Sample records for spatial patterns generated

  1. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model

    PubMed Central

    Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108

  2. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model.

    PubMed

    Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.

  3. An improved neutral landscape model for recreating real landscapes and generating landscape series for spatial ecological simulations.

    PubMed

    van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne

    2016-06-01

    Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.

  4. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  5. Spatial pattern and ecological process in the coffee agroforestry system.

    PubMed

    Perfecto, Ivette; Vandermeer, John

    2008-04-01

    The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.

  6. Generation of isolated asymmetric umbilics in light's polarization

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique J.; Rojec, Brett L.; Kumar, Vijay; Viswanathan, Nirmal K.

    2014-03-01

    Polarization-singularity C points, a form of line singularities, are the vectorial counterparts of the optical vortices of spatial modes and fundamental optical features of polarization-spatial modes. Their generation in tailored beams has been limited to so-called "lemon" and "star" C points that contain symmetric dislocations in state-of-polarization patterns. In this Rapid Communication we present the theory and laboratory measurements of two complementary methods to generate isolated asymmetric C points in tailored beams, of which symmetric lemon and star patterns are limiting cases; and we report on the generation of so-called "monstar" patterns, an asymmetric C point with characteristics of both lemons and stars.

  7. Reconstructing the spatial pattern of trees from routine stand examination measurements

    USGS Publications Warehouse

    Hanus, M.L.; Hann, D.W.; Marshall, D.D.

    1998-01-01

    Reconstruction of the spatial pattern of trees is important for the accurate visual display of unmapped stands. The proposed process for generating the spatial pattern is a nonsimple sequential inhibition process, with the inhibition zone proportionate to the scaled maximum crown width of an open-grown tree of the same species and same diameter at breast height as the subject tree. The results of this coordinate generation procedure are compared with mapped stem data from nine natural stands of Douglas-fir at two ages by the use of a transformed Ripley's K(d) function. The results of this comparison indicate that the proposed method, based on complete tree lists, successfully replicated the spatial patterns of the trees in all nine stands at both ages and over the range of distances examined. On the basis of these findings and the procedure's ability to model effects through time, the nonsimple sequential inhibition process has been chosen to generate tree coordinates in the VIZ4ST computer program for displaying forest stand structure in naturally regenerated young Douglas-fir stands. For. Sci.

  8. Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?

    Treesearch

    Bjorn Okland; Andrew M. Liebhold; Ottar N. Bjornstad; Nadir Erbilgin; Paal Krokene; Paal Krokene

    2005-01-01

    Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the...

  9. Fast electron microscopy via compressive sensing

    DOEpatents

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  10. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  11. Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor.

    PubMed

    Razmjou, Amir; Asadnia, Mohsen; Ghaebi, Omid; Yang, Hao-Cheng; Ebrahimi Warkiani, Majid; Hou, Jingwei; Chen, Vicki

    2017-11-01

    In this work, spatial patterning of a thin, dense, zeolitic imidazolate framework (ZIF-8) pattern was generated using photolithography and nanoscale (60 nm) dopamine coating. A bioinspired, unique, reversible, two-color iridescent pattern can be easily obtained for potential applications in sensing and photonics.

  12. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  13. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas.

    PubMed

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-09-02

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.

  14. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas

    PubMed Central

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-01-01

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186

  15. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marre, O.; El Boustani, S.; Fregnac, Y.

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less

  16. Spatial effects in discrete generation population models.

    PubMed

    Carrillo, C; Fife, P

    2005-02-01

    A framework is developed for constructing a large class of discrete generation, continuous space models of evolving single species populations and finding their bifurcating patterned spatial distributions. Our models involve, in separate stages, the spatial redistribution (through movement laws) and local regulation of the population; and the fundamental properties of these events in a homogeneous environment are found. Emphasis is placed on the interaction of migrating individuals with the existing population through conspecific attraction (or repulsion), as well as on random dispersion. The nature of the competition of these two effects in a linearized scenario is clarified. The bifurcation of stationary spatially patterned population distributions is studied, with special attention given to the role played by that competition.

  17. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  18. TOOLS FOR PRESENTING SPATIAL AND TEMPORAL PATTERNS OF ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    The EPA Health Effects Research Laboratory has developed this data presentation tool for use with a variety of types of data which may contain spatial and temporal patterns of interest. he technology links mainframe computing power to the new generation of "desktop publishing" ha...

  19. Spatial organization of bacterial chromosomes

    PubMed Central

    Wang, Xindan; Rudner, David Z.

    2014-01-01

    Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them. PMID:25460798

  20. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    PubMed

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  1. Alternative mechanisms alter the emergent properties of self-organization in mussel beds

    PubMed Central

    Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan

    2012-01-01

    Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256

  2. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  3. A perturbation analysis of a mechanical model for stable spatial patterning in embryology

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1992-12-01

    We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.

  4. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

    PubMed

    Hore, Victoria R A; Troy, John B; Eglen, Stephen J

    2012-11-01

    The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.

  5. Computer Generated Holography with Intensity-Graded Patterns

    PubMed Central

    Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina

    2016-01-01

    Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896

  6. Recurrent noise-induced phase singularities in drifting patterns.

    PubMed

    Clerc, M G; Coulibaly, S; del Campo, F; Garcia-Nustes, M A; Louvergneaux, E; Wilson, M

    2015-11-01

    We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.

  7. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    PubMed

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  8. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    PubMed

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this 'noisy' environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations ('noise') in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

  9. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  10. Characterization of Disease-Related Covariance Topographies with SSMPCA Toolbox: Effects of Spatial Normalization and PET Scanners

    PubMed Central

    Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David

    2013-01-01

    In order to generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [18F]fluorodeoxyglucose PET scans from PD patients and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5 and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in PD patients imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. PMID:23671030

  11. Characterization of disease-related covariance topographies with SSMPCA toolbox: effects of spatial normalization and PET scanners.

    PubMed

    Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David

    2014-05-01

    To generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [(18) F]fluorodeoxyglucose PET scans from patients with PD and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5, and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in patients with PD imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. Copyright © 2013 Wiley Periodicals, Inc.

  12. Spin voltage generation through optical excitation of complementary spin populations

    NASA Astrophysics Data System (ADS)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  13. Abiotic and biotic controls of spatial pattern at alpine treeline

    USGS Publications Warehouse

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  14. Recurrence Methods for the Identification of Morphogenetic Patterns

    PubMed Central

    Facchini, Angelo; Mocenni, Chiara

    2013-01-01

    This paper addresses the problem of identifying the parameters involved in the formation of spatial patterns in nonlinear two dimensional systems. To this aim, we perform numerical experiments on a prototypical model generating morphogenetic Turing patterns, by changing both the spatial frequency and shape of the patterns. The features of the patterns and their relationship with the model parameters are characterized by means of the Generalized Recurrence Quantification measures. We show that the recurrence measures Determinism and Recurrence Entropy, as well as the distribution of the line lengths, allow for a full characterization of the patterns in terms of power law decay with respect to the parameters involved in the determination of their spatial frequency and shape. A comparison with the standard two dimensional Fourier transform is performed and the results show a better performance of the recurrence indicators in identifying a reliable connection with the spatial frequency of the patterns. Finally, in order to evaluate the robustness of the estimation of the power low decay, extensive simulations have been performed by adding different levels of noise to the patterns. PMID:24066062

  15. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    NASA Astrophysics Data System (ADS)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  16. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  17. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template

    PubMed Central

    Dong, Xiaoli; Grimm, Nancy B.

    2017-01-01

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326

  18. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template.

    PubMed

    Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B

    2017-06-13

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.

  19. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire

    Treesearch

    Peter R. Robichaud; S. M. Miller

    1999-01-01

    Prescribed fire is used as a site treatment after timber harvesting. These fires result in spatial patterns with some portions consuming all of the forest floor material (duff) and others consuming little. Prior to the burn, spatial sampling of duff thickness and duff water content can be used to generate geostatistical spatial simulations of these characteristics....

  20. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  1. 2D spatially controlled polymer micro patterning for cellular behavior studies

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Palla-Papavlu, A.; Paraico, I.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2011-04-01

    A simple and effective method to functionalize glass surfaces that enable polymer micropatterning and subsequent spatially controlled adhesion of cells is reported in this paper. The method involves the application of laser induced forward transfer (LIFT) to achieve polymer patterning in a single step onto cell repellent substrates (i.e. polyethyleneglycol (PEG)). This approach was used to produce micron-size polyethyleneimine (PEI)-patterns alternating with cell-repellent areas. The focus of this work is the ability of SH-SY5Y human neuroblastoma cells to orient, migrate, and produce organized cellular arrangements on laser generated PEI patterns.

  2. Cooperation in Harsh Environments and the Emergence of Spatial Patterns.

    PubMed

    Smaldino, Paul E

    2013-11-01

    This paper concerns the confluence of two important areas of research in mathematical biology: spatial pattern formation and cooperative dilemmas. Mechanisms through which social organisms form spatial patterns are not fully understood. Prior work connecting cooperation and pattern formation has often included unrealistic assumptions that shed doubt on the applicability of those models toward understanding real biological patterns. I investigated a more biologically realistic model of cooperation among social actors. The environment is harsh, so that interactions with cooperators are strictly needed to survive. Harshness is implemented via a constant energy deduction. I show that this model can generate spatial patterns similar to those seen in many naturally-occuring systems. Moreover, for each payoff matrix there is an associated critical value of the energy deduction that separates two distinct dynamical processes. In low-harshness environments, the growth of cooperator clusters is impeded by defectors, but these clusters gradually expand to form dense dendritic patterns. In very harsh environments, cooperators expand rapidly but defectors can subsequently make inroads to form reticulated patterns. The resulting web-like patterns are reminiscent of transportation networks observed in slime mold colonies and other biological systems.

  3. Large-area imaging reveals biologically driven non-random spatial patterns of corals at a remote reef

    NASA Astrophysics Data System (ADS)

    Edwards, Clinton B.; Eynaud, Yoan; Williams, Gareth J.; Pedersen, Nicole E.; Zgliczynski, Brian J.; Gleason, Arthur C. R.; Smith, Jennifer E.; Sandin, Stuart A.

    2017-12-01

    For sessile organisms such as reef-building corals, differences in the degree of dispersion of individuals across a landscape may result from important differences in life-history strategies or may reflect patterns of habitat availability. Descriptions of spatial patterns can thus be useful not only for the identification of key biological and physical mechanisms structuring an ecosystem, but also by providing the data necessary to generate and test ecological theory. Here, we used an in situ imaging technique to create large-area photomosaics of 16 plots at Palmyra Atoll, central Pacific, each covering 100 m2 of benthic habitat. We mapped the location of 44,008 coral colonies and identified each to the lowest taxonomic level possible. Using metrics of spatial dispersion, we tested for departures from spatial randomness. We also used targeted model fitting to explore candidate processes leading to differences in spatial patterns among taxa. Most taxa were clustered and the degree of clustering varied by taxon. A small number of taxa did not significantly depart from randomness and none revealed evidence of spatial uniformity. Importantly, taxa that readily fragment or tolerate stress through partial mortality were more clustered. With little exception, clustering patterns were consistent with models of fragmentation and dispersal limitation. In some taxa, dispersion was linearly related to abundance, suggesting density dependence of spatial patterning. The spatial patterns of stony corals are non-random and reflect fundamental life-history characteristics of the taxa, suggesting that the reef landscape may, in many cases, have important elements of spatial predictability.

  4. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  5. Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled sigmoidal neurons

    NASA Astrophysics Data System (ADS)

    Horikawa, Yo

    2013-12-01

    Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.

  6. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

    PubMed Central

    Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer

    2018-01-01

    During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136

  7. Force generation within tissues during development

    NASA Astrophysics Data System (ADS)

    Kasza, Karen

    During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.

  8. Locomotor Experience: A Facilitator of Spatial Cognitive Development.

    ERIC Educational Resources Information Center

    Kermoian, Rosanne; Campos, Joseph J.

    1988-01-01

    Studies were designed to test the prediction that spatial search strategies in infants may be influenced by locomotor experience. The pattern of findings suggests that infants with efficient modes of locomotion are more likely than others to profit from the experiences generated by locomotion. (RJC)

  9. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    USGS Publications Warehouse

    Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.

  10. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    PubMed Central

    Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768

  11. Extended generalized recurrence plot quantification of complex circular patterns

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-03-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

  12. Isotropic image in structured illumination microscopy patterned with a spatial light modulator.

    PubMed

    Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu

    2009-08-17

    We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America

  13. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  14. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand.

    PubMed

    Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc

    2011-01-01

    In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999-2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999-2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.

  15. A selection criterion for patterns in reaction–diffusion systems

    PubMed Central

    2014-01-01

    Background Alan Turing’s work in Morphogenesis has received wide attention during the past 60 years. The central idea behind his theory is that two chemically interacting diffusible substances are able to generate stable spatial patterns, provided certain conditions are met. Ever since, extensive work on several kinds of pattern-generating reaction diffusion systems has been done. Nevertheless, prediction of specific patterns is far from being straightforward, and a great deal of interest in deciphering how to generate specific patterns under controlled conditions prevails. Results Techniques allowing one to predict what kind of spatial structure will emerge from reaction–diffusion systems remain unknown. In response to this need, we consider a generalized reaction diffusion system on a planar domain and provide an analytic criterion to determine whether spots or stripes will be formed. Our criterion is motivated by the existence of an associated energy function that allows bringing in the intuition provided by phase transitions phenomena. Conclusions Our criterion is proved rigorously in some situations, generalizing well-known results for the scalar equation where the pattern selection process can be understood in terms of a potential. In more complex settings it is investigated numerically. Our work constitutes a first step towards rigorous pattern prediction in arbitrary geometries/conditions. Advances in this direction are highly applicable to the efficient design of Biotechnology and Developmental Biology experiments, as well as in simplifying the analysis of morphogenetic models. PMID:24476200

  16. Intertidal habitat utilization patterns of birds in a Northeast Pacific estuary

    EPA Science Inventory

    A habitat-based framework is a practical method for developing models (or, ecological production functions, EPFs) to describe the spatial distribution of ecosystem services. To generate EPFs for Yaquina estuary, Oregon, USA, we compared bird use patterns among intertidal habitats...

  17. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  18. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  19. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  20. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE PAGES

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin; ...

    2017-05-15

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  1. Chinese American and Caucasian American Family Interaction Patterns in Spatial Rotation Puzzle Solutions.

    ERIC Educational Resources Information Center

    Hutsinger, Carol S.; Jose, Paul E.

    1995-01-01

    Examined sociocultural influences on mathematics achievement. First generation Chinese American and Caucasian American mother-father-daughter triads were audiotaped as the fifth- and sixth-grade girls solved a spatial puzzle. Chinese American triads were quieter, more respectful, more serious, and more orderly, whereas Caucasian American triads…

  2. Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays.

    PubMed

    Luis Martínez Fuentes, Jose; Moreno, Ignacio

    2018-03-05

    A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.

  3. An open-access CMIP5 pattern library for temperature and precipitation: description and methodology

    NASA Astrophysics Data System (ADS)

    Lynch, Cary; Hartin, Corinne; Bond-Lamberty, Ben; Kravitz, Ben

    2017-05-01

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares regression methods. We explore the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors between modeled and pattern-predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5 °C, but the choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation code are available at doi:10.5281/zenodo.495632.

  4. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Yao, Jun; Dewald, Julius P. A.

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.

  5. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  6. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  7. A Design Principle for an Autonomous Post-translational Pattern Formation.

    PubMed

    Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R

    2017-04-25

    Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Assembler: Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data.

    PubMed

    Zhang, Chao; Zheng, Yu; Ma, Xiuli; Han, Jiawei

    2015-08-01

    Recent years have witnessed the wide proliferation of geo-sensory applications wherein a bundle of sensors are deployed at different locations to cooperatively monitor the target condition. Given massive geo-sensory data, we study the problem of mining spatial co-evolving patterns (SCPs), i.e ., groups of sensors that are spatially correlated and co-evolve frequently in their readings. SCP mining is of great importance to various real-world applications, yet it is challenging because (1) the truly interesting evolutions are often flooded by numerous trivial fluctuations in the geo-sensory time series; and (2) the pattern search space is extremely large due to the spatiotemporal combinatorial nature of SCP. In this paper, we propose a two-stage method called Assembler. In the first stage, Assembler filters trivial fluctuations using wavelet transform and detects frequent evolutions for individual sensors via a segment-and-group approach. In the second stage, Assembler generates SCPs by assembling the frequent evolutions of individual sensors. Leveraging the spatial constraint, it conceptually organizes all the SCPs into a novel structure called the SCP search tree, which facilitates the effective pruning of the search space to generate SCPs efficiently. Our experiments on both real and synthetic data sets show that Assembler is effective, efficient, and scalable.

  9. Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations

    PubMed Central

    Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir

    2004-01-01

    Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns. PMID:15603586

  10. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    PubMed Central

    Nivas, Jijil JJ; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-01-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams. PMID:28169342

  11. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate.

    PubMed

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-07

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  12. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  13. Spatial distribution pattern of termite in Endau Rompin Plantation

    NASA Astrophysics Data System (ADS)

    Jalaludin, Nur-Atiqah; Rahim, Faszly

    2015-09-01

    We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.

  14. Strong inter-population cooperation leads to partner intermixing in microbial communities

    DOE PAGES

    Momeni, Babak; Brileya, Kristen A.; Fields, Matthew W.; ...

    2013-01-22

    Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observedmore » in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.« less

  15. Environmental heterogeneity blurs the signature of dispersal syndromes on spatial patterns of woody species in a moist tropical forest

    PubMed Central

    Velázquez, Eduardo; Escudero, Adrián; de la Cruz, Marcelino

    2018-01-01

    We assessed the relative importance of dispersal limitation, environmental heterogeneity and their joint effects as determinants of the spatial patterns of 229 species in the moist tropical forest of Barro Colorado Island (Panama). We differentiated five types of species according to their dispersal syndrome; autochorous, anemochorous, and zoochorous species with small, medium-size and large fruits. We characterized the spatial patterns of each species and we checked whether they were best fitted by Inhomogeneous Poisson (IPP), Homogeneous Poisson cluster (HPCP) and Inhomogeneous Poisson cluster processes (IPCP) by means of the Akaike Information Criterion. We also assessed the influence of species’ dispersal mode in the average cluster size. We found that 63% of the species were best fitted by IPCP regardless of their dispersal syndrome, although anemochorous species were best described by HPCP. Our results indicate that spatial patterns of tree species in this forest cannot be explained only by dispersal limitation, but by the joint effects of dispersal limitation and environmental heterogeneity. The absence of relationships between dispersal mode and degree of clustering suggests that several processes modify the original spatial pattern generated by seed dispersal. These findings emphasize the importance of fitting point process models with a different biological meaning when studying the main determinants of spatial structure in plant communities. PMID:29451871

  16. A Multi-Scale Comparative Study of Shape and Sprawl in Metropolitan Regions of the United States

    ERIC Educational Resources Information Center

    Kugler, Tracy A.

    2012-01-01

    This dissertation constitutes a multi-scale quantitative and qualitative investigation of patterns of urban development in metropolitan regions of the United States. This work has generated a comprehensive data set on spatial patterns of metropolitan development in the U.S. and an approach to the study of such patterns that can be used to further…

  17. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    NASA Astrophysics Data System (ADS)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  18. Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation.

    PubMed

    Pulsipher, Abigail; Westcott, Nathan P; Luo, Wei; Yousaf, Muhammad N

    2009-06-10

    In this work, we develop a new, rapid and inexpensive method to generate spatially controlled aldehyde and carboxylic acid surface groups by microfluidic oxidation of 11-hydroxyundecylphosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO) surfaces. SAMs are activated and patterned using a reversibly sealable, elastomeric polydimethylsiloxane cassette, fabricated with preformed micropatterns by soft lithography. By flowing the mild oxidant pyridinium chlorochromate through the microchannels, only selected areas of the SAM are chemically altered. This microfluidic oxidation strategy allows for ligand immobilization by two chemistries originating from a single SAM composition. ITO is robust, conductive, and transparent, making it an ideal platform for studying interfacial interactions. We display spatial control over the immobilization of a variety of ligands on ITO and characterize the resulting oxime and amide linkages by electrochemistry, X-ray photoelectron spectroscopy, contact angle, fluorescence microscopy, and atomic force microscopy. This general method may be used with many other materials to rapidly generate patterned and tailored surfaces for studies ranging from molecular electronics to biospecific cell-based assays and biomolecular microarrays.

  19. Quantifying the lag time to detect barriers in landscape genetics

    Treesearch

    E. L. Landguth; S. A Cushman; M. K. Schwartz; K. S. McKelvey; M. Murphy; G. Luikart

    2010-01-01

    Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individualbased simulations to examine the...

  20. A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling

    PubMed Central

    Hunter, Ginger L.; Baum, Buzz

    2016-01-01

    Tissue organization and patterning are critical during development when genetically identical cells take on different fates. Lateral signalling plays an important role in this process by helping to generate self-organized spatial patterns in an otherwise uniform collection of cells. Recent data suggest that lateral signalling can be mediated both by junctional contacts between neighbouring cells and via cellular protrusions that allow non-neighbouring cells to interact with one another at a distance. However, it remains unclear precisely how signalling mediated by these distinct types of cell–cell contact can physically contribute to the generation of complex patterns without the assistance of diffusible morphogens or pre-patterns. To explore this question, in this work we develop a model of lateral signalling based on a single receptor/ligand pair as exemplified by Notch and Delta. We show that allowing the signalling kinetics to differ at junctional versus protrusion-mediated contacts, an assumption inspired by recent data which show that the cleavage of Notch in several systems requires both Delta binding and the application of mechanical force, permits individual cells to act to promote both lateral activation and lateral inhibition. Strikingly, under this model, in which Delta can sequester Notch, a variety of patterns resembling those typical of reaction–diffusion systems is observed, together with more unusual patterns that arise when we consider changes in signalling kinetics, and in the length and distribution of protrusions. Importantly, these patterns are self-organizing—so that local interactions drive tissue-scale patterning. Together, these data show that protrusions can, in principle, generate different types of patterns in addition to contributing to long-range signalling and to pattern refinement. PMID:27807273

  1. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh

    2009-01-01

    This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.

  2. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  3. A 3D stand generator for central Appalachian hardwood forests

    Treesearch

    Jingxin Wang; Yaoxiang Li; Gary W. Miller

    2002-01-01

    A 3-dimensional (3D) stand generator was developed for central Appalachian hardwood forests. It was designed for a harvesting simulator to examine the interactions of stand, harvest, and machine. The Component Object Model (COM) was used to design and implement the program. Input to the generator includes species composition, stand density, and spatial pattern. Output...

  4. Self-Induced Switchings between Multiple Space-Time Patterns on Complex Networks of Excitable Units

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit; Lehnertz, Klaus; Feudel, Ulrike

    2016-01-01

    We report on self-induced switchings between multiple distinct space-time patterns in the dynamics of a spatially extended excitable system. These switchings between low-amplitude oscillations, nonlinear waves, and extreme events strongly resemble a random process, although the system is deterministic. We show that a chaotic saddle—which contains all the patterns as well as channel-like structures that mediate the transitions between them—is the backbone of such a pattern-switching dynamics. Our analyses indicate that essential ingredients for the observed phenomena are that the system behaves like an inhomogeneous oscillatory medium that is capable of self-generating spatially localized excitations and that is dominated by short-range connections but also features long-range connections. With our findings, we present an alternative to the well-known ways to obtain self-induced pattern switching, namely, noise-induced attractor hopping, heteroclinic orbits, and adaptation to an external signal. This alternative way can be expected to improve our understanding of pattern switchings in spatially extended natural dynamical systems like the brain and the heart.

  5. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  6. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior.

    PubMed

    Muessig, L; Hauser, J; Wills, T J; Cacucci, F

    2016-08-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.

  7. Techniques for Generating Objects in a Three-Dimensional CAD System.

    ERIC Educational Resources Information Center

    Goss, Larry D.

    1987-01-01

    Discusses coordinate systems, units of measure, scaling and levels as they relate to a database generated by a computer in a spatial rather than planer location. Describes geometric-oriented input, direct coordinates, transformations, annotation, editing and patterns. Stresses that hand drafting emulation is a short-sighted approach to…

  8. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  9. Spatial Heterogeneity, Social Capital, and Rural Larceny and Burglary

    ERIC Educational Resources Information Center

    Deller, Steven; Deller, Melissa

    2012-01-01

    We explore the role of social capital in explaining patterns of rural larceny and burglary crime rates. We find consistent evidence that higher levels of social capital tend to be associated with lower levels of rural property crime rates. We also find that there is significant spatial heterogeneity in the underlying data-generating process. This…

  10. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  11. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  12. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  13. Scale dependent inference in landscape genetics

    Treesearch

    Samuel A. Cushman; Erin L. Landguth

    2010-01-01

    Ecological relationships between patterns and processes are highly scale dependent. This paper reports the first formal exploration of how changing scale of research away from the scale of the processes governing gene flow affects the results of landscape genetic analysis. We used an individual-based, spatially explicit simulation model to generate patterns of genetic...

  14. Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  15. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    PubMed

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  16. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    PubMed Central

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc. PMID:26678220

  17. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  18. On the mechanical theory for biological pattern formation

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  19. Freeform array projection

    NASA Astrophysics Data System (ADS)

    Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.

    2015-09-01

    The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.

  20. Testing aggregation hypotheses among Neotropical trees and shrubs: results from a 50-ha plot over 20 years of sampling.

    PubMed

    Myster, Randall W; Malahy, Michael P

    2012-09-01

    Spatial patterns of tropical trees and shrubs are important to understanding their interaction and the resultant structure of tropical rainforests. To assess this issue, we took advantage of previously collected data, on Neotropical tree and shrub stem identified to species and mapped for spatial coordinates in a 50ha plot, with a frequency of every five years and over a 20 year period. These stems data were first placed into four groups, regardless of species, depending on their location in the vertical strata of the rainforest (shrubs, understory trees, mid-sized trees, tall trees) and then used to generate aggregation patterns for each sampling year. We found shrubs and understory trees clumped at small spatial scales of a few meters for several of the years sampled. Alternatively, mid-sized trees and tall trees did not clump, nor did they show uniform (regular) patterns, during any sampling period. In general (1) groups found higher in the canopy did not show aggregation on the ground and (2) the spatial patterns of all four groups showed similarity among different sampling years, thereby supporting a "shifting mosaic" view of plant communities over large areas. Spatial analysis, such as this one, are critical to understanding and predicting tree spaces, tree-tree replacements and the Neotropical forest patterns, such as biodiversity and those needed for sustainability efforts, they produce.

  1. Remote Sensing-Based Detection and Spatial Pattern Analysis for Geo-Ecological Niche Modeling of Tillandsia SPP. In the Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Siegmund, A.; del Río, C.; Osses, P.; García, J. L.

    2016-06-01

    In the coastal Atacama Desert in Northern Chile plant growth is constrained to so-called `fog oases' dominated by monospecific stands of the genus Tillandsia. Adapted to the hyperarid environmental conditions, these plants specialize on the foliar uptake of fog as main water and nutrient source. It is this characteristic that leads to distinctive macro- and micro-scale distribution patterns, reflecting complex geo-ecological gradients, mainly affected by the spatiotemporal occurrence of coastal fog respectively the South Pacific Stratocumulus clouds reaching inlands. The current work employs remote sensing, machine learning and spatial pattern/GIS analysis techniques to acquire detailed information on the presence and state of Tillandsia spp. in the Tarapacá region as a base to better understand the bioclimatic and topographic constraints determining the distribution patterns of Tillandsia spp. Spatial and spectral predictors extracted from WorldView-3 satellite data are used to map present Tillandsia vegetation in the Tarapaca region. Regression models on Vegetation Cover Fraction (VCF) are generated combining satellite-based as well as topographic variables and using aggregated high spatial resolution information on vegetation cover derived from UAV flight campaigns as a reference. The results are a first step towards mapping and modelling the topographic as well as bioclimatic factors explaining the spatial distribution patterns of Tillandsia fog oases in the Atacama, Chile.

  2. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks

    PubMed Central

    2018-01-01

    Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds—we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. PMID:29537963

  3. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    PubMed

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  4. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  5. Spatial effects, sampling errors, and task specialization in the honey bee.

    PubMed

    Johnson, B R

    2010-05-01

    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.

  6. Influence of orographically steered winds on Mutsu Bay surface currents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  7. Emergence of multicellular organisms with dynamic differentiation and spatial pattern.

    PubMed

    Furusawa, C; Kaneko, K

    1998-01-01

    The origin of multicellular organisms and the mechanism of development in cell societies are studied by choosing a model with intracellular biochemical dynamics allowing for oscillations, cell-cell interaction through diffusive chemicals on a two-dimensional grid, and state-dependent cell adhesion. Cells differentiate due to a dynamical instability, as described by our "isologous diversification" theory. A fixed spatial pattern of differentiated cells emerges, where spatial information is sustained by cell-cell interactions. This pattern is robust against perturbations. With an adequate cell adhesion force, active cells are release that form the seed of a new generation of multicellular organisms, accompanied by death of the original multicellular unit as a halting state. It is shown that the emergence of multicellular organisms with differentiation, regulation, and life cycle is not an accidental event, but a natural consequence in a system of replicating cells with growth.

  8. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Treesearch

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  9. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  10. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE PAGES

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  11. Population Structure and Dispersal Patterns within and between Atlantic and Mediterranean Populations of a Large-Range Pelagic Seabird

    PubMed Central

    Genovart, Meritxell; Thibault, Jean-Claude; Igual, José Manuel; Bauzà-Ribot, Maria del Mar; Rabouam, Corinne; Bretagnolle, Vincent

    2013-01-01

    Dispersal is critically linked to the demographic and evolutionary trajectories of populations, but in most seabird species it may be difficult to estimate. Using molecular tools, we explored population structure and the spatial dispersal pattern of a highly pelagic but philopatric seabird, the Cory's shearwater Calonectris diomedea. Microsatellite fragments were analysed from samples collected across almost the entire breeding range of the species. To help disentangle the taxonomic status of the two subspecies described, the Atlantic form C. d. borealis and the Mediterranean form C. d. diomedea, we analysed genetic divergence between subspecies and quantified both historical and recent migration rates between the Mediterranean and Atlantic basins. We also searched for evidence of isolation by distance (IBD) and addressed spatial patterns of gene flow. We found a low genetic structure in the Mediterranean basin. Conversely, strong genetic differentiation appeared in the Atlantic basin. Even if the species was mostly philopatric (97%), results suggest recent dispersal between basins, especially from the Atlantic to the Mediterranean (aprox. 10% of migrants/generation across the last two generations). Long-term gene flow analyses also suggested an historical exchange between basins (about 70 breeders/generation). Spatial analysis of genetic variation indicates that distance is not the main factor in shaping genetic structure in this species. Given our results we recommend gathering more data before concluded whether these taxa should be treated as two species or subspecies. PMID:23950986

  12. Pattern does not equal process: what does patch occupancy really tell us about metapopulation dynamics?

    PubMed

    Clinchy, Michael; Haydon, Daniel T; Smith, Andrew T

    2002-04-01

    Patch occupancy surveys are commonly used to parameterize metapopulation models. If isolation predicts patch occupancy, this is generally attributed to a balance between distance-dependent recolonization and spatially independent extinctions. We investigated whether similar patterns could also be generated by a process of spatially correlated extinctions following a unique colonization event (analogous to nonequilibrium processes in island biogeography). We simulated effects of spatially correlated extinctions on patterns of patch occupancy among pikas (Ochotona princeps) at Bodie, California, using randomly located extinction disks to represent the likely effects of predation. Our simulations produced similar patterns to those cited as evidence of balanced metapopulation dynamics. Simulations using a variety of disk sizes and patch configurations confirmed that our results are potentially applicable to a broad range of species and sites. Analyses of the observed patterns of patch occupancy at Bodie revealed little evidence of rescue effects and strong evidence that most recolonizations are ephemeral in nature. Persistence will be overestimated if static or declining patterns of patch occupancy are mistakenly attributed to dynamically stable metapopulation processes. Consequently, simple patch occupancy surveys should not be considered as substitutes for detailed experimental tests of hypothesized population processes, particularly when conservation concerns are involved.

  13. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  14. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    PubMed Central

    Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.

    2014-01-01

    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes. PMID:19557684

  15. Self-interferometric technique for visualization of phase patterns encoded onto a liquid-crystal display

    NASA Astrophysics Data System (ADS)

    Bentley, Joel B.; Davis, Jeffrey A.; Albero, Jorge; Moreno, Ignacio

    2006-10-01

    We report a new self-interferometric technique for visualizing phase patterns that are encoded onto a phase-only liquid-crystal display (LCD). In our approach, the LCD generates both the desired object beam as well as the reference beam. Normally the phase patterns are encoded with a phase depth of 2π radians, and all of the incident energy is diffracted into the first-order beam. However, by reducing this phase depth, we can generate an additional zero-order diffracted beam, which acts as the reference beam. We work at distances such that these two patterns spatially interfere, producing an interference pattern that displays the encoded phase pattern. This approach was used recently to display the phase vortices of helical Ince-Gaussian beams. Here we show additional experimental results and analyze the process.

  16. Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers.

    PubMed

    Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T

    2009-11-23

    To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.

  17. Diatom-sedimentation feedback generates a self-organized geomorphic landscape on intertidal mudflats (Invited)

    NASA Astrophysics Data System (ADS)

    van de Koppel, J.; Weerman, E.; Herman, P.

    2010-12-01

    During spring, intertidal flats can exhibit strikingly regular spatial patterns of diatom-covered hummocks alternating with almost bare, water-filled hollows. We hypothesize that 1) the formation of this geomorphic landscape is caused by a strong interaction between benthic diatoms and sediment dynamics, inducing spatial self-organization, and 2) that self-organization affects ecosystem functioning by increasing the net average sedimentation on the tidal flat. We present a combined empirical and mathematical study to test the first hypothesis. We determined how the sediment erosion threshold varied with diatom cover and elevation. Our results were incorporated into a mathematical model to investigate whether the proposed mechanism could explain the formation of the observed patterns. Our mathematical model confirmed that the interaction between sedimentation, diatom growth and water redistribution could induce the formation of regular patterns on the intertidal mudflat. The model predicts that areas exhibiting spatially-self-organized patterns have increased sediment accretion and diatom biomass compared with areas lacking spatial patterns. We tested this prediction by following the sediment elevation during the season on both patterned and unpatterned parts of the mudflat. The results of our study confirmed our model prediction, as more sediment was found to accumulate in patterned parts of the mudflat, revealing how self-organization affected the functioning of mudflat ecosystems. Our study on intertidal mudflats provides a simple but clear-cut example of how the interaction between biological and geomorphological processes, through the process of self-organization, induces a self-organized geomorphic landscape.

  18. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  19. High-fidelity large area nano-patterning of silicon with femtosecond light sheet

    NASA Astrophysics Data System (ADS)

    Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.

    2018-01-01

    We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.

  20. What spatial scales are believable for climate model projections of sea surface temperature?

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.

  1. Geostatistics and spatial analysis in biological anthropology.

    PubMed

    Relethford, John H

    2008-05-01

    A variety of methods have been used to make evolutionary inferences based on the spatial distribution of biological data, including reconstructing population history and detection of the geographic pattern of natural selection. This article provides an examination of geostatistical analysis, a method used widely in geology but which has not often been applied in biological anthropology. Geostatistical analysis begins with the examination of a variogram, a plot showing the relationship between a biological distance measure and the geographic distance between data points and which provides information on the extent and pattern of spatial correlation. The results of variogram analysis are used for interpolating values of unknown data points in order to construct a contour map, a process known as kriging. The methods of geostatistical analysis and discussion of potential problems are applied to a large data set of anthropometric measures for 197 populations in Ireland. The geostatistical analysis reveals two major sources of spatial variation. One pattern, seen for overall body and craniofacial size, shows an east-west cline most likely reflecting the combined effects of past population dispersal and settlement. The second pattern is seen for craniofacial height and shows an isolation by distance pattern reflecting rapid spatial changes in the midlands region of Ireland, perhaps attributable to the genetic impact of the Vikings. The correspondence of these results with other analyses of these data and the additional insights generated from variogram analysis and kriging illustrate the potential utility of geostatistical analysis in biological anthropology. (c) 2008 Wiley-Liss, Inc.

  2. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  3. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  4. Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome.

    PubMed

    Castillon, Charlotte; Lunion, Steeve; Desvignes, Nathalie; Hanauer, André; Laroche, Serge; Poirier, Roseline

    2018-07-01

    Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    PubMed Central

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  6. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors.

    PubMed

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan

    2003-03-15

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.

  7. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  8. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    PubMed Central

    2011-01-01

    Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932

  9. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation.

    PubMed

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-06-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm 2 . We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.

  10. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  11. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests.

    PubMed

    Sunyer, Pau; Boixadera, Ester; Muñoz, Alberto; Bonal, Raúl; Espelta, Josep Maria

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitation effect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent's behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.

  12. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests

    PubMed Central

    Boixadera, Ester; Bonal, Raúl

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129

  13. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  14. Spatial chaos of Wang tiles with two symbols

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Yu; Chen, Yu-Jie; Hu, Wen-Guei; Lin, Song-Sun

    2016-02-01

    This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles B , spatial chaos occurs when the spatial entropy h ( B ) is positive. B is called a minimal cycle generator if P ( B ) ≠ 0̸ and P ( B ' ) = 0̸ whenever B ' ⫋ B , where P ( B ) is the set of all periodic patterns on ℤ2 generated by B . Given a set of Wang tiles B , write B = C 1 ∪ C 2 ∪ ⋯ ∪ C k ∪ N , where Cj, 1 ≤ j ≤ k, are minimal cycle generators and B contains no minimal cycle generator except those contained in C1∪C2∪⋯∪Ck. Then, the positivity of spatial entropy h ( B ) is completely determined by C1∪C2∪⋯∪Ck. Furthermore, there are 39 equivalence classes of marginal positive-entropy sets of Wang tiles and 18 equivalence classes of saturated zero-entropy sets of Wang tiles. For a set of Wang tiles B , h ( B ) is positive if and only if B contains a MPE set, and h ( B ) is zero if and only if B is a subset of a SZE set.

  15. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    NASA Astrophysics Data System (ADS)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-11-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  16. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences of dispersal mutualisms in plant populations.

  17. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model

    PubMed Central

    Parsons, Sean P.; Huizinga, Jan D.

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875

  18. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  19. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  20. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Drake, David

    2006-08-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  1. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  2. Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus.

    PubMed

    Ellis, Alicia M

    2008-01-01

    1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.

  3. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  4. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  5. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh.

    PubMed

    Hassan, M Manzurul; Atkins, Peter J

    2011-01-01

    This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.

  6. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Establishment of spatial pattern.

    PubMed

    Slack, Jonathan

    2014-01-01

    An overview and perspective are presented of mechanisms for the development of spatial pattern in animal embryos. It is intended both for new entrants to developmental biology and for specialists in other fields, with only a basic knowledge of animal life cycles being required. The first event of pattern formation is normally the localization of a cytoplasmic determinant in the egg, either during oogenesis or post-fertilization. Following cleavage to a multicellular stage, some cells contain the determinant and others do not. The determinant confers a specific developmental pathway on the cells that contain it, often making them the source of the first extracellular signal, or inducing factor. Inducing factors often form concentration gradients to which cells respond by up or downregulating genes at various concentration thresholds. This enables an initial situation consisting of two cell states (with or without the determinant) to generate a multistate pattern. Multiple rounds of gradient signaling, interspersed with phases of morphogenetic movements, can generate a complex pattern using a small number of signals and responding genes. Development proceeds in a hierarchical manner, with broad body subdivisions being specified initially, and becoming successively subdivided to give individual organs and tissues composed of multiple cell types in a characteristic arrangement. Double gradient models can account for embryonic regulation, whereby a similarly proportioned body pattern is formed following removal of material. Processes that are involved at the later stages include the formation of repeating structures by the combination of an oscillator with a gradient, and the formation of tissues with one cell type scattered in a background of another through a process called lateral inhibition. This set of processes make up a 'developmental toolkit' which can be deployed in various sequences and combinations to generate a very wide variety of structures and cell types. © 2014 Wiley Periodicals, Inc.

  8. Spatial Analysis of “Crazy Quilts”, a Class of Potentially Random Aesthetic Artefacts

    PubMed Central

    Westphal-Fitch, Gesche; Fitch, W. Tecumseh

    2013-01-01

    Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. “Crazy quilts” represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures. PMID:24066095

  9. Spatial analysis of "crazy quilts", a class of potentially random aesthetic artefacts.

    PubMed

    Westphal-Fitch, Gesche; Fitch, W Tecumseh

    2013-01-01

    Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. "Crazy quilts" represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures.

  10. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  11. MRCK-1 drives apical constriction in C. elegans by linking developmental patterning to force generation

    PubMed Central

    Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob

    2016-01-01

    Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898

  12. Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.

    NASA Astrophysics Data System (ADS)

    Mock, Cary Jeffrey

    This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.

  13. OLED emission zone measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.

    2013-09-01

    Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.

  14. Spatial-temporal clustering of tornadoes

    NASA Astrophysics Data System (ADS)

    Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.

    2016-12-01

    The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.

  15. Spatial-Temporal Clustering of Tornadoes

    NASA Astrophysics Data System (ADS)

    Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.

    2017-04-01

    The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.

  16. A random forest approach for predicting the presence of Echinococcus multilocularis intermediate host Ochotona spp. presence in relation to landscape characteristics in western China

    PubMed Central

    Marston, Christopher G.; Danson, F. Mark; Armitage, Richard P.; Giraudoux, Patrick; Pleydell, David R.J.; Wang, Qian; Qui, Jiamin; Craig, Philip S.

    2014-01-01

    Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted. PMID:25386042

  17. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  18. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  19. Application of Geostatistical Simulation to Enhance Satellite Image Products

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David

    2004-01-01

    With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.

  20. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  1. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns. PMID:27171522

  2. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns.

  3. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  4. Assessing patterns of spatial behavior in health studies: their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).

    PubMed

    Perchoux, Camille; Kestens, Yan; Thomas, Frédérique; Van Hulst, Andraea; Thierry, Benoit; Chaix, Basile

    2014-10-01

    Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis

    NASA Astrophysics Data System (ADS)

    Besnard, Fabrice; Refahi, Yassin; Morin, Valérie; Marteaux, Benjamin; Brunoud, Géraldine; Chambrier, Pierre; Rozier, Frédérique; Mirabet, Vincent; Legrand, Jonathan; Lainé, Stéphanie; Thévenon, Emmanuel; Farcot, Etienne; Cellier, Coralie; Das, Pradeep; Bishopp, Anthony; Dumas, Renaud; Parcy, François; Helariutta, Ykä; Boudaoud, Arezki; Godin, Christophe; Traas, Jan; Guédon, Yann; Vernoux, Teva

    2014-01-01

    How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.

  6. Accounting for rate instability and spatial patterns in the boundary analysis of cancer mortality maps

    PubMed Central

    Goovaerts, Pierre

    2006-01-01

    Boundary analysis of cancer maps may highlight areas where causative exposures change through geographic space, the presence of local populations with distinct cancer incidences, or the impact of different cancer control methods. Too often, such analysis ignores the spatial pattern of incidence or mortality rates and overlooks the fact that rates computed from sparsely populated geographic entities can be very unreliable. This paper proposes a new methodology that accounts for the uncertainty and spatial correlation of rate data in the detection of significant edges between adjacent entities or polygons. Poisson kriging is first used to estimate the risk value and the associated standard error within each polygon, accounting for the population size and the risk semivariogram computed from raw rates. The boundary statistic is then defined as half the absolute difference between kriged risks. Its reference distribution, under the null hypothesis of no boundary, is derived through the generation of multiple realizations of the spatial distribution of cancer risk values. This paper presents three types of neutral models generated using methods of increasing complexity: the common random shuffle of estimated risk values, a spatial re-ordering of these risks, or p-field simulation that accounts for the population size within each polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality rates for white females in 295 US counties of the Northeast (1970–1994). Simulation studies demonstrate that Poisson kriging yields more accurate estimates of the cancer risk and how its value changes between polygons (i.e. boundary statistic), relatively to the use of raw rates or local empirical Bayes smoother. When used in conjunction with spatial neutral models generated by p-field simulation, the boundary analysis based on Poisson kriging estimates minimizes the proportion of type I errors (i.e. edges wrongly declared significant) while the frequency of these errors is predicted well by the p-value of the statistical test. PMID:19023455

  7. On the influence of surface patterning on tissue self-assembly and mechanics.

    PubMed

    Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A

    2018-04-28

    Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.

  8. The expansion of neighborhood and pattern formation on spatial prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Qian, Xiaolan; Xu, Fangqian; Yang, Junzhong; Kurths, Jürgen

    2015-04-01

    The prisoner's dilemma (PD), in which players can either cooperate or defect, is considered a paradigm for studying the evolution of cooperation in spatially structured populations. There the compact cooperator cluster is identified as a characteristic pattern and the probability of forming such pattern in turn depends on the features of the networks. In this paper, we investigate the influence of expansion of neighborhood on pattern formation by taking a weak PD game with one free parameter T, the temptation to defect. Two different expansion methods of neighborhood are considered. One is based on a square lattice and expanses along four directions generating networks with degree increasing with K = 4 m . The other is based on a lattice with Moore neighborhood and expanses along eight directions, generating networks with degree of K = 8 m . Individuals are placed on the nodes of the networks, interact with their neighbors and learn from the better one. We find that cooperator can survive for a broad degree 4 ≤ K ≤ 70 by taking a loose type of cooperator clusters. The former simple corresponding relationship between macroscopic patterns and the microscopic PD interactions is broken. Under a condition that is unfavorable for cooperators such as large T and K, systems prefer to evolve to a loose type of cooperator clusters to support cooperation. However, compared to the well-known compact pattern, it is a suboptimal strategy because it cannot help cooperators dominating the population and always corresponding to a low cooperation level.

  9. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  10. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors

    PubMed Central

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan

    2003-01-01

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891

  11. A gravity model for the spread of a pollinator-borne plant pathogen.

    PubMed

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  12. Daphnia inhibits the emergence of spatial pattern in a simple consumer-resource system.

    PubMed

    Betini, Gustavo S; Avgar, Tal; McCann, Kevin S; Fryxell, John M

    2017-04-01

    Spatial self-organization can occur in many ecosystems with important effects on food web dynamics and the maintenance of biodiversity. The consumer-resource interaction is known to generate spatial patterning, but only a few empirical studies have investigated the effect of the consumer on resource distribution. Here we report results from a large aquatic mesocosm experiment used to investigate the effect of the consumer Daphnia magna on the distribution of its resource, the green algae Chlorella vulgaris. We maintained large tanks with capacity for 26 ,000 L with either algae or both algae and Daphnia in different temperature conditions. We found that the presence of D. magna inhibited spatial structure in algal distribution that arose as a consequence of increasing temperature. We conjecture that this homogenization effect might be caused by a combination of high mobility combined with high rates of algal consumption by Daphnia. Our study emphasizes the importance of both local constraints on growth and behavioral responses in either promoting or suppressing spatial self-organization in natural populations. © 2017 by the Ecological Society of America.

  13. Coupled economic-coastline modeling with suckers and free riders

    NASA Astrophysics Data System (ADS)

    Williams, Zachary C.; McNamara, Dylan E.; Smith, Martin D.; Murray, A. Brad.; Gopalakrishnan, Sathya

    2013-06-01

    erosion is a natural trend along most sandy coastlines. Humans often respond to shoreline erosion with beach nourishment to maintain coastal property values. Locally extending the shoreline through nourishment alters alongshore sediment transport and changes shoreline dynamics in adjacent coastal regions. If left unmanaged, sandy coastlines can have spatially complex or simple patterns of erosion due to the relationship of large-scale morphology and the local wave climate. Using a numerical model that simulates spatially decentralized and locally optimal nourishment decisions characteristic of much of U.S. East Coast beach management, we find that human erosion intervention does not simply reflect the alongshore erosion pattern. Spatial interactions generate feedbacks in economic and physical variables that lead to widespread emergence of "free riders" and "suckers" with subsequent inequality in the alongshore distribution of property value. Along cuspate coastlines, such as those found along the U.S. Southeast Coast, these long-term property value differences span an order of magnitude. Results imply that spatially decentralized management of nourishment can lead to property values that are divorced from spatial erosion signals; this management approach is unlikely to be optimal.

  14. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    NASA Astrophysics Data System (ADS)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  15. Spatial patterns of plastic debris along Estuarine shorelines.

    PubMed

    Browne, Mark A; Galloway, Tamara S; Thompson, Richard C

    2010-05-01

    The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris.

  16. Exploring the relation between spatial configuration of buildings and remotely sensed temperatures

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.

    2013-12-01

    While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures more severely than clustered buildings. This suggests that more clustered buildings have less impact on the urban heat island (UHI) effect. We conclude that having buildings as clustered as possible can be expected to protect the settlements from increased heat island effects, reduce pollution, and preserve the hydrological systems.

  17. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation

    PubMed Central

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-01-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications. PMID:28663912

  18. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  19. Mapping spatial patterns of denitrifiers at large scales (Invited)

    NASA Astrophysics Data System (ADS)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  20. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency.

    PubMed

    Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo

    2016-02-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic ( B 1 ) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B 1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B 1 spatial distributions for surface coils and can provide guidance for RF engineers.

  1. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.

    PubMed

    Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C

    2013-10-01

    Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.

  2. Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2014-05-01

    Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.

  3. Spatial and temporal analyses of citrus sudden death as a tool to generate hypotheses concerning its etiology.

    PubMed

    Bassanezi, Renato B; Bergamin Filho, Armando; Amorim, Lilian; Gimenes-Fernandes, Nelson; Gottwald, Tim R; Bové, Joseph M

    2003-04-01

    ABSTRACT Citrus sudden death (CSD), a new disease of unknown etiology that affects sweet orange grafted on Rangpur lime, was visually monitored for 14 months in 41 groves in Brazil. Ordinary runs analysis of CSD-symptomatic trees indicated a departure from randomness of symptomatic trees status among immediately adjacent trees mainly within rows. The binomial index of dispersion (D) and the intraclass correlation (k) for various quadrat sizes suggested aggregation of CSD-symptomatic trees for almost all plots within the quadrat sizes tested. Estimated parameters of the binary form of Taylor's power law provided an overall measure of aggregation of CSD-symptomatic trees for all quadrat sizes tested. Aggregation in each plot was dependent on disease incidence. Spatial autocorrelation analysis of proximity patterns suggested that aggregation often existed among quadrats of various sizes up to three lag distances; however, significant lag positions discontinuous from main proximity patterns were rare, indicating a lack of spatial association among discrete foci. Some asymmetry was also detected for some spatial autocorrelation proximity patterns, indicating that within-row versus across-row distributions are not necessarily equivalent. These results were interpreted to mean that the cause of the disease was most likely biotic and its dissemination was common within a local area of influence that extended to approximately six trees in all directions, including adjacent trees. Where asymmetry was indicated, this area of influence was somewhat elliptical. Longer-distance patterns were not detected within the confines of the plot sizes tested. Annual rates of CSD progress based on the Gompertz model ranged from 0.37 to 2.02. Numerous similarities were found between the spatial patterns of CSD and Citrus tristeza virus (CTV) described in the literature, both in the presence of the aphid vector, Toxoptera citricida. CSD differs from CTV in that symptoms occur in sweet orange grafted on Rangpur lime. Based on the symptoms of CSD and on its spatial and temporal patterns, our hypothesis is that CSD may be caused by a similar but undescribed pathogen such as a virus and probably vectored by insects such as aphids by similar spatial processes to those affecting CTV.

  4. Caustics and Rogue Waves in an Optical Sea.

    PubMed

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M

    2015-08-06

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an "optical sea" with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.

  5. Caustics and Rogue Waves in an Optical Sea

    PubMed Central

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M.

    2015-01-01

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an “optical sea” with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed. PMID:26245864

  6. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  7. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGES

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  8. Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide

    2018-04-01

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.

  9. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  10. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics.

    PubMed

    Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.

  11. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis

    PubMed Central

    Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  12. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images.

    PubMed

    Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2013-03-20

    We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.

  13. Generation mechanisms of fundamental rogue wave spatial-temporal structure.

    PubMed

    Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling

    2017-08-01

    We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.

  14. Long-Term Interactions of Streamflow Generation and River Basin Morphology

    NASA Astrophysics Data System (ADS)

    Huang, X.; Niemann, J.

    2005-12-01

    It is well known that the spatial patterns and dynamics of streamflow generation processes depend on river basin topography, but the impact of streamflow generation processes on the long-term evolution of river basins has not drawn as much attention. Fluvial erosion processes are driven by streamflow, which can be produced by Horton runoff, Dunne runoff, and groundwater discharge. In this analysis, we hypothesize that the dominant streamflow generation process in a basin affects the spatial patterns of fluvial erosion and that the nature of these patterns changes for storm events with differing return periods. Furthermore, we hypothesize that differences in the erosion patterns modify the topography over the long term in a way that promotes and/or inhibits the other streamflow generation mechanisms. In order to test these hypotheses, a detailed hydrologic model is imbedded into an existing landscape evolution model. Precipitation events are simulated with a Poisson process and have random intensities and durations. The precipitation is partitioned between Horton runoff and infiltration to groundwater using a specified infiltration capacity. Groundwater flow is described by a two-dimensional Dupuit equation for a homogeneous, isotropic, unconfined aquifer with an irregular underlying impervious layer. Dunne runoff occurs when precipitation falls on locations where the water table reaches the land surface. The combined hydrologic/geomorphic model is applied to the WE-38 basin, an experimental watershed in Pennsylvania that has substantial available hydrologic data. First, the hydrologic model is calibrated to reproduce the observed streamflow for 1990 using the observed rainfall as the input. Then, the relative roles of Horton runoff, Dunne runoff, and groundwater discharge are controlled by varying the infiltration capacity of the soil. For each infiltration capacity, the hydrologic and geomorphic behavior of the current topography is analyzed and the long-term evolution of the basin is simulated. The results indicate that the topography can be divided into three types of locations (unsaturated, saturated, and intermittently saturated) which control the patterns of streamflow generation for events with different return periods. The results also indicate that the streamflow generation processes can produce different geomorphic effective events at upstream and downstream locations. The model also suggests that a topography dominated by groundwater discharge evolves over a long period of time to a shape that tends to inhibit the development of saturated areas and Dunne runoff.

  15. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade

    PubMed Central

    Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.

    2014-01-01

    Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379

  16. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  17. USING GIS TO GENERATE SPATIALLY-BALANCED RANDOM SURVEY DESIGNS FOR NATURAL RESOURCE APPLICATIONS

    EPA Science Inventory

    Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sam...

  18. Hydroclimatology of Dual Peak Cholera Incidence in Bengal Region: Inferences from a Spatial Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The seasonality of cholera and its relation with environmental drivers are receiving increasing interest and research efforts, yet they remain unsatisfactorily understood. A striking example is the observed annual cycle of cholera incidence in the Bengal region which exhibits two peaks despite the main environmental drivers that have been linked to the disease (air and sea surface temperature, zooplankton density, river discharge) follow a synchronous single-peak annual pattern. A first outbreak, mainly affecting the coastal regions, occurs in spring and it is followed, after a period of low incidence during summer, by a second, usually larger, peak in autumn also involving regions situated farther inland. A hydroclimatological explanation for this unique seasonal cycle has been recently proposed: the low river spring flows favor the intrusion of brackish water (the natural environment of the causative agent of the disease) which, in turn, triggers the first outbreak. The summer rising river discharges have a temporary dilution effect and prompt the repulsion of contaminated water which lowers the disease incidence. However, the monsoon flooding, together with the induced crowding of the population and the failure of the sanitation systems, can possibly facilitate the spatial transmission of the disease and promote the autumn outbreak. We test this hypothesis using a mechanistic, spatially explicit model of cholera epidemic. The framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for the annual fluctuation of the river flow. The model is forced with the actual environmental drivers of the region, namely river flow and temperature. Our results show that these two drivers, both having a single peak in the summer, can generate a double peak cholera incidence pattern. Besides temporal patterns, the model is also able to qualitatively reproduce spatial patterns characterized by a spring peak confined to the coastal area and a autumn peak involving the whole region. The modeling exercise allows to identify the relevant processes and to understand how they concert to the generation of this peculiar pattern. Finally, the range of epidemiological and hydrological conditions under which dual or a single peaks are expected is quantified.

  19. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    PubMed

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  20. Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern

    NASA Astrophysics Data System (ADS)

    Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan

    2017-02-01

    We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.

  1. Mistaking geography for biology: inferring processes from species distributions.

    PubMed

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006

    PubMed Central

    Chowell, Gerardo; Munayco, Cesar V; Escalante, Ananias A; McKenzie, F Ellis

    2009-01-01

    Background Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed. Methods Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index. Results Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions. Conclusion Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses. PMID:19558695

  3. Controlling the influence of elastic eigenmodes on nanomagnet dynamics through pattern geometry

    NASA Astrophysics Data System (ADS)

    Berk, C.; Yahagi, Y.; Dhuey, S.; Cabrini, S.; Schmidt, H.

    2017-03-01

    The effect of the nanoscale array geometry on the interaction between optically generated surface acoustic waves (SAWs) and nanomagnet dynamics is investigated using Time-Resolved Magneto-Optical Kerr Effect Microscopy (TR-MOKE). It is demonstrated that altering the nanomagnet geometry from a periodic to a randomized aperiodic pattern effectively removes the magneto-elastic effect of SAWs on the magnetization dynamics. The efficiency of this method depends on the extent of any residual spatial correlations and is quantified by spatial Fourier analysis of the two structures. Randomization allows observation and extraction of intrinsic magnetic parameters such as spin wave frequencies and damping to be resolvable using all-optical methods, enabling the conclusion that the fabrication process does not affect the damping.

  4. Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices

    PubMed Central

    Yang, Ching-Han; Chen, Yuan-Di; Wu, Shing-Trong; Fuh, Andy Ying-Guey

    2016-01-01

    We present a simple and flexible method to generate various vectorial vortex beams (VVBs) with a Pancharatnam phase based on the scheme of double reflections from a single liquid crystal spatial light modulator (SLM). In this configuration, VVBs are constructed by the superposition of two orthogonally polarized orbital angular momentum (OAM) eigenstates. To verify the optical properties of the generated beams, Stokes polarimetry is developed to measure the states of polarization (SOP) over the transverse plane, while a Shack–Hartmann wavefront sensor is used to measure the OAM charge of beams. It is shown that both the simulated and the experimental results are in good qualitative agreement. In addition, polarization patterns and OAM charges of generated beams can be controlled independently using the proposed method. PMID:27526858

  5. Application of urban neighborhoods in understanding of local level electricity consumption patterns

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, P. K.; Bhaduri, B. L.

    2017-12-01

    Aggregated national or regional level electricity consumption data fail to capture the spatial variation in consumption, a function of location, climate, topography, and local economics. Spatial monitoring of electricity usage patterns helps to understand derivers of location specific consumption behavior and develop models to cater to the consumer needs, plan efficiency measures, identify settled areas lacking access, and allows for future planning through assessing requirements. Developed countries have started to deploy sensor systems such as smart meters to gather information on local level consumption patterns, but such infrastructure is virtually nonexistent in developing nations, resulting in serious dearth of reliable data for planners and policy makers. Remote sensing of artificial nighttime lights from human settlements have proven useful to study electricity consumptions from global to regional scales, however, local level studies remain scarce. Using the differences in spatial characteristics among different urban neighborhoods such as industrial, commercial and residential, observable through very high resolution day time satellite images (<0.5 meter), formal urban neighborhoods have been generated through texture analysis. In this study, we explore the applicability of these urban neighborhoods in understanding local level electricity consumption patterns through exploring possible correlations between the spatial characteristics of these neighborhoods, associated general economic activities, and corresponding VIIRS day-night band (DNB) nighttime lights observations, which we use as a proxy for electricity consumption in the absence of ground level consumption data. The overall trends observed through this analysis provides useful explanations helping in understanding of broad electricity consumption patterns in urban areas lacking ground level observations. This study thus highlights possible application of remote sensing data driven methods in providing novel insights into local level socio-economic patterns that were hitherto undetected due to lack of ground data.

  6. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  7. Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods

    PubMed Central

    Kim, Jun-Hyun; Lee, Chanam; Sohn, Wonmin

    2016-01-01

    Although a substantial body of literature has provided evidence supporting the positive effects of natural environments on well-being, little has been known about the specific spatial patterns of urban nature in promoting health-related quality of life (HRQOL) among children. This study assessed the association that the urban natural environment measured by landscape spatial patterns may have with obesity and HRQOL among Hispanic children. Ninety-two 4th and 5th grade students were recruited from Houston, Texas, and the Pediatric Quality of Life Inventory (PedsQL) was used to capture the children’s HRQOL. The quality of urban natural environments was assessed by quantifying the landscape spatial patterns, using landscape indices generated by Geographic Information Systems and remote sensing. From the bivariate analyses, children’s body mass index showed a significantly negative association with their HRQOL. After controlling for socio-demographic factors, the results revealed that larger and more tree areas were positively correlated with children’s HRQOL. In addition, those children living in areas with tree patches further apart from each other showed higher HRQOL. This research adds to the current multi-disciplinary area of research on environment-health relationships by investigating the roles of urban greeneries and linking their spatial structures with children’s HRQOL. PMID:26771623

  8. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  9. Regional co-location pattern scoping on a street network considering distance decay effects of spatial interaction

    PubMed Central

    Yu, Wenhao

    2017-01-01

    Regional co-location scoping intends to identify local regions where spatial features of interest are frequently located together. Most of the previous researches in this domain are conducted on a global scale and they assume that spatial objects are embedded in a 2-D space, but the movement in urban space is actually constrained by the street network. In this paper we refine the scope of co-location patterns to 1-D paths consisting of nodes and segments. Furthermore, since the relations between spatial events are usually inversely proportional to their separation distance, the proposed method introduces the “Distance Decay Effects” to improve the result. Specifically, our approach first subdivides the street edges into continuous small linear segments. Then a value representing the local distribution intensity of events is estimated for each linear segment using the distance-decay function. Each kind of geographic feature can lead to a tessellated network with density attribute, and the generated multiple networks for the pattern of interest will be finally combined into a composite network by calculating the co-location prevalence measure values, which are based on the density variation between different features. Our experiments verify that the proposed approach is effective in urban analysis. PMID:28763496

  10. Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods.

    PubMed

    Kim, Jun-Hyun; Lee, Chanam; Sohn, Wonmin

    2016-01-12

    Although a substantial body of literature has provided evidence supporting the positive effects of natural environments on well-being, little has been known about the specific spatial patterns of urban nature in promoting health-related quality of life (HRQOL) among children. This study assessed the association that the urban natural environment measured by landscape spatial patterns may have with obesity and HRQOL among Hispanic children. Ninety-two 4th and 5th grade students were recruited from Houston, Texas, and the Pediatric Quality of Life Inventory (PedsQL) was used to capture the children's HRQOL. The quality of urban natural environments was assessed by quantifying the landscape spatial patterns, using landscape indices generated by Geographic Information Systems and remote sensing. From the bivariate analyses, children's body mass index showed a significantly negative association with their HRQOL. After controlling for socio-demographic factors, the results revealed that larger and more tree areas were positively correlated with children's HRQOL. In addition, those children living in areas with tree patches further apart from each other showed higher HRQOL. This research adds to the current multi-disciplinary area of research on environment-health relationships by investigating the roles of urban greeneries and linking their spatial structures with children's HRQOL.

  11. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  12. Module-based complexity formation: periodic patterning in feathers and hairs.

    PubMed

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  13. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods.

    PubMed

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-02-20

    In this paper we propose a new approach for fast generation of computer-generated holograms (CGHs) of a 3D object by using the run-length encoding (RLE) and the novel look-up table (N-LUT) methods. With the RLE method, spatially redundant data of a 3D object are extracted and regrouped into the N-point redundancy map according to the number of the adjacent object points having the same 3D value. Based on this redundancy map, N-point principle fringe patterns (PFPs) are newly calculated by using the 1-point PFP of the N-LUT, and the CGH pattern for the 3D object is generated with these N-point PFPs. In this approach, object points to be involved in calculation of the CGH pattern can be dramatically reduced and, as a result, an increase of computational speed can be obtained. Some experiments with a test 3D object are carried out and the results are compared to those of the conventional methods.

  14. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  15. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  16. MULTI-TEMPORAL LAND USE GENERATION FOR THE OHIO RIVER BASIN

    EPA Science Inventory

    A set of backcast and forecast land use maps of the Ohio River Basin (ORB) was developed that could be used to assess the spatial-temporal patterns of land use/land cover (LULC) change in this important basin. This approach was taken to facilitate assessment of integrated sustain...

  17. Benthic Habitat-Based Framework for Ecological Production Functions: Case Study for Utilization by Estuarine Birds in a Northeast Pacific Estuary

    EPA Science Inventory

    Habitat-based frameworks have been proposed for developing Ecological Production Functions (EPFs) to describe the spatial distribution of ecosystem services. As proof of concept, we generated EPFs that compared bird use patterns among intertidal benthic habitats for Yaquina estu...

  18. Statistical spatial properties of speckle patterns generated by multiple laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-08-15

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less

  19. Validating modelled variable surface saturation in the riparian zone with thermal infrared images

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2015-04-01

    Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.

  20. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  1. Low spatial frequency characterization of holographic recording materials applied to correlation

    NASA Astrophysics Data System (ADS)

    Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.

    2003-09-01

    Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.

  2. Spatial phase-shift dual-beam speckle interferometry.

    PubMed

    Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin

    2018-01-20

    The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

  3. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  4. New approaches to spatially analyse primary health care usage patterns in rural South Africa.

    PubMed

    Tanser, F; Hosegood, V; Benzler, J; Solarsh, G

    2001-10-01

    To develop indices to quantitatively assess and understand the spatial usage patterns of health facilities in the Hlabisa district of South Africa. We mapped and interviewed more than 23 000 homesteads (approximately 200 000 people) in Hlabisa district, South Africa and spatially analysed their modal primary health usage patterns using a geographical information system. We generated contour maps of health service use and quantified the relationship between clinic catchments and distance-defined catchments using inclusion and exclusion error. We propose the distance usage index (DUI) as an overall spatial measure of clinic usage. This index is the sum of the distances from clinic to all client homesteads divided by the sum of the distances from clinic to all homesteads within its distance-defined catchment. The index encompasses inclusion, exclusion, and strength of patient attraction for each clinic. Eighty-seven per cent of homesteads use the nearest clinic. Residents of homesteads travel an average Euclidean distance of 4.72 km to attend clinics. There is a significant logarithmic relationship between distance from clinic and their use by homesteads (r(2)=0.774, P < 0.0001). The DUI values range between 31 and 198% (mean=110%, SD=43.7) for 12 clinics and highlight clinic usage patterns across the district. The DUI is a powerful and informative composite measure of clinic usage. The results of the study have important implications for health care provision in developing countries.

  5. Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes.

    PubMed

    Darling, John A; Folino-Rorem, Nadine C

    2009-12-01

    Discerning patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise F(ST) and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.

  6. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2007-08-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  7. Synchrotron-based EUV lithography illuminator simulator

    DOEpatents

    Naulleau, Patrick P.

    2004-07-27

    A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.

  8. And There Was Light: Prospects for the Creation of Micro- and Nanostructures through Maskless Photolithography.

    PubMed

    Rühe, J

    2017-09-26

    In photolithographic processes, the light inducing the photochemical reactions is confined to a small volume, which enables direct writing of micro- and nanoscale features onto solid surfaces without the need of a predefined photomask. The direct writing process can be used to generate topographic patterns through photopolymerization or photo-cross-linking or can be employed to use light to generate chemical patterns on the surface with high spatial control, which would make such processes attractive for bioapplications. The prospects of maskless photolithography technologies with a focus on two-photon lithography and scanning-probe-based photochemical processes based on scanning near-field optical microscopy or beam pen lithography are discussed.

  9. Tree-based approach for exploring marine spatial patterns with raster datasets.

    PubMed

    Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen

    2017-01-01

    From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.

  10. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    PubMed

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  11. Second-harmonic generation from a thin spherical layer and No-generation conditions

    NASA Astrophysics Data System (ADS)

    Kapshai, V. N.; Shamyna, A. A.

    2017-09-01

    In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.

  12. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  13. Microfluidic-based patterning of embryonic stem cells for in vitro development studies

    PubMed Central

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.

    2013-01-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509

  14. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus

    PubMed Central

    Itskov, Vladimir; Curto, Carina; Pastalkova, Eva; Buzsáki, György

    2011-01-01

    Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 sec) during wheel running with a precision of 0.5sec. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts. PMID:21414904

  15. Biological pattern formation: from basic mechanisms to complex structures

    NASA Astrophysics Data System (ADS)

    Koch, A. J.; Meinhardt, H.

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns? Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  16. Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio

    2018-02-01

    Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.

  17. Microbial biogeography: putting microorganisms on the map.

    PubMed

    Martiny, Jennifer B Hughes; Bohannan, Brendan J M; Brown, James H; Colwell, Robert K; Fuhrman, Jed A; Green, Jessica L; Horner-Devine, M Claire; Kane, Matthew; Krumins, Jennifer Adams; Kuske, Cheryl R; Morin, Peter J; Naeem, Shahid; Ovreås, Lise; Reysenbach, Anna-Louise; Smith, Val H; Staley, James T

    2006-02-01

    We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.

  18. Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.

    PubMed

    Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert

    2013-06-25

    Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models

    PubMed Central

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  20. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  1. Frugivorous birds influence the spatial organization of tropical forests through the generation of seedling recruitment foci under zoochoric trees

    NASA Astrophysics Data System (ADS)

    Trolliet, Franck; Forget, Pierre-Michel; Doucet, Jean-Louis; Gillet, Jean-François; Hambuckers, Alain

    2017-11-01

    Animal-mediated seed dispersal is recognized to influence the spatial organization of plant communities but little is known about how frugivores cause such patterns. Here, we explored the role of hornbills and primates in generating recruitment foci under two zoochoric trees, namely Staudtia kamerunensis (Myristicaceae) and Dialium spp. (Fabaceae - Caesalpiniodea) in a forest-savanna mosaic landscape in D.R. Congo. We also examined the influence of the availability of fruits in the neighborhood and the amount of forest cover in the landscape on such clumping patterns. The density and species richness of hornbill-dispersed and the density of primate-dispersed seedlings were significantly higher under Staudtia kamerunensis trees than at control locations. However, we did not find such patterns under Dialium spp. trees compared to control locations except for the density of hornbill-dispersed seedlings which was lower at control locations. Also, we found that an increasing amount of forest cover in the landscape was associated with an increase in the density of hornbill-dispersed seedlings, although the tendency was weak (R2 = 0.065). We concluded that S. kamerunensis acts as a recruitment foci and plays a structuring role in Afrotropical forests. Hornbills were probably the main frugivore taxon responsible for the clumping under that tree and appear as a key ecological component in fragmented and disturbed landscapes where the diversity of large frugivores such as primates is reduced. Our findings improve our understanding of the causal mechanisms responsible for the spatial organization of tropical forests.

  2. A new method for discovering behavior patterns among animal movements

    USGS Publications Warehouse

    Wang, Y.; Luo, Ze; Takekawa, John Y.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A.; Balachandran, S.; Yan, B.

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  3. A new method for discovering behavior patterns among animal movements.

    PubMed

    Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  4. A new method for discovering behavior patterns among animal movements

    PubMed Central

    Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets. PMID:27217810

  5. ANALYZING THE CONSEQUENCES OF ENVIRONMENTAL SPATIAL PATTERNS ON ENVIRONMENTAL RESOURCES: THE USE OF LANDSCAPE METRICS GENERATED FROM REMOTE SENSING DATA

    EPA Science Inventory

    A number of existing and new remote sensing data provide images of areas ranging from small communities to continents. These images provide views on a wide range of physical features in the landscape, including vegetation, road infrastructure, urban areas, geology, soils, and wa...

  6. Predicting opportunities for greening and patterns of vegetation on private urban lands

    Treesearch

    Austin R. Troy; J. Morgan Grove; Jarlath P.M. O' Neil-Dunne; Steward T.A. Pickett; Mary L. Cadenasso

    2007-01-01

    This paper examines predictors of vegetative cover on private lands in Baltimore, Maryland. Using high-resolution spatial data, we generated two measures: "possible stewardship," which is the proportion of private land that does not have built structures on it and hence has the possibility of supporting vegetation, and "realized stewardship," which...

  7. Catchment hydrological responses to forest harvest amount and spatial pattern

    Treesearch

    Alex Abdelnour; Marc Stieglitz; Feifei Pan; Robert McKane

    2011-01-01

    Forest harvest effects on streamflow generation have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VELMA), to elucidate how hillslope and catchment-scale processes control stream discharge in...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  9. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  10. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  11. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy.

    PubMed

    Rajon, E; Venner, S; Menu, F

    2009-10-01

    Diversified bet-hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life-history traits defined as diversified bet-hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet-hedging dormancy strategies in a metapopulation using a two-patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet-hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet-hedging strategies that we hope will encourage new empirical studies of this topic.

  12. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China

    PubMed Central

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas. PMID:26690056

  13. Spatial eye–hand coordination during bimanual reaching is not systematically coded in either LIP or PRR

    PubMed Central

    Snyder, Lawrence H.

    2018-01-01

    We often orient to where we are about to reach. Spatial and temporal correlations in eye and arm movements may depend on the posterior parietal cortex (PPC). Spatial representations of saccade and reach goals preferentially activate cells in the lateral intraparietal area (LIP) and the parietal reach region (PRR), respectively. With unimanual reaches, eye and arm movement patterns are highly stereotyped. This makes it difficult to study the neural circuits involved in coordination. Here, we employ bimanual reaching to two different targets. Animals naturally make a saccade first to one target and then the other, resulting in different patterns of limb–gaze coordination on different trials. Remarkably, neither LIP nor PRR cells code which target the eyes will move to first. These results suggest that the parietal cortex plays at best only a permissive role in some aspects of eye–hand coordination and makes the role of LIP in saccade generation unclear. PMID:29610356

  14. Modelling effects on grid cells of sensory input during self‐motion

    PubMed Central

    Raudies, Florian; Hinman, James R.

    2016-01-01

    Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096

  15. Random scalar fields and hyperuniformity

    NASA Astrophysics Data System (ADS)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  16. Global control of colored moiré pattern in layered optical structures

    NASA Astrophysics Data System (ADS)

    Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying

    2018-05-01

    Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.

  17. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  18. The brain-sex theory of occupational choice: a counterexample.

    PubMed

    Esgate, Anthony; Flynn, Maria

    2005-02-01

    The brain-sex theory of occupational choice suggests that males and females in male-typical careers show a male pattern of cognitive ability in terms of better spatial than verbal performance on cognitive tests with the reverse pattern for females and males in female-typical careers. These differences are thought to result from patterns of cerebral functional lateralisation. This study sought such occupationally related effects using synonym generation (verbal ability) and mental rotation (spatial ability) tasks used previously. It also used entrants to these careers as participants to examine whether patterns of cognitive abilities might predate explicit training and practice. Using a population of entrants to sex-differentiated university courses, a moderate occupational effect on the synonym generation task was found, along with a weak (p < .10) sex effect on the mental rotation task. Highest performance on the mental rotation task was by female students in fashion design, a female-dominated occupation which makes substantial visuospatial demands and attracts many students with literacy problems such as dyslexia. This group then appears to be a counterexample to the brain-sex theory. However, methodological issues surrounding previous studies are highlighted: the simple synonym task appears to show limited discrimination of the sexes, leading to questions concerning the legitimacy of inferences about lateralisation based on scores from that test. Moreover, the human figure-based mental rotation task appears to tap the wrong aspect of visuospatial skill, likely to be needed for male-typical courses such as engineering. Since the fashion-design career is also one that attracts disproportionately many male students whose sexual orientation is homosexual, data were examined for evidence of female-typical patterns of cognitive performance among that subgroup. This was not found. This study therefore provides no evidence for the claim that female-pattern cerebral functional lateralisation is likely in gay males.

  19. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  20. The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva

    PubMed Central

    Fernandes, Jolene S; Sternberg, Paul W

    2007-01-01

    Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types. PMID:17465684

  1. Estimates of reservoir methane emissions based on a spatially ...

    EPA Pesticide Factsheets

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence

  2. Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Ge, Li; Nersisyan, Ani; Oztop, Baris; Tureci, Hakan

    2014-03-01

    Exciton-polaritons generated by light-induced potentials can spontaneously condense into macroscopic quantum states that display nontrivial spatial and temporal density modulation. While these patterns and their dynamics can be reproduced through the solution of the generalized Gross-Pitaevskii equation, a predictive theory of their thresholds, oscillation frequencies, and multi-pattern interactions has so far been lacking. Here we represent such an approach based on current-carrying quasi-modes of the non-Hermitian potential induced by the pump. The presented theory allows us to capture the patterns formed in the steady-state directly and account for nonlinearities exactly. We find a simple but powerful expression for thresholds of condensation and the associated frequencies of oscillations, quantifying the contribution of particle formation, leakage, and interactions. We also show that the evolution of the condensate with increasing pump strength is strongly geometry dependent and can display contrasting features such as enhancement or reduction of the spatial localization of the condensate. We acknowledge support by DARPA under Grant No. N66001-11-1-4162 and NSF under CAREER Grant No. DMR-1151810.

  3. Bragg-Berry mirrors: reflective broadband q-plates.

    PubMed

    Rafayelyan, Mushegh; Brasselet, Etienne

    2016-09-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and, consequently, foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.

  4. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  5. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.

  6. Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan

    Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.

  7. Spatio-Temporal Characteristics of Resident Trip Based on Poi and OD Data of Float CAR in Beijing

    NASA Astrophysics Data System (ADS)

    Mou, N.; Li, J.; Zhang, L.; Liu, W.; Xu, Y.

    2017-09-01

    Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this paper research takes the taxi trajectory data of Beijing as a sample data and studies the spatio-temporal characteristics of the residents' activities on the weekdays. At first, according to the characteristics of the taxi trajectory data distributed along the road network, it takes the Voronoi generated by the road nodes as the research unit. This paper proposes a hybrid clustering method - based on grid density, which is used to cluster the OD (origin and destination) data of taxi at different times. Then combining with the POI data of Beijing, this research calculated the density of the POI data in the clustering results, and analyzed the relationship between the activities of residents in different periods and the functional types of the region. The final results showed that the residents were mainly commuting on weekdays. And it found that the distribution of travel density showed a concentric circle of the characteristics, focusing on residential areas and work areas. The results of cluster analysis and POI analysis showed that the residents' travel had experienced the process of "spatial relative dispersion - spatial aggregation - spatial relative dispersion" in one day.

  8. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    PubMed Central

    Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-01-01

    Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260

  9. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    NASA Astrophysics Data System (ADS)

    Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-04-01

    Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.

  10. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

    DOE PAGES

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; ...

    2018-04-06

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less

  11. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less

  12. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less

  13. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  14. Formation of localized sand patterns downstream from a vertical cylinder under steady flows: Experimental and theoretical study.

    PubMed

    Auzerais, Anthony; Jarno, Armelle; Ezersky, Alexander; Marin, François

    2016-11-01

    The generation of localized, spatially periodic patterns on a sandy bottom is experimentally and theoretically studied. Tests are performed in a hydrodynamic flume where patterns are produced downstream from a vertical cylinder under a steady current. It is found that patterns appear as a result of a subcritical instability of the water-sand bottom interface. A dependence of the area shape occupied by the patterns on the flow velocity and the cylinder diameter is investigated. It is shown that the patterns' characteristics can be explained using the Swift-Hohenberg equation. Numerical simulations point out that for a correct description of the patterns, an additional term which takes into account the impact of vortices on the sandy bottom in the wake of a cylinder must be added in the Swift-Hohenberg equation.

  15. Photoactivated and patternable charge transport materials and their use in organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Lewis, Larry N.; Duggal, Anil R.

    2007-06-01

    Organic light-emitting devices (OLEDs) usually employ at least one organic semiconductor layer that acts as a hole-injection material. The prototypical example is a conjugated polymer such as poly(3,4-ethylenedioxythiophene) heavily p doped with polystyrene sulfonic acid. Here, the authors describe a chemical doping strategy for hole injection material formulation that enables spatial patterning of the material conductivity through optical activation. The strategy utilizes an organic photoacid generator (PAG) dispersed in a polymeric organic semiconductor host. Upon UV irradiation, the PAG decomposes and generates a strong protonic acid that subsequently p dopes the host. The authors demonstrate an OLED made with such a light-activated hole-injection material and show that arbitrary emission patterning can be accomplished. This approach may provide a simple, low cost path toward specialty lighting and signage applications for OLED technology.

  16. Advanced analysis of forest fire clustering

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.

  17. Using crowd-sourced photos to assess seasonal patterns of visitor use in mountain-protected areas.

    PubMed

    Walden-Schreiner, Chelsey; Rossi, Sebastian Dario; Barros, Agustina; Pickering, Catherine; Leung, Yu-Fai

    2018-02-12

    Managing protected areas effectively requires information about patterns of visitor use, but these data are often limited. We explore how geotagged photos on Flickr, a popular photo-sharing social-media site, can generate hotspot maps and distribution models of temporal and spatial patterns of use in two mountain-protected areas of high conservation value. In Aconcagua Provincial Park (Argentina), two routes to the summit of Aconcagua were used in summer, but most visitors stayed close to the main road, using formal and informal walking trails and the Visitor Centre, while in winter, there was very limited visitation. In Kosciuszko National Park (Australia), alpine walking trails were popular in summer, but in winter, most visitors stayed in the lower altitude ski resorts and ski trails. Results demonstrate the usefulness of social-media data alone as well as a complement for visitor monitoring, providing spatial and temporal information for site-specific and park-level management of visitors and potential impacts in conservation areas.

  18. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York

    PubMed Central

    Goovaerts, Pierre; Jacquez, Geoffrey M

    2004-01-01

    Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930

  19. Quantitative Photochemical Immobilization of Biomolecules on Planar and Corrugated Substrates: A Versatile Strategy for Creating Functional Biointerfaces

    PubMed Central

    Martin, Teresa A.; Herman, Christine T.; Limpoco, Francis T.; Michael, Madeline C.; Potts, Gregory K.; Bailey, Ryan C.

    2014-01-01

    Methods for the generation of substrates presenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retention of function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool that will allow the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces. PMID:21793535

  20. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    NASA Astrophysics Data System (ADS)

    Tanaka, Simon; Iber, Dagmar

    2013-10-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.

  1. Changes in the Winter-Time Storminess over the North Atlantic, Associated with the 1.5°C and 2°C Levels of Global Warming.

    NASA Astrophysics Data System (ADS)

    Barcikowska, M. J.; Weaver, S. J.; Feser, F.; Schenk, F.

    2017-12-01

    This study investigates the changes in extreme winter-time weather conditions over the NH midlatitudes. These conditions are to a large degree caused by extratropical storms, often associated with very intense and hazardous precipitation and wind. Although the skill of CMIP5 models in capturing these extremes is improved when compared to the previous generations, the spatial and temporal resolution of the models still remains a primary reason for the deficiencies. Therefore, many features of the storms projected for the future remain inconsistent. Here we are using the high-res horizontal (0.25° lat x lon) and temporal (3hr) output of the HAPPI experiment. This output facilitates not only an implicit extraction of storm tracks but also an analysis of the storm intensity, in terms of their maximum wind and rainfall, at subdaily time-scales. The analysis of simulated present climate shows an improved spatial pattern of large-scale circulation over North America and Europe, as compared to the CMIP5-generation models, and consequently a reduced zonal bias in storm tracks pattern. The information provided at subdaily time scale provides much more realistic representation of the magnitude of the extremes. These advances significantly contribute to our understanding of differential climate impacts between 1.5°C and 2°C levels of global warming. The spatial pattern of the north-eastward shift of storm tracks, derived from the recent CMIP5 future projections, is remarkably refined here. For example, increasing storminess expands towards Scandinavia, and not towards the north-central Europe. Derived spatial features of the storm intensity, e.g. increase in wind and precipitation on the west coasts of both the British Isles and Scandinavia underlines the relevancy of the results for the local communities and potential climate change adaptation initiatives.

  2. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of photogrammetry in rock mechanics, petroleum geology, hydrogeology, and structural geology.

  3. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    NASA Astrophysics Data System (ADS)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  4. Predictive spatial modeling of narcotic crop growth patterns

    USGS Publications Warehouse

    Waltz, Frederick A.; Moore, D.G.

    1986-01-01

    Spatial models for predicting the geographic distribution of marijuana crops have been developed and are being evaluated for use in law enforcement programs. The models are based on growing condition preferences and on psychological inferences regarding grower behavior. Experiences of local law officials were used to derive the initial model, which was updated and improved as data from crop finds were archived and statistically analyzed. The predictive models are changed as crop locations are moved in response to the pressures of law enforcement. The models use spatial data in a raster geographic information system. The spatial data are derived from the U.S. Geological Survey's US GeoData, standard 7.5-minute topographic quadrangle maps, interpretations of aerial photographs, and thematic maps. Updating of cultural patterns, canopy closure, and other dynamic features is conducted through interpretation of aerial photographs registered to the 7.5-minute quadrangle base. The model is used to numerically weight various data layers that have been processed using spread functions, edge definition, and categorization. The building of the spatial data base, model development, model application, product generation, and use are collectively referred to as the Area Reduction Program (ARP). The goal of ARP is to provide law enforcement officials with tactical maps that show the most likely locations for narcotic crops.

  5. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    PubMed

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.

  6. Focal Points, Endogenous Processes, and Exogenous Shocks in the Autism Epidemic

    PubMed Central

    Liu, Kayuet; Bearman, Peter S.

    2014-01-01

    Autism prevalence has increased rapidly in the United States during the past two decades. We have previously shown that the diffusion of information about autism through spatially proximate social relations has contributed significantly to the epidemic. This study expands on this finding by identifying the focal points for interaction that drive the proximity effect on subsequent diagnoses. We then consider how diffusion dynamics through interaction at critical focal points, in tandem with exogenous shocks, could have shaped the spatial dynamics of autism in California. We achieve these goals through an empirically calibrated simulation model of the whole population of 3- to 9-year-olds in California. We show that in the absence of interaction at these foci—principally malls and schools—we would not observe an autism epidemic. We also explore the idea that epigenetic changes affecting one generation in the distal past could shape the precise spatial patterns we observe among the next generation. PMID:26166907

  7. Using GIS to generate spatially balanced random survey designs for natural resource applications.

    PubMed

    Theobald, David M; Stevens, Don L; White, Denis; Urquhart, N Scott; Olsen, Anthony R; Norman, John B

    2007-07-01

    Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sample apply to the entire population. Probability survey designs should be used in natural resource and environmental management situations because they provide the mathematical foundation for statistical inference. Development of long-term monitoring designs demand survey designs that achieve statistical rigor and are efficient but remain flexible to inevitable logistical or practical constraints during field data collection. Here we describe an approach to probability-based survey design, called the Reversed Randomized Quadrant-Recursive Raster, based on the concept of spatially balanced sampling and implemented in a geographic information system. This provides environmental managers a practical tool to generate flexible and efficient survey designs for natural resource applications. Factors commonly used to modify sampling intensity, such as categories, gradients, or accessibility, can be readily incorporated into the spatially balanced sample design.

  8. Comparing fire spread algorithms using equivalence testing and neutral landscape models

    Treesearch

    Brian R. Miranda; Brian R. Sturtevant; Jian Yang; Eric J. Gustafson

    2009-01-01

    We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by...

  9. Participatory mapping in Browns Canyon National Monument, Colorado (USA)

    Treesearch

    John Harner; Lee Cerveny; Rebecca Gronewold

    2017-01-01

    Natural resource managers need up-to-date information about how people interact with public lands and the meanings these places hold for use in planning and decision-making. This case study explains the use of public participatory Geographic Information System (GIS) to generate and analyze spatial patterns of the uses and values people hold for the Browns Canyon...

  10. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir

    PubMed Central

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-01-01

    Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350

  11. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  12. Evolutionary games and spatial chaos

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; May, Robert M.

    1992-10-01

    MUCH attention has been given to the Prisoners' Dilemma as a metaphor for the problems surrounding the evolution of coopera-tive behaviour1-6. This work has dealt with the relative merits of various strategies (such as tit-for-tat) when players who recognize each other meet repeatedly, and more recently with ensembles of strategies and with the effects of occasional errors. Here we neglect all strategical niceties or memories of past encounters, considering only two simple kinds of players: those who always cooperate and those who always defect. We explore the consequences of placing these players in a two-dimensional spatial array: in each round, every individual 'plays the game' with the immediate neighbours; after this, each site is occupied either by its original owner or by one of the neighbours, depending on who scores the highest total in that round; and so to the next round of the game. This simple, and purely deterministic, spatial version of the Prisoners' Dilemma, with no memories among players and no strategical elaboration, can generate chaotically changing spatial patterns, in which cooperators and defectors both persist indefinitely (in fluctuating proportions about predictable long-term averages). If the starting configurations are sufficiently symmetrical, these ever-changing sequences of spatial patterns-dynamic fractals-can be extraordinarily beautiful, and have interesting mathematical properties. There are potential implications for the dynamics of a wide variety of spatially extended systems in physics and biology.

  13. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  14. Sound-diffracting flap in the ear of a bat generates spatial information.

    PubMed

    Müller, Rolf; Lu, Hongwang; Buck, John R

    2008-03-14

    Sound diffraction by the mammalian ear generates source-direction information. We have obtained an immediate quantification of this information from numerical predictions. We demonstrate the power of our approach by showing that a small flap in a bat's pinna generates useful information over a large set of directions in a central band of frequencies: presence of the flap more than doubled the solid angle with direction information above a given threshold. From the workings of the employed information measure, the Cramér-Rao lower bound, we can explain how physical shape is linked to sensory information via a strong sidelobe with frequency-dependent orientation in the directivity pattern. This method could be applied to any other mammal species with pinnae to quantify the relative importance of pinna structures' contributions to directional information and to facilitate interspecific comparisons of pinna directivity patterns.

  15. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    One indication of model performance is the comparison of spatial patterns of pollutants, either as concentration or deposition, predicted by the model with spatial patterns derived from measurements. If the spatial patterns produced by the model are similar to the observations i...

  16. Modeling urbanization patterns at a global scale with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Albert, A. T.; Strano, E.; Gonzalez, M.

    2017-12-01

    Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.

  17. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases.

    PubMed

    Eisen, Lars; Eisen, Rebecca J

    2007-12-01

    Improved methods for collection and presentation of spatial epidemiologic data are needed for vectorborne diseases in the United States. Lack of reliable data for probable pathogen exposure site has emerged as a major obstacle to the development of predictive spatial risk models. Although plague case investigations can serve as a model for how to ideally generate needed information, this comprehensive approach is cost-prohibitive for more common and less severe diseases. New methods are urgently needed to determine probable pathogen exposure sites that will yield reliable results while taking into account economic and time constraints of the public health system and attending physicians. Recent data demonstrate the need for a change from use of the county spatial unit for presentation of incidence of vectorborne diseases to more precise ZIP code or census tract scales. Such fine-scale spatial risk patterns can be communicated to the public and medical community through Web-mapping approaches.

  18. Quality issues in blue noise halftoning

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Parker, Kevin J.

    1998-01-01

    The blue noise mask (BNM) is a halftone screen that produces unstructured visually pleasing dot patterns. The BNM combines the blue-noise characteristics of error diffusion and the simplicity of ordered dither. A BNM is constructed by designing a set of interdependent binary patterns for individual gray levels. In this paper, we investigate the quality issues in blue-noise binary pattern design and mask generation as well as in application to color reproduction. Using a global filtering technique and a local 'force' process for rearranging black and white pixels, we are able to generate a series of binary patterns, all representing a certain gray level, ranging from white-noise pattern to highly structured pattern. The quality of these individual patterns are studied in terms of low-frequency structure and graininess. Typically, the low-frequency structure (LF) is identified with a measurement of the energy around dc in the spatial frequency domain, while the graininess is quantified by a measurement of the average minimum distance (AMD) between minority dots as well as the kurtosis of the local kurtosis distribution (KLK) for minority pixels of the binary pattern. A set of partial BNMs are generated by using the different patterns as unique starting 'seeds.' In this way, we are able to study the quality of binary patterns over a range of gray levels. We observe that the optimality of a binary pattern for mask generation is related to its own quality mertirc values as well as the transition smoothness of those quality metric values over neighboring levels. Several schemes have been developed to apply blue-noise halftoning to color reproduction. Different schemes generate halftone patterns with different textures. In a previous paper, a human visual system (HVS) model was used to study the color halftone quality in terms of luminance and chrominance error in CIELAB color space. In this paper, a new series of psycho-visual experiments address the 'preferred' color rendering among four different blue noise halftoning schemes. The experimental results will be interpreted with respect to the proposed halftone quality metrics.

  19. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  20. The Extended Concept Of Symmetropy And Its Application To Earthquakes And Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Nanjo, K.; Yodogawa, E.

    2003-12-01

    There is the notion of symmetropy that can be considered as a powerful tool to measure quantitatively entropic heterogeneity regarding symmetry of a pattern. It can be regarded as a quantitative measure to extract the feature of asymmetry of a pattern (Yodogawa, 1982; Nanjo et al., 2000, 2001, 2002 in press). In previous studies, symmetropy was estimated for the spatial distributions of acoustic emissions generated before the ultimate whole fracture of a rock specimen in the laboratory experiment and for the spatial distributions of earthquakes in the seismic source model with self-organized criticality (SOC). In each of these estimations, the outline of the region in which symmetropy is estimated for a pattern is determined to be equal to that of the rock specimen in which acoustic emissions are generated or that of the SOC seismic source model from which earthquakes emerge. When local seismicities like aftershocks, foreshocks and earthquake swarms in the Earth's crust are considered, it is difficult to determine objectively the outline of the region characterizing these local seismicities without the need of subjectiveness. So, the original concept of symmetropy is not appropriate to be directly applied to such local seismicities and the proper modification of the original one is needed. Here, we introduce the notion of symmetropy for the nonlinear geosciences and extend it for the purpose of the application to local seismicities such as aftershocks, foreshocks and earthquake swarms. We employ the extended concept to the spatial distributions of acoustic emissions generated in a previous laboratory experiment where the failure process in a brittle granite sample can be stabilized by controlling axial stress to maintain a constant rate of acoustic emissions and, as a result, detailed view of fracture nucleation and growth was observed. Moreover, it is applied to the temporal variations of spatial distributions of aftershocks and foreshocks of the main shocks, using natural observable data of earthquakes in and around Japan. Our results show the successful applicability of the extended concept of symmetropy to earthquakes and acoustic emissions. Furthermore, it is pointed out that the concept of symmetropy or the extended one of it might be adapted to any pattern recognition in many fields of science, particularly in the nonlinear geosciences and the sciences of complexity. References: Yodogawa, 1982, Percept. Psychophys., v. 32, p. 230-240; Nanjo et al., 2000, Forma, v. 15, p. 95-101; Nanjo et al., 2001, Forma, v. 16, p. 213-224; Nanjo et al., 2002 in press, Symmetry: Art and Science, v. 2.

  1. Exploratory study and application of the angular wavelet analysis for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt structures

    NASA Astrophysics Data System (ADS)

    Muñoz-Gorriz, J.; Monaghan, S.; Cherkaoui, K.; Suñé, J.; Hurley, P. K.; Miranda, E.

    2017-12-01

    The angular wavelet analysis is applied for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt capacitors with areas ranging from 104 to 105 μm2. The breakdown spot lateral sizes are in the range from 1 to 3 μm, and they appear distributed on the top metal electrode as a point pattern. The spots are generated by ramped and constant voltage stresses and are the consequence of microexplosions caused by the formation of shorts spanning the dielectric film. This kind of pattern was analyzed in the past using the conventional spatial analysis tools such as intensity plots, distance histograms, pair correlation function, and nearest neighbours. Here, we show that the wavelet analysis offers an alternative and complementary method for testing whether or not the failure site distribution departs from a complete spatial randomness process in the angular domain. The effect of using different wavelet functions, such as the Haar, Sine, French top hat, Mexican hat, and Morlet, as well as the roles played by the process intensity, the location of the voltage probe, and the aspect ratio of the device, are all discussed.

  2. A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.

    PubMed Central

    Bressloff, Paul C; Cowan, Jack D

    2003-01-01

    A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324

  3. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Biradar, Chandrashekhar M; Dong, Jinwei; Qin, Yuanwei; Menarguez, Michael A; Zhou, Yuting; Zhang, Yao; Jin, Cui; Wang, Jie; Doughty, Russell B; Ding, Mingjun; Moore, Berrien

    2017-02-01

    Due to rapid population growth and urbanization, paddy rice agriculture is experiencing substantial changes in the spatiotemporal pattern of planting areas in the two most populous countries-China and India-where food security is always the primary concern. However, there is no spatially explicit and continuous rice-planting information in either country. This knowledge gap clearly hinders our ability to understand the effects of spatial paddy rice area dynamics on the environment, such as food and water security, climate change, and zoonotic infectious disease transmission. To resolve this problem, we first generated annual maps of paddy rice planting areas for both countries from 2000 to 2015, which are derived from time series Moderate Resolution Imaging Spectroradiometer (MODIS) data and the phenology- and pixel-based rice mapping platform (RICE-MODIS), and analyzed the spatiotemporal pattern of paddy rice dynamics in the two countries. We found that China experienced a general decrease in paddy rice planting area with a rate of 0.72 million (m) ha/yr from 2000 to 2015, while a significant increase at a rate of 0.27mha/yr for the same time period happened in India. The spatial pattern of paddy rice agriculture in China shifted northeastward significantly, due to simultaneous expansions in paddy rice planting areas in northeastern China and contractions in southern China. India showed an expansion of paddy rice areas across the entire country, particularly in the northwestern region of the Indo-Gangetic Plain located in north India and the central and south plateau of India. In general, there has been a northwesterly shift in the spatial pattern of paddy rice agriculture in India. These changes in the spatiotemporal patterns of paddy rice planting area have raised new concerns on how the shift may affect national food security and environmental issues relevant to water, climate, and biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers

    USGS Publications Warehouse

    Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai

    2017-01-01

    Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.

  5. Spatial and Temporal Patterns of Impervious Cover Relative to Watershed Stream Location

    EPA Science Inventory

    The influence of spatial pattern on ecological processes is a guiding principle of landscape ecology. The guiding principle of spatial pattern was used for a U.S. nationwide assessment of impervious cover (IC). Spatial pattern was measured by comparing IC concentration near strea...

  6. Fast fringe pattern phase demodulation using FIR Hilbert transformers

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel

    2016-01-01

    This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.

  7. Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.

    2017-05-01

    Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.

  8. Varieties of reentrant dynamics

    NASA Astrophysics Data System (ADS)

    Campanari, Lucas; You, Min Ju; Langfield, Peter; Glass, Leon; Shrier, Alvin

    2017-04-01

    Experiments were carried out in monolayer tissue cultures of embryonic chick heart cells imaged using a calcium sensitive fluorescent dye. The cells were grown in annular geometries and in annular geometries with an isthmus connecting antipodal region of the annulus. We observed a large number of spatially different patterns of propagation consisting of one or more circulating waves. As well, we also observed rhythms in which rotors embedded in the annuli generated propagating pulses. These results demonstrate that many different patterns of excitation can be present in cardiac tissue with simple geometries.

  9. Multiple Point Statistics algorithm based on direct sampling and multi-resolution images

    NASA Astrophysics Data System (ADS)

    Julien, S.; Renard, P.; Chugunova, T.

    2017-12-01

    Multiple Point Statistics (MPS) has become popular for more than one decade in Earth Sciences, because these methods allow to generate random fields reproducing highly complex spatial features given in a conceptual model, the training image, while classical geostatistics techniques based on bi-point statistics (covariance or variogram) fail to generate realistic models. Among MPS methods, the direct sampling consists in borrowing patterns from the training image to populate a simulation grid. This latter is sequentially filled by visiting each of these nodes in a random order, and then the patterns, whose the number of nodes is fixed, become narrower during the simulation process, as the simulation grid is more densely informed. Hence, large scale structures are caught in the beginning of the simulation and small scale ones in the end. However, MPS may mix spatial characteristics distinguishable at different scales in the training image, and then loose the spatial arrangement of different structures. To overcome this limitation, we propose to perform MPS simulation using a decomposition of the training image in a set of images at multiple resolutions. Applying a Gaussian kernel onto the training image (convolution) results in a lower resolution image, and iterating this process, a pyramid of images depicting fewer details at each level is built, as it can be done in image processing for example to lighten the space storage of a photography. The direct sampling is then employed to simulate the lowest resolution level, and then to simulate each level, up to the finest resolution, conditioned to the level one rank coarser. This scheme helps reproduce the spatial structures at any scale of the training image and then generate more realistic models. We illustrate the method with aerial photographies (satellite images) and natural textures. Indeed, these kinds of images often display typical structures at different scales and are well-suited for MPS simulation techniques.

  10. The medial temporal lobes distinguish between within-item and item-context relations during autobiographical memory retrieval.

    PubMed

    Sheldon, Signy; Levine, Brian

    2015-12-01

    During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.

  11. Synthesis and materialization of a reaction-diffusion French flag pattern

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André

    2017-10-01

    During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.

  12. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out

    PubMed Central

    el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F. M.; Mähönen, Ari Pekka; Grieneisen, Verônica A.

    2015-01-01

    An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. PMID:26505899

  13. City-Specific Spatiotemporal Infant and Neonatal Mortality Clusters: Links with Socioeconomic and Air Pollution Spatial Patterns in France.

    PubMed

    Padilla, Cindy M; Kihal-Talantikit, Wahida; Vieira, Verónica M; Deguen, Séverine

    2016-06-22

    Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease-a leading cause of infant mortality.

  14. City-Specific Spatiotemporal Infant and Neonatal Mortality Clusters: Links with Socioeconomic and Air Pollution Spatial Patterns in France

    PubMed Central

    Padilla, Cindy M.; Kihal-Talantikit, Wahida; Vieira, Verónica M.; Deguen, Séverine

    2016-01-01

    Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease—a leading cause of infant mortality. PMID:27338439

  15. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    PubMed

    Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve

    2009-06-01

    The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.

  16. Modeling the Electrode-Neuron Interface of Cochlear Implants: Effects of Neural Survival, Electrode Placement, and the Partial Tripolar Configuration

    PubMed Central

    Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.

    2010-01-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801

  17. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.

    PubMed

    Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki

    2014-11-25

    Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry.  Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.

  18. A comparison of techniques for generating forest ownership spatial products

    Treesearch

    Brett J. Butler; Jaketon H. Hewes; Greg C. Liknes; Mark D. Nelson; Stephanie A. Snyder

    2014-01-01

    To fully understand forest resources, it is imperative to understand the social context in which the forests exist. A pivotal part of that context is the forest ownership. It is the owners, operating within biophysical and social constraints, who ultimately decide if the land will remain forested, how the resources will be used, and by whom. Forest ownership patterns...

  19. Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1994-01-01

    Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the "look and feel" of managed landscapes....

  20. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA

    Treesearch

    Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer

    2012-01-01

    Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...

  1. Adipocyte induction of preadipocyte differentiation in a gradient chamber.

    PubMed

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-12-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.

  2. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  3. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate

    PubMed Central

    JJ Nivas, Jijil; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  4. Schoolyard physical activity in 14-year-old adolescents assessed by mobile GPS and heart rate monitoring analysed by GIS.

    PubMed

    Fjørtoft, Ingunn; Löfman, Owe; Halvorsen Thorén, Kine

    2010-11-01

    Environmental settings seem to influence the activity patterns of children in neighbourhoods and schoolyards, the latter being an important arena to promote physical activity (PA) in school children. New technology has made it possible to describe free-living PA in interaction with the environment. This study focused on how schoolyard environments influenced the activity patterns and intensity levels in 14-year-old children and whether PA levels in adolescents complied with official recommendations. Another objective was to introduce methodology of using a mobile global positioning system (GPS) device with synchronous heart rate (HR) recordings as a proxy for PA level and a geographical information system (GIS) for spatial analyses. The sample constituted of 81 children (aged 14 years) from two schools. Movement patterns and activity levels were recorded during lunch break applying a GPS Garmin Forerunner 305 with combined HR monitoring and analysed in a GIS by an overlaid grid and kriging interpolation. Spatial data from GPS recordings showed particular movement patterns in the schoolyards. Low activity levels (mean HR < 120 bpm) dominated in both schools with no gender differences. Activities located to a handball goal area showed the highest monitored HR (>160 bpm) with higher intensity in girls than in boys. Movement patterns and PA generated in GIS for visualisation and analysis enabled direct and realistic description of utilising of schoolyard facilities and activity levels. Linking GPS data and PA levels to spatial structures made it possible to visualise the environmental interaction with PA and which environments promoted low or high PA.

  5. Nonlocal Electron Coherence in MoS2 Flakes Correlated through Spatial Self Phase Modulation

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Wu, Qiong; Sun, Fei; Tian, Yichao; Zuo, Xu; Meng, Sheng; Zhao, Jimin

    2015-03-01

    Electron coherence among different flake domains of MoS2 has been generated using ultrafast or continuous wave laser beams. Such electron coherence generates characteristic far-field diffraction patterns through a purely coherent nonlinear optical effect--spatial self-phase modulation (SSPM). A wind-chime model is developed to describe the establishment of the electron coherence through correlating the photo-excited electrons among different flakes using coherent light. Owing to its finite gap band structure, we find different mechanisms, including two-photon processes, might be responsible for the SSPM in MoS2 [with a large nonlinear dielectric susceptibility χ (3) = 1.6 × 10-9 e.s.u. (SI: 2.23 × 10-17 m2/V2) per layer]. Finally, we realized all optical switching based on SSPM, demonstrating that the electron coherence generation we report here is a ubiquitous property of layered quantum materials, by which novel optical applications are accessible. National Natural Science Foundation of China (11274372).

  6. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  7. Use of geostatistics to determine the spatial distribution and infestation rate of leaf-cutting ant nests (Hymenoptera: Formicidae) in eucalyptus plantations.

    PubMed

    Lasmar, O; Zanetti, R; dos Santos, A; Fernandes, B V

    2012-08-01

    One of the fundamental steps in pest sampling is the assessment of the population distribution in the field. Several studies have investigated the distribution and appropriate sampling methods for leaf-cutting ants; however, more reliable methods are still required, such as those that use geostatistics. The objective of this study was to determine the spatial distribution and infestation rate of leaf-cutting ant nests in eucalyptus plantations by using geostatistics. The study was carried out in 2008 in two eucalyptus stands in Paraopeba, Minas Gerais, Brazil. All of the nests in the studied area were located and used for the generation of GIS maps, and the spatial pattern of distribution was determined considering the number and size of nests. Each analysis and map was made using the R statistics program and the geoR package. The nest spatial distribution in a savanna area of Minas Gerais was clustered to a certain extent. The models generated allowed the production of kriging maps of areas infested with leaf-cutting ants, where chemical intervention would be necessary, reducing the control costs, impact on humans, and the environment.

  8. Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest: Methodology and Potential Applications

    PubMed Central

    Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.

    2010-01-01

    Background The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI. PMID:21124927

  9. Effects of paddy rice agriculture on the seasonal dynamics of atmospheric methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Xiao, X.; Dong, J.; Zhang, Y.; Xin, F.; Zhou, Y.; Wang, J.; Wu, X.; Moore, B., III

    2017-12-01

    Methane (CH4) is an important greenhouse gas (GHG) and may account for 20 % of anticipated global warming. The atmospheric CH4 concentration was nearly constant from 1999 to 2006, following with a strong growth resumed since 2007. Previous study attributed the increase in CH4 to agriculture. Specifically, paddy rice agriculture is a significant source of CH4, but large uncertainty still exists on methane emission estimates from rice paddies, largely due to lack of detailed geospatial datasets of rice paddies. In this study, based on a pixel- and phenology-based image analysis system with multi-temporal MODIS imagery (MODIS-RICE), we generated the paddy rice map in 2005 to document the spatiotemporal pattern of paddy rice dynamics in Monsoon Asia, which accounts for more than 90% of the global rice production. Furthermore, we examined the effects of paddy rice agriculture on atmospheric CH4 concentration over Monsoon Asia, by comparing atmospheric CH4 concentration data from SCIAMACHY sensor and the paddy rice maps in 2005. We found a significant spatial consistency between spatial patterns of paddy rice and atmospheric CH4 concentration. Based on the high resolution paddy rice map, different seasonal dynamics of CH4 concentration, including single, double to triple peaks, were found based on the rice paddy distribution information. That suggests paddy rice agriculture contributes substantially to the spatial and seasonal pattern of atmospheric CH4 concentration in Monsoon Asia. This study provides satellite evidence for seasonal cycle of CH4 dynamics at regional scale, and suggests that shifting regime of paddy rice agriculture and cropping intensity could affect the seasonal dynamics and spatial pattern of atmospheric methane concentration.

  10. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  11. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    PubMed

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  12. Ontology patterns for complex topographic feature yypes

    USGS Publications Warehouse

    Varanka, Dalia E.

    2011-01-01

    Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.

  13. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  14. Spatial and temporal patterns in preterm birth in the United States.

    PubMed

    Byrnes, John; Mahoney, Richard; Quaintance, Cele; Gould, Jeffrey B; Carmichael, Suzan; Shaw, Gary M; Showen, Amy; Phibbs, Ciaran; Stevenson, David K; Wise, Paul H

    2015-06-01

    Despite years of research, the etiologies of preterm birth remain unclear. In order to help generate new research hypotheses, this study explored spatial and temporal patterns of preterm birth in a large, total-population dataset. Data on 145 million US births in 3,000 counties from the Natality Files of the National Center for Health Statistics for 1971-2011 were examined. State trends in early (<34 wk) and late (34-36 wk) preterm birth rates were compared. K-means cluster analyses were conducted to identify gestational age distribution patterns for all US counties over time. A weak association was observed between state trends in <34 wk birth rates and the initial absolute <34 wk birth rate. Significant associations were observed between trends in <34 wk and 34-36 wk birth rates and between white and African American <34 wk births. Periodicity was observed in county-level trends in <34 wk birth rates. Cluster analyses identified periods of significant heterogeneity and homogeneity in gestational age distributional trends for US counties. The observed geographic and temporal patterns suggest periodicity and complex, shared influences among preterm birth rates in the United States. These patterns could provide insight into promising hypotheses for further research.

  15. Spatially Controlled Fabrication of Brightly Fluorescent Nanodiamond-Array with Enhanced Far-Red Si-V Luminescence

    PubMed Central

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2014-01-01

    We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286

  16. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  17. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  18. Spatial and Temporal scales of time-averaged 700 MB height anomalies

    NASA Technical Reports Server (NTRS)

    Gutzler, D.

    1981-01-01

    The monthly and seasonal forecasting technique is based to a large extent on the extrapolation of trends in the positions of the centers of time averaged geopotential height anomalies. The complete forecasted height pattern is subsequently drawn around the forecasted anomaly centers. The efficacy of this technique was tested and time series of observed monthly mean and 5 day mean 700 mb geopotential heights were examined. Autocorrelation statistics are generated to document the tendency for persistence of anomalies. These statistics are compared to a red noise hypothesis to check for evidence of possible preferred time scales of persistence. Space-time spectral analyses at middle latitudes are checked for evidence of periodicities which could be associated with predictable month-to-month trends. A local measure of the average spatial scale of anomalies is devised for guidance in the completion of the anomaly pattern around the forecasted centers.

  19. Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages

    NASA Astrophysics Data System (ADS)

    Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça

    2017-11-01

    Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.

  20. Mobile assemblies of Bennett linkages from four-crease origami patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Chen, Yan

    2018-02-01

    This paper deals with constructing mobile assemblies of Bennett linkages inspired by four-crease origami patterns. A transition technique has been proposed by taking the thick-panel form of an origami pattern as an intermediate bridge. A zero-thickness rigid origami pattern and its thick-panel form share the same sector angles and folding behaviours, while the thick-panel origami and the mobile assembly of linkages are kinematically equivalent with differences only in link profiles. Applying this transition technique to typical four-crease origami patterns, we have found that the Miura-ori and graded Miura-ori patterns lead to assemblies of Bennett linkages with identical link lengths. The supplementary-type origami patterns with different mountain-valley crease assignments correspond to different types of Bennett linkage assemblies with negative link lengths. And the identical linkage-type origami pattern generates a new mobile assembly. Hence, the transition technique offers a novel approach to constructing mobile assemblies of spatial linkages from origami patterns.

  1. Mobile assemblies of Bennett linkages from four-crease origami patterns.

    PubMed

    Zhang, Xiao; Chen, Yan

    2018-02-01

    This paper deals with constructing mobile assemblies of Bennett linkages inspired by four-crease origami patterns. A transition technique has been proposed by taking the thick-panel form of an origami pattern as an intermediate bridge. A zero-thickness rigid origami pattern and its thick-panel form share the same sector angles and folding behaviours, while the thick-panel origami and the mobile assembly of linkages are kinematically equivalent with differences only in link profiles. Applying this transition technique to typical four-crease origami patterns, we have found that the Miura-ori and graded Miura-ori patterns lead to assemblies of Bennett linkages with identical link lengths. The supplementary-type origami patterns with different mountain-valley crease assignments correspond to different types of Bennett linkage assemblies with negative link lengths. And the identical linkage-type origami pattern generates a new mobile assembly. Hence, the transition technique offers a novel approach to constructing mobile assemblies of spatial linkages from origami patterns.

  2. Analysis of Spatial Point Patterns in Nuclear Biology

    PubMed Central

    Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.

    2012-01-01

    There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822

  3. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every ~100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence.

  4. Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang

    2010-01-01

    We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...

  5. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    PubMed

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  6. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, Erin L.; Gedy, Bradley C.; Oyler-McCance, Sara J.; Garey, Andrew L.; Emel, Sarah L.; Mumma, Matthew; Wagner, Helene H.; Fortin, Marie-Josée; Cushman, Samuel A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.

  7. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals. ?? 2011 Blackwell Publishing Ltd.

  8. A comparison of regional flood frequency analysis approaches in a simulation framework

    NASA Astrophysics Data System (ADS)

    Ganora, D.; Laio, F.

    2016-07-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.

  9. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos

    PubMed Central

    Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini

    2017-01-01

    Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125

  10. Spatial Autocorrelation of Cancer Incidence in Saudi Arabia

    PubMed Central

    Al-Ahmadi, Khalid; Al-Zahrani, Ali

    2013-01-01

    Little is known about the geographic distribution of common cancers in Saudi Arabia. We explored the spatial incidence patterns of common cancers in Saudi Arabia using spatial autocorrelation analyses, employing the global Moran’s I and Anselin’s local Moran’s I statistics to detect nonrandom incidence patterns. Global ordinary least squares (OLS) regression and local geographically-weighted regression (GWR) were applied to examine the spatial correlation of cancer incidences at the city level. Population-based records of cancers diagnosed between 1998 and 2004 were used. Male lung cancer and female breast cancer exhibited positive statistically significant global Moran’s I index values, indicating a tendency toward clustering. The Anselin’s local Moran’s I analyses revealed small significant clusters of lung cancer, prostate cancer and Hodgkin’s disease among males in the Eastern region and significant clusters of thyroid cancers in females in the Eastern and Riyadh regions. Additionally, both regression methods found significant associations among various cancers. For example, OLS and GWR revealed significant spatial associations among NHL, leukemia and Hodgkin’s disease (r² = 0.49–0.67 using OLS and r² = 0.52–0.68 using GWR) and between breast and prostate cancer (r² = 0.53 OLS and 0.57 GWR) in Saudi Arabian cities. These findings may help to generate etiologic hypotheses of cancer causation and identify spatial anomalies in cancer incidence in Saudi Arabia. Our findings should stimulate further research on the possible causes underlying these clusters and associations. PMID:24351742

  11. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  12. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep

    PubMed Central

    Villalobos, Claudio

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples’ lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory. PMID:28158285

  13. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.

    PubMed

    Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.

  14. Spatial Patterns of NLCD Land Cover Change Thematic Accuracy (2001 - 2011)

    EPA Science Inventory

    Research on spatial non-stationarity of land cover classification accuracy has been ongoing for over two decades. We extend the understanding of thematic map accuracy spatial patterns by: 1) quantifying spatial patterns of map-reference agreement for class-specific land cover c...

  15. Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology

    NASA Astrophysics Data System (ADS)

    Terribile, Levi Carina; Diniz-Filho, José Alexandre Felizola

    2009-03-01

    The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/ kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/ kT was -0.626 ( r2 = 0.413), but a model II regression generated a much steeper slope (-0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/ kT was -0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/ kT was -0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.

  16. A single-cell spiking model for the origin of grid-cell patterns

    PubMed Central

    Kempter, Richard

    2017-01-01

    Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386

  17. Spatial patterns of development drive water use

    USGS Publications Warehouse

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  18. Spatial Patterns of Development Drive Water Use

    NASA Astrophysics Data System (ADS)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  19. Interactions Between Land Use, Climate and Hydropower in Scotland

    NASA Astrophysics Data System (ADS)

    Sample, J.

    2014-12-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs for a range of Scottish catchments using a variety of future land use and climate change scenarios. These are then used to assess Scotland's future hydropower potential under different flow regimes. The results are spatially variable and include large uncertainties, but some consistent patterns emerge. Many locations are predicted to experience enhanced seasonality, with lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require infrastructural changes in order to continue operating at optimum efficiency. We discuss the implications and limitations of our results, and highlight design and adaptation options for maximising the resilience of hydropower installations under changing future flow patterns.

  20. Understanding the effects of predictability, duration, and spatial pattern of drying on benthic invertebrate assemblages in two contrasting intermittent streams

    PubMed Central

    von Schiller, Daniel; Barberá, Gonzalo G.; Díaz, Angela M.; Arce, Maria Isabel; del Campo, Rubén; Tockner, Klement

    2018-01-01

    In the present study, we examined the effects of different drying conditions on the composition, structure and function of benthic invertebrate assemblages. We approached this objective by comparing invertebrate assemblages in perennial and intermittent sites along two intermittent Mediterranean streams with contrasting predictability, duration, and spatial patterns of drying: Fuirosos (high predictability, short duration, downstream drying pattern) and Rogativa (low predictability, long duration, patchy drying pattern). Specifically, we quantified the contribution of individual taxa to those differences, the degree of nestedness, and shifts in the composition, structure and function of benthic invertebrate assemblages along flow intermittence gradients. We observed greater effects of drying on the benthic invertebrate composition in Fuirosos than in Rogativa, resulting in a higher dissimilarity of assemblages between perennial and intermittent sites, as well as a lower degree of nestedness. Furthermore, a higher number of biotic metrics related to richness, abundance and biological traits were significantly different between perennial and intermittent sites in Fuirosos, despite a shorter dry period compared to Rogativa. At the same time, slightly different responses were detected during post-drying (autumn) than pre-drying (spring) conditions in this stream. In Rogativa, shifts in benthic invertebrate assemblages along increasing gradients of flow intermittence were found for three metrics (Ephemeroptera, Plecoptera and Trichoptera (EPT) and Odonata, Coleoptera and Heteroptera (OCH) abundances and aerial active dispersal. Furthermore, we demonstrated that combined gradients of dry period duration and distance to nearest perennial reach can generate complex, and different, responses of benthic invertebrate assemblages, depending on the flow intermittence metric. Our study advances the notion that special attention should be paid to the predictability, duration and spatial patterns of drying in intermittent streams in order to disentangle the effects of drying on benthic invertebrate assemblages, in particular in areas subject to high spatial heterogeneity and temporal variability in drying conditions. PMID:29590140

  1. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  2. Isolation by environment.

    PubMed

    Wang, Ian J; Bradburd, Gideon S

    2014-12-01

    The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. © 2014 John Wiley & Sons Ltd.

  3. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  4. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  5. Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus.

    PubMed

    Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-01-01

    Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity. © 2015 Wiley Periodicals, Inc.

  6. Geophysical characterization of soil moisture spatial patterns in a tillage experiment

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.

    2009-04-01

    Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the most elevated places of the field showed lower ECa increments. When soil is wet topography dominates the hydrologic response of the field, while under drier conditions, hydraulic conductivity controls the soil water dynamics. These results show that when static soil properties, e.g. clay content, are spatially uniform, ECa can detect changes in dynamic properties like soil moisture content, characterizing their spatial pattern.

  7. Virtual Human Analogs to Rodent Spatial Pattern Separation and Completion Memory Tasks

    ERIC Educational Resources Information Center

    Paleja, Meera; Girard, Todd A.; Christensen, Bruce K.

    2011-01-01

    Spatial pattern separation (SPS) and spatial pattern completion (SPC) have played an increasingly important role in computational and rodent literatures as processes underlying associative memory. SPS and SPC are complementary processes, allowing the formation of unique representations and the reconstruction of complete spatial environments based…

  8. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

    PubMed

    Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël

    2012-05-01

    1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  9. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  10. The combined effects of exogenous and endogenous variability on the spatial distribution of ant communities in a forested ecosystem (Hymenoptera: Formicidae).

    PubMed

    Yitbarek, Senay; Vandermeer, John H; Allen, David

    2011-10-01

    Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.

  11. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  12. Need for Improved Methods to Collect and Present Spatial Epidemiologic Data for Vectorborne Diseases

    PubMed Central

    Eisen, Rebecca J.

    2007-01-01

    Improved methods for collection and presentation of spatial epidemiologic data are needed for vectorborne diseases in the United States. Lack of reliable data for probable pathogen exposure site has emerged as a major obstacle to the development of predictive spatial risk models. Although plague case investigations can serve as a model for how to ideally generate needed information, this comprehensive approach is cost-prohibitive for more common and less severe diseases. New methods are urgently needed to determine probable pathogen exposure sites that will yield reliable results while taking into account economic and time constraints of the public health system and attending physicians. Recent data demonstrate the need for a change from use of the county spatial unit for presentation of incidence of vectorborne diseases to more precise ZIP code or census tract scales. Such fine-scale spatial risk patterns can be communicated to the public and medical community through Web-mapping approaches. PMID:18258029

  13. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-09-01

    Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  14. Data-driven modeling of solar-powered urban microgrids

    PubMed Central

    Halu, Arda; Scala, Antonio; Khiyami, Abdulaziz; González, Marta C.

    2016-01-01

    Distributed generation takes center stage in today’s rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids. PMID:26824071

  15. Data-driven modeling of solar-powered urban microgrids.

    PubMed

    Halu, Arda; Scala, Antonio; Khiyami, Abdulaziz; González, Marta C

    2016-01-01

    Distributed generation takes center stage in today's rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids.

  16. Efficient image projection by Fourier electroholography.

    PubMed

    Makowski, Michał; Ducin, Izabela; Kakarenko, Karol; Kolodziejczyk, Andrzej; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Sypek, Maciej; Wojnowski, Dariusz

    2011-08-15

    An improved efficient projection of color images is presented. It uses a phase spatial light modulator with three iteratively optimized Fourier holograms displayed simultaneously--each for one primary color. This spatial division instead of time division provides stable images. A pixelated structure of the modulator and fluctuations of liquid crystal molecules cause a zeroth-order peak, eliminated by additional wavelength-dependent phase factors shifting it before the image plane, where it is blocked with a matched filter. Speckles are suppressed by time integration of variable speckle patterns generated by additional randomizations of an initial phase and minor changes of the signal. © 2011 Optical Society of America

  17. Novel applications of Tablet PCs to investigate expert cognition in the geosciences

    NASA Astrophysics Data System (ADS)

    Turner, Sheldon; Libarkin, Julie

    2012-05-01

    In this paper, we present new methodologies developed to investigate cognitive processes related to perceiving and interpreting Earth phenomena. This area of study, known as geocognition, is an emerging and vital aspect of geoscience. Geocognition gives geoscientists an understanding of how people conceptualize earth processes. For example, geocognition research can be used to generate effective strategies for increasing public scientific literacy in this new era of climate change and energy crisis. We collected spatial visualization and working memory data using a Camtasia add-on for PowerPoint to generate a unique set of static drawings and videos of the drawing process. Analyzing these data provides unique insight into the underlying cognitive processes. For example, quantitative patterns that emerge within a subpopulation of novices or experts show us the common errors and patterns in how objects are drawn, including drawing order and time spent drawing. We believe that these unique data will contribute to the ongoing efforts to generate new understanding of the nature of geoscientific expertise.

  18. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  19. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  20. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE PAGES

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...

    2017-06-18

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  1. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  2. Spatial patterns of recreational impact on experimental campsites

    Treesearch

    David N. Cole; Christopher A. Monz

    2004-01-01

    Management of camping impacts in protected areas worldwide is limited by inadequate understanding of spatial patterns of impact and attention to spatial management strategies. Spatial patterns of campsite impact were studied in two subalpine plant communities in the Wind River Mountains, Wyoming, USA (a forest and a meadow). Response to chronic disturbance and recovery...

  3. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    NASA Astrophysics Data System (ADS)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  4. Can we infer plant facilitation from remote sensing? A test across global drylands

    PubMed Central

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H.; Maestre, Fernando T.; Soliveres, Santiago; Berdugo, Miguel; Kéfi, Sonia; Marquet, Pablo A.; Abades, Sebastian; Scheffer, Marten

    2016-01-01

    Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely-sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely-sensed images freely available through Google Earth™ with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant-plant interactions. Most of the patterns found from the remotely-sensed images were more right-skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth™ images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely-sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. PMID:26552256

  5. Sub-micron resolution selected area electron channeling patterns.

    PubMed

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    PubMed

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.

  8. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  9. Epidemiological analysis, detection, and comparison of space-time patterns of Beijing hand-foot-mouth disease (2008-2012).

    PubMed

    Wang, Jiaojiao; Cao, Zhidong; Zeng, Daniel Dajun; Wang, Quanyi; Wang, Xiaoli; Qian, Haikun

    2014-01-01

    Hand, foot, and mouth disease (HFMD) mostly affects the health of infants and preschool children. Many studies of HFMD in different regions have been published. However, the epidemiological characteristics and space-time patterns of individual-level HFMD cases in a major city such as Beijing are unknown. The objective of this study was to investigate epidemiological features and identify high relative risk space-time HFMD clusters at a fine spatial scale. Detailed information on age, occupation, pathogen and gender was used to analyze the epidemiological features of HFMD epidemics. Data on individual-level HFMD cases were examined using Local Indicators of Spatial Association (LISA) analysis to identify the spatial autocorrelation of HFMD incidence. Spatial filtering combined with scan statistics methods were used to detect HFMD clusters. A total of 157,707 HFMD cases (60.25% were male, 39.75% were female) reported in Beijing from 2008 to 2012 included 1465 severe cases and 33 fatal cases. The annual average incidence rate was 164.3 per 100,000 (ranged from 104.2 in 2008 to 231.5 in 2010). Male incidence was higher than female incidence for the 0 to 14-year age group, and 93.88% were nursery children or lived at home. Areas at a higher relative risk were mainly located in the urban-rural transition zones (the percentage of the population at risk ranged from 33.89% in 2011 to 39.58% in 2012) showing High-High positive spatial association for HFMD incidence. The most likely space-time cluster was located in the mid-east part of the Fangshan district, southwest of Beijing. The spatial-time patterns of Beijing HFMD (2008-2012) showed relatively steady. The population at risk were mainly distributed in the urban-rural transition zones. Epidemiological features of Beijing HFMD were generally consistent with the previous research. The findings generated computational insights useful for disease surveillance, risk assessment and early warning.

  10. Evaluation of the spatial variability of soil water content at the spatial resolution of SMAP data products : case studies in Italy and Morocco

    NASA Astrophysics Data System (ADS)

    Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo

    2014-05-01

    Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.

  11. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  12. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  13. A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization.

    PubMed

    López-Sauceda, Juan; Rueda-Contreras, Mara D

    2017-01-01

    We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity . Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.

  14. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  15. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm

    USGS Publications Warehouse

    Wedding, L.M.; Christopher, L.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S.

    2011-01-01

    Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change. ?? Inter-Research 2011.

  16. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.

  17. Improvement of gray-scale representation of horizontally scanning holographic display using error diffusion.

    PubMed

    Matsumoto, Yuji; Takaki, Yasuhiro

    2014-06-15

    Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.

  18. Image projection optical system for measuring pattern electroretinograms

    NASA Astrophysics Data System (ADS)

    Starkey, Douglas E.; Taboada, John; Peters, Daniel

    1994-06-01

    The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.

  19. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.

  20. The humpbacked species richness-curve: A contingent rule for community ecology

    USGS Publications Warehouse

    Graham, John H.; Duda, Jeffrey J.

    2011-01-01

    Functional relationships involving species richness may be unimodal, monotonically increasing, monotonically decreasing, bimodal, multimodal, U-shaped, or with no discernable pattern. The unimodal relationships are the most interesting because they suggest dynamic, nonequilibrium community processes. For that reason, they are also contentious. In this paper, we provide a wide-ranging review of the literature on unimodal (humpbacked) species richness-relationships. Though not as widespread as previously thought, unimodal patterns of species richness are often associated with disturbance, predation and herbivory, productivity, spatial heterogeneity, environmental gradients, time, and latitude. These unimodal patterns are contingent on organism and environment; we examine unimodal species richness-curves involving plants, invertebrates, vertebrates, plankton, and microbes in marine, lacustrine, and terrestrial habitats. A goal of future research is to understand the contingent patterns and the complex, interacting processes that generate them.

  1. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.

    PubMed

    De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf

    2014-08-08

    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue. Copyright © 2014, American Association for the Advancement of Science.

  2. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  3. Simulation of vehicle acoustics in support of netted sensor research and development

    NASA Astrophysics Data System (ADS)

    Christou, Carol T.; Jacyna, Garry M.

    2005-05-01

    The MITRE Corporation has initiated a three-year internally-funded research program in netted sensors, the first-year effort focusing on vehicle detection for border monitoring. An important component is developing an understanding of the complex acoustic structure of vehicle noise to aid in netted sensor-based detection and classification. This presentation will discuss the design of a high-fidelity vehicle acoustic simulator to model the generation and transmission of acoustic energy from a moving vehicle to a collection of sensor nodes. Realistic spatially-dependent automobile sounds are generated from models of the engine cylinder firing rates, muffler and manifold resonances, and speed-dependent tire whine noise. Tire noise is the dominant noise source for vehicle speeds in excess of 30 miles per hour (MPH). As a result, we have developed detailed models that successfully predict the tire noise spectrum as a function of speed, road surface wave-number spectrum, tire geometry, and tire tread pattern. We have also included realistic descriptions of the spatial directivity patterns for the engine harmonics, muffler, and tire whine noise components. The acoustic waveforms are propagated to each sensor node using a simple phase-dispersive multi-path model. A brief description of the models and their corresponding outputs is provided.

  4. Spatial Control of Bacteria Using Screen Printing

    PubMed Central

    Moon, Soonhee; Fritz, Ian L.; Singer, Zakary S.

    2016-01-01

    Abstract Synthetic biology has led to advances in both our understanding and engineering of genetic circuits that affect spatial and temporal behaviors in living cells. A growing array of native and synthetic circuits such as oscillators, pattern generators, and cell–cell communication systems has been studied, which exhibit spatiotemporal properties. To better understand the design principles of these genetic circuits, there is a need for versatile and precise methods for patterning cell populations in various configurations. In this study, we develop a screen printing methodology to pattern bacteria on agar, glass, and paper surfaces. Initially, we tested three biocompatible resuspension media with appropriate rheological properties for screen printing. Using microscopy, we characterized the resolution and bleed of bacteria screen prints on agar and glass surfaces, obtaining resolutions as low as 188 μm. Next, we engineered bacterial strains producing visible chromoproteins analogous to the cyan, magenta, and yellow subtractive color system for the creation of multicolored bacteria images. Using this system, we printed distinct populations in overlapping or interlocking designs on both paper and agar substrates. These proof-of-principle experiments demonstrated how the screen printing method could be used to study microbial community interactions and pattern formation of biofilms at submillimeter length scales. Overall, our approach allows for rapid and precise prototyping of patterned bacteria species that will be useful in the understanding and engineering of spatiotemporal behaviors in microbial communities. PMID:29577061

  5. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    PubMed Central

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

  6. Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record

    USGS Publications Warehouse

    Fleming, Michael D.; Chapin, F. Stuart; Cramer, W.; Hufford, Gary L.; Serreze, Mark C.

    2000-01-01

    Data from a sparse network of climate stations in Alaska were interpolated to provide 1-km resolution maps of mean monthly temperature and precipitation-variables that are required at high spatial resolution for input into regional models of ecological processes and resource management. The interpolation model is based on thin-plate smoothing splines, which uses the spatial data along with a digital elevation model to incorporate local topography. The model provides maps that are consistent with regional climatology and with patterns recognized by experienced weather forecasters. The broad patterns of Alaskan climate are well represented and include latitudinal and altitudinal trends in temperature and precipitation and gradients in continentality. Variations within these broad patterns reflect both the weakening and reduction in frequency of low-pressure centres in their eastward movement across southern Alaska during the summer, and the shift of the storm tracks into central and northern Alaska in late summer. Not surprisingly, apparent artifacts of the interpolated climate occur primarily in regions with few or no stations. The interpolation model did not accurately represent low-level winter temperature inversions that occur within large valleys and basins. Along with well-recognized climate patterns, the model captures local topographic effects that would not be depicted using standard interpolation techniques. This suggests that similar procedures could be used to generate high-resolution maps for other high-latitude regions with a sparse density of data.

  7. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence.

    PubMed

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A

    2014-01-31

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.

  8. Mining Spatiotemporal Patterns of the Elder's Daily Movement

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Liu, M. E.; Tsai, S. J.; Son, N. T.; Kinh, L. V.

    2016-06-01

    With rapid developments in wearable device technology, a vast amount of spatiotemporal data, such as people's movement and physical activities, are generated. Information derived from the data reveals important knowledge that can contribute a long-term care and psychological assessment of the elders' living condition especially in long-term care institutions. This study aims to develop a method to investigate the spatial-temporal movement patterns of the elders with their outdoor trajectory information. To achieve the goal, GPS based location data of the elderly subjects from long-term care institutions are collected and analysed with geographic information system (GIS). A GIS statistical model is developed to mine the elderly subjects' spatiotemporal patterns with the location data and represent their daily movement pattern at particular time. The proposed method first finds the meaningful trajectory and extracts the frequent patterns from the time-stamp location data. Then, a density-based clustering method is used to identify the major moving range and the gather/stay hotspot in both spatial and temporal dimensions. The preliminary results indicate that the major moving area of the elderly people encompasses their dorm and has a short moving distance who often stay in the same site. Subjects' outdoor appearance are corresponded to their life routine. The results can be useful for understanding elders' social network construction, risky area identification and medical care monitoring.

  9. A unifying model of concurrent spatial and temporal modularity in muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2014-02-01

    Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.

  10. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia?

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd

    2017-08-01

    We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.

  11. Impact of scale on morphological spatial pattern of forest

    Treesearch

    Katarzyna Ostapowicz; Peter Vogt; Kurt H. Riitters; Jacek Kozak; Christine Estreguil

    2008-01-01

    Assessing and monitoring landscape pattern structure from multi-scale land-cover maps can utilize morphological spatial pattern analysis (MSPA), only if various influences of scale are known and taken into account. This paper lays part of the foundation for applying MSPA analysis in landscape monitoring by quantifying scale effects on six classes of spatial patterns...

  12. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 2. Impacts of optic nerve head parameters

    NASA Astrophysics Data System (ADS)

    Baniasadi, Neda; Wang, Mengyu; Wang, Hui; Jin, Qingying; Elze, Tobias

    2017-12-01

    Clinicians use retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) as an adjunct to glaucoma diagnosis. Ametropia is accompanied by changes to the optic nerve head (ONH), which may affect how OCT machines mark RNFLT measurements as abnormal. These changes in abnormality patterns may bias glaucoma diagnosis. Here, we investigate the relationship between OCT abnormality patterns and the following ONH-related and ametropia-associated parameters on 421 eyes of glaucoma patients: optic disc tilt and torsion, central retinal vessel trunk location (CRVTL), and nasal and temporal retinal curvature adjacent to ONH, quantified as nasal/temporal slopes of the inner limiting membrane. We applied multivariate logistic regression with abnormality marks as regressands to 40,401 locations of the peripapillary region and generated spatial maps of locations of false positive/negative abnormality marks independent of glaucoma severity. Effects of torsion and temporal slope were negligible. The effect of tilt could be explained by covariation with ametropia. For CRVTL/nasal slope, abnormality pattern shifts at 7.2%/23.5% of the peripapillary region were detected, respectively, independent of glaucoma severity and ametropia. Therefore, CRVTL and nasal curvature should be included in OCT RNFLT norms. Our spatial location maps may aid clinicians to improve diagnostic accuracy.

  13. Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous system.

    PubMed

    Waring, D A; Kenyon, C

    1991-04-25

    In Caenorhabditis elegans, cell-cell communication is required to form a simple pattern of sensory ray neurons and cuticular structures (alae). The C. elegans pal-1 gene initiates one developmental pathway (ray lineages) simply by blocking a cell-cell interaction that induces an alternative pathway. Here we show by mosaic analysis that pal-1+ acts by preventing specific cells from responding to inductive signals. The results indicate that although cell signals play a critical role in generating this pattern, they do not provide spatial information. Instead, signals are sent to many, if not all, of the precursor cells, and the ability to respond is spatially restricted. This patterning strategy thus differs from many well known models for pattern formation in which localized inductive signals influence a subset of cells within a field. We find that pal-1 encodes a homeodomain protein and so is likely to regulate transcription. The pal-1+ protein could block the response to cell signals either by repressing genes involved in signal transduction or by acting directly on downstream genes in a way that neutralizes the effects of the intercellular signals. Genetic experiments indicate that one candidate for such a downstream gene is the Antennapedia-like homeotic selector gene mab-5.

  14. Large-Scale Circulation and Climate Variability. Chapter 5

    NASA Technical Reports Server (NTRS)

    Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.

    2017-01-01

    The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.

  15. Temporal dynamics of urbanization-driven environmental changes explored by metal contamination in surface sediments in a restoring urban wetland park.

    PubMed

    Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang

    2016-05-15

    Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  17. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  18. Increasing signal-to-noise ratio of reconstructed digital holograms by using light spatial noise portrait of camera's photosensor

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-01-01

    Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.

  19. The geography of spatial synchrony.

    PubMed

    Walter, Jonathan A; Sheppard, Lawrence W; Anderson, Thomas L; Kastens, Jude H; Bjørnstad, Ottar N; Liebhold, Andrew M; Reuman, Daniel C

    2017-07-01

    Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application. © 2017 John Wiley & Sons Ltd/CNRS.

  20. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  1. Spatial analysis of lymphatic filariasis distribution in the Nile Delta in relation to some environmental variables using geographic information system technology.

    PubMed

    Hassan, A N; Dister, S; Beck, L

    1998-04-01

    Geographic information system (GIS) was used to analyze the spatial distribution of filariasis in the Nile Delta. The study involved 201 villages belonging to Giza, Qalubiya, Monoufiya, Gharbiya, and Dakahliya governorates. Villages with similar microfilarial (mf) prevalence rates were observed to cluster within 1-2 km distance, then, clustering started to decrease significantly with distance up to 5 km (Pearson correlation coefficient = -0.98). the likelihood of negative and high prevalence villages being contiguous was very low (approximately 1.8%, n = 612 village-pairs) indicating homogeneity in disease processes within the defined spatial scales. Of the villages located within 2 km from the main Nile branches (n = 46), 95% exhibited low prevalence. In addition, the spatial pattern of mf prevalence was shown to be negatively associated with annual rainfall and relative humidity, while it was positively associated with annual daily temperature. Average mf prevalence in warmer, relatively drier areas receiving 25 mm of rain was significantly higher (3.9%) than that in less warmer but more humid areas receiving 50 mm of rain (1.6%) (P < 0.0001). Based on the results of the present study, GIS was used to generate a "filariasis risk map" that could be used by health authorities to efficiently direct surveillance and control efforts. This investigation identified some of the factors underlying filariasis spatial pattern, quantified clustering and demonstrated the potential of GIS application in vector-borne disease epidemiology.

  2. The role of spatial aggregation in forensic entomology.

    PubMed

    Fiene, Justin G; Sword, Gregory A; Van Laerhoven, Sherah L; Tarone, Aaron M

    2014-01-01

    A central concept in forensic entomology is that arthropod succession on carrion is predictable and can be used to estimate the postmortem interval (PMI) of human remains. However, most studies have reported significant variation in successional patterns, particularly among replicate carcasses, which has complicated estimates of PMIs. Several forensic entomology researchers have proposed that further integration of ecological and evolutionary theory in forensic entomology could help advance the application of succession data for producing PMI estimates. The purpose of this essay is to draw attention to the role of spatial aggregation of arthropods among carrion resources as a potentially important aspect to consider for understanding and predicting the assembly of arthropods on carrion over time. We review ecological literature related to spatial aggregation of arthropods among patchy and ephemeral resources, such as carrion, and when possible integrate these results with published forensic literature. We show that spatial aggregation of arthropods across resources is commonly reported and has been used to provide fundamental insight for understanding regional and local patterns of arthropod diversity and coexistence. Moreover, two suggestions are made for conducting future research. First, because intraspecific aggregation affects species frequency distributions across carcasses, data from replicate carcasses should not be combined, but rather statistically quantified to generate occurrence probabilities. Second, we identify a need for studies that tease apart the degree to which community assembly on carrion is spatially versus temporally structured, which will aid in developing mechanistic hypotheses on the ecological factors shaping community assembly on carcasses.

  3. Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability.

    PubMed

    Shoaf, S A; Conway, K; Hunt, R K

    1984-08-07

    We have examined the behavior of two reaction-diffusion models, originally proposed by Gierer & Meinhardt (1972) and by Kauffman, Shymko & Trabert (1978), for biological pattern formation. Calculations are presented for pattern formation on a disc (approximating the geometry of a number of embryonic anlagen including the frog eye rudiment), emphasizing the sensitivity of patterns to changes in initial conditions and to perturbations in the geometry of the morphogen-producing space. Analysis of the linearized equations from the models enabled us to select appropriate parameters and disc size for pattern growth. A computer-implemented finite element method was used to solve the non-linear model equations reiteratively. For the Gierer-Meinhardt model, initial activation (varying in size over two orders of magnitude) of one point on the disc's edge was sufficient to generate the primary gradient. Various parts of the disc were removed (remaining only as diffusible space) from the morphogen-producing cycle to investigate the effects of cells dropping out of the cycle due to cell death or malfunction (single point removed) or differentiation (center removed), as occur in the Xenopus eye rudiment. The resulting patterns had the same general shape and amplitude as normal gradients. Nor did a two-fold increase in disc size affect the pattern-generating ability of the model. Disc fragments bearing their primary gradient patterns were fused (with gradients in opposite directions, but each parallel to the fusion line). The resulting patterns generated by the model showed many similarities to results of "compound eye" experiments in Xenopus. Similar patterns were obtained with the model of Kauffman's group (1978), but we found less stability of the pattern subject to simulations of central differentiation. However, removal of a single point from the morphogen cycle (cell death) did not result in any change. The sensitivity of the Kauffman et al. model to shape perturbations is not surprising since the model was originally designed to use shape and increasing size during growth to generate a sequence of transient patterns. However, the Gierer-Meinhardt model is remarkably stable even when subjected to a wide range of perturbations in the diffusible space, thus allowing it to cope with normal biological variability, and offering an exciting range of possibilities for reaction-diffusion models as mechanisms underlying the spatial patterns of tissue structures.

  4. Two-Dimensional Micropatterns of Self-Assembled Poly(N-isopropylacrylamide) Microgels for Patterned Adhesion and Temperature-Responsive Detachment of Fibroblasts

    PubMed Central

    Tsai, Hsin-Yi; Vats, Kanika; Yates, Matthew Z.; Benoit, Danielle S. W.

    2013-01-01

    Thermoresponsive poly(N-isopropyl acrylamide) (PNIPAM) microgels were patterned on polystyrene substrates via dip coating, creating cytocompatible substrates that provided spatial control over cell adhesion. This simple dip coating method, which exploits variable substrate withdrawal speeds form particle suspension formed stripes of densely-packed PNIPAM microgels, while spacings between the stripes contained sparsely-distributed PNIPAM microgels. The assembly of three different PNIPAM microgel patterns, namely patterns composed of 50 μm stripes/50 μm spacings, 50 μm stripes/100 μm spacings, and 100 μm stripes/100 μm spacings was verified using high-resolution optical micrographs and ImageJ analysis. PNIPAM microgels existed as monolayers within stripes and spacings, as revealed by atomic force microscopy (AFM). Upon cell seeding on PNIPAM micropatterned substrates, NIH3T3 fibroblast cells preferentially adhered within spacings to form cell patterns. Three days after cell seeding, cells proliferated to form confluent cell layers. The thermoresponsiveness of the underlying PNIPAM microgels was then utilized to recover fibroblast cell sheets from substrates simply by lowering the temperature, without disrupting the underlying PNIPAM microgel patterns. Harvested cell sheets similar to these have been used for multiple tissue engineering applications. Also, this simple, low cost, template-free dip coating technique can be utilized to micropattern multifunctional PNIPAM microgels, generating complex stimuli-responsive substrates to study cell-material interactions and allow drug delivery to cells in a spatially and temporally-controlled manners. PMID:23968193

  5. Characterizing land surface phenology and responses to rainfall in the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.

    2016-08-01

    Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

  6. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  7. Color image generation for screen-scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi

    2015-10-19

    Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

  8. Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City.

    PubMed

    Johnson, Nicholas E; Ianiuk, Olga; Cazap, Daniel; Liu, Linglan; Starobin, Daniel; Dobler, Gregory; Ghandehari, Masoud

    2017-04-01

    Historical municipal solid waste (MSW) collection data supplied by the New York City Department of Sanitation (DSNY) was used in conjunction with other datasets related to New York City to forecast municipal solid waste generation across the city. Spatiotemporal tonnage data from the DSNY was combined with external data sets, including the Longitudinal Employer Household Dynamics data, the American Community Survey, the New York City Department of Finance's Primary Land Use and Tax Lot Output data, and historical weather data to build a Gradient Boosting Regression Model. The model was trained on historical data from 2005 to 2011 and validation was performed both temporally and spatially. With this model, we are able to accurately (R2>0.88) forecast weekly MSW generation tonnages for each of the 232 geographic sections in NYC across three waste streams of refuse, paper and metal/glass/plastic. Importantly, the model identifies regularity of urban waste generation and is also able to capture very short timescale fluctuations associated to holidays, special events, seasonal variations, and weather related events. This research shows New York City's waste generation trends and the importance of comprehensive data collection (especially weather patterns) in order to accurately predict waste generation. Copyright © 2017. Published by Elsevier Ltd.

  9. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    To evaluate the Models-3/Community Multiscale Air Quality (CMAQ) modeling system in reproducing the spatial patterns of aerosol concentrations over the country on timescales of months and years, the spatial patterns of model output are compared with those derived from observation...

  10. Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis.

    PubMed

    Wang, Wei; Qiao, Yu; Ishijima, Reika; Yokozeki, Tomoaki; Honda, Daigo; Matsuda, Akihiro; Hanson, Steen G; Takeda, Mitsuo

    2008-09-01

    A novel technique for biological kinematic analysis is proposed that makes use of the pseudophase singularities in a complex signal generated from a speckle-like pattern. In addition to the information about the locations and the anisotropic core structures of the pseudophase singularities, we also detect the spatial structures of a cluster of phase singularities, which serves as a unique constellation characterizing the mutual position relation between the individual pseudophase singularities. Experimental results of in vivo measurements for a swimming fish along with its kinematic analysis are presented, which demonstrate the validity of the proposed technique.

  11. Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?

    USDA-ARS?s Scientific Manuscript database

    The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...

  12. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  13. On the spatial evolution of long-wavelength Goertler vortices governed by a viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Hall, Philip; Streett, Craig

    1992-01-01

    The generation of long-wavelength, viscous-inviscid interactive Goertler vortices is studied in the linear regime by numerically solving the time-dependent governing equations. It is found that time-dependent surface deformations, which assume a fixed nonzero shape at large times, generate steady Goertler vortices that amplify in the downstream direction. Thus, the Goertler instability in this regime is shown to be convective in nature, contrary to the earlier findings of Ruban and Savenkov. The disturbance pattern created by steady and streamwise-elongated surface obstacles on a concave surface is examined in detail, and also contrasted with the flow pattern due to roughness elements with aspect ratio of order unity on flat surfaces. Finally, the applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned by providing a counterexample in the form of the inviscid limit of interactive Goertler vortices.

  14. Traction patterns of tumor cells.

    PubMed

    Ambrosi, D; Duperray, A; Peschetola, V; Verdier, C

    2009-01-01

    The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.

  15. Benthic exchange and biogeochemical cycling in permeable sediments.

    PubMed

    Huettel, Markus; Berg, Peter; Kostka, Joel E

    2014-01-01

    The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.

  16. Sum-Frequency Generation from a Thin Cylindrical Layer

    NASA Astrophysics Data System (ADS)

    Shamyna, A. A.; Kapshai, V. N.

    2018-01-01

    In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.

  17. Spatial arrangement of faults and opening-mode fractures

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in the subsurface through coupled spatial, size, and pattern analysis.

  18. Mapping spatial patterns with morphological image processing

    Treesearch

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  19. Long-term consistency in spatial patterns of primate seed dispersal.

    PubMed

    Heymann, Eckhard W; Culot, Laurence; Knogge, Christoph; Noriega Piña, Tony Enrique; Tirado Herrera, Emérita R; Klapproth, Matthias; Zinner, Dietmar

    2017-03-01

    Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long-term consistency of spatial patterns of seed dispersal. We examined the long-term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis , the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial-genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long-term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.

  20. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  1. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins.

    PubMed

    Eriksson, Anders; Manica, Andrea

    2012-08-28

    Recent comparisons between anatomically modern humans and ancient genomes of other hominins have raised the tantalizing, and hotly debated, possibility of hybridization. Although several tests of hybridization have been devised, they all rely on the degree to which different modern populations share genetic polymorphisms with the ancient genomes of other hominins. However, spatial population structure is expected to generate genetic patterns similar to those that might be attributed to hybridization. To investigate this problem, we take Neanderthals as a case study, and build a spatially explicit model of the shared history of anatomically modern humans and this hominin. We show that the excess polymorphism shared between Eurasians and Neanderthals is compatible with scenarios in which no hybridization occurred, and is strongly linked to the strength of population structure in ancient populations. Thus, we recommend caution in inferring admixture from geographic patterns of shared polymorphisms, and argue that future attempts to investigate ancient hybridization between humans and other hominins should explicitly account for population structure.

  2. DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves.

    PubMed

    Hennig, Martin; Wolff, Manuel; Neumann, Jürgen; Wixforth, Achim; Schneider, Matthias F; Rädler, Joachim O

    2011-12-20

    Spatially addressable arrays of molecules embedded in or anchored to supported lipid bilayers are important for on-chip screening and binding assays; however, methods to sort or accumulate components in a fluid membrane on demand are still limited. Here we apply in-plane surface acoustic shear waves (SAWs) to laterally accumulate double-stranded DNA segments electrostatically bound to a cationic supported lipid bilayer. The fluorescently labeled DNA segments are found to segregate into stripe patterns with a spatial frequency corresponding to the periodicity of the standing SAW wave (~10 μm). The DNA molecules are accumulated 10-fold in the regions of SAW antinodes. The superposition of two orthogonal sets of SAW sources creates checkerboard like arrays of DNA demonstrating the potential to generate arrayed fields dynamically. The pattern relaxation time of 0.58 s, which is independent of the segment length, indicates a sorting and relaxation mechanism dominated by lipid diffusion rather than DNA self-diffusion. © 2011 American Chemical Society

  3. Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population

    PubMed Central

    Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.

    2013-01-01

    Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217

  4. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  5. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  6. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  7. Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats

    NASA Astrophysics Data System (ADS)

    Taghon, G. L.; Tuorto, S. J.

    2016-02-01

    Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.

  8. Modular and hierarchical structure of social contact networks

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2013-10-01

    Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.

  9. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  10. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  11. The landscape of fear as an emergent property of heterogeneity: Contrasting patterns of predation risk in grassland ecosystems.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-07-01

    The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.

  12. Tree species exhibit complex patterns of distribution in bottomland hardwood forests

    Treesearch

    Luben D Dimov; Jim L Chambers; Brian R. Lockhart

    2013-01-01

    & Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...

  13. Spatial image modulation to improve performance of computed tomography imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)

    2010-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.

  14. Mapping the bycatch seascape: multispecies and multi-scale spatial patterns of fisheries bycatch.

    PubMed

    Lewison, Rebecca L; Soykan, Candan U; Franklin, Janet

    2009-06-01

    Fisheries bycatch is a worldwide conservation issue. Despite a growing awareness of bycatch problems in particular ocean regions, there have been few efforts to identify spatial patterns in bycatch events. Furthermore, many studies of fisheries bycatch have been myopic, focusing on a single species or a single region. Using a range of analytical approaches to identify spatial patterns in bycatch data, we demonstrate the utility and applications of area and point pattern analyses to single and multispecies bycatch seascapes of pelagic longline fisheries in the Atlantic and Pacific Oceans. We find clear evidence of spatial clustering within bycatch species in both ocean basins, both in terms of the underlying pattern of the locations of bycatch events relative to fishing locations and for areas of high bycatch rates. Furthermore, we find significant spatial overlap in the pattern of bycatch across species relative to the spatial distribution in fishing effort and target catch. These results point to the importance of considering spatial patterns of both single and multispecies bycatch to meet the ultimate goal of reducing bycatch encounters. These analyses also highlight the importance of considering bycatch relative to target catch as a way of identifying areas where fishing effort reduction may help to reduce multispecies bycatch with minimal impact on target catch.

  15. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30 degrees rotation, was measured in the experiments performed. The parameters relevant for characterizing soliton collision processes were also studied in detail. Measurements were performed for various collision angles (from 0.2 to 4 degrees), phase mismatch, relative phase between the solitons and the distance to the collision point within the sample (which affects soliton formation). Both the individual and combined effects of these collision variables were investigated. Based on the research conducted, several all-optical switching scenarios were proposed.

  16. Assessing knowledge ambiguity in the creation of a model based on expert knowledge and comparison with the results of a landscape succession model in central Labrador. Chapter 10.

    Treesearch

    Frederik Doyon; Brian Sturtevant; Michael J. Papaik; Andrew Fall; Brian Miranda; Daniel D. Kneeshaw; Christian Messier; Marie-Josee Fortin; Patrick M.A. James

    2012-01-01

    Sustainable forest management (SFM) recognizes that the spatial and temporal patterns generated at different scales by natural landscape and stand dynamics processes should serve as a guide for managing the forest within its range of natural variability. Landscape simulation modeling is a powerful tool that can help encompass such complexity and support SFM planning....

  17. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Lei; Liu, Weiwei; Wang, Meng

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less

  18. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  19. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    PubMed

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  20. Sulfation of Eggshell Proteins by Pipe Defines Dorsal-Ventral Polarity in the Drosophila embryo

    PubMed Central

    Zhang, Zhenyu; Stevens, Leslie M.; Stein, David

    2009-01-01

    Summary Drosophila embryonic dorsal-ventral (DV) polarity is controlled by a group of sequentially acting serine proteases located in the fluid-filled perivitelline space between the embryonic membrane and the eggshell, which generate the ligand for the Toll receptor on the ventral side of the embryo [1, 2, 3]. Spatial control of the protease cascade relies on the Pipe sulfotransferase, a fly homologue of vertebrate glycosaminoglycan modifying enzymes [4, 5, 6], which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. The identification of the Pipe enzymatic target has remained a major gap in our understanding of the mechanism controlling the perivitelline protease cascade, and hence embryonic DV patterning. Here we show that the protein Vitelline Membrane-Like (VML) [7] undergoes Pipe-dependent sulfation and, consistent with a role in conveying positional information from the egg chamber to the embryo, becomes incorporated into the eggshell at a position corresponding to the location of the follicle cells from which it was secreted. Although VML influences embryonic DV pattern in a sensitized genetic background, VML is not essential for DV axis formation, suggesting that there is redundancy in the composition of the Pipe enzymatic target. Correspondingly, we find that additional structural components of the vitelline membrane undergo Pipe-dependent sulfation. In identifying the elusive targets of Pipe, this ork points to the vitelline membrane as the source of signals that generate the Drosophila DV axis and provides a framework for understanding the mechanism controlling spatially-specific activation of serine protease activity during embryonic pattern formation. PMID:19540119

  1. Active dynamics of colloidal particles in time-varying laser speckle patterns

    PubMed Central

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  2. Automated delineation and characterization of drumlins using a localized contour tree approach

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Wu, Qiusheng; Ward, Dylan

    2017-10-01

    Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows towards ice front.

  3. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

    PubMed

    Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping

    2016-12-01

    As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.

  4. Spatial complementarity and the coexistence of species.

    PubMed

    Velázquez, Jorge; Garrahan, Juan P; Eichhorn, Markus P

    2014-01-01

    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric - ecological pressure - we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation.

  5. Spatial Complementarity and the Coexistence of Species

    PubMed Central

    Velázquez, Jorge; Garrahan, Juan P.; Eichhorn, Markus P.

    2014-01-01

    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation. PMID:25532018

  6. Circulation controls of the spatial structure of maximum daily precipitation over Poland

    NASA Astrophysics Data System (ADS)

    Stach, Alfred

    2015-04-01

    Among forecasts made on the basis of global and regional climatic models is one of a high probability of an increase in the frequency and intensity of extreme precipitation events. Learning the regularities underlying the recurrence and spatial extent of extreme precipitation is obviously of great importance, both economic and social. The main goal of the study was to analyse regularities underlying spatial and temporal variations in monthly Maximum Daily Precipitation Totals (MDPTs) observed in Poland over the years 1956-1980. These data are specific because apart from being spatially discontinuous, which is typical of precipitation, they are also non-synchronic. The main aim of the study was accomplished via several detailed goals: • identification and typology of the spatial structure of monthly MDPTs, • determination of the character and probable origin of events generating MDPTs, and • quantitative assessment of the contribution of the particular events to the overall MDPT figures. The analysis of the spatial structure of MDPTs was based on 300 models of spatial structure, one for each of the analysed sets of monthly MDPTs. The models were built on the basis of empirical anisotropic semivariograms of normalised data. In spite of their spatial discontinuity and asynchronicity, the MDPT data from Poland display marked regularities in their spatial pattern that yield readily to mathematical modelling. The MDPT field in Poland is usually the sum of the outcomes of three types of processes operating at various spatial scales: local (<10-20 km), regional (50-150 km), and supra-regional (>200 km). The spatial scales are probably connected with a convective/ orographic, a frontal and a 'planetary waves' genesis of high precipitation. Their contributions are highly variable. Generally predominant, however, are high daily precipitation totals with a spatial extent of 50 to 150 km connected with mesoscale phenomena and the migration of atmospheric fronts (35-38%). The spatial extent of areas of high local-scale precipitation usually varies at random, especially in the warm season. At supra-local scales, structures of repetitive size predominate. Eight types of anisotropic structures of monthly MDPTs were distinguished. To identify them, an analysis was made of semivariance surface similarities. The types differ not only in the level and direction of anisotropy, but also in the number and type of elementary components, which is evidence of genetic differences in precipitation. Their appearance shows a significant seasonal variability, so the most probable supposition was that temporal variations in the MDPT pattern were connected with circulation conditions: the type and direction of inflow of air masses. This hypothesis was validated by testing differences in the frequency of occurrence of Grosswetterlagen circulation situations in the months belonging to the distinguished types of the spatial MDPT pattern.

  7. Spatial working memory capacity predicts bias in estimates of location.

    PubMed

    Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A

    2016-09-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    PubMed Central

    Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708

  9. Spatial drought reconstructions for central High Asia based on tree rings

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Davi, Nicole; Gou, Xiaohua; Chen, Fahu; Cook, Edward; Li, Jinbao; D'Arrigo, Rosanne

    2010-11-01

    Spatial reconstructions of drought for central High Asia based on a tree-ring network are presented. Drought patterns for central High Asia are classified into western and eastern modes of variability. Tree-ring based reconstructions of the Palmer drought severity index (PDSI) are presented for both the western central High Asia drought mode (1587-2005), and for the eastern central High Asia mode (1660-2005). Both reconstructions, generated using a principal component regression method, show an increased variability in recent decades. The wettest epoch for both reconstructions occurred from the 1940s to the 1950s. The most extreme reconstructed drought for western central High Asia was from the 1640s to the 1650s, coinciding with the collapse of the Chinese Ming Dynasty. The eastern central High Asia reconstruction has shown a distinct tendency towards drier conditions since the 1980s. Our spatial reconstructions agree well with previous reconstructions that fall within each mode, while there is no significant correlation between the two spatial reconstructions.

  10. Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.

    PubMed

    Thiel, Aylin; Iftime, Adrian

    2016-04-01

    The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.

  11. Landscape scale measures of steelhead (Oncorhynchus mykiss) bioenergetic growth rate potential in Lake Michigan and comparison with angler catch rates

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.

    2004-01-01

    The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.

  12. Invasive advance of an advantageous mutation: nucleation theory.

    PubMed

    O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas

    2006-12-01

    For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.

  13. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka.

    PubMed

    Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2015-07-01

    Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each plant by deterministic fitness and niche differences, the large variability of competitors causes also a large variability in the outcomes of interactions and does not allow for strong directed responses at the species level. Collectively, our results highlight the critical effect of the stochastic geometry of biodiversity in structuring local spatial patterns of tropical forest diversity.

  14. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  15. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  16. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  17. Thirty Years of Cloud Cover Patterns from Satellite Data: Fog in California's Central Valley and Coast

    NASA Astrophysics Data System (ADS)

    Waller, E.; Baldocchi, D. D.

    2012-12-01

    In an effort to assess long term trends in winter fog in the Central Valley of California, custom maps of daily cloud cover from an approximately 30 year record of AVHRR (1981-1999) and MODIS (2000-2012) satellite data were generated. Spatial rules were then used to differentiate between fog and general cloud cover. Differences among the sensors (e.g., spectral content, spatial resolution, overpass time) presented problems of consistency, but concurrent climate station data were used to resolve systematic differences in products, and to confirm long term trends. The frequency and extent of Central Valley ("Tule") fog appear to have some periodic oscillation, but also appear to be on the decline, especially in the Sacramento Valley and in the "shoulder" months of November and February. These results may have strong implications for growers of fruit and nut trees in the Central Valley dependent on winter chill hours that are augmented by the foggy daytime conditions. Conclusions about long term trends in fog are limited to daytime patterns, as results are primarily derived from reflectance-based products. Similar analyses of daytime cloud cover are performed on other areas of concern, such as the coastal fog belt of California. Large area and long term patterns here appear to have periodic oscillation similar to that for the Central Valley. However, the relatively coarse spatial resolution of the AVHRR LTDR (Long Term Data Record) data (~5-km) may be limiting for fine-scale analysis of trends.

  18. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  19. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  20. Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, Gregory Scott

    There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly discovered connections between the geology and ice sheet dynamics of Antarctica, particularly along the boundary between East and West Antarctica in the Pagano Shear Zone. Additionally, increased dynamic activity is shown to concentrate in regions of Antarctica most likely to experience catastrophic failure and collapse in the future. Further quantification of mass and volume changes demonstrates that the methods described within allow for a true reconciliation between different satellite methods of measuring ice sheet mass and volume balance, and show that Antarctica is losing enough mass between 2003 and 2009 to raise global sea levels 0.1 mm/yr during that time. Additionally, analysis of local patterns of dynamic ice thickness changes shows that there is continued or increased ice loss, since before the ICESat mission period, in many of the coastal sectors of Antarctica.

  1. Spatial patterns of development drive water use

    Treesearch

    G. M. Sanchez; J. W. Smith; A. Terando; G. Sun; R. K. Meentemeyer

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land...

  2. Surface patterning of nanoparticles with polymer patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  3. Surface patterning of nanoparticles with polymer patches

    DOE PAGES

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; ...

    2016-08-24

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  4. Surface patterning of nanoparticles with polymer patches

    NASA Astrophysics Data System (ADS)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia

    2016-10-01

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

  5. Behavioral states may be associated with distinct spatial patterns in electrocorticogram.

    PubMed

    Panagiotides, Heracles; Freeman, Walter J; Holmes, Mark D; Pantazis, Dimitrios

    2011-03-01

    To determine if behavioral states are associated with unique spatial electrocorticographic (ECoG) patterns, we obtained recordings with a microgrid electrode array applied to the cortical surface of a human subject. The array was constructed with the intent of extracting maximal spatial information by optimizing interelectrode distances. A 34-year-old patient with intractable epilepsy underwent intracranial ECoG monitoring after standard methods failed to reveal localization of seizures. During the 8-day period of invasive recording, in addition to standard clinical electrodes a square 1 × 1 cm microgrid array with 64 electrodes (1.25 mm separation) was placed on the right inferior temporal gyrus. Careful review of video recordings identified four extended naturalistic behaviors: reading, conversing on the telephone, looking at photographs, and face-to-face interactions. ECoG activity recorded with the microgrid that corresponded to these behaviors was collected and ECoG spatial patterns were analyzed. During periods of ECoG selected for analysis, no electrographic seizures or epileptiform patterns were present. Moments of maximal spatial variance are shown to cluster by behavior. Comparisons between conditions using a permutation test reveal significantly different spatial patterns for each behavior. We conclude that ECoG recordings obtained on the cortical surface with optimal high spatial frequency resolution reveal distinct local spatial patterns that reflect different behavioral states, and we predict that similar patterns will be found in many if not most cortical areas on which a microgrid is placed.

  6. Super-resolution photoacoustic microscopy using joint sparsity

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Haltmeier, M.; Berer, T.; Leiss-Holzinger, E.; Murray, T. W.

    2017-07-01

    We present an imaging method that uses the random optical speckle patterns that naturally emerge as light propagates through strongly scattering media as a structured illumination source for photoacoustic imaging. Our approach, termed blind structured illumination photoacoustic microscopy (BSIPAM), was inspired by recent work in fluorescence microscopy where super-resolution imaging was demonstrated using multiple unknown speckle illumination patterns. We extend this concept to the multiple scattering domain using photoacoustics (PA), with the speckle pattern serving to generate ultrasound. The optical speckle pattern that emerges as light propagates through diffuse media provides structured illumination to an object placed behind a scattering wall. The photoacoustic signal produced by such illumination is detected using a focused ultrasound transducer. We demonstrate through both simulation and experiment, that by acquiring multiple photoacoustic images, each produced by a different random and unknown speckle pattern, an image of an absorbing object can be reconstructed with a spatial resolution far exceeding that of the ultrasound transducer. We experimentally and numerically demonstrate a gain in resolution of more than a factor of two by using multiple speckle illuminations. The variations in the photoacoustic signals generated with random speckle patterns are utilized in BSIPAM using a novel reconstruction algorithm. Exploiting joint sparsity, this algorithm is capable of reconstructing the absorbing structure from measured PA signals with a resolution close to the speckle size. Another way to excite random excitation for photoacoustic imaging are small absorbing particles, including contrast agents, which flow through small vessels. For such a set-up, the joint-sparsity is generated by the fact that all the particles move in the same vessels. Structured illumination in that case is not necessary.

  7. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  8. The Decline of Intergenerational Coresidence in the United States, 1850 to 2000

    PubMed Central

    Ruggles, Steven

    2011-01-01

    In the mid-nineteenth century, almost 70 percent of persons age 65 or older resided with their adult children; by the end of the twentieth century, fewer than 15 percent did so. Many scholars have argued that the simplification of the living arrangements of the aged resulted primarily from an increase in their resources, which enabled increasing numbers of elders to afford independent living. This article supports a different interpretation: the evidence suggests that the decline of coresidence between generations had less to do with the growing affluence of the aged than with the increasing opportunities of the younger generation. Using data from the Integrated Public Use Microdata Series (IPUMS), I examine long-run trends in the characteristics of both the older and the younger generations to gain insight into changing motivations for coresidence. In particular, I investigate headship patterns, occupational status, income, and spatial coresidence patterns. I also reassess the potential impact of the Social Security program. I conclude that the decline of intergenerational coresidence resulted mainly from increasing opportunities for the young and declining parental control over their children. PMID:21562613

  9. Surfing the Pacific Island chains: linking internal wave energetics to coral reef benthic community patterns.

    NASA Astrophysics Data System (ADS)

    Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth

    2017-04-01

    The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.

  10. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  11. Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality

    NASA Astrophysics Data System (ADS)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.

    2015-02-01

    Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.

  12. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping.

    PubMed

    Bien, Nina; Sack, Alexander T

    2014-07-01

    In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  14. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.

  15. Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves

    PubMed Central

    McClain, Craig R.; Stegen, James C.; Hurlbert, Allen H.

    2012-01-01

    Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea communities. Even when appropriate data exist, methodological problems have made it difficult to discern the relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns. Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic similarity between communities to environmental and spatial distances separating them for 270 sites across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dispersal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves, explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper than with spatial distance. Energy availability is the most influential environmental variable evaluated, accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predictions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to 2.1 g m−2 yr−1 and typically disperse 749 km from their natal site. PMID:22189399

  16. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change.

    PubMed

    Woods, H Arthur; Dillon, Michael E; Pincebourde, Sylvain

    2015-12-01

    We analyze the effects of changing patterns of thermal availability, in space and time, on the performance of small ectotherms. We approach this problem by breaking it into a series of smaller steps, focusing on: (1) how macroclimates interact with living and nonliving objects in the environment to produce a mosaic of thermal microclimates and (2) how mobile ectotherms filter those microclimates into realized body temperatures by moving around in them. Although the first step (generation of mosaics) is conceptually straightforward, there still exists no general framework for predicting spatial and temporal patterns of microclimatic variation. We organize potential variation along three axes-the nature of the objects producing the microclimates (abiotic versus biotic), how microclimates translate macroclimatic variation (amplify versus buffer), and the temporal and spatial scales over which microclimatic conditions vary (long versus short). From this organization, we propose several general rules about patterns of microclimatic diversity. To examine the second step (behavioral sampling of locally available microclimates), we construct a set of models that simulate ectotherms moving on a thermal landscape according to simple sets of diffusion-based rules. The models explore the effects of both changes in body size (which affect the time scale over which organisms integrate operative body temperatures) and increases in the mean and variance of temperature on the thermal landscape. Collectively, the models indicate that both simple behavioral rules and interactions between body size and spatial patterns of thermal variation can profoundly affect the distribution of realized body temperatures experienced by ectotherms. These analyses emphasize the rich set of problems still to solve before arriving at a general, predictive theory of the biological consequences of climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Solid perception mechanism by a shading pattern: spatial frequency components in a corrugated wave pattern.

    PubMed

    Nameda, N

    1988-01-01

    Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.

  18. Spatial Patterns of Inshore Marine Soundscapes.

    PubMed

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.

  19. Boundary-induced pattern formation from uniform temporal oscillation

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  20. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

Top