth rates during MIS 2 suggest increased subtropical moisture but also dry conditions in Northern California. The δ13C record displays distinct millennial-scale oscillations during MIS 3, suggesting drier conditions also occurred during interstadials associated with Dansgaard-Oeschger cycles. The LSC3 δ18O record documents changes synchronous with δ18O in the Fort Stanton stalagmite in New Mexico, though sometimes in phase (e.g. during Heinrich Stadial 1; HS1) and sometimes anti-phased (e.g. during the Bölling-Alleröd). Likewise, the LSC3 δ13C record suggests a transition from wet to drier conditions during HS1 in marked contrast to many more southerly records that indicate wetter conditions later in HS1. These comparisons show that changes in Northern California climate were both in and out of phase with hydroclimate variations occurring to the south and southeast. Thus, the LSC3 record refines our understanding of spatial patterns of hydroclimatic change in western North America.
NASA Astrophysics Data System (ADS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2016-04-01
Karst develops through the dissolution of carbonate rock. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries. Climate model projections suggest that in the next 100 years, karst regions will experience a strong increase in temperature and a serious decrease of precipitation - especially in the Mediterranean region. Previous work showed that the karstic preferential recharge processes result in enhanced recharge rates and future climate sensitivity. But as there is fast water flow form the surface to the aquifer, there is also an enhanced risk of groundwater contamination. In this study we will assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of the karst system by distribution functions we simulated a range of spatially variable pathways of karstic groundwater recharge. The model is driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). Transit time distributions are calculated by virtual tracer experiments. These are repeated several times in the present (1991-2010) and the future (2080-2099). We can show that regions with larger fractions of preferential recharge show higher risks of contamination and that spatial patterns of contamination risk change towards the future.
NASA Astrophysics Data System (ADS)
Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen
2014-01-01
Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.
Feeding habitats of nesting wading birds: Spatial use and social influences
Erwin, R. Michael
1983-01-01
In an effort to relate social interactions to feeding-habitat use, I observed six species of wading birds near a major colony site in coastal North Carolina. Three spatial scales of habitat use were considered: the general orientation to and from the colony (coarsest level), the habitat "patch," and (at the finest level) the microhabitat. Departure-arrival directions of Great Egrets (Casmerodius albus), Snowy Egrets (Egretta thula), Cattle Egrets (Bubulcus ibis), Little Blue Herons (Egretta caerulea), Tricolored Herons (Egretta tricolor), and Glossy Ibises (Plegadis falcinellus) were monitored at the colony site to document coarse patterns of feeding-habitat use. Added to these data were observations made at five different wetland sites to monitor between-habitat and within-habitat patterns for the five aquatic-feeding species. The results indicated a broad and variable use of feeding habitat over time. At the coarsest scale (i.e. orientation at the colony), diffuse patterns, influenced little by either inter- or intraspecific social interaction, were found for all species. At the next level (habitat "patch"), only one of five wetland sites was relatively consistent in attracting feeding birds, and its use increased from May to June. Few groups were seen at four of the five sites. At the one "attractive" site, the within-habitat patterns again were spatially variable over time, except for those of the abundant Snowy Egret, whose microhabitat preference was fairly consistent. Glossy Ibises and Snowy Egrets frequently formed mixed-species groups, Little Blue Herons were the least social, and Great Egrets and Tricolored Herons generally occurred in groups of less than 10 birds but rarely in groups larger than 30. The close association between Snowy Egrets and Glossy Ibises appeared to be based on a "beater-follower" relationship, wherein the probing, nonvisually feeding ibises make prey more available to the followers. In the study area, local enhancement appeared to play a more important role than did any "information-sharing" at the colony.
ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN
We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...
Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.
2011-01-01
Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems. PMID:21347254
NASA Astrophysics Data System (ADS)
Ma, X.; Huete, A.; Yu, Q.; Davies, K.; Coupe, N. R.
2012-07-01
Phenology is receiving increasing interest in the area of climate change and vegetation adaptation to climate. The phenology of a landscape can be used as a key parameter in land surface models and dynamic global vegetation models to more accurately simulate carbon, water and energy exchanges between land cover and atmosphere. However, the characterisation of phenology is lacking in tropical savannas which cover more than 30% of global land area, and are highly vulnerable to climate change. The objective of this study is to investigate the spatial pattern of vegetation phenology along the Northern Australia Tropical Transect (NATT) where the major biomes are wet and dry tropical savannas. For this analysis we used more than 11 years Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) product from 2000 to 2011. Eight phenological metrics were derived: Start of Season (SOS), End of Season (EOS), Length of Season (LOS), Maximum EVI (MaxG), Minimum EVI (MinG), annual amplitude (AMP), large integral (LIG), and small integral (SIG) were generated for each year and each pixel. Our results showed there are significant spatial patterns and considerable interannual variations of vegetation phenology along the NATT study area. Generally speaking, vegetation growing season started and ended earlier in the north, and started and ended later in the south, resulting in a southward decrease of growing season length (LOS). Vegetation productivity, which was represented by annual integral EVI (LIG), showed a significant descending trend from the northern part of NATT to the southern part. Segmented regression analysis showed that there exists a distinguishable breakpoint along the latitudinal gradient, at least in terms of annual minimum EVI (EVI), which is located between 18.84°S to 20.04°S.
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.
2016-12-01
We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
NASA Astrophysics Data System (ADS)
Alexander, L.; Hupp, C. R.; Forman, R. T.
2002-12-01
Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.
Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement.
Blanford, Justine I; Huang, Zhuojie; Savelyev, Alexander; MacEachren, Alan M
2015-01-01
Capturing human movement patterns across political borders is difficult and this difficulty highlights the need to investigate alternative data streams. With the advent of smart phones and the ability to attach accurate coordinates to Twitter messages, users leave a geographic digital footprint of their movement when posting tweets. In this study we analyzed 10 months of geo-located tweets for Kenya and were able to capture movement of people at different temporal (daily to periodic) and spatial (local, national to international) scales. We were also able to capture both long and short distances travelled, highlighting regional connections and cross-border movement between Kenya and the surrounding countries. The findings from this study has broad implications for studying movement patterns and mapping inter/intra-region movement dynamics.
Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement
Blanford, Justine I.; Huang, Zhuojie; Savelyev, Alexander; MacEachren, Alan M.
2015-01-01
Capturing human movement patterns across political borders is difficult and this difficulty highlights the need to investigate alternative data streams. With the advent of smart phones and the ability to attach accurate coordinates to Twitter messages, users leave a geographic digital footprint of their movement when posting tweets. In this study we analyzed 10 months of geo-located tweets for Kenya and were able to capture movement of people at different temporal (daily to periodic) and spatial (local, national to international) scales. We were also able to capture both long and short distances travelled, highlighting regional connections and cross-border movement between Kenya and the surrounding countries. The findings from this study has broad implications for studying movement patterns and mapping inter/intra-region movement dynamics. PMID:26086772
Landscape patterns from mathematical morphology on maps with contagion
Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil
2009-01-01
The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Atmospheric circulation patterns and spatial climatic variations in Beringia
NASA Astrophysics Data System (ADS)
Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.
1998-08-01
Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.
Songhurst, Anna; Coulson, Tim
2014-03-01
Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.
Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg
2014-01-01
In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.
Enhanced condensation heat transfer with wettability patterning
NASA Astrophysics Data System (ADS)
Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine
2015-11-01
Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.
Soutullo, Alvaro; Limiñana, Rubén; Urios, Vicente; Surroca, Martín; A Gill, Jennifer
2006-09-01
Expanding populations offer an opportunity to uncover the processes driving spatial variation in distribution and abundance. Individual settlement decisions will be influenced by the availability and relative quality of patches, and by how these respond to changes in conspecific density. For example, conspecific presence can alter patch suitability through reductions in resource availability or territorial exclusion, leading to buffer effect patterns of disproportionate population expansion into poorer quality areas. However, conspecific presence can also enhance patch suitability through Allee effect processes, such as transmission of information about resources or improved predator detection and deterrence. Here, we explore the factors underlying the settlement pattern of a growing population of Montagu's harriers (Circus pygargus) in Spain. The population increased exponentially between 1981 and 2001, but stabilised between 2001 and 2004. This population increase occurred alongside a remarkable spatial expansion, with novel site use occurring prior to maximum densities in occupied sites being reached. However, no temporal trends in fecundity were observed and, within sites, average fecundity did not decline with increasing density. Across the population, variance in productivity did increase with population size, suggesting a complex pattern of density-dependent costs and benefits. We suggest that both Allee and buffer effects are operating in this system, with the benefits of conspecific presence counteracting density-dependent declines in resource availability or quality.
Kuo, Chun-Lin; Fukui, Hiromichi
2007-06-30
Disease diffusion patterns can provide clues for understanding geographical change. Fukushima, a rural prefecture in northeast Japan, was chosen for a case study of the late nineteenth century cholera epidemic that occurred in that country. Two volumes of Cholera Ryu-ko Kiji (Cholera Epidemic Report), published by the prefectural government in 1882 and 1895, provide valuable records for analyzing and modelling diffusion. Text descriptions and numerical evidence culled from the reports were incorporated into a temporal-spatial study framework using geographic information system (GIS) and geo-statistical techniques. Changes in diffusion patterns between 1882 and 1895 reflect improvements in the Fukushima transportation system and growth in social-economic networks. The data reveal different diffusion systems in separate regions in which residents of Fukushima and neighboring prefectures interacted. Our model also shows that an area in the prefecture's northern interior was dominated by a mix of diffusion processes (contagious and hierarchical), that the southern coastal region was affected by a contagious process, and that other infected areas experienced relocation diffusion. In addition to enhancing our understanding of epidemics, the spatial-temporal patterns of cholera diffusion offer opportunities for studying regional change in modern Japan. By highlighting the dynamics of regional reorganization, our findings can be used to better understand the formation of an urban hierarchy in late nineteenth century Japan.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna
2010-06-01
Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.
[Natural forming causes of China population distribution].
Fang, Yu; Ouyang, Zhi-Yun; Zheng, Hua; Xiao, Yi; Niu, Jun-Feng; Chen, Sheng-Bin; Lu, Fei
2012-12-01
The diverse natural environment in China causes the spatial heterogeneity of China population distribution. It is essential to understand the interrelations between the population distribution pattern and natural environment to enhance the understanding of the man-land relationship and the realization of the sustainable management for the population, resources, and environment. This paper analyzed the China population distribution by adopting the index of population density (PD) in combining with spatial statistic method and Lorenz curve, and discussed the effects of the natural factors on the population distribution and the interrelations between the population distribution and 16 indices including average annual precipitation (AAP), average annual temperature (AAT), average annual sunshine duration (AASD), precipitation variation (PV), temperature variation (TV), sunshine duration variation (SDV), relative humidity (RH), aridity index (AI), warmth index ( WI), > or = 5 degrees C annual accumulated temperature (AACT), average elevation (AE), relative height difference (RHD), surface roughness (SR), water system density (WSD), net primary productivity (NPP), and shortest distance to seashore (SDTS). There existed an obvious aggregation phenomenon in the population distribution in China. The PD was high in east China, medium in central China, and low in west China, presenting an obvious positive spatial association. The PD was significantly positively correlated with WSD, AAT, AAP, NPP, AACT, PV, RH, and WI, and significantly negatively correlated with RHD, AE, SDV, SR, and SDTS. The climate factors (AAT, WI, PV, and NPP), topography factors (SR and RHD), and water system factor (WSD) together determined the basic pattern of the population distribution in China. It was suggested that the monitoring of the eco-environment in the east China of high population density should be strengthened to avoid the eco-environmental degradation due to the expanding population, and the conservation of the eco-environment in the central and west China with vulnerable eco-environment should also be strengthened to enhance the population carrying ability of these regions and to mitigate the eco-environmental pressure in the east China of high population density.
Fracture Patterns within the Shale Hills Critical Zone Observatory
NASA Astrophysics Data System (ADS)
Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.
2012-12-01
Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic conductivity is a fundamental property controlling the zone of active flow within the watershed.
Does livestock grazing influence spatial patterns of woody plant proliferation?
USDA-ARS?s Scientific Manuscript database
Patterns of woody plant proliferation in grasslands and savannas influence rates of erosion, spread of disturbance, and nutrient pools. Spatial pattern is the outcome of plant dispersal, recruitment, competition/facilitation, and disturbance. We quantified effects of livestock grazing, a widely cit...
Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir
2004-01-01
Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns. PMID:15603586
Achieving pattern uniformity in plasmonic lithography by spatial frequency selection
NASA Astrophysics Data System (ADS)
Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay
2018-01-01
The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.
Abiotic and biotic controls of spatial pattern at alpine treeline
Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.
2000-01-01
At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.
Derivation of spatial patterns of soil hydraulic properties based on pedotransfer functions
USDA-ARS?s Scientific Manuscript database
Spatial patterns in soil hydrology are the product of the spatial distribution of soil hydraulic properties. These properties are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily a...
Spatial analysis of rural land development
Seong-Hoon Cho; David H. Newman
2005-01-01
This article examines patterns of rural land development and density using spatial econometric models with the application of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas....
Stocking rate effects on spatial heterogeneity in vegetation cover in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Sorted bedform pattern evolution: Persistence, destruction and self-organized intermittency
NASA Astrophysics Data System (ADS)
Goldstein, Evan B.; Murray, A. Brad; Coco, Giovanni
2011-12-01
We investigate the long-term evolution of inner continental shelf sorted bedform patterns. Numerical modeling suggests that a range of behaviors are possible, from pattern persistence to spatial-temporal intermittency. Sorted bedform persistence results from a robust sorting feedback that operates when the seabed features a sufficient concentration of coarse material. In the absence of storm events, pattern maturation processes such as defect dynamics and pattern migration tend to cause the burial of coarse material and excavation of fine material, leading to the fining of the active layer. Vertical sorting occurs until a critical state of active layer coarseness is reached. This critical state results in the local cessation of the sorting feedback, leading to a self-organized spatially intermittent pattern, a hallmark of observed sorted bedforms. Bedforms in shallow conditions and those subject to high wave climates may be temporally intermittent features as a result of increased wave orbital velocity during storms. Erosion, or deposition of bimodal sediment, similarly leads to a spatially intermittent pattern, with individual coarse domains exhibiting temporal intermittence. Recurring storm events cause coarsening of the seabed (strengthening the sorting feedback) and the development of large wavelength patterns. Cessation of storm events leads to the superposition of storm (large wavelength) and inter-storm (small wavelength) patterns and spatial heterogeneity of pattern modes.
1988 Wet deposition temporal and spatial patterns in North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, J.C.; Olsen, A.R.; Bittner, E.A.
1992-03-01
The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less
[Landscape pattern and its vulnerability of Nansihu Lake basin during 1980-2015.
Xui, Yan; Sun, Xiao Yin; Zhang, Da Zhi; Shan, Rui Feng; Liu, Fei
2018-02-01
Landscape pattern and its vulnerability have direct impacts on ecological environment in the basin. In order to protect the ecological security in Nansihu Lake basin, we analyzed the changes of landscape pattern based on seven sets of land use data (1980-2015), with landscape adaptability index (LAI) and landscape sensitivity index (LSI) being used to build the landscape vulnerability index (LVI). The spatial distribution and changes of LVI were analyzed. Results showed that the percentage of arable land areas decreased by 4.6% and construction land areas increased by 39.7% from 1980 to 2015. Other land use types showed fluctuating changes. The areas of forest land, grassland, and unused land decreased while water area increased. The arable land was the dominant land use type from 1980 to 2015 in this area. The degree of fragmentation of arable land and water area in the basin increased, whereas other land use types decreased. The fragmentation of whole basin decreased, but connectivity among landscape types enhanced. The irregularity and complexity of landscape pattern decreased, but diversity and evenness of landscape pattern displayed an increasing trend. With respect to LVI in different periods, the eastern part of the basin was higher than the western part, while the northern part was higher than the southern part. The spatial distribution of LVI was related to topography, layout of landscape types and change of land use. The LVI of Nansihu Lake basin showed a decline trend during 1980-2015. In the eastern part of the basin, higher level of LVI gradually dispersed and was replaced by lower level. In the northwest, the recovery of LVI was obvious. In the south and southwest parts, LVI was consistently low.
Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.
Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian
2010-10-11
Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes
NASA Astrophysics Data System (ADS)
Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio
2016-08-01
In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Beven, K. J.; Frodsham, K.; Matgen, P.
2005-12-01
Flood inundation models play an increasingly important role in assessing flood risk. The growth of 2D inundation models that are intimately related to raster maps of floodplains is occurring at the same time as an increase in the availability of 2D remote data (e.g. SAR images and aerial photographs), against which model performancee can be evaluated. This requires new techniques to be explored in order to evaluate model performance in two dimensional space. In this paper we present a fuzzified pattern matching algorithm which compares favorably to a set of traditional measures. However, we further argue that model calibration has to go beyond the comparison of physical properties and should demonstrate how a weighting towards consequences, such as loss of property, can enhance model focus and prediction. Indeed, it will be necessary to abandon a fully spatial comparison in many scenarios to concentrate the model calibration exercise on specific points such as hospitals, police stations or emergency response centers. It can be shown that such point evaluations lead to significantly different flood hazard maps due to the averaging effect of a spatial performance measure. A strategy to balance the different needs (accuracy at certain spatial points and acceptable spatial performance) has to be based in a public and political decision making process.
Baho, Didier L; Peter, Hannes; Tranvik, Lars J
2012-09-01
Bacteria play fundamental roles for many ecosystem processes; however, little empirical evidence is available on how environmental perturbations affect their composition and function. We investigated how spatial and temporal refuges affect the resistance and resilience of a freshwater bacterioplankton community upon a salinity pulse perturbation in continuous cultures. Attachment to a surface avoided the flushing out of cells and enabled re-colonization of the liquid phase after the perturbation, hence serving as a temporal refuge. A spatial refuge was established by introduction of bacteria from an undisturbed reservoir upstream of the continuous culture vessel, acting analogous to a regional species pool in a metacommunity. The salinity pulse affected bacterial community composition and the rates of respiration and the pattern of potential substrate utilization as well as the correlation between composition and function. Compared with the no-refuge treatment, the temporal refuge shortened return to pre-perturbation conditions, indicating enhanced community resilience. Composition and function were less disturbed in the treatment providing a spatial refuge, suggesting higher resistance. Our results highlight that spatial and temporal dynamics in general and refuges in particular need to be considered for conceptual progress in how microbial metacommunities are shaped by perturbations. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic
Bellmore, James Ryan; Baxter, Colden Vance; Connolly, Patrick J.
2015-01-01
Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the 'balance of nature.' Spatial complexity is hypothesized to promote biodiversity by reducing potential for competitive exclusion; whereas, models show weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species which were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.
Spatial organization of bacterial chromosomes
Wang, Xindan; Rudner, David Z.
2014-01-01
Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them. PMID:25460798
Reiter, Matthew E.; Andersen, David E.
2013-01-01
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.
NASA Astrophysics Data System (ADS)
Verma, S.; Gupta, R. D.
2014-11-01
In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.
Higuchi, P; Silva, A C; Louzada, J N C; Machado, E L M
2010-05-01
The objectives of this study were to evaluate the influence of propagules source and the implication of tree size class on the spatial pattern of Xylopia brasiliensis Spreng. individuals growing under the canopy of an experimental plantation of eucalyptus. To this end, all individuals of Xylopia brasiliensis with diameter at soil height (dsh) > 1 cm were mapped in the understory of a 3.16 ha Eucalyptus spp. and Corymbia spp. plantation, located in the municipality of Lavras, SE Brazil. The largest nearby mature tree of X. brasiliensis was considered as the propagules source. Linear regressions were used to assess the influence of the distance of propagules source on the population parameters (density, basal area and height). The spatial pattern of trees was assessed through the Ripley K function. The overall pattern showed that the propagules source distance had strong influence over spatial distribution of trees, mainly the small ones, indicating that the closer the distance from the propagules source, the higher the tree density and the lower the mean tree height. The population showed different spatial distribution patterns according to the spatial scale and diameter class considered. While small trees tended to be aggregated up to around 80 m, the largest individuals were randomly distributed in the area. A plausible explanation for observed patterns might be limited seed rain and intra-population competition.
NASA Astrophysics Data System (ADS)
Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.
2014-02-01
Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
[Spatial distribution pattern of Pontania dolichura larvae and sampling technique].
Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan
2006-03-01
In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined.
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
Soil moisture downscaling using a simple thermal based proxy
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Niesel, Jonathan
2016-04-01
Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.
Razmjou, Amir; Asadnia, Mohsen; Ghaebi, Omid; Yang, Hao-Cheng; Ebrahimi Warkiani, Majid; Hou, Jingwei; Chen, Vicki
2017-11-01
In this work, spatial patterning of a thin, dense, zeolitic imidazolate framework (ZIF-8) pattern was generated using photolithography and nanoscale (60 nm) dopamine coating. A bioinspired, unique, reversible, two-color iridescent pattern can be easily obtained for potential applications in sensing and photonics.
Central neural coding of sky polarization in insects.
Homberg, Uwe; Heinze, Stanley; Pfeiffer, Keram; Kinoshita, Michiyo; el Jundi, Basil
2011-03-12
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.
Central neural coding of sky polarization in insects
Homberg, Uwe; Heinze, Stanley; Pfeiffer, Keram; Kinoshita, Michiyo; el Jundi, Basil
2011-01-01
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization–vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions. PMID:21282171
NASA Technical Reports Server (NTRS)
Ford, J. P.; Arvidson, R. E.
1989-01-01
The high sensitivity of imaging radars to slope at moderate to low incidence angles enhances the perception of linear topography on images. It reveals broad spatial patterns that are essential to landform mapping and interpretation. As radar responses are strongly directional, the ability to discriminate linear features on images varies with their orientation. Landforms that appear prominent on images where they are transverse to the illumination may be obscure to indistinguishable on images where they are parallel to it. Landform detection is also influenced by the spatial resolution in radar images. Seasat radar images of the Gran Desierto Dunes complex, Sonora, Mexico; the Appalachian Valley and Ridge Province; and accreted terranes in eastern interior Alaska were processed to simulate both Venera 15 and 16 images (1000 to 3000 km resolution) and image data expected from the Magellan mission (120 to 300 m resolution. The Gran Desierto Dunes are not discernable in the Venera simulation, whereas the higher resolution Magellan simulation shows dominant dune patterns produced from differential erosion of the rocks. The Magellan simulation also shows that fluvial processes have dominated erosion and exposure of the folds.
Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.
Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian
2017-05-17
Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.
Temporal focusing microscopy combined with three-dimensional structured illumination
NASA Astrophysics Data System (ADS)
Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2017-05-01
Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Kramer, Larry A.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard
2015-01-01
Abstract This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition. PMID:25336321
Spatial aspects of tree mortality strongly differ between young and old-growth forests.
Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F
2015-11-01
Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Area-based tests for association between spatial patterns
NASA Astrophysics Data System (ADS)
Maruca, Susan L.; Jacquez, Geoffrey M.
Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?
Bjorn Okland; Andrew M. Liebhold; Ottar N. Bjornstad; Nadir Erbilgin; Paal Krokene; Paal Krokene
2005-01-01
Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the...
Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation
M. L. Gumpertz; C.-T. Wu; John M. Pye
2000-01-01
Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...
Analysis of Spatial Voting Patterns: An Approach in Political Socialization
ERIC Educational Resources Information Center
Klimasewski, Ted
1973-01-01
Passage of the 26th Amendment gave young adults the right to vote. This study attempts to further student understanding of the electoral process by presenting a method for analyzing spatial voting patterns. The spatial emphasis adds another dimension to the temporal and behavioral-structural approaches in studying the American electoral system.…
Density dependence, spatial scale and patterning in sessile biota.
Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J
2005-09-01
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.
Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm
NASA Astrophysics Data System (ADS)
Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong
2015-02-01
Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.
A spatial emergy model for Alachua County, Florida
NASA Astrophysics Data System (ADS)
Lambert, James David
A spatial model of the distribution of energy flows and storages in Alachua County, Florida, was created and used to analyze spatial patterns of energy transformation hierarchy in relation to spatial patterns of human settlement. Emergy, the available energy of one kind previously required directly or indirectly to make a product or service, was used as a measure of the quality of the different forms of energy flows and storages. Emergy provides a common unit of measure for comparing the productive contributions of natural processes with those of economic and social processes---it is an alternative to using money for measuring value. A geographic information system was used to create a spatial model and make maps that show the distribution and magnitude of different types of energy and emergy flows and storages occurring in one-hectare land units. Energy transformities were used to convert individual energy flows and storages into emergy units. Maps of transformities were created that reveal a clear spatial pattern of energy transformation hierarchy. The maps display patterns of widely-dispersed areas with lower transformity energy flows and storages, and smaller, centrally-located areas with higher transformities. Energy signature graphs and spatial unit transformities were used to characterize and compare the types and amounts of energy being consumed and stored according to land use classification, planning unit, and neighborhood categories. Emergy ratio maps and spatial unit ratios were created by dividing the values for specific emergy flows or storages by the values for other emergy flows or storages. Spatial context analysis was used to analyze the spatial distribution patterns of mean and maximum values for emergy flows and storages. The modeling method developed for this study is general and applicable to all types of landscapes and could be applied at any scale. An advantage of this general approach is that the results of other studies using this method will be directly comparable with the results of this study. The results and conclusions of this study reinforce the hypothesis that an urban landscape will develop a predictable spatial pattern that can be described in terms of a universal energy transformation hierarchy.
Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2012-01-01
Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-05-01
The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.
NASA Astrophysics Data System (ADS)
Wilder, T. F.
2013-05-01
Over the past century western United States have experienced drastic anthropogenic land use change from practices such as agriculture, fire exclusion, and timber harvesting. These changes have complex social, cultural, economic, and ecological interactions and consequences. This research studied landscapes patterns of watersheds with similar LANDFIRE potential vegetation in the Southern Washington Cascades physiographic province, within the Yakama Nation Tribal Forest (YTF) and Okanogan-Wenatchee National Forest, Naches Ranger District (NRD). In the selected watersheds, vegetation-mapping units were delineated and populated based on physiognomy of homogeneous areas of vegetative composition and structure using high-resolution aerial photos. Cover types and structural classes were derived from the raw, photo-interpreted vegetation attributes for individual vegetation mapping units and served as individual and composite response variables to quantify and assess spatial patterns and forest health conditions between the two ownerships. Structural classes in both the NRD and YTF were spatially clustered (Z-score 3.1, p-value 0.01; Z-score 2.3, p-value 0.02, respectively), however, ownership and logging type both explained a significant amount of variance in structural class composition. Based on FRAGSTATS landscape metrics, structural classes in the NRD displayed greater clustering and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 47.4% understory reinitiation structural class type and associated high FRAGASTAT class metrics demonstrated high aggregation with moderate interspersion. Stem exclusion open canopy displayed the greatest dispersal of structural class types throughout the NRD, but adjacencies were correlated to other class types. In the YTF, stem exclusion open canopy comprised 37.7% of the landscape and displayed a high degree of aggregation and interspersion about clusters throughout the YTF. Composite cover type-structural class spatial autocorrelation was clustered in the NRD (Z-score 5.1, p-value 0.01), while the YTF exhibited a random spatial pattern. After accounting for location effects, logging type was the most significant factor explaining variation in composite cover-structure composition. FRAGSTATS landscape metrics identified composite cover-structure classes in the NRD displayed greater aggregation and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 30.5% Pinus ponderosa-understory reinitiation and associated class metrics demonstrated a high degree of aggregation and fragmentation with low interspersion. Pinus ponderosa-stem exclusion open canopy comprised 24.6% of the YTF landscape and associated class metrics displayed moderate aggregation and fragmentation with high interspersion. A discussion integrating the results and existing relevant literature was indited to assess management regime influences on landscape patterns and, in turn, forest health attributes. This dialog is in provision of enhancing collaboration to optimize forest-health restoration activities across ownerships throughout the study area.
Testing promotes effector transfer.
Boutin, Arnaud; Panzer, Stefan; Salesse, Robin N; Blandin, Yannick
2012-11-01
The retrieval of information from memory during testing has recently been shown to promote transfer in the verbal domain. Motor-related research, however, has ignored testing as a relevant method to enhance motor transfer. We thus investigated whether testing has the potential to induce generalised motor memories by favouring effector transfer. Participants were required to reproduce a spatial-temporal pattern of elbow extensions and flexions with their dominant right arm. We tested the ability of participants to transfer the original pattern (extrinsic transformation; i.e., goal-based configuration) or the mirrored pattern (intrinsic transformation; i.e., movement-based configuration) to the unpractised non-dominant left arm. To evaluate how testing affects motor transfer at 24-h testing, participants were either administered an initial testing session during early practice (early testing group) or shortly after the end of practice (late testing group; i.e., no alternation between practice and testing sessions). No initial testing session was completed for the control group. We found better effector transfer at 24-h testing for the early testing group for both extrinsic and intrinsic transformations of the movement pattern when compared with the control group, while no testing benefit was observed for the late testing group. This indicates that testing positively affects motor learning, yielding enhanced long-term transfer capabilities. We thus demonstrate the critical role of retrieval practice via testing during the process of motor memory encoding, and provide the conditions under which testing effectively contributes to the generalisation of motor memories. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel
2017-01-01
Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999–2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems. PMID:28686667
Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel
2017-01-01
Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.
Pattern-based, multi-scale segmentation and regionalization of EOSD land cover
NASA Astrophysics Data System (ADS)
Niesterowicz, Jacek; Stepinski, Tomasz F.
2017-10-01
The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.
Cornell, K.L.; Donovan, T.M.
2010-01-01
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
NASA Astrophysics Data System (ADS)
Kim, Y.; Du, J.; Kimball, J. S.
2017-12-01
The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb retrievals and SAT calibrated FT thresholds.
NASA Astrophysics Data System (ADS)
Wismadi, Arif; Zuidgeest, Mark; Brussel, Mark; van Maarseveen, Martin
2014-01-01
To determine whether the inclusion of spatial neighbourhood comparison factors in Preference Modelling allows spatial decision support systems (SDSSs) to better address spatial equity, we introduce Spatial Preference Modelling (SPM). To evaluate the effectiveness of this model in addressing equity, various standardisation functions in both Non-Spatial Preference Modelling and SPM are compared. The evaluation involves applying the model to a resource location-allocation problem for transport infrastructure in the Special Province of Yogyakarta in Indonesia. We apply Amartya Sen's Capability Approach to define opportunity to mobility as a non-income indicator. Using the extended Moran's I interpretation for spatial equity, we evaluate the distribution output regarding, first, `the spatial distribution patterns of priority targeting for allocation' (SPT) and, second, `the effect of new distribution patterns after location-allocation' (ELA). The Moran's I index of the initial map and its comparison with six patterns for SPT as well as ELA consistently indicates that the SPM is more effective for addressing spatial equity. We conclude that the inclusion of spatial neighbourhood comparison factors in Preference Modelling improves the capability of SDSS to address spatial equity. This study thus proposes a new formal method for SDSS with specific attention on resource location-allocation to address spatial equity.
GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases
NASA Astrophysics Data System (ADS)
Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz
2015-07-01
Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from
Pan, Jay; Zhao, Hanqing; Wang, Xiuli; Shi, Xun
2016-12-01
In 2009, the Chinese government launched a new round of healthcare reform, which encourages development of private hospitals. Meanwhile, many public hospitals in China also became increasingly profit-oriented. These trends have led to concerns about social justice and regional disparity. However, there is a lack of empirical scientific analysis to support the debate. We started to fill this gap by conducting a regional-level analysis of spatial variation in spatial access to hospitals in the Sichuan Province. Such variation is an important indication of (in) equity in healthcare resource allocation. Using data of 2012, we intended to provide a snapshot of the situation that was a few years later since the new policies had set out. We employed two methods to quantify the spatial access: the nearest-neighbor method and the enhanced two-step floating catchment area (E2SFCA) method. We recognized two sub-regions of Sichuan: the rural West Sichuan and the well-developed East Sichuan. We classified the hospitals using both ownership and level. We applied the analysis to the resulting groups of hospitals and their combinations in the two sub-regions. The two sub-regions have a high contrast in the spatial access to hospitals, in terms of both quantity and spatial pattern. Public hospitals still dominated the service in the province, especially in the West Sichuan, which had been solely relying on public hospitals. Private hospitals only occurred in the East Sichuan, and at the primary level, they had surpassed public hospitals in terms of spatial accessibility. However, the governmental health expenditures seemed to be disconnected with the actual situation of the spatial access to hospitals. The government should continue carrying on its responsibility in allocating healthcare resources, be cautious about marketizing public hospitals, and encourage private hospitals to expand into rural areas. Methodologically, the results from the two methods are concurring but not identical. The E2SFCA method calculates population-adjusted density of hospitals, which measures deviation from the expected pattern, and therefore is more meaningful in assessing associations of the spatial access to hospitals with other factors (e.g., population density and investment). Copyright © 2016 Elsevier Ltd. All rights reserved.
Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition.
Merchant, Sandra M; Nagata, Wayne
2011-12-01
We study the influence of nonlocal intraspecies prey competition on the spatiotemporal patterns arising behind predator invasions in two oscillatory reaction-diffusion integro-differential models. We use three common types of integral kernels as well as develop a caricature system, to describe the influence of the standard deviation and kurtosis of the kernel function on the patterns observed. We find that nonlocal competition can destabilize the spatially homogeneous state behind the invasion and lead to the formation of complex spatiotemporal patterns, including stationary spatially periodic patterns, wave trains and irregular spatiotemporal oscillations. In addition, the caricature system illustrates how large standard deviation and low kurtosis facilitate the formation of these spatiotemporal patterns. This suggests that nonlocal competition may be an important mechanism underlying spatial pattern formation, particularly in systems where the competition between individuals varies over space in a platykurtic manner. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
Ecogeographic Genetic Epidemiology
Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.
2009-01-01
Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788
Spatial Attention Enhances Perceptual Processing of Single-Element Displays
NASA Technical Reports Server (NTRS)
Bacon, William; Johnston, James C.; Remington, Roger W.; Null, Cynthia H. (Technical Monitor)
1994-01-01
Shiu and Pashler (1993) reported that precueing masked, single-element displays had negligible effects on identification accuracy. They argued that spatial attention does not actually enhance stimulus perceptibility, but only reduces decision noise. Alternatively, such negative results may arise if cues are sub-optimal, or if masks place an insufficient premium on timely deployment of attention. We report results showing that valid cueing enhances processing of even single-element displays. Spatial attention does indeed enhance perceptual processes.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2014-04-01
Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.; Atangana, Abdon
2018-02-01
This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.
Krasheninnikova, Anastasia
2013-01-01
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.
NASA Astrophysics Data System (ADS)
Leng, Xiaodan
The trion model was developed using the Mountcastle organizational principle for the column as the basic neuronal network in the cortex and the physical system analogy of Fisher's ANNNI spin model. An essential feature is that it is highly structured in time and in spatial connections. Simulations of a network of trions have shown that large numbers of quasi-stable, periodic spatial-temporal firing patterns can be excited. Characteristics of these patterns include the quality of being readily enhanced by only a small change in connection strengths, and that the patterns evolve in certain natural sequences from one to another. With only somewhat different parameters than used for studying memory and pattern recognition, much more flowing and intriguing patterns emerged from the simulations. The results were striking when these probabilistic evolutions were mapped onto pitches and instruments to produce music: For example different simple mappings of the same evolution give music having the "flavor" of a minuet, a waltz, folk music, or styles of specific periods. A theme can be learned so that evolutions have this theme and its variations reoccurring more often. That the trion model is a viable model for the coding of musical structure in human composition and perception is suggested. It is further proposed that model is relevant for examining creativity in the higher cognitive functions of mathematics and chess, which are similar to music. An even higher level of cortical organization was modeled by coupling together several trion networks. Further, one of the crucial features of higher brain function, especially in music composition or appreciation, is the role of emotion and mood as controlled by the many neuromodulators or neuropeptides. The MILA model whose underlying basis is zero-level representation of Kac-Moody algebra is used to modulate periodically the firing threshold of each network. Our preliminary results show that the introduction of "neuromodulation" into the dynamics of a few coupled trion networks greatly enhanced the richness of the music. Neuromodulation plays a very important role in cognitive processes. I discuss many aspects of cognitive processes such as, leaning and memory, innervation of cortical functions and coordination between music and emotions. The implications of my work are discussed.
NASA Astrophysics Data System (ADS)
Zu, Jiaxing; Zhang, Yangjian; Huang, Ke; Liu, Yaojie; Chen, Ning; Cong, Nan
2018-07-01
Climate change is receiving mounting attentions from various fields and phenology is a commonly used indicator signaling vegetation responses to climate change. Previous phenology studies have mostly focused on vegetation greening-up and its climatic driving factors, while autumn phenology has been barely touched upon. In this study, vegetation phenological metrics were extracted from MODIS NDVI data and their temporal and spatial patterns were explored on the Tibetan Plateau (TP). The results showed that the start of season (SOS) has significantly earlier trend in the first decade, while the end of season (EOS) has slightly (not significant) earlier trend. In the spatial dimension, similar patterns were also identified. The SOS plays a more significant role in regulating vegetation growing season length than EOS does. The EOS and driving effects from each factor exhibited spatially heterogeneous patterns. Biological factor is the dominant factor regulating the spatial pattern of EOS, while climate factors control its inter-annual variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, Katherine J.; Torgersen, Christian; Henning, Julie
2013-04-28
We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each yearmore » with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.« less
California coastal processes study: Skylab. [San Pablo and San Francisco Bays
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.
NASA Astrophysics Data System (ADS)
Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.
2017-11-01
The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.
Microscale diffusion measurements and simulation of a scaffold with a permeable strut.
Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan
2013-10-10
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.
Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B
1995-01-01
The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258
NASA Astrophysics Data System (ADS)
Jacob, Daniel J.; Munger, J. William; Waldman, Jed M.; Hoffmann, Michael R.
1986-01-01
A systematic characterization of the atmospheric H2SO4-HNO3-NH3 system was conducted in the fog water, the aerosol, and the gas phase at a network of sites in the San Joaquin Valley of California. Spatial patterns of concentrations were established that reflect the distribution of SO2, NOx, and NH3 emissions within the valley. The concept of atmospheric alkalinity was introduced to interpret these concentrations in terms of the buffering capacity of the atmosphere with respect to inputs of strong acids. Regions of predominantly acidic and alkaline fog water were identified. Fog water was found to be alkaline in most of the valley, but small changes in emission budgets could lead to widespread acid fog. An extended stagnation episode was studied in detail: progressive accumulation of H2SO4-HNO3-NH3 species was documented over the course of the episode and interpreted in terms of production and removal mechanisms. Secondary production of strong acids H2SO4 and HNO3 under stagnant conditions resulted in a complete titration of available alkalinity at the sites farthest from NH3 sources. A steady SO2 conversion rate of 0.4-1.1% h-1 was estimated in the stagnant mixed layer under overcast conditions and was attributed to nonphotochemical heterogeneous processes. Removal of SO2 was enhanced in fog, compared to nonfoggy conditions. Conversion of NOx to HNO3 slowed down during the stagnation episode because of reduced photochemical activity; fog did not appear to enhance conversion of NOx. Decreases in total HNO3 concentrations were observed upon acidification of the atmosphere and were attributed to displacement of NO3- by H2SO4 in the aerosol, followed by rapid deposition of HNO3(g). The occurrence of fog was associated with general decreases of aerosol concentrations due to enhanced removal by deposition.
NASA Astrophysics Data System (ADS)
A, Geruo; Velicogna, Isabella; Kimball, John S.; Du, Jinyang; Kim, Youngwook; Colliander, Andreas; Njoku, Eni
2017-05-01
We combine soil moisture (SM) data from AMSR-E and AMSR-2, and changes in terrestrial water storage (TWS) from time-variable gravity data from GRACE to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE-derived TWS provides spatially continuous observations of changes in overall water supply and regional drought extent, persistence and severity, while satellite-derived SM provides enhanced delineation of shallow-depth soil water supply. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depths in relation to satellite-based enhanced vegetation index (EVI) and gross primary productivity (GPP) from MODIS and solar-induced fluorescence (SIF) from GOME-2, during and following major drought events observed in the state of Texas, USA and its surrounding semiarid area for the past decade. We find that in normal years the spatial pattern of the vegetation-moisture relationship follows the gradient in mean annual precipitation. However since the 2011 hydrological drought, vegetation growth shows enhanced sensitivity to surface SM variations in the grassland area located in central Texas, implying that the grassland, although susceptible to drought, has the capacity for a speedy recovery. Vegetation dependency on TWS weakens in the shrub-dominated west and strengthens in the grassland and forest area spanning from central to eastern Texas, consistent with changes in water supply pattern. We find that in normal years GRACE TWS shows strong coupling and similar characteristic time scale to surface SM, while in drier years GRACE TWS manifests stronger persistence, implying longer recovery time and prolonged water supply constraint on vegetation growth. The synergistic combination of GRACE TWS and surface SM, along with remote-sensing vegetation observations provides new insights into drought impact on vegetation-moisture relationship, and unique information regarding vegetation resilience and the recovery of hydrological drought.
Generic patterns in the evolution of urban water networks: Evidence from a large Asian city
NASA Astrophysics Data System (ADS)
Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.
2017-03-01
We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling
NASA Astrophysics Data System (ADS)
Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.
2017-06-01
Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.
Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling
2016-05-01
Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying Landscape Spatial Pattern: What Is the State of the Art?
Eric J. Gustafson
1998-01-01
Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Perception of scale in forest management planning: Challenges and implications
Swee May Tang; Eric J. Gustafson
1997-01-01
Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...
ERIC Educational Resources Information Center
Anselin, Luc; Sridharan, Sanjeev; Gholston, Susan
2007-01-01
With the proliferation of social indicator databases, the need for powerful techniques to study patterns of change has grown. In this paper, the utility of spatial data analytical methods such as exploratory spatial data analysis (ESDA) is suggested as a means to leverage the information contained in social indicator databases. The principles…
USDA-ARS?s Scientific Manuscript database
We examined temporal and spatial patterns of both sexes of Bactrocera dorsalis (Hendel) and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava orchard. Bactrocera dorsalis spatial patterns were initially random, but became high...
Extended generalized recurrence plot quantification of complex circular patterns
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2017-03-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.
1988 Wet deposition temporal and spatial patterns in North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, J.C.; Olsen, A.R.; Bittner, E.A.
1992-03-01
The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios
NASA Astrophysics Data System (ADS)
Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.
2013-04-01
The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc. Nonetheless, according to the results of this work future ozone is conditioned by the dependence of biogenic emissions on the climatological patterns of variability. In this sense, ozone over Europe is mainly driven by the warming-induced increase in biogenic emitting activity (vegetation is kept invariable in the simulations, but estimations of these emissions strongly depends on shortwave radiation and temperature, which are substantially modified in climatic simulations). Moreover, one of the most important drivers for ozone increase is the decrease of cloudiness (related to stronger solar radiation) mostly over southern Europe at the first half of the XXI century. However, given the large uncertainty isoprene sensitivity to climate change and the large uncertainties associated to the cloudiness projections, these results should be carefully considered.
Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine
2008-12-01
Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.
Brown, Jason L; Cameron, Alison; Yoder, Anne D; Vences, Miguel
2014-10-09
Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A 'one-size-fits-all' model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar's biota.
Plume-tracking robots: a new application of chemical sensors.
Ishid, H; Nakamoto, T; Moriizumi, T; Kikas, T; Janata, J
2001-04-01
Many animals have the ability to search for odor sources by tracking their plumes. Some of the key features of this search behavior have been successfully transferred to robot platforms, although the capabilities of animals are still beyond the current level of sensor technologies. The examples described in this paper are (1) incorporating into a wheeled robot the upwind surges and casting used by moths in tracking pheromone plumes, (2) extracting useful information from the response patterns of a chemical sensor array patterned after the spatially distributed chemoreceptors of some animals, and (3) mimicking the fanning behavior of silkworm moths to enhance the reception of chemical signals by drawing molecules from one direction. The achievements so far and current efforts are reviewed to illustrate the steps to be taken toward future development of this technology.
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
Matthew Rollins; Tom Swetnam; Penelope Morgan
2000-01-01
Twentieth century fire patterns were analyzed for two large, disparate wilderness areas in the Rocky Mountains. Spatial and temporal patterns of fires were represented as GIS-based digital fire atlases compiled from archival Forest Service data. We find that spatial and temporal fire patterns are related to landscape features and changes in land use. The rate and...
NASA Astrophysics Data System (ADS)
Horikawa, Yo
2013-12-01
Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.
Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolo, Nicola; Cannone, Dario; Ricciardone, Angelo
2016-03-01
The effective field theory of inflation is a powerful tool for obtaining model independent predictions common to large classes of inflationary models. It requires only information about the symmetries broken during the inflationary era, and on the number and nature of fields that drive inflation. In this paper, we consider the case for scenarios that simultaneously break time reparameterization and spatial diffeomorphisms during inflation. We examine how to analyse such systems using an effective field theory approach, and we discuss several observational consequences for the statistics of scalar and tensor modes. For example, examining the three point functions, we showmore » that this symmetry breaking pattern can lead to an enhanced amplitude for the squeezed bispectra, and to a distinctive angular dependence between their three wavevectors. We also discuss how our results indicate prospects for constraining the level of spatial diffeomorphism breaking during inflation.« less
NASA Astrophysics Data System (ADS)
Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan
2016-11-01
We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.
Development of water level regulation strategy for fish and wildlife, upper Mississippi River system
Lubinski, Kenneth S.; Carmody, G.; Wilcox, D.; Drazkowski, B.
1991-01-01
Water level regulation has been proposed as a tool for maintaining or enhancing fish and wildlife resources in navigation pools and associated flood plains of the Upper Mississippi River System. Research related to the development of water level management plans is being conducted under the Long Term Resource Monitoring Program. Research strategies include investigations of cause and effect relationships, spatial and temporal patterns of resource components, and alternative problem solutions. The principal hypothesis being tested states that water level fluctuations resulting from navigation dam operation create less than optimal conditions for the reproduction and growth of target aquatic macrophyte and fish species. Representative navigation pools have been selected to describe hydrologic, engineering, and legal constraints within which fish and wildlife objectives can be established. Spatial analyses are underway to predict the magnitude and location of habitat changes that will result from controlled changes in water elevation.
Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers.
Summerfield, Alex; Kozikov, Aleksey; Cheng, Tin S; Davies, Andrew; Cho, Yong-Jin; Khlobystov, Andrei N; Mellor, Christopher J; Foxon, C Thomas; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novoselov, Kostya S; Novikov, Sergei V; Beton, Peter H
2018-06-27
Monolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hBN and an underlying highly ordered pyrolytic graphite (HOPG) substrate. This variation is attributed to a periodc modulation of the local density of states and occurs for both exfoliated hBN barriers and epitaxially grown layers. The epitaxial barriers also exhibit enhanced conductance at localized subnanometer regions which are attributed to exposure of the substrate to a nitrogen plasma source during the high temperature growth process. Our results show clearly a spatial periodicity of tunnel current due to the formation of a moiré superlattice and we argue that this can provide a mechanism for elastic scattering of charge carriers for similar interfaces embedded in graphene/hBN resonant tunnel diodes.
Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.
Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie
2009-01-01
A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.
NO2 DOAS Measurements of Traffic Emissions by Chasing Cars
NASA Astrophysics Data System (ADS)
Zhu, Ying; Lipkowitsch, Ivo; Chan, Ka Lok; Bräu, Melanie; Wenig, Mark
2016-04-01
On this poster we present NO2 measurements using a Cavity-Enhanced DOAS on a measurement bus which we used to chase other vehicles to measure their NO2 emissions. Emissions of nitrogen oxides from on-road vehicles have received highly attention recently due to the increasing trend of ambient NOx level. It is particularly important to identify and quantify the direct emission and secondary formation of NO2 contributed by traffic emissions, in order to study the impact to the local air quality. We sampled on-road emissions in different environments and different driving conditions (e.g. urban, highway, different speeds). We analyse the data set in terms of spatial and temporal variability to search for temporal and spatial patterns. We present mean values sorted for different vehicle types, distance to the target car and travelling speeds to provide an emission data base from this measurement study.
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
Role of remote sensing in Bay measurements
NASA Technical Reports Server (NTRS)
Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.
1978-01-01
Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-11-30
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.
Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang
2009-06-01
Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.
Forward-Looking Infrared Cameras for Micrometeorological Applications within Vineyards
Katurji, Marwan; Zawar-Reza, Peyman
2016-01-01
We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature (spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted by periods of turbulent heat flux surges, was shown to be related to the observed meteorological measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability. The infrared raster images were collected and the resultant self-organized spatial cluster provided the meteorological context when compared to in situ data. The spatial brightness temperature pattern was explained in terms of the presence or absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as demonstrated in this research provides positive evidence behind the application of thermal infrared cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent eddy interactions with the surface. PMID:27649208
NASA Astrophysics Data System (ADS)
Millward, Andrew Allan
Throughout most of China, and particularly in the coastal areas of its south, ecological resources and traditional culture are viewed by many to be negatively impacted by accelerating urbanization. As a result, achieving an appropriate balance between development and environmental protection has become a significant problem facing policy-makers in these urbanizing areas. The establishment of a Special Economic Zone in the Chinese Province of Hainan has made its coastal areas attractive locations for business and commerce. Development activities that support a burgeoning tourism industry, but which are damaging the environment, are now prominent components of the landscape in the Sanya Region of Hainan. In this study, patterns of urban growth in the Sanya Region of Hainan Province are investigated. Specifically, using several forms of satellite imagery, statistical tools and ancillary data, urban morphology and changes to the extent and spatial arrangement of urban features are researched and documented. A twelve-year chronology of data was collected which consists of four dates of satellite imagery (1987, 1991, 1997, 1999) acquired by three different satellite sensors (SPOT 2 HRV, Landsat 5 TM, Landsat 7 ETM+). A method of assessing inter-temporal variance in unchanged features is developed as a surrogate for traditional evaluations of change detection that require spatially accurate and time-specific data. Results reveal that selective PCA using visible bands with the exclusion of an ocean mask yield the most interpretable components representative of landscape urbanization in the Sanya Region. The geostatistical approach of variography is employed to measure spatial dependence and to test for the presence of directional change in urban morphology across a time series of satellite images. Interpreted time-series geostatistics identify and quantify landscape structure, and changes to structure, and provide a valuable quantitative description of landscape change that was previously unavailable for the Sanya Region. Data acquired from the IKONOS-2 satellite are analyzed using the normalized difference vegetation index (NDVI) to identify urban greenspace in three subscenes extracted from the Sanya landscape. Results suggest that urban greenspace can be successfully characterized with enhanced detail using landscape pattern indices (LPIs) and a correlogram approach. Inclusion of a spatial approach to greenspace characterization and planning is argued to be an important and easily implemented method for enhanced evaluation of urban quality of life. The government of Hainan has stated that it wishes to employ additional and more refined means of guiding future development practices. This study is a landscape analysis involving change detection of land cover as well as the spatial analysis of urban morphological features. It develops methodologies that may be used to investigate and document past and current urban conditions; some of these could be used by the Hainan Government to further their future urban planning goals of economic growth and ecological sustainability.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.