Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall
NASA Astrophysics Data System (ADS)
Lucero, O. A.; Rodriguez, N. C.
In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones
NASA Astrophysics Data System (ADS)
Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco
1996-11-01
The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.
Do we really use rainfall observations consistent with reality in hydrological modelling?
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves
2017-04-01
Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.
NASA Astrophysics Data System (ADS)
Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.
2013-12-01
Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India
NASA Astrophysics Data System (ADS)
Akhter, Javed; Das, Lalu; Deb, Argha
2017-09-01
Performances of the state-of-the-art CMIP5 models in reproducing the spatial rainfall patterns over seven homogeneous rainfall zones of India viz. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), Northeast India (NEI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI) have been assessed using different conventional performance metrics namely spatial correlation (R), index of agreement (d-index), Nash-Sutcliffe efficiency (NSE), Ratio of RMSE to the standard deviation of the observations (RSR) and mean bias (MB). The results based on these indices revealed that majority of the models are unable to reproduce finer-scaled spatial patterns over most of the zones. Thereafter, four bias correction methods i.e. Scaling, Standardized Reconstruction, Empirical Quantile Mapping and Gamma Quantile Mapping have been applied on GCM simulations to enhance the skills of the GCM projections. It has been found that scaling method compared to other three methods shown its better skill in capturing mean spatial patterns. Multi-model ensemble (MME) comprising 25 numbers of better performing bias corrected (Scaled) GCMs, have been considered for developing future rainfall patterns over seven zones. Models' spread from ensemble mean (uncertainty) has been found to be larger in RCP 8.5 than RCP4.5 ensemble. In general, future rainfall projections from RCP 4.5 and RCP 8.5 revealed an increasing rainfall over seven zones during 2020s, 2050s, and 2080s. The maximum increase has been found over southwestern part of NWI (12-30%), northwestern part of WPI (3-30%), southeastern part of NEI (5-18%) and northern and eastern part of SPI (6-24%). However, the contiguous region comprising by the southeastern part of NCI and northeastern part of EPI, may experience slight decreasing rainfall (about 3%) during 2020s whereas the western part of NMI may also receive around 3% reduction in rainfall during both 2050s and 2080s.
NASA Astrophysics Data System (ADS)
Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.
2014-12-01
Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results demonstrate that information about the seasonality and intermittency of rainfall has the potential to improve our understanding of malaria epidemiology and improve our ability to forecast malaria outbreaks.
The Spatial Scaling of Global Rainfall Extremes
NASA Astrophysics Data System (ADS)
Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.
2013-12-01
Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
NASA Astrophysics Data System (ADS)
Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd
2017-08-01
We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chien; Yu, Hwa-Lung
2013-04-01
The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
NASA Astrophysics Data System (ADS)
Luk, K. C.; Ball, J. E.; Sharma, A.
2000-01-01
Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.
Fluvial signatures of modern and paleo orographic rainfall gradients
NASA Astrophysics Data System (ADS)
Schildgen, Taylor; Strecker, Manfred
2016-04-01
The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to arid precipitation regimes. Indeed, despite uniform lithology and uplift history, we see patterns in river steepness values and in chi plots that are consistest a rainfall gradient on the (former) windward side of the range and asymmetric precipitation across the range. We suggest that morphological aspects of the river networks in such regions are dominated by their history of changing climate. These morphologic signatures appear to persist for millions of years in NW Argentina, most likely because the transition from a wetter to a drier climate has prevented a rapid readjustment to new forcing conditions. Reference: Han, J., Gasparini, N.M., and Johnson, J.P., 2015, Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes. Earth Surf. Process. Landforms, 40(10), 1334-1350.
Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data
NASA Astrophysics Data System (ADS)
Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo
2011-02-01
Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.
NASA Astrophysics Data System (ADS)
Gaitan, S.; ten Veldhuis, J. A. E.
2015-06-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan
NASA Astrophysics Data System (ADS)
Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji
2009-11-01
In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.
NASA Astrophysics Data System (ADS)
Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.
2017-10-01
Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.
Roitberg, Elena; Shoshany, Maxim
2017-01-01
Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.
Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.
2018-03-01
The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.
Parameter Estimation for a Model of Space-Time Rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1985-08-01
In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.
Regionalization of monthly rainfall erosivity patternsin Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin
2016-10-01
One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Temporal and spatial characteristics of annual and seasonal rainfall in Malawi
NASA Astrophysics Data System (ADS)
Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu
2010-05-01
An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen
2014-05-01
Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.
Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity
NASA Astrophysics Data System (ADS)
Narulita, Ida; Ningrum, Widya
2018-02-01
Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
Increases in tropical rainfall driven by changes in frequency of organized deep convection.
Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George
2015-03-26
Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.
Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter
2017-04-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.
Mellander, Per-Erik; Gebrehiwot, Solomon G.; Gärdenäs, Annemieke I.; Bewket, Woldeamlak; Bishop, Kevin
2013-01-01
During the last 100 years the Ethiopian upper Blue Nile Basin (BNB) has undergone major changes in land use, and is now potentially facing changes in climate. Rainfall over BNB supplies over two-thirds of the water to the Nile and supports a large local population living mainly on subsistence agriculture. Regional food security is sensitive to both the amount and timing of rain and is already an important political challenge that will be further complicated if scenarios of climate change are realized. In this study a simple spatial model of the timing and duration of summer rains (Kiremt) and dry season (Bega), and annual rain over the upper BNB was established from observed data between 1952 and 2004. The model was used to explore potential impacts of climate change on these rains, using a down-scaled ECHAM5/MP1-OM scenario between 2050 and 2100. Over the observed period the amount, onset and duration of Kiremt rains and rain-free Bega days have exhibited a consistent spatial pattern. The spatially averaged annual rainfall was 1490 mm of which 93% was Kiremt rain. The average Kiremt rain and number of rainy days was higher in the southwest (322 days) and decreased towards the north (136 days). Under the 2050–2100 scenario, the annual mean rainfall is predicted to increase by 6% and maintain the same spatial pattern as in the past. A larger change in annual rainfall is expected in the southwest (ca. +130 mm) with a gradually smaller change towards the north (ca. +70 mm). Results highlight the need to account for the characteristic spatiotemporal zonation when planning water management and climate adaptation within the upper BNB. The presented simple spatial resolved models of the presence of Kiremt and annual total rainfall could be used as a baseline for such long-term planning. PMID:23869219
NASA Astrophysics Data System (ADS)
Barman, S.; Bhattacharjya, R. K.
2017-12-01
The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier
2018-02-01
As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.
The Role of Rainfall Patterns in Seasonal Malaria Transmission
NASA Astrophysics Data System (ADS)
Bomblies, A.
2010-12-01
Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.
NASA Astrophysics Data System (ADS)
Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew
2015-02-01
Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
Characterizing land surface phenology and responses to rainfall in the Sahara desert
NASA Astrophysics Data System (ADS)
Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.
2016-08-01
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.
NASA Astrophysics Data System (ADS)
Zimmermann, A.
2007-05-01
The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.
NASA Astrophysics Data System (ADS)
Mascaro, Giuseppe
2018-04-01
This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
How certain is desiccation in west African Sahel rainfall (1930-1990)?
NASA Astrophysics Data System (ADS)
Chappell, Adrian; Agnew, Clive T.
2008-04-01
Hypotheses for the late 1960s to 1990 period of desiccation (secular decrease in rainfall) in the west African Sahel (WAS) are typically tested by comparing empirical evidence or model predictions against "observations" of Sahelian rainfall. The outcomes of those comparisons can have considerable influence on the understanding of regional and global environmental systems. Inverse-distance squared area-weighted (IDW) estimates of WAS rainfall observations are commonly aggregated over space to provide temporal patterns without uncertainty. Spatial uncertainty of WAS rainfall was determined using the median approximation sequential indicator simulation. Every year (1930-1990) 300 equally probable realizations of annual summer rainfall were produced to honor station observations, match percentiles of the observed cumulative distributions and indicator variograms and perform adequately during cross validation. More than 49% of the IDW mean annual rainfall fell outside the 5th and 95th percentiles for annual rainfall realization means. The IDW means represented an extreme realization. Uncertainty in desiccation was determined by repeatedly (100,000) sampling the annual distribution of rainfall realization means and by applying Mann-Kendall nonparametric slope detection and significance testing. All of the negative gradients for the entire period were statistically significant. None of the negative gradients for the expected desiccation period were statistically significant. The results support the presence of a long-term decline in annual rainfall but demonstrate that short-term desiccation (1965-1990) cannot be detected. Estimates of uncertainty for precipitation and other climate variables in this or other regions, or across the globe, are essential for the rigorous detection of spatial patterns and time series trends.
Spatial and temporal variation of rainfall trends of Sri Lanka
NASA Astrophysics Data System (ADS)
Wickramagamage, P.
2016-08-01
This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Spatial Scaling of Global Rainfall and Flood Extremes
NASA Astrophysics Data System (ADS)
Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip
2014-05-01
Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented
Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando
2017-08-01
Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert;
2017-01-01
This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
NASA Astrophysics Data System (ADS)
Oriani, F.; Stisen, S.
2016-12-01
Rainfall amount is one of the most sensitive inputs to distributed hydrological models. Its spatial representation is of primary importance to correctly study the uncertainty of basin recharge and its propagation to the surface and underground circulation. We consider here the 10-km-grid rainfall product provided by the Danish Meteorological Institute as input to the National Water Resources Model of Denmark. Due to a drastic reduction in the rain gauge network in recent years (from approximately 500 stations in the period 1996-2006, to 250 in the period 2007-2014), the grid rainfall product, based on the interpolation of these data, is much less reliable. Consequently, the related hydrological model shows a significantly lower prediction power. To give a better estimation of spatial rainfall at the grid points far from ground measurements, we use the direct sampling technique (DS) [1], belonging to the family of multiple-point geostatistics. DS, already applied to rainfall and spatial variable estimation [2, 3], simulates a grid value by sampling a training data set where a similar data neighborhood occurs. In this way, complex statistical relations are preserved by generating similar spatial patterns to the ones found in the training data set. Using the reliable grid product from the period 1996-2006 as training data set, we first test the technique by simulating part of this data set, then we apply the technique to the grid product of the period 2007-2014, and subsequently analyzing the uncertainty propagation to the hydrological model. We show that DS can improve the reliability of the rainfall product by generating more realistic rainfall patterns, with a significant repercussion on the hydrological model. The reduction of rain gauge networks is a global phenomenon which has huge implications for hydrological model performance and the uncertainty assessment of water resources. Therefore, the presented methodology can potentially be used in many regions where historical records can act as training data. [1] G.Mariethoz et al. (2010), Water Resour. Res., 10.1029/2008WR007621.[2] F. Oriani et al. (2014), Hydrol. Earth Syst. Sc., 10.5194/hessd-11-3213-2014. [3] G. Mariethoz et al. (2012), Water Resour. Res., 10.1029/2012WR012115.
NASA Astrophysics Data System (ADS)
Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.
2009-07-01
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response
NASA Astrophysics Data System (ADS)
Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.
2015-12-01
Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.
Sombroek, W
2001-11-01
The spatial and temporal pattern of annual rainfall and the strength of the dry season within the Amazon region are poorly known. Existing rainfall maps are based on the data from full-scale, long-term meteorological stations, operated by national organizations linked to the World Meteorological Organisation, such as INMET in Brazil. Stations with 30 or more years of uninterrupted and reliable recordings are very few, considering the size of the region, and most of them are located along the major rivers. It has been suggested that rainfall conditions away from these rivers are substantially different. An analysis has been made of the records of a network of simple pluviometric sites in the Brazilian part of the region as maintained by the National Agency for Electric Energy (ANEEL) since 1970. The latter data sets were used to draw more detailed maps on annual rainfall, and on the strength of the dry season in particular; average number of consecutive months with less than 100 mm, 50 mm, and 10 mm, respectively. Also, some data were obtained on the spatial expression of El Niño events within the region. Subregional differences are large, and it is argued that they are important for the success or failure of agricultural settlements; for the hazard of large-scale fire damage of the still existing primary forest vegetation; for the functioning of this land cover as stock and sink of CO2, and for the likelihood that secondary forests on abandoned agricultural lands will have less biomass. The effects of past El Niño rainfall anomalies on the biodiversity of the natural savannahs within the forest region are discussed.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2014-05-01
Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.
Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon
2013-01-01
Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160
NASA Astrophysics Data System (ADS)
Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar
2013-04-01
The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.
NASA Astrophysics Data System (ADS)
Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc
2015-04-01
Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).
Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall
NASA Astrophysics Data System (ADS)
Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James
2010-05-01
The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.
Can we improve streamflow simulation by using higher resolution rainfall information?
NASA Astrophysics Data System (ADS)
Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles
2013-04-01
The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.
Influence of net freshwater supply on salinity in Florida Bay
Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.
2000-01-01
An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central and West Regions.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel
2013-04-01
Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. Hybrid models - mixing geostatistics and machine learning, will be applied to study spatial non-stationarity of rainfall fields. The research will include rainfalls variability mapping and probabilistic analyses of extreme events. Key words: rainfall variability, Rwanda, extreme event, model, mapping, geostatistics.
Monthly Rainfall Erosivity Assessment for Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Meusburger, Katrin; Alewell, Christine
2016-04-01
Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2013-10-01
Rainfall-induced shallow landslides may occur abruptly without distinct precursors and could span a wide range of soil mass released during a triggering event. We present a rainfall-induced landslide-triggering model for steep catchments with surfaces represented as an assembly of hydrologically and mechanically interconnected soil columns. The abruptness of failure was captured by defining local strength thresholds for mechanical bonds linking soil and bedrock and adjacent columns, whereby a failure of a single bond may initiate a chain reaction of subsequent failures, culminating in local mass release (a landslide). The catchment-scale hydromechanical landslide-triggering model (CHLT) was applied to results from two event-based landslide inventories triggered by two rainfall events in 2002 and 2005 in two nearby catchments located in the Prealps in Switzerland. Rainfall radar data, surface elevation and vegetation maps, and a soil production model for soil depth distribution were used for hydromechanical modeling of failure patterns for the two rainfall events at spatial and temporal resolutions of 2.5 m and 0.02 h, respectively. The CHLT model enabled systematic evaluation of the effects of soil type, mechanical reinforcement (soil cohesion and lateral root strength), and initial soil water content on landslide characteristics. We compared various landslide metrics and spatial distribution of simulated landslides in subcatchments with observed inventory data. Model parameters were optimized for the short but intense rainfall event in 2002, and the calibrated model was then applied for the 2005 rainfall, yielding reasonable predictions of landslide events and volumes and statistically reproducing localized landslide patterns similar to inventory data. The model provides a means for identifying local hot spots and offers insights into the dynamics of locally resolved landslide hazards in mountainous regions.
NASA Astrophysics Data System (ADS)
Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei
2017-08-01
Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.
El Niño, Rainfall, and the Shifting Geography of Cholera in Africa
NASA Astrophysics Data System (ADS)
Moore, S.; Azman, A. S.; Zaitchik, B. F.; McKay, H.; Lessler, J.
2017-12-01
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between El Niño patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa where many cholera cases and deaths are reported. To understand how ENSO affects the geographic distribution of cholera incidence in Africa, we used a hierarchical Bayesian approach to integrate over 17,000 annual observations of cholera incidence from 2000-2014 in over 3,000 unique locations of varying spatial extent, ranging from entire countries to neighborhoods. The resulting maps reflect modeled cholera incidence at a fine spatial resolution using reported counts of cholera cases, key explanatory variables, and a spatially-dependent covariance term. We then examined the potential mechanistic association between ENSO-related changes in cholera incidence and several environmental variables including rainfall. El Niño profoundly changed the annual geographic distribution of cholera in Africa from 2000-2014, shifting the burden to continental East Africa, where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall suggesting a complex relationship between rainfall and cholera incidence. Here we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño and non-El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with El Niño forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.
Impact of rainfall spatial variability on Flash Flood Forecasting
NASA Astrophysics Data System (ADS)
Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin
2014-05-01
According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Astrophysics Data System (ADS)
Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.
2016-01-01
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.
Spatially explicit shallow landslide susceptibility mapping over large areas
Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Caparrini, Francesca
2013-04-01
The need for accurate distributed hydrological modelling has constantly increased in last years for several purposes: agricultural applications, water resources management, hydrological balance at watershed scale, floods forecast. The main input for the hydrological numerical models is rainfall data that present, at the same time, a large availability of measures (in gauged regions, with respect to other micro-meteorological variables) and the most complex spatial patterns. While also in presence of densely gauged watersheds the spatial interpolation of the rainfall is a non-trivial problem, due to the spatial intermittence of the variable (especially at finer temporal scales), ungauged regions need an alternative source of rainfall data in order to perform the hydrological modelling. Such source can be constituted by the satellite-estimated rainfall fields, with reference to both geostationary and polar-orbit platforms. In this work the rainfall product obtained by the Aqua-AIRS sensor were used in order to assess the feasibility of the use of satellite-based rainfall as input for distributed hydrological modelling. The MOBIDIC (MOdello di BIlancio Distribuito e Continuo) model, developed at the Department of civil and Environmental Engineering of the University of Florence and operationally used by Tuscany Region and Umbria Region for flood prediction and management, was used for the experiments. In particular three experiments were carried on: a) hydrological simulation with the use of rain-gauges data, b) simulation with the use of satellite-only rainfall estimates, c) simulation with the combined use of the two sources of data in order to obtain an optimal estimate of the actual rainfall fields. The domain of the study was the central Italy. Several critical events occurred in the area were analyzed. A discussion of the results is provided.
Flood and Landslide Applications of High Time Resolution Satellite Rain Products
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Hong, Yang; Huffman, George J.
2006-01-01
Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.
Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2010-01-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald
2017-04-01
Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
NASA Astrophysics Data System (ADS)
Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.
2018-06-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
NASA Astrophysics Data System (ADS)
Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang
2017-07-01
Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi-arid areas. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for generating ensembles in numerical rainfall predictions using the WRF model.
Influence of different rates of rainfall in the basin of the Uruguay River
NASA Astrophysics Data System (ADS)
Bohrer, M.; Zaparoli, B.; Saldanha, C. B.
2013-04-01
In the state of Rio Grande do Sul, the rainfall pattern is fairly regular and precipitation is well distributed throughout the year. The aim of this study was to evaluate the spatial and temporal distribution of precipitation in the Uruguay River basin from the determination of homogeneous regions based on the rainfall pattern. Values of 47 meteorological stations of the ANA (National Water Agency) from 1975 to 2005 were used, and values of Pacific sea surface temperature were collected from the National Oceanic and Atmospheric Administration, which is based on observed anomalies for different regions' niños (1 + niño 2, 3 niño, niño 4, niño 3 + 4). From the analysis of the results it was found that the study region showed five homogeneous regions. Knowing the time series of each region, it was possible to verify the regional variability in precipitation, indicating which regions have values above and below the climatological normal, and how the different indexes influence the rainfall pattern in the region.
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...
2015-12-18
The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less
NASA Astrophysics Data System (ADS)
Manikandan, M.; Tamilmani, D.
2015-09-01
The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.
Spatial pulses of water inputs in deciduous and hemlock forest stands
NASA Astrophysics Data System (ADS)
Guswa, A. J.; Mussehl, M.; Pecht, A.; Spence, C.
2010-12-01
Trees intercept and redistribute precipitation in time and space. While spatial patterns of throughfall are challenging to link to plant and canopy characteristics, many studies have shown that the spatial patterns persist through time. This persistence leads to wet and dry spots under the trees, creating spatial pulses of moisture that can affect infiltration, transpiration, and biogeochemical processes. In the northeast, the invasive hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga canadensis), and replacement of hemlock forests by other species, such as birch, maple, and oak, has the potential to alter throughfall patterns and hydrologic processes. During the summers of 2009 and 2010, we measured throughfall in both hemlock and deciduous plots to assess its spatial distribution and temporal persistence. From 3 June to 25 July 2009, we measured throughfall in one hemlock and one deciduous plot over fourteen events with rainfall totaling 311 mm. From 8 June through 28 July 2010, we measured throughfall in the same two plots plus an additional hemlock stand and a young black birch stand, and rainfall totaled 148 mm over eight events. Averaged over space and time, throughfall was 81% of open precipitation in the hemlock stands, 88% in the mixed deciduous stand, and 100% in the young black birch stand. On an event basis, spatial coefficients of variation are similar among the stands and range from 11% to 49% for rain events greater than 5 mm. With the exception of very light events, coefficients of variation are insensitive to precipitation amount. Spatial patterns of throughfall persist through time, and seasonal coefficients of variation range from 13% to 33%. All stands indicate localized concentrations of water inputs, and there were individual collectors in the deciduous stands that regularly received more than twice the stand-average throughfall.
Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R
2012-01-01
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202
NASA Astrophysics Data System (ADS)
Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.
2010-09-01
To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.
Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period
NASA Astrophysics Data System (ADS)
Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele
2016-10-01
Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.
Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner
NASA Astrophysics Data System (ADS)
Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.
2007-12-01
Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu
A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall
NASA Astrophysics Data System (ADS)
Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.
2016-12-01
In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.
NASA Astrophysics Data System (ADS)
Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.
2018-05-01
Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.
NASA Astrophysics Data System (ADS)
Zhou, Y.
2017-12-01
The rainfall associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast caused numerous fatalities and divesting damage, however, few studies have been done over these regions. This study examines spatial pattern of rain fields associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast during 1998-2015 through a Geographic Information System (GIS)-based analysis of satellite-estimated rain rates. Regions of light rainfall (rain rate > 2.5 mm/h) and moderate rainfall (rain rate > 5.0 mm/h) during entire life cycle of each TC are converted into polygons and measurements are made of their area, dispersion and displacement during entire life cycle. The metric of dispersion is calculated for the entire rain field as defined by outlining light and moderate rain rates. The displacement to east and north is calculated by area weighted methods. There are three main objectives of this study. The first goal is to measure the area and spatial distribution of rain fields of TCs making landfall over the western Gulf and Caribbean Sea coastlines. We examine in which regions, the light and moderate rainfall area, dispersion and displacement of rainfall have higher values, and how they change during the entire TC life cycle. The second goal is to determine to determine which environmental conditions are associated with the spatial configuration of light and moderate rain rates. The conditions include storm intensity, motion direction and speed, total precipitable water and wind shear. Last, we determine the time that rainfall reaches land relative to the time that the storm's center makes landfall and durations of rainfall from TCs over land.
NASA Astrophysics Data System (ADS)
Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa
2018-02-01
Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.
Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
NASA Astrophysics Data System (ADS)
Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.
2017-11-01
Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895-1903; World War II Drought, 1939-1945; and the Millennium Drought, 1997-2005), we find that the historically documented Settlement Drought (1790-1793), Sturt's Drought (1809-1830) and the Goyder Line Drought (1861-1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Kwon, Hyun-Han; Kim, Hung-Soo
2015-04-01
The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, this study aims to develop a hierarchical Bayesian model based nonstationary regional frequency analysis in that spatial patterns of the design rainfall with geographical information (e.g. latitude, longitude and altitude) are explicitly incorporated. This study assumes that the parameters of Gumbel (or GEV distribution) are a function of geographical characteristics within a general linear regression framework. Posterior distribution of the regression parameters are estimated by Bayesian Markov Chain Monte Carlo (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the distributions by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Finally, comprehensive discussion on design rainfall in the context of nonstationary will be presented. KEYWORDS: Regional frequency analysis, Nonstationary, Spatial information, Bayesian Acknowledgement This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
NASA Astrophysics Data System (ADS)
Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.
2016-12-01
Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.
NASA Astrophysics Data System (ADS)
Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio
2017-04-01
Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR datasets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in the North zone and seasonally during the summer and spring months in the other zones.
NASA Astrophysics Data System (ADS)
von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani
2017-04-01
Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.
Global warming induced hybrid rainy seasons in the Sahel
NASA Astrophysics Data System (ADS)
Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald
2016-10-01
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.
Spatio-temporal trends of rainfall across Indian river basins
NASA Astrophysics Data System (ADS)
Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana
2018-04-01
Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.
NASA Astrophysics Data System (ADS)
Perez Arango, J. D.; Lintner, B. R.; Lyon, B.
2016-12-01
Although many aspects of the tropical response to ENSO are well-known, the spatial characteristics of the rainfall response to ENSO remain relatively unexplored. Moreover, in current generation climate models, the spatial signatures of the ENSO tropical teleconnection are more uncertain than other aspects of ENSO variability, such as the amplitude of rainfall anomalies. Following the approach of Lyon (2004) and Lyon and Barnston (2005), we analyze here integrated measures of the spatial extent of drought and pluvial conditions in the tropics and their relationship to ENSO in observations as well as simulations of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) with prescribed SST forcing. We compute diagnostics including the model ensemble-means and standard deviations of moderate, intermediate, and severe droughts and pluvials and the lagged correlations with respect to ENSO-based SST indices like NINO3. Overall, in a tropics-wide sense, the models generally capture the areal extent of observed droughts and pluvials and their phasing with respect to ENSO. However, at more local scales, e.g., tropical South America, the simulated metrics agree less strongly with observations, underscoring the role of errors in the spatial patterns of ENSO-induced rainfall anomalies.
NASA Technical Reports Server (NTRS)
Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake
2010-01-01
Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.
Hancock, G R; Verdon-Kidd, D; Lowry, J B C
2017-12-01
Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Birkett, Patricia J; Vanak, Abi T; Muggeo, Vito M R; Ferreira, Salamon M; Slotow, Rob
2012-01-01
The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice.
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
NASA Astrophysics Data System (ADS)
Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.
2017-04-01
The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.
NASA Astrophysics Data System (ADS)
Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.
2016-12-01
Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.
NASA Astrophysics Data System (ADS)
Hegazy, Ahmad K.; Kabiel, Hanan F.
2007-05-01
Anastatica hierochuntica L. (Brassicaceae) is a desert monocarpic annual species characterized by a topochory/ombrohydrochory type of seed dispersal. The hygrochastic nature of the dry skeletons (dead individuals) permits controlling seed dispersal by rain events. The amount of dispersed seeds is proportional to the intensity of rainfall. When light showers occur, seeds are released and remain in the site. Seeds dispersed in the vicinity of the mother or source plant (primary type of seed dispersal) resulted in clumped pattern and complicated interrelationships among size-classes of the population. Following heavy rainfall, most seeds are released and transported into small patches and shallow depressions which collect runoff water. The dead A. hierochuntica skeletons demonstrate site-dependent size-class structure, spatial pattern and spatial interrelationships in different microhabitats. Four microhabitat types have been sampled: runnels, patches and simple and compound depressions in two sites (gravel and sand). Ripley's K-function was used to analyze the spatial pattern in populations of A. hierochuntica skeletons in the study microhabitats. Clumped patterns were observed in nearly all of the study microhabitats. Populations of A. hierochuntica in the sand site were more productive than in the gravel site and usually had more individuals in the larger size-classes. In the compound-depression microhabitat, the degree of clumping decreased from the core zone to the intermediate zone then shifted into overdispersed pattern in the outer zone. At the within size-class level, the clumped pattern dominated in small size classes but shifted into random and overdispersed patterns in the larger size classes. Aggregation between small and large size-classes was not well-defined but large individuals were found closer to the smaller individuals than to those of their own class. In relation to the phytomass and the size-class structure, the outer zone of the simple depression and the outer and intermediate zones of the compound depression microhabitats were the most productive sites.
Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula
NASA Astrophysics Data System (ADS)
Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.
2012-08-01
This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.
Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia
NASA Astrophysics Data System (ADS)
Kim, Kiyoung; Park, Jongmin; Baik, Jongjin; Choi, Minha
2017-05-01
The acquisition of accurate precipitation data is essential for analyzing various hydrological phenomena and climate change. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing global precipitation characteristics. The main objective in this study is to assess precipitation products from GPM, especially the Integrated Multi-satellitE Retrievals (GPM-3IMERGHH) and the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), using gauge-based precipitation data from Far-East Asia during the pre-monsoon and monsoon seasons. Evaluation was performed by focusing on three different factors: geographical aspects, seasonal factors, and spatial distributions. In both mountainous and coastal regions, the GPM-3IMERGHH product showed better performance than the TRMM 3B42 V7, although both rainfall products showed uncertainties caused by orographic convection and the land-ocean classification algorithm. GPM-3IMERGHH performed about 8% better than TRMM 3B42 V7 during the pre-monsoon and monsoon seasons due to the improvement of loaded sensor and reinforcement in capturing convective rainfall, respectively. In depicting the spatial distribution of precipitation, GPM-3IMERGHH was more accurate than TRMM 3B42 V7 because of its enhanced spatial and temporal resolutions of 10 km and 30 min, respectively. Based on these results, GPM-3IMERGHH would be helpful for not only understanding the characteristics of precipitation with high spatial and temporal resolution, but also for estimating near-real-time runoff patterns.
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia
NASA Astrophysics Data System (ADS)
Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry
2017-04-01
Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.
NASA Astrophysics Data System (ADS)
Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.
2015-12-01
In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded more rapidly to rainfall pulses than on pole-facing slopes. Future work will focus on how observed ET and SWC patterns in relation to aridity and drainage position can be implemented into a simplistic modelling framework.
Water Budget for the Island of Kauai, Hawaii
Shade, Patricia J.
1995-01-01
A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).
Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes
NASA Astrophysics Data System (ADS)
Hoyos, Natalia; Waylen, Peter R.; Jaramillo, Álvaro
2005-11-01
The Dosquebradas Basin, in the central coffee growing region of Colombia, covers an area of 58 km 2 between 1350 and 2150 m of elevation, with an annual precipitation of 2600-3200 mm. Seasonal erosivity (EI30), as defined by the Revised Universal Soil Loss Equation (RUSLE), was calculated for 11 years of record (1987-1997) from six pluviographic stations located within 21 km of the basin. Regression models for each station indicated that storm rainfall explained 61-70% of the variation in storm erosivity. Individual storms represented as much as 25% of the annual EI30 (10,409-15,975 MJ mm ha -1 h -1 yr -1). At the seasonal scale, the explained variation increased to 75-86%. There was a significant difference between wet and dry seasons, with higher values and larger increases in erosivity per unit increase in rainfall during the wet seasons. Two pooled regression models, one for the wet and one for the dry seasons, were created and used to estimate seasonal erosivity for 10 stations with pluviometric data. Interpolation surfaces were created from seasonal values using the local polynomial algorithm. Spatial patterns of erosivity were related to (a) the regional elevation gradient, particularly important during the dry seasons, and (b) local topographic effects, particularly during the wet seasons. Our findings underscore the importance of using seasonal erosivity values and local rainfall intensity records in tropical mountainous regions characterized by marked rainfall seasonality and complex topography.
NASA Astrophysics Data System (ADS)
Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.
2015-07-01
The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
NASA Astrophysics Data System (ADS)
Bargaoui, Zoubeida Kebaili; Bardossy, Andràs
2015-10-01
The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.
Large scale pre-rain vegetation green up across Africa.
Adole, Tracy; Dash, Jadunandan; Atkinson, Peter M
2018-05-16
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall-driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of pre-rain flush effects in some parts of Africa. The spatial extent of this pre-rain green-up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to-date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa, and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of pre-rain green-up over Africa than previously reported, with pre-rain green-up being the norm rather than the exception. We also show the relative sparsity of post-rain green-up, confined largely to the Sudano-Sahel region. While the pre-rain green-up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.
2017-12-01
In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.
Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010
Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun
2016-01-01
Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...
Evaluation of Rainfall-induced Landslide Potential
NASA Astrophysics Data System (ADS)
Chen, Y. R.; Tsai, K. J.; Chen, J. W.; Chue, Y. S.; Lu, Y. C.; Lin, C. W.
2016-12-01
Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assessed rainfall-induced landslide potential and spatial distribution in some watersheds of Southern Taiwan to configure reasonable assessment process and methods for landslide potential. This study focused on the multi-year multi-phase heavy rainfall events after 2009 Typhoon Morakot and applied the analysis techniques for the classification of satellite images of research region before and after rainfall to obtain surface information and hazard log data. GIS and DEM were employed to obtain the ridge and water system and to explore characteristics of landslide distribution. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various hazard factors. Furthermore, the interaction between rainfall characteristic, slope disturbance and landslide mechanism was analyzed. The results of image classification show that the values of coefficient of agreement are at medium-high level. The agreement of landslide potential map is at around 80% level compared with historical disaster sites. The relations between landslide potential level, slope disturbance degree, and the ratio of number and area of landslide increment corresponding heavy rainfall events are positive. The ratio of landslide occurrence is proportional to the value of instability index. Moreover, for each rainfall event, the number and scale of secondary landslide sites are much more than those of new landslide sites. The greater the slope land disturbance, the more likely it is that the scale of secondary landslide become greater. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope, and elevation of the research area.
NASA Technical Reports Server (NTRS)
Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie
2010-01-01
This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.; Digirolamo, Nicolo E.
1994-01-01
A major difficulty in interpreting coarse resolution satellite data in terms of land surface characteristics is unavailability of spatially and temporally representative ground observations. Under certain conditions rainfall has been found to provide a proxy measure for surface characteristics, and thus a relation between satellite observations and rainfall might provide an indirect approach for relating satellite data to these characteristics. Relationship between rainfall over Africa and Australia and 7-year average (1979-1985) polarization difference (PD) at 37 GHz from scanning multichannel microwave radiometer (SMMR) on board the Nimbus-7 satellite is studied in this paper. Quantitative methods have been used to screen (accept or reject) PD data considering antenna pattern, geolocation uncertainty, water contamination, surface roughness, and adverse effect of drought on the relation between rainfall and surface characteristics. The rainfall data used in the present analysis are climatologic averages and also 1979-1985 averages, and no screening has been applied to this data. The PD data has been screened considering only the location of rainfall stations, without any regard to rainfall amounts. The present analysis confirms a non-linear relation between rainfall and PD published previously.
NASA Astrophysics Data System (ADS)
Singh, A.; Mohanty, U. C.; Ghosh, K.
2015-12-01
Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
NASA Astrophysics Data System (ADS)
Kenabatho, P. K.; Parida, B. P.; Moalafhi, D. B.
2017-08-01
In semi-arid catchments, hydrological modeling, water resources planning and management are hampered by insufficient spatial rainfall data which is usually derived from limited rain gauge networks. Satellite products are potential candidates to augment the limited spatial rainfall data in these areas. In this paper, the utility of the Tropical Rainfall Measuring Mission (TRMM) product (3B42 v7) is evaluated using data from the Notwane catchment in Botswana. In addition, rainfall simulations obtained from a multi-site stochastic rainfall model based on the generalised linear models (GLMs) were used as additional spatial rainfall estimates. These rainfall products were compared to the observed rainfall data obtained from six (6) rainfall stations available in the catchment for the period 1998-2012. The results show that in general the two approaches produce reasonable spatial rainfall estimates. However, the TRMM products provided better spatial rainfall estimates compared to the GLM rainfall outputs on an average, as more than 90% of the monthly rainfall variations were explained by the TRMM compared to 80% from the GLMs. However, there is still uncertainty associated mainly with limited rainfall stations, and the inability of the two products to capture unusually high rainfall values in the data sets. Despite this observation, rainfall indices computed to further assess the daily rainfall products (i.e. rainfall occurrence and amounts, length of dry spells) were adequately represented by the TRMM data compared to the GLMs. Performance from the GLMs is expected to improve with addition of further rainfall predictors. A combination of these rainfall products allows for reasonable spatial rainfall estimates and temporal (short term future) rainfall simulations from the TRMM and GLMs, respectively. The results have significant implications on water resources planning and management in the catchment which has, for the past three years, been experiencing prolonged droughts as shown by the drying of Gaborone dam (currently at a record low of 1.6% full), which is the main source of water supply to the city of Gaborone and neighbouring townships in Botswana.
NASA Astrophysics Data System (ADS)
Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye
2016-10-01
Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated precipitation in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, further CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in-situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in-situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR data sets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of precipitation geographically specially in the North zone and seasonally during the summer and spring months in the other zones.
NASA Astrophysics Data System (ADS)
Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.
2009-04-01
When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
Modelling Ecuador's rainfall distribution according to geographical characteristics.
NASA Astrophysics Data System (ADS)
Tobar, Vladimiro; Wyseure, Guido
2017-04-01
It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.
NASA Astrophysics Data System (ADS)
Gao, S.; Fang, N. Z.
2017-12-01
A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
Temporal and spatial variations of rainfall erosivity in Southern Taiwan
NASA Astrophysics Data System (ADS)
Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang
2014-05-01
Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
Patterns in woody vegetation structure across African savannas
NASA Astrophysics Data System (ADS)
Axelsson, Christoffer R.; Hanan, Niall P.
2017-07-01
Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.
NASA Astrophysics Data System (ADS)
Sooraj, K. P.; Terray, Pascal; Xavier, Prince
2016-06-01
Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.
2014-12-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
NASA Astrophysics Data System (ADS)
Tobin, Cara; Nicotina, Ludovico; Parlange, Marc B.; Berne, Alexis; Rinaldo, Andrea
2011-04-01
SummaryThis paper presents a comparative study on the mapping of temperature and precipitation fields in complex Alpine terrain. Its relevance hinges on the major impact that inadequate interpolations of meteorological forcings bear on the accuracy of hydrologic predictions regardless of the specifics of the models, particularly during flood events. Three flood events measured in the Swiss Alps are analyzed in detail to determine the interpolation methods which best capture the distribution of intense, orographically-induced precipitation. The interpolation techniques comparatively examined include: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Kriging with External Drift (KED). Geostatistical methods rely on a robust anisotropic variogram for the definition of the spatial rainfall structure. Results indicate that IDW tends to significantly underestimate rainfall volumes whereas OK and KED methods capture spatial patterns and rainfall volumes induced by storm advection. Using numerical weather forecasts and elevation data as covariates for precipitation, we provide evidence for KED to outperform the other methods. Most significantly, the use of elevation as auxiliary information in KED of temperatures demonstrates minimal errors in estimated instantaneous rainfall volumes and provides instantaneous lapse rates which better capture snow/rainfall partitioning. Incorporation of the temperature and precipitation input fields into a hydrological model used for operational management was found to provide vastly improved outputs with respect to measured discharge volumes and flood peaks, with notable implications for flood modeling.
Forecasting of monsoon heavy rains: challenges in NWP
NASA Astrophysics Data System (ADS)
Sharma, Kuldeep; Ashrit, Raghavendra; Iyengar, Gopal; Bhatla, R.; Rajagopal, E. N.
2016-05-01
Last decade has seen a tremendous improvement in the forecasting skill of numerical weather prediction (NWP) models. This is attributed to increased sophistication in NWP models, which resolve complex physical processes, advanced data assimilation, increased grid resolution and satellite observations. However, prediction of heavy rains is still a challenge since the models exhibit large error in amounts as well as spatial and temporal distribution. Two state-of-art NWP models have been investigated over the Indian monsoon region to assess their ability in predicting the heavy rainfall events. The unified model operational at National Center for Medium Range Weather Forecasting (NCUM) and the unified model operational at the Australian Bureau of Meteorology (Australian Community Climate and Earth-System Simulator -- Global (ACCESS-G)) are used in this study. The recent (JJAS 2015) Indian monsoon season witnessed 6 depressions and 2 cyclonic storms which resulted in heavy rains and flooding. The CRA method of verification allows the decomposition of forecast errors in terms of error in the rainfall volume, pattern and location. The case by case study using CRA technique shows that contribution to the rainfall errors come from pattern and displacement is large while contribution due to error in predicted rainfall volume is least.
Spatio-temporal modelling of rainfall in the Murray-Darling Basin
NASA Astrophysics Data System (ADS)
Nowak, Gen; Welsh, A. H.; O'Neill, T. J.; Feng, Lingbing
2018-02-01
The Murray-Darling Basin (MDB) is a large geographical region in southeastern Australia that contains many rivers and creeks, including Australia's three longest rivers, the Murray, the Murrumbidgee and the Darling. Understanding rainfall patterns in the MDB is very important due to the significant impact major events such as droughts and floods have on agricultural and resource productivity. We propose a model for modelling a set of monthly rainfall data obtained from stations in the MDB and for producing predictions in both the spatial and temporal dimensions. The model is a hierarchical spatio-temporal model fitted to geographical data that utilises both deterministic and data-derived components. Specifically, rainfall data at a given location are modelled as a linear combination of these deterministic and data-derived components. A key advantage of the model is that it is fitted in a step-by-step fashion, enabling appropriate empirical choices to be made at each step.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.
NASA Astrophysics Data System (ADS)
Pike, M.; Lintner, B. R.
2017-12-01
We apply two data organization methods, self-organizing maps (SOMs) and k-means clustering with linear unidimensional scaling (k-means+LUS), to identify and organize the spatial patterns inherent in daily austral summer (December-January-February or DJF) rainfall over the tropical and southern Pacific Ocean basins from Tropical Rainfall Measuring Mission (TRMM) satellite observations. For either a 2x2 SOM or k = 4 clustering of all available DJFs from 1998-2013, we find an El Niño/Southern Oscillation (ENSO) signature, with pairs of maps reflecting either El Niño or La Niña phase conditions. Within each of the ENSO-phase pairs, one map favors Intertropical Convergence Zone (ITCZ)-active conditions, in which precipitation is more intense over the ITCZ region compared to the South Pacific Convergence Zone (SPCZ) region, while the remaining one is SPCZ-active. The SPCZ-active maps show a spatial translation of the principal SPCZ diagonal consistent with the impacts of El Niño/Southern Oscillation (ENSO) or analogous low-frequency modes of variability on the SPCZ as shown in prior studies. Because of the dominant impact of ENSO, we further apply these methods separately on subsets of rainfall data for each ENSO phase. While the overall position of the SPCZ is sensitive to the phase of ENSO, within each phase, more- or less-steeply sloped SPCZ diagonals may occur. Thus, while the mean position of the SPCZ is largely controlled by ENSO phase, the distinct orientations of the SPCZ within the same ENSO phase point to higher-frequency modulation of SPCZ slope. To investigate the nature of these further, we construct composites of pressure-level winds and specific humidity from the Climate Forecast System Reanalysis (CFSR) associated with the rainfall patterns. For either SOM or kmeans-based composites, we find large-scale dynamics and moisture signatures that are consistent with the rainfall patterns and which we interpret in terms of previously described mechanisms of SPCZ variability. By progressively increasing the number of clusters, patterns reminiscent of Rossby wave propagation begin to emerge. To further investigate the connection to propagation, we examine upper air vorticity composites in relationship to the periodic enhancements of SPCZ precipitation which appear to be independent of ENSO.
Climatology of contribution-weighted tropical rain rates based on TRMM 3B42
NASA Astrophysics Data System (ADS)
Venugopal, V.; Wallace, J. M.
2016-10-01
The climatology of annual mean tropical rain rate is investigated based on merged Tropical Rainfall Measuring Mission (TRMM) 3B42 data. At 0.25° × 0.25° spatial resolution, and 3-hourly temporal resolution, half the rain is concentrated within only ˜1% of the area of the tropics at any given instant. When plotted as a function of logarithm of rain rate, the cumulative contribution of rate-ranked rain occurrences to the annual mean rainfall in each grid box is S shaped and its derivative, the contribution-weighted rain rate spectrum, is Gaussian shaped. The 50% intercept of the cumulative contribution R50 is almost equivalent to the contribution-weighted mean logarithmic rain rate RL¯ based on all significant rain occurrences. The spatial patterns of R50 and RL¯ are similar to those obtained by mapping the fraction of the annual accumulation explained by rain occurrences with rates above various specified thresholds. The geographical distribution of R50 confirms the existence of patterns noted in prior analyses based on TRMM precipitation radar data and reveals several previously unnoticed features.
An evaluation of the spatial resolution of soil moisture information
NASA Technical Reports Server (NTRS)
Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.
1981-01-01
Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.
Spatial and temporal features of heavy rainstorm events in Calabria, Southern Italy
NASA Astrophysics Data System (ADS)
Terranova, Oreste Giuseppe; Gariano, Stefano Luigi; Greco, Raffaele
2015-04-01
Heavy rainstorms often induce flash floods, shallow landslides and debris flows, which cause several damage to manmade infrastructures and loss of lives. The analysis of spatial distribution and temporal features of intense rainfall events is a fundamental step for a better understanding of the phenomena and for its possible prediction. The present study is an attempt to improve, from a statistical point of view, the understanding at sub-hourly scale of the temporal and spatial structure of intense rainfall events, by examining those that have hit Calabria (Southern Italy) in the years 1998-2008. More in detail, a considerable amount of series with high temporal detail (5 min) related to 155 sites (one rain gauge per less than 100 sq km), were analysed. First, more than 152 thousands rainfall events, separated by at least 6 hours of dry weather, were recognized. Then, less than a third (45,533) were selected, since denoted as erosive. Finally, several heavy rainstorm events (HREs) were chosen by considering the rainfall events recorded simultaneously at different rain gauges, even non-contiguous, within the region. In particular, this further selection was conducted, based on heuristic threshold values of cumulated rainfall (≥ 100 mm), maximum intensity (≥ 50 mm/h), and kinetic energy (≥ 29 MJ/ha). Therefore, 25 distinct HREs, including all the well-known catastrophic geo-hydrological events, were subjected to thorough investigation. The obtained HREs, automatically classified according to their structure in time, were analysed as regards both spatial and temporal evolution. At this end, the 25 HREs were distinguished as widespread (17) or localized (8), if the affected area is ≥ 500 sq km or < 500 sq km, respectively. In particular, the temporal storm structure was described by means of the standardized rainfall profile (rainfall amount vs. duration, in terms on cumulative percentages). Then, a 4-digit binary shape code was adopted to automatically identify the shape of the profile (Terranova and Iaquinta, 2011; Terranova and Gariano, 2014). HREs have different spatial extents and temporal patterns. A wide spatial extent of the events does not imply damage proportionally high. Generally, a peak at the beginning of the event (thunderstorm-type) characterizes localized events. On the contrary, widespread events present mixed temporal structures with peaks localized in the last half of their duration. The proposed method improves the knowledge regarding the input of rainfall-runoff watershed models. These models can benefit from design storms, based on the synthesis of recorded rainstorms, having a time structure integrated with the results of the spatial analysis. The notable size of the employed sample, including data with a very detailed time resolution that relate to several rain gauges well distributed throughout the region, gives robustness to the obtained results. References O.G. Terranova, and P. Iaquinta.: Temporal properties of rainfall events in Calabria (southern Italy). Nat. Hazards Earth Syst. Sci., 11, 751-757, 2011. O.G. Terranova, and S.L. Gariano.: Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Nat. Hazards Earth Syst. Sci., 14, 2423-2434, 2014.
NASA Astrophysics Data System (ADS)
Abouelmagd, A.; McCabe, M. F.; Lopez, O.
2013-12-01
Understanding the water resources of the Middle East and North Africa (MENA) regions presents a number of challenges due in large part to the paucity of available hydrologic data. Knowledge gaps occur not only as a result of the low density of monitoring systems, but also because where such networks might exist, they are often poorly reported or maintained. While interpreting and examining such records presents many difficulties, in-situ data represent an invaluable source with which to constrain other reporting platforms and to gain insight into the hydrological systems of the region. An in-situ network of over 300 stations that has been collecting data intermittently from 1960 to present across 13 provinces in Saudi Arabia forms the focus of this investigation. While the data is affected by an uneven spatial distribution, intermittent recordings and instrumental uncertainty, it represents the best estimate of on-ground rainfall available for many parts of the Kingdom. To provide a first-order assessment on the representativeness and fidelity of this data source, a comparison against available satellite based retrievals from the Tropical Rainfall Measuring Mission (TRMM) is undertaken. Through examining the longer in-situ time series and the more recent 15 year record of TRMM based retrievals, a rainfall climatology is being developed that can provide further insight into this critical hydrological response. Here we present the first results from this effort, examining the spatial and temporal distribution of storm events, along with an assessment of patterns and characteristics of rain features across Saudi Arabia. Understanding the capacity of TRMM to reproduce observed rainfall behavior may provide a useful tool for further bridging the hydrological knowledge gaps in the arid and data poor environments of the MENA region.
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
NASA Astrophysics Data System (ADS)
Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.
2005-12-01
Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Odry, Jean; Arnaud, Patrick
2016-04-01
The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061
Application of hierarchical clustering method to classify of space-time rainfall patterns
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
Characterizing multiscale variability of zero intermittency in spatial rainfall
NASA Technical Reports Server (NTRS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1994-01-01
In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.
Spatial dependence of extreme rainfall
NASA Astrophysics Data System (ADS)
Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri
2017-05-01
This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.
On the dust load and rainfall relationship in South Asia: an analysis from CMIP5
NASA Astrophysics Data System (ADS)
Singh, Charu; Ganguly, Dilip; Dash, S. K.
2018-01-01
This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Nabilah, Farras
2017-12-01
Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.
NASA Astrophysics Data System (ADS)
Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.
2016-12-01
Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong LST and Emissivity anomaly over the lake in comparison with surrounding lands. These anomalies should explain rainfall underestimations tendency over this lake. LST and Emissivity of lake Poopó are closest to surrounding land and the slight observed rainfall overestimation appears to be related to the very arid context of the region.
Impacts of rainfall spatial variability on hydrogeological response
NASA Astrophysics Data System (ADS)
Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.
2015-02-01
There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
2010-01-01
Background The objective was to study if an association exists between the incidence of malaria and some weather parameters in tropical Maputo province, Mozambique. Methods A Bayesian hierarchical model to malaria count data aggregated at district level over a two years period is formulated. This model made it possible to account for spatial area variations. The model was extended to include environmental covariates temperature and rainfall. Study period was then divided into two climate conditions: rainy and dry seasons. The incidences of malaria between the two seasons were compared. Parameter estimation and inference were carried out using MCMC simulation techniques based on Poisson variation. Model comparisons are made using DIC. Results For winter season, in 2001 the temperature covariate with estimated value of -8.88 shows no association to malaria incidence. In year 2002, the parameter estimation of the same covariate resulted in 5.498 of positive level of association. In both years rainfall covariate determines no dependency to malaria incidence. Malaria transmission is higher in wet season with both covariates positively related to malaria with posterior means 1.99 and 2.83 in year 2001. For 2002 only temperature is associated to malaria incidence with estimated value 2.23. Conclusions The incidence of malaria in year 2001, presents an independent spatial pattern for temperature in summer and for rainfall in winter seasons respectively. In year 2002 temperature determines the spatial pattern of malaria incidence in the region. Temperature influences the model in cases where both covariates are introduced in winter and summer season. Its influence is extended to the summer model with temperature covariate only. It is reasonable to state that with the occurrence of high temperatures, malaria incidence had certainly escalated in this year. PMID:20302674
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2017-03-01
The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.
Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests
Daniel Liptzin; Whendee L. Silver; Matteo Detto
2011-01-01
Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely...
Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils
Daniel Liptzin; Whendee L. Silver
2015-01-01
Humid tropical forest soils are characterized by warm temperatures, abundant rainfall, and high rates of biological activity that vary considerably in both space and time. These conditions, together with finely textured soils typical of humid tropical forests lead to periodic low redox conditions, even in well-drained upland environments. The relationship between redox...
Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc
2011-01-01
In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999-2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999-2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.
Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).
Chang, C L; Chiueh, P T; Lo, S L
2007-12-01
It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.
NASA Astrophysics Data System (ADS)
Prasanna, V.
2016-06-01
The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.
Rainfall statistics changes in Sicily
NASA Astrophysics Data System (ADS)
Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.
2013-07-01
Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.
Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N
2008-04-01
An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).
Landslides Are Common In The Amazon Rainforests Of SE Peru
NASA Astrophysics Data System (ADS)
Khanal, S. P.; Muttiah, R. S.; Janovec, J. P.
2005-12-01
The recent landslides in La Conchita, California, Mumbai, India, Ratnapura, Sri Lanka and Sugozu village, Turkey have dramatically illustrated prolonged rainfall on water induced change in soil shear stress. In these examples, the human footprint may have also erased or altered the natural river drainage from small to large scales. By studying patterns of landslides in natural ecosystems, government officials, policy makers, engineers, geologists and others may be better informed about likely success of prevention or amelioration programs in risk prone areas. Our study area in the Los Amigos basin in Amazon rainforests of Southeastern Peru, has recorded several hundred landslides. The area has no large human settlements. The basin is characterized by heavy rainfall, dense vegetation, river meander and uniform soils. Our objectives were: 1). Determine the spatial pattern of landslides using GIS and Remotely sensed data, 2). Model the statistical relationship between environmental variables and, 3). Evaluate influence of drainage on landscape and soil loss. GIS layers consisted of: 50cm aerial imagery, DEMs, digitized streams, soils, geology, rainfall from the TRMM satellite, and vegetation cover from the LANDSAT and MODIS sensors.
Mapping monthly rainfall erosivity in Europe.
Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos
2017-02-01
Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.
Heat and Freshwater Budgets in the Eastern Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.
2002-12-01
Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.
NASA Astrophysics Data System (ADS)
Gao, Qingjiu; Sun, Yuting; You, Qinglong
2016-12-01
The meridional location change of Meiyu rain belt and its relationship with the rainfall intensity and circulation background changes for the period 1958-2009 are examined using daily rainfall datasets from 756 stations in China, the 6-h ERA-Interim reanalyses, CRU monthly temperature and daily outgoing long-wave radiation (OLR) data from the US National Oceanic and Atmospheric Administration (NOAA). The results indicate that the Meiyu rain belt experienced a northward shift in the late 1990s in response to global warming. Moreover, the intensity of interannual and day-to-day variability of rainfall within Meiyu period has been increasing in the warming climate. The amplification of the variability within Meiyu period over the northern Yangtze-Huai River Valley (YHRV) is much larger than that of the southern YHRV. The large difference in the trends of variance within the Meiyu period between these two regions induces a spatial varying for different rainfall categories in terms of intensity. More significant positive trends in heavy and extreme heavy rainfall occur over northern YHRV compared with southern YHRV, which is a crucial indicator of changes in the rain band, despite the observation of an increase in heavy and very heavy rain events and a decrease in weak events throughout the entire YHRV. A composite of the atmospheric circulation indicates that intense northward horizontal transport and the convergence of water vapor fluxes are the immediate causes of the rain band shift. Besides, through forcing a northward extended convection over the tropics, the Pacific-Japan (P-J) pattern induces a northward expansion of western Pacific Subtropical High, leading to intensified convergence and enhanced rainfall over Northern YHRV.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut
2015-04-01
Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.
NASA Astrophysics Data System (ADS)
Rahman, Md. Rejaur; Lateh, Habibah
2017-04-01
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.
Pyro-eco-hydrologic feedbacks and catchment co-evolution in fire-prone forested uplands
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Inbar, Assaf; Lane, Patrick; Nyman, Petter
2017-04-01
The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in standing biomass, soil depth/quality, and fire regimes, even within areas with similar rainfall, geology and catenary position. These system properties have traditionally been investigated independently, however recent research in the areas of post fire hydrology and erosion, and new insights into forest structure, fuel moisture, and flammability, suggest the presence of critical co-evolutionary feedbacks between fire, soils and vegetation that may explain the observed system states. To test this hypothesis we started with a published ecohydrologic model, modifying and extending the algorithms to capture feedbacks between hyrology and fire, and between fire, vegetation and soil production and erosion. The model was parameterized and calibrated with new data from instrumented forested hillslopes across energy and rainfall gradients generated by selecting sites with a range of aspect (energy) and elevation (rainall). The calibrated model was able to reasonably replicate the observed patterns of standing biomass, water balance, fire interval, and soil depth. The catchment co-evolution/feedback modelling approach to understanding patterns of vegetation, soils and fire regimes provides a promising new paradigm for predicting the response of forested se Australian catchments to declining rainfall and increasing temperatures under climate change.
NASA Astrophysics Data System (ADS)
Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat
2017-04-01
Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.
NASA Astrophysics Data System (ADS)
Lorenzo, M. N.; Iglesias, I.; Taboada, J. J.; Gómez-Gesteira, M.; Ramos, A. M.
2009-04-01
This work assesses the possibility of doing a forecast of rainfall and the main teleconnections patterns that influences climate in Southwest Europe by using sea surface temperature anomalies (SSTA). The area under study is located in the NW Iberian Peninsula. This region has a great oceanic influence on its climate and has an important dependency of the water resources. In this way if the different SST patterns are known, the different rainfall situations can be predicted. On the other hand, the teleconnection patterns, which have strong weight on rainfall, are influenced by the SSTA of different areas. In the light of this, the aim of this study is to explore the relationship between global SSTAs, rainfall and the main teleconnection patterns influencing on Europe. The SST data with a 2.0 degree resolution was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. A monthly averaged data from 1 January 1951 through December 2006 was considered. The monthly precipitation data from 1951-2006 were obtained from the database CLIMA of the University of Santiago de Compostela with data from the Meteorological State Agency (AEMET) and the Regional Government of Galicia. The teleconnection indices were taken of the Climate Prediction Center of the NOAA between 1950 and 2006. A monthly and seasonal study was analysed considering up to three months of delay in the first case and up to four seasons of delay in the second case. The Pearson product-moment correlation coefficient r was considered to quantify linear associations between SSTA and precipitation and/or SSTA and teleconnection indices. A test for field-significance was applied considering the properties of finiteness and interdependence of the spatial grid to avoid spurious correlations. Analysing the results obtained with the global SSTA and the teleconnection indices, a great number of ocean regions with high correlations can be found. The spatial patterns show very high correlations with Indian Ocean waters which could be related with the Monsoon. Another area with high correlation is Equatorial Pacific Ocean, the area related with the ENSO phenomenon. These SSTAs could be used to forecast rainfall anomalies in spring season in the area of NW Iberian Peninsula. Results show that La Niña years almost always announces dry spring in NW Iberian Peninsula. Nevertheless, El Niño years do not preclude the appearance of wet spring. Because of the progress that has been made in its prediction, the relation between ENSO and climate in NW Iberian Peninsula is of interest with respect to potential seasonal predictability and the results can be extended to the south west of Europe. [1] Lorenzo, M.N. and J. J. Taboada (2005). Influences of atmospheric variability on freshwater input in Galician Rías in winter. Journal of Atmospheric and Ocean Science Vol 10, No 4, 377-387. [2] Lorenzo, M.N. I. Iglesias, J.J. Taboada and M. Gómez-Gesteira. Relationship between monthly rainfall in NW Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. (Submitted to International Journal of Climatology). [3] Philips, I.D. and J. Thorpe (2006): Icelandic precipitation-North Atlantic sea-surface temperature associations. International Journal of Climatology 26: 1201-1221.
Data-Driven Geospatial Visual Analytics for Real-Time Urban Flooding Decision Support
NASA Astrophysics Data System (ADS)
Liu, Y.; Hill, D.; Rodriguez, A.; Marini, L.; Kooper, R.; Myers, J.; Wu, X.; Minsker, B. S.
2009-12-01
Urban flooding is responsible for the loss of life and property as well as the release of pathogens and other pollutants into the environment. Previous studies have shown that spatial distribution of intense rainfall significantly impacts the triggering and behavior of urban flooding. However, no general purpose tools yet exist for deriving rainfall data and rendering them in real-time at the resolution of hydrologic units used for analyzing urban flooding. This paper presents a new visual analytics system that derives and renders rainfall data from the NEXRAD weather radar system at the sewershed (i.e. urban hydrologic unit) scale in real-time for a Chicago stormwater management project. We introduce a lightweight Web 2.0 approach which takes advantages of scientific workflow management and publishing capabilities developed at NCSA (National Center for Supercomputing Applications), streaming data-aware semantic content management repository, web-based Google Earth/Map and time-aware KML (Keyhole Markup Language). A collection of polygon-based virtual sensors is created from the NEXRAD Level II data using spatial, temporal and thematic transformations at the sewershed level in order to produce persistent virtual rainfall data sources for the animation. Animated color-coded rainfall map in the sewershed can be played in real-time as a movie using time-aware KML inside the web browser-based Google Earth for visually analyzing the spatiotemporal patterns of the rainfall intensity in the sewershed. Such system provides valuable information for situational awareness and improved decision support during extreme storm events in an urban area. Our further work includes incorporating additional data (such as basement flooding events data) or physics-based predictive models that can be used for more integrated data-driven decision support.
Impacts of urbanization on Indian summer monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Shastri, Hiteshri; Paul, Supantha; Ghosh, Subimal; Karmakar, Subhankar
2015-01-01
areas have different climatology with respect to their rural surroundings. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth over the last 30 years. Here we take up an observational study to understand the influence of urbanization on the characteristics of precipitation (specifically extremes) in India. We identify 42 urban regions and compare their extreme rainfall characteristics with those of surrounding rural areas. We observe that, on an overall scale, the urban signatures on extreme rainfall are not prominently and consistently visible, but they are spatially nonuniform. Zonal analysis reveals significant impacts of urbanization on extreme rainfall in central and western regions of India. An additional examination, to understand the influences of urbanization on heavy rainfall climatology, is carried with station level data using a statistical method, quantile regression. This is performed for the most populated city of India, Mumbai, in pair with a nearby nonurban area, Alibaug; both having similar geographic location. The derived extreme rainfall regression quantiles reveal the sensitivity of extreme rainfall events to the increased urbanization. Overall the study identifies the climatological zones in India, where increased urbanization affects regional rainfall pattern and extremes, with a detailed case study of Mumbai. This also calls attention to the need of further experimental investigation, for the identification of the key climatological processes, in different regions of India, affected by increased urbanization.
Application of spatial Poisson process models to air mass thunderstorm rainfall
NASA Technical Reports Server (NTRS)
Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.
1987-01-01
Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.
Interpolating precipitation and its relation to runoff and non-point source pollution.
Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L
2005-01-01
When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.
The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Richard, Sandra; Walsh, Kevin J. E.
2017-09-01
Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.
NASA Astrophysics Data System (ADS)
Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao
2018-02-01
There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.
TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes
NASA Astrophysics Data System (ADS)
Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian
2016-04-01
Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of extreme rainfall probabilities over the region. For this purpose, an ensemble of high-resolution rainfall fields is generated by stochastic simulation using space-time averaged, coarse-scale (daily, 0.25°) satellite-based rainfall inputs (TRMM 3B42/ -RT) and the high-resolution climatological information derived from the TPR as spatial disaggregation proxies. For evaluation and merging, gridded ground-based rainfall fields are generated from gauge data using sequential simulation. Satellite and ground-based ensembles are subsequently merged using an inverse error weighting scheme. The model was tested over a case study in the Colombian Andes with optional coarse-scale bias correction prior to disaggregation and merging. The resulting outputs were assessed in the context of Generalized Extreme Value theory and showed improved estimation of extreme rainfall probabilities compared to the original TMPA inputs. Initial findings using GPM-IMERG inputs are also presented.
Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil
NASA Astrophysics Data System (ADS)
Brito, Thábata T.; Oliveira-Júnior, José F.; Lyra, Gustavo B.; Gois, Givanildo; Zeri, Marcelo
2017-10-01
Spatial and temporal patterns of rainfall were identified over the state of Rio de Janeiro, southeast Brazil. The proximity to the coast and the complex topography create great diversity of rainfall over space and time. The dataset consisted of time series (1967-2013) of monthly rainfall over 100 meteorological stations. Clustering analysis made it possible to divide the stations into six groups (G1, G2, G3, G4, G5 and G6) with similar rainfall spatio-temporal patterns. A linear regression model was applied to a time series and a reference. The reference series was calculated from the average rainfall within a group, using nearby stations with higher correlation (Pearson). Based on t-test ( p < 0.05) all stations had a linear spatiotemporal trend. According to the clustering analysis, the first group (G1) contains stations located over the coastal lowlands and also over the ocean facing area of Serra do Mar (Sea ridge), a 1500 km long mountain range over the coastal Southeastern Brazil. The second group (G2) contains stations over all the state, from Serra da Mantiqueira (Mantiqueira Mountains) and Costa Verde (Green coast), to the south, up to stations in the Northern parts of the state. Group 3 (G3) contains stations in the highlands over the state (Serrana region), while group 4 (G4) has stations over the northern areas and the continent-facing side of Serra do Mar. The last two groups were formed with stations around Paraíba River (G5) and the metropolitan area of the city of Rio de Janeiro (G6). The driest months in all regions were June, July and August, while November, December and January were the rainiest months. Sharp transitions occurred when considering monthly accumulated rainfall: from January to February, and from February to March, likely associated with episodes of "veranicos", i.e., periods of 4-15 days of duration with no rainfall.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2007-08-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2009-07-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Paquet, E.
2015-12-01
The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.
Spatio-Temporal Clustering of Monitoring Network
NASA Astrophysics Data System (ADS)
Hussain, I.; Pilz, J.
2009-04-01
Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters existed. Soltani and Modarres (2006) classified the sites by using only average rainfall of sites, they did not consider time replications and spatial coordinates. Kerby et.al (2007) purposed spatial clustering method based on likelihood. They took account of the geographic locations through the variance covariance matrix. Their purposed method works like hierarchical clustering methods. Moreovere, it is inappropiriate for time replication data and could not perform well for large number of sites. Tuia.et.al (2008) used scan statistics for identifying spatio-temporal clusters for fire sequences in the Tuscany region in Italy. The scan statistics clustering method was developed by Kulldorff et al. (1997) to detect spatio-temporal clusters in epidemiology and assessing their significance. The purposed scan statistics method is used only for univariate discrete stochastic random variables. In this paper we make use of a very simple approach for spatio-temporal clustering which can create separable and homogeneous clusters. Most of the clustering methods are based on Euclidean distances. It is well known that geographic coordinates are spherical coordinates and estimating Euclidean distances from spherical coordinates is inappropriate. As a transformation from geographic coordinates to rectangular (D-plane) coordinates we use the Lambert projection method. The partition around medoids clustering method is incorporated on the data including D-plane coordinates. Ordinary kriging is taken as validity measure for the precipitation data. The kriging results for clusters are more accurate and have less variation compared to complete monitoring network precipitation data. References Casto.V.E and Murray.A.T (1997). Spatial Clustering with Data Mining with Genetic Algorithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8573 Kaufman.L and Rousseeuw.P.J (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley series of Probability and Mathematical Statistics, New York. Kulldorf.M (1997). A spatial scan statistic. Commun. Stat.-Theor. Math. 26(6), 1481-1496 Kerby. A , Marx. D, Samal. A and Adamchuck. V. (2007). Spatial Clustering Using the Likelihood Function. Seventh IEEE International Conference on Data Mining - Workshops Steinhaus.H (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801- 804 Snyder, J. P. (1987). Map Projection: A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 104-110 Sap.M.N and Awan. A.M (2005). Finding Spatio-Temporal Patterns in Climate Data Using Clustering. Proceedings of the International Conference on Cyberworlds (CW'05) Soltani.S and Modarres.R (2006). Classification of Spatio -Temporal Pattern of Rainfall in Iran: Using Hierarchical and Divisive Cluster Analysis. Journal of Spatial Hydrology Vol.6, No.2 Tuia.D, Ratle.F, Lasaponara.R, Telesca.L and Kanevski.M (2008). Scan Statistics Analysis for Forest Fire Clusters. Commun. in Nonlinear science and numerical simulation 13,1689-1694.
NASA Astrophysics Data System (ADS)
Stumpf, Felix; Goebes, Philipp; Schmidt, Karsten; Schindewolf, Marcus; Schönbrodt-Stitt, Sarah; Wadoux, Alexandre; Xiang, Wei; Scholten, Thomas
2017-04-01
Soil erosion by water outlines a major threat to the Three Gorges Reservoir Area in China. A detailed assessment of soil conservation measures requires a tool that spatially identifies sediment reallocations due to rainfall-runoff events in catchments. We applied EROSION 3D as a physically based soil erosion and deposition model in a small mountainous catchment. Generally, we aim to provide a methodological frame that facilitates the model parametrization in a data scarce environment and to identify sediment sources and deposits. We used digital soil mapping techniques to generate spatially distributed soil property information for parametrization. For model calibration and validation, we continuously monitored the catchment on rainfall, runoff and sediment yield for a period of 12 months. The model performed well for large events (sediment yield>1 Mg) with an averaged individual model error of 7.5%, while small events showed an average error of 36.2%. We focused on the large events to evaluate reallocation patterns. Erosion occurred in 11.1% of the study area with an average erosion rate of 49.9Mgha 1. Erosion mainly occurred on crop rotation areas with a spatial proportion of 69.2% for 'corn-rapeseed' and 69.1% for 'potato-cabbage'. Deposition occurred on 11.0%. Forested areas (9.7%), infrastructure (41.0%), cropland (corn-rapeseed: 13.6%, potatocabbage: 11.3%) and grassland (18.4%) were affected by deposition. Because the vast majority of annual sediment yields (80.3%) were associated to a few large erosive events, the modelling approach provides a useful tool to spatially assess soil erosion control and conservation measures.
Tao, Wanghai; Wu, Junhu; Wang, Quanjiu
2017-01-01
Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431
Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie
2013-12-01
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.
Spatial and temporal variation in ephemeral pool crustacean communities
Janette Holtz; Marie A. Simovich; Thomas Philippi
2005-01-01
Vernal pool habitat losses in San Diego County, California, are estimated at 95 percent and will increase as development continues. The majority of San Diegoâs remaining pools are located at the Marine Corps Air Station, Miramar. Crustacean communities in eight vernal pools in San Diego County were sampled over 3 years that differed in rainfall amount and pattern. In...
NASA Astrophysics Data System (ADS)
Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.
2017-12-01
Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have shown potential to improve real-time seasonal rainfall predictions in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Eugene; Pierce, Julia; Mahat, Vinod
This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with amore » heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.« less
NASA Astrophysics Data System (ADS)
Li, X.; Sang, Y. F.
2017-12-01
Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.
Rainfall pattern variability as climate change impact in The Wallacea Region
NASA Astrophysics Data System (ADS)
Pujiastuti, I.; Nurjani, E.
2018-04-01
The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
NASA Astrophysics Data System (ADS)
Crisci, A.; Vignaroli, P.; Genesio, L.; Grasso, V.; Bacci, M.; Tarchiani, V.; Capecchi, V.
2011-01-01
Food security in East Africa region essentially depends on the stability of rain-fed crops farming, which renders its society vulnerable to climatic fluctuations. These ones in Africa are most widely and directly related to rainfall. In this study, the relation between recent spatial rainfall variability and vegetation dynamics has been investigated for East Africa territories. Satellite raster products SPOT-4 Vegetation 1 km resolution (Saint, 1995) and RFE (rainfall estimates) from Famine Early Warning Systems Network (FEWS NET) are used. The survey is carried out at administrative level scale using 10-day summaries extracted from raster data for each spatial area unit thanks to specific polygonal layers. Time series covers two different periods: 1996-2009 for rainfall estimates and 1999-2009 for NDVI. The first step of the analysis has been to build for each administrative unit a coherent set of data, along the time series, suitable to be processed with state-of-art statistical tools. The analysis is based on the assumption that every structural break in vegetation dynamics could be caused by two alternative/complementary causes, namely: (i) modifications in crop farming systems (adaptation strategy) related to eventual break-shift in rainfall regime and/or (ii) other socio-economic factors. BFAST (Verbesselt et al, 2010) R package are employed to lead a comprehensive breakpoint analysis on 10-day RFE (spatial mean and standard deviation) and 10-day NDVI ones (spatial mean, mode and standard deviation). The cross-viewing of the years where significant breaks have occurred, throughout opportune GIS layering, provides an explorative interpretation of spatial climate/vegetation dynamics in the whole area. Moreover, the spatial and temporal pattern of ecosystem dynamics in response to climatic variability has been investigated using wavelet coherency by SOWAS R package (Maraun, 2007). The wavelet coherency (WCOH) is a normalized time and scale resolved measure for the relationship between two time series (Maraun and Kurths, 2004). This kind of multi-scale temporal investigation provides an explanation of break detected in time series, confirming or not their climatic linkage; results of the analysis are shown. Finally, in order to support the dissemination and sharing of information, interactive vegetation maps have been implemented with Google Earth mash-up. The maturity of Web-based GIS enables the generation of thematic maps dynamically and efficiently, with a thin/thick client or hybrid architectures. This could be a great support for the understanding environmental phenomena.
From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact
Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael
2005-01-01
General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh
2017-02-01
The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
Byrne, Patrick; Runkel, Robert L; Walton-Day, Katherine
2017-07-01
Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.
Byrne, Patrick; Runkel, Robert L.; Walton-Day, Katie
2017-01-01
Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid
2017-08-01
In this study, 60-year monthly rainfall data of Bangladesh were analysed to detect trends. Modified Mann-Kendall, Spearman's rho tests and Sen's slope estimators were applied to find the long-term annual, dry season and monthly trends. Sequential Mann-Kendall analysis was applied to detect the potential trend turning points. Spatial variations of the trends were examined using inverse distance weighting (IDW) interpolation. AutoRegressive integrated moving average (ARIMA) model was used for the country mean rainfall and for other two stations data which depicted the highest and the lowest trend in the Mann-Kendall and Spearman's rho tests. Results showed that there is no significant trend in annual rainfall pattern except increasing trends for Cox's Bazar, Khulna, Satkhira and decreasing trend for Srimagal areas. For the dry season, only Bogra area represented significant decreasing trend. Long-term monthly trends demonstrated a mixed pattern; both negative and positive changes were found from February to September. Comilla area showed a significant decreasing trend for consecutive 3 months while Rangpur and Khulna stations confirmed the significant rising trends for three different months in month-wise trends analysis. Rangpur station data gave a maximum increasing trend in April whereas a maximum decreasing trend was found in August for Comilla station. ARIMA models predict +3.26, +8.6 and -2.30 mm rainfall per year for the country, Cox's Bazar and Srimangal areas, respectively. However, all the test results and predictions revealed a good agreement among them in the study.
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
Radar-rain-gauge rainfall estimation for hydrological applications in small catchments
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio
2017-07-01
The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Roux, Hélène; Anquetin, Sandrine; Maubourguet, Marie-Madeleine; Manus, Claire; Viallet, Pierre; Dartus, Denis
2010-11-01
SummaryThis paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models.
Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades
NASA Astrophysics Data System (ADS)
Flower, Hilary; Rains, Mark; Fitz, Carl
2017-11-01
In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.
Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades.
Flower, Hilary; Rains, Mark; Fitz, Carl
2017-11-01
In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi
2016-04-01
Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness AFR, BSR and ASR. The results showed that AFR, ash thickness was reduced by 7.97% (±18.13) and 32.02 % (±37.44) in the Oak ash produced at 200 C (Oak 200) and 400 C (Oak 400), respectively. The spruce ash layer produced at 200 (Spruce 200) decreased 7.26% (±15.11) and 13.11 % (±18.40) in the ash produced at 400 C (Spruce 400). Before the second rainfall we identified that Oak 200 ash layer reduced approximately 15.95 (±15.81) while Oak 400 decreased 47.98% (±28.97). Spruce 200 ash layer was reduced by 14.52 (±14.57) and Spruce 400 by 18.68 (±17.54). In the last rainfall experiment, it was observed that Oak 200 ash layer decreased 14.88 (±14.09) and Oak 400 ash layer 44.52 (±28.85). Spruce 200 ash layer reduced 13.10 (±14.76) and spruce 400 18.33 (±21.69). The spatial pattern (assessed with Moran's I index) of the ash later of Oak 200 and Oak 400 AFR was significantly clustered (p<0.001). The spatial pattern of Spruce 200 was random (p>0.05) and Spruce 400 significantly clustered (p<0.001). Before the second rainfall, the spatial pattern of Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. The same situation was identified in Spruce 200 and Spruce 400 (p<0.001). Finally, ASR, the spatial pattern observed in Oak 200 and Oak 400 was significantly clustered at a p<0.05 and p<0.001. This was also identified in Spruce 200 and Spruce 400. Overall, the thickness decrease was higher in the ash layers produced at high temperature. The differences were mainly observed in oak ash. The dry cycle did not have an important impact on ash thickness in both species as the second rainfall cycle. The results from the Moran's I analysis showed that after the rainfall experiment the ash was mainly concentrated in a specific part of the plot. In this case it was located in the bottom of the experimental plot. Acknowledgments The authors are thankful to the Soil Physics and Land Management Group from Wageningen University, The Netherlands for provide the infrastructure to develop this work, to the RECARE project (grant agreement n° 603498), and to the COST action ES1306: Connecting European Connectivity Research for funding a STSM at the Wageningen University. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodi, M.B., Doerr, S.H., Cerda, A., Mataix-Solera, J. (2013) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192. Pereira, P., Jordan, A., Cerda, A., Martin, D. 2015a. Editorial: The role of ash in fire-affected ecosystems, Catena, 135, 337 - 379. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014)Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690
NASA Astrophysics Data System (ADS)
Rupa, Chandra; Mujumdar, Pradeep
2016-04-01
In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings algorithm within a Gibbs sampler) is used to obtain the samples of parameters from the posterior distribution of parameters. The spatial maps of return levels for specified return periods, along with the associated uncertainties, are obtained for the summer, monsoon and annual maxima rainfall. Considering various covariates, the best fit model is selected using Deviance Information Criteria. It is observed that the geographical covariates outweigh the climatological covariates for the monsoon maxima rainfall (latitude and longitude). The best covariates for summer maxima and annual maxima rainfall are mean summer precipitation and mean monsoon precipitation respectively, including elevation for both the cases. The scale invariance theory, which states that statistical properties of a process observed at various scales are governed by the same relationship, is used to disaggregate the daily rainfall to hourly scales. The spatial maps of the scale are obtained for the study area. The spatial maps of IDF relationships thus generated are useful in storm water designs, adequacy analysis and identifying the vulnerable flooding areas.
Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions
NASA Astrophysics Data System (ADS)
Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.
2010-12-01
Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.
NASA Astrophysics Data System (ADS)
Meher, J. K.; Das, L.
2017-12-01
The Western Himalayan Region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902-2005. Annual and seasonal rainfall change over WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from the coupled model intercomparison project phase 3 (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend whereas 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30-years) trend-estimates than for the longer term (99-years). GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in pre-monsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high resolution version of the MIROC3.2 model (MIROC3.2 hires) and MIROC5 at the top in CMIP3 and CMIP5 respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the model as compared to other methods.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
NASA Astrophysics Data System (ADS)
Zhao, Junhu; Yang, Liu; Feng, Guolin
2018-02-01
In this study, the simultaneous atmospheric circulation system configuration characteristics of the four rainfall patterns (FRP) over the East China during the period 1951-2015 are analyzed in order to investigate their formation mechanisms. The results confirm that the FRP possess obvious differences in the upper-level, middle-level, and lower-level troposphere. In northern China rainfall pattern (NCP) years, the East Asian subtropical westerly jet stream (EAJS) shows a northward trend, with a higher intensity than normal; the blocking high (BH) in the mid-high latitudes is inactive; and the western Pacific subtropical high (WPSH) tends to be stronger, with a location to the north of its normal position. The East Asian summer monsoon (EASM) is stronger, which promotes vapor transport to northern China, and this leads to increased rainfall. In intermediate rainfall pattern (IRP) years, the EAJS position is close to that in normal years; the BH is inactive; the WPSH tends to be weaker, with a location to the east of its normal position; and the EASM is stronger, which is conducive to increased rainfall over the Huaihe River Basin. In Yangtze River rainfall pattern (YRP) years, the circulations are found to be almost opposite in their features to those in NCP years. In South China rainfall pattern (SCP) years, the circulations are found to be almost opposite in their features to those in IRP years. This leads to increased rainfall over South China. Therefore, the different circulation system configuration characteristics lead to the different rainfall patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh
Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less
Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen
2016-07-01
The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve. Limitations and future work are also discussed.
NASA Astrophysics Data System (ADS)
Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.
2018-03-01
In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, Vinayakam
2017-04-01
Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.
NASA Astrophysics Data System (ADS)
Nytch, C. J.; Meléndez-Ackerman, E. J.
2014-12-01
There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.
Interannual rainfall variability and SOM-based circulation classification
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher
2018-01-01
Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
NASA Astrophysics Data System (ADS)
Skinner, Christopher; Peleg, Nadav; Quinn, Niall
2017-04-01
The use of Landscape Evolution Models often requires a timeseries of rainfall to drive the model. The spatial and temporal resolution of the driving data has an impact on several model outputs, including the shape of the landscape itself. Attempts to compensate for the spatiotemporal smoothing of local rainfall intensities are insufficient and may exacerbate these issues, meaning that to produce the best results the model needs to be run with data of highest spatial and temporal resolutions available. Some rainfall generators are able to produce timeseries with high spatial and temporal resolution. Observed data is used for the calibration of these generators. However, rainfall observations are highly uncertain and vary between different products (e.g. raingauges, weather radar) which may cascade through the Landscape Evolution Model. Here, we used the STREAP rainfall generator to produce high spatial (1km) and temporal (hourly) resolution ensembles of rainfall for a 50-year period, and used these to drive the CAESAR-Lisflood Landscape Evolution Model for a test catchment. Three different calibrations of STREAP were used against different products: gridded raingauge (TBR), weather radar (NIMROD), and a merged of the two. Analysis of the discharge and sediment yields from the model runs showed that the models run by STREAP calibrated by the different products were statistically significantly different, with the raingauge calibration producing 12.4 % more sediment on average over the 50-year period. The merged product produced results which were between the raingauge and radar products. The results demonstrate the importance of considering the selection of rainfall driving data on Landscape Evolution Modelling. Rainfall products are highly uncertain, different instruments will observe rainfall differently, and these uncertainties are clearly shown to cascade through the calibration of the rainfall generator and the Landscape Evolution Model. Merging raingauge and radar products is a common practise operationally, and by using features of both to calibrate the rainfall generator it is likely a more robust rainfall timeseries is produced.
Regional patterns of the change in annual-mean tropical rainfall under global warming
NASA Astrophysics Data System (ADS)
Huang, P.
2013-12-01
Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.
A process-based investigation into the impact of the Congo basin deforestation on surface climate
NASA Astrophysics Data System (ADS)
Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou
2015-06-01
The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.
NASA Astrophysics Data System (ADS)
Doss-Gollin, J.; Munoz, A. G.; Pastén, M.
2017-12-01
During the austral summer 2015-16 severe flooding displaced over 150,000 people on the Paraguay River system in Paraguay, Argentina, and Southern Brazil. This flooding was out of phase with the typical seasonal cycle of the Paraguay River, and was driven by repeated intense rainfall events in the Lower Paraguay River basin. Using a weather typing approach within a diagnostic framework, we show that enhanced moisture inflow from the low-level jet and local convergence associated with baroclinic systems favored the development of mesoscale convective activity and enhanced precipitation. The observed circulation patterns were made more likely by the cross-timescale interactions of multiple climate mechanisms including the strong, mature El Niño event and an active Madden-Julien Oscillation in phases four and five. We also perform a comparison of the rainfall predictability using seasonal forecasts from the Latin American Observatory of Climate Events (OLE2) and sub-seasonal forecasts produced by the ECMWF. We find that the model output precipitation field exhibited limited skill at lead times beyond the synoptic timescale, but that a Model Output Statistics (MOS) approach, in which the leading principal components of the observed rainfall field are regressed on the leading principal components of model-simulated rainfall fields, substantially improves spatial representation of rainfall forecasts. Possible implications for flood preparedness are briefly discussed.
NASA Astrophysics Data System (ADS)
Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.
2018-04-01
This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.
Shine, Richard; Brown, Gregory P
2008-01-27
In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.
Time scales of biogeochemical and organismal responses to individual precipitation events
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Angert, A. L.; Augustine, D. J.; Brown, C.; Dijkstra, F. A.; Derner, J. D.; Hufbauer, R. A.; Fierer, N.; Milchunas, D. G.; Moore, J. C.; Steltzer, H.; Wallenstein, M. D.
2010-12-01
In temperate grasslands, spatial and intra-annual variability in the activity of plants and microbes are structured by patterns in the precipitation regime. While the effects of total annual precipitation have been well-explored, the ecological dynamics associated with individual precipitation events have not. Rainfall events induce a short-term pulse of soil respiration that may or may not be followed by stimulation of plant photosynthetic activity and growth. Because the underlying heterotrophic and autotrophic responses are interactive, respond over unique timescales and are sensitive to precipitation magnitude, it remains difficult to predict the hydrologic effects on net CO2 exchange. To develop a better mechanistic understanding of these processes, we conducted a synthetic, multi-investigator experiment to characterize the ecosystem responses to rainfall events of different sizes. Our work was conducted on the Shortgrass Steppe (SGS) LTER site over 7 days in June 2009, using 1cm and 2cm rainfall events, with controls and each treatment replicated 5 times in 2m x 2m plots. Our observations revealed both expected responses of plant activity and soil respiration, and surprising patterns in microbial enzyme activity and soil fauna population densities. Coupled with observed dynamics in 15N partitioning and kinetics, our findings provide empirical timescales for the complex ecological interactions that underlie the ecosystem responses to rainfall events. These results can be used to inform a new generation of ecosystem simulation models to more explicitly consider the time lags and interactions of different functional groups.
NASA Astrophysics Data System (ADS)
Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.
2015-06-01
Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.
A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Jiang, X.; Ting, M.
2017-12-01
The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, we investigate the co-variability of the July-August mean rainfall across the Indian subcontinent (IS) and the TP. We found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation -that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk-Road wave train due to its link to rainfall over the northwestern IS.
New spatial and temporal indices of Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.
2018-02-01
The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2018-02-01
Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.
McEvoy, J F; Ribot, R F H; Wingfield, J C; Bennett, A T D
2017-12-14
Understanding of avian nocturnal flight comes mainly from northern hemisphere species in seasonal temperate ecosystems where nocturnal flight is often precisely timed and entrained by annual photoperiod. Here we investigate patterns of nocturnal flight in waterbirds of Australian desert ecosystems that fly considerable distances to find temporary water bodies formed from rainfall which is highly unpredictable seasonally and spatially, and when there is sufficient water, they then breed. How they perform these feats of navigation and physiology remain poorly known. Using GPS tracking of 38 satellite tagged Pacific black ducks (Anas superciliosa) in two contrasting ecosystems, before and after heavy rainfall we revealed a key role for facultative nocturnal flight in the movement ecology of this species. After large rainfall events, birds rapidly increased nocturnal flight activity in the arid aseasonal ecosystem, but not in the mesic seasonal one. Nocturnal flights occurred throughout the night in both ecosystems. Long range flights (>50 km in 2 hours) occurred almost exclusively at night; at night the distance flown was higher than during the day, birds visited more locations, and the locations were more widely dispersed. Our work reveals that heavy rainfall triggers increased nocturnal flight activity in desert populations of waterbirds.
High Resolution Monthly Oceanic Rainfall Based on Microwave Brightness Temperature Histograms
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.
2005-12-01
A statistical emission-based passive microwave retrieval algorithm has been developed by Wilheit, Chang and Chiu (1991) to estimate space/time oceanic rainfall. The algorithm has been applied to Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellites to provide monthly oceanic rainfall over 2.5ox2.5o and 5ox5o latitude-longitude boxes by the Global Precipitation Climatology Project-Polar Satellite Precipitation Data Center (GPCP-PSPDC, URL: http://gpcp-pspdc.gmu.edu/) as part of NASA's contribution to the GPCP. The algorithm has been modified and applied to the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data to produce a TRMM Level 3 standard product (3A11) over 5ox5o latitude/longitude boxes. In this study, the algorithm code is modified to retrieve rain rates at 2.5ox2.5o and 1ox1o resolutions for TMI. Two months of TMI data have been tested and the results compared with the monthly mean rain rates derived from TRMM Level 2 TMI rain profile algorithm (2A12) and the original 5ox5o data from 3A11. The rainfall pattern is very similar to the monthly average of 2A12, although the intensity is slightly higher. Details in the rain pattern, such as rain shadow due to island blocking, which were not discernible from the low resolution products, are now easily discernible. The spatial average of the higher resolution rain rates are in general slightly higher than lower resolution rain rates, although a Student-t test shows no significant difference. This high resolution product will be useful for the calibration of IR rain estimates for the production of the GPCP merge rain product.
NASA Astrophysics Data System (ADS)
Gunkel, Anne; Lange, Jens
2010-05-01
The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Tesfaye Ayehu, Getachew; Tadesse, Tsegaye; Gessesse, Berhan; Dinku, Tufa
2018-04-01
Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite rainfall estimates could be used as a sole product (e.g., in areas with no (or poor) ground observations) or through integrating with rain gauge measurements. In this study, the potential of a newly available Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) rainfall product has been evaluated in comparison to rain gauge data over the Upper Blue Nile basin in Ethiopia for the period of 2000 to 2015. In addition, the Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT 3) and the African Rainfall Climatology (ARC 2) products have been used as a benchmark and compared with CHIRPS. From the overall analysis at dekadal (10 days) and monthly temporal scale, CHIRPS exhibited better performance in comparison to TAMSAT 3 and ARC 2 products. An evaluation based on categorical/volumetric and continuous statistics indicated that CHIRPS has the greatest skills in detecting rainfall events (POD = 0.99, 1.00) and measure of volumetric rainfall (VHI = 1.00, 1.00), the highest correlation coefficients (r = 0.81, 0.88), better bias values (0.96, 0.96), and the lowest RMSE (28.45 mm dekad-1, 59.03 mm month-1) than TAMSAT 3 and ARC 2 products at dekadal and monthly analysis, respectively. CHIRPS overestimates the frequency of rainfall occurrence (up to 31 % at dekadal scale), although the volume of rainfall recorded during those events was very small. Indeed, TAMSAT 3 has shown a comparable performance with that of the CHIRPS product, mainly with regard to bias. The ARC 2 product was found to have the weakest performance underestimating rain gauge observed rainfall by about 24 %. In addition, the skill of CHIRPS is less affected by variation in elevation in comparison to TAMSAT 3 and ARC 2 products. CHIRPS resulted in average biases of 1.11, 0.99, and 1.00 at lower (< 1000 m a.s.l.), medium (1000 to 2000 m a.s.l.), and higher elevation (> 2000 m a.s.l.), respectively. Overall, the finding of this validation study shows the potentials of the CHIRPS product to be used for various operational applications such as rainfall pattern and variability study in the Upper Blue Nile basin in Ethiopia.
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin
Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.
2011-01-01
In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.
Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin
Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.
2011-01-01
In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.
Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness
Saracco, James F.; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren
2016-01-01
Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades. PMID:26863013
Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.
Saracco, James F; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren
2016-01-01
Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades.
NASA Astrophysics Data System (ADS)
Hong, Songbai; Liu, Yongwen; Piao, Shilong
2017-04-01
Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.
Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2018-03-01
Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
NASA Astrophysics Data System (ADS)
Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon
2016-04-01
Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).
NASA Astrophysics Data System (ADS)
Heo, J. H.; Ahn, H.; Kjeldsen, T. R.
2017-12-01
South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
Spatially explicit shallow landslide susceptibility mapping over large areas
Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.
Spatial Patterns and Socioecological Drivers of Dengue Fever Transmission in Queensland, Australia
Clements, Archie; Williams, Gail; Tong, Shilu; Mengersen, Kerrie
2011-01-01
Background: Understanding how socioecological factors affect the transmission of dengue fever (DF) may help to develop an early warning system of DF. Objectives: We examined the impact of socioecological factors on the transmission of DF and assessed potential predictors of locally acquired and overseas-acquired cases of DF in Queensland, Australia. Methods: We obtained data from Queensland Health on the numbers of notified DF cases by local government area (LGA) in Queensland for the period 1 January 2002 through 31 December 2005. Data on weather and the socioeconomic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive model was fitted at the LGA level to quantify the relationship between DF and socioecological factors. Results: Our estimates suggest an increase in locally acquired DF of 6% [95% credible interval (CI): 2%, 11%] and 61% (95% CI: 2%, 241%) in association with a 1-mm increase in average monthly rainfall and a 1°C increase in average monthly maximum temperature between 2002 and 2005, respectively. By contrast, overseas-acquired DF cases increased by 1% (95% CI: 0%, 3%) and by 1% (95% CI: 0%, 2%) in association with a 1-mm increase in average monthly rainfall and a 1-unit increase in average socioeconomic index, respectively. Conclusions: Socioecological factors appear to influence the transmission of DF in Queensland, but the drivers of locally acquired and overseas-acquired DF may differ. DF risk is spatially clustered with different patterns for locally acquired and overseas-acquired cases. PMID:22015625
NASA Astrophysics Data System (ADS)
Liu, J.; Gao, G.; Jiao, L.; Fu, B.
2016-12-01
The rainfall amount, density and duration were commonly used to evaluate the influences of rainfall on runoff and soil loss, which could completely express the information of rainfall, especially rainfall pattern. In this study, the peak zone of rainfall intensity (PZRI) and intra-event intermittency of rainfall (IERI) were developed to detect the effects of rainfall pattern on runoff and soil loss under different land cover types in the Loess Plateau of China. The runoff and soil loss of three vegetation types (Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis) and bare land were measured from 2012 to 2015. The PZRI was significantly correlated with average rainfall intensity (I) and maximum rainfall intensity in 30 minutes (I30). The runoff coefficient (RC) and soil loss were not significantly correlated with I, but they were significantly affected by I30 and PZRI (p<0.05). The greater value of IERI indicated more proportion of PZRI in rainfall duration, and there was positive correlation between IERI and RC. It was showed that the RC was most correlated with PZRI, whereas the correlation between soil loss and I30 was most significant under all cover types. This indicated that the changes of rainfall pattern had more effects on runoff than soil loss. In addition, the position of PZRI in the rainfall profile had an important role on runoff and soil loss. RC and soil loss under bare land was most sensitive to the occurrence period of rainfall peak, followed by Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis.
NASA Astrophysics Data System (ADS)
Loague, Keith; Kyriakidis, Phaedon C.
1997-12-01
This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.
NASA Astrophysics Data System (ADS)
Suepa, Tanita
The relationship between temporal and spatial data is considered the major advantage of remote sensing in research related to biophysical characteristics. With temporally formatted remote sensing products, it is possible to monitor environmental changes as well as global climate change through time and space by analyzing vegetation phenology. Although a number of different methods have been developed to determine the seasonal cycle using time series of vegetation indices, these methods were not designed to explore and monitor changes and trends of vegetation phenology in Southeast Asia (SEA). SEA is adversely affected by impacts of climate change, which causes considerable environmental problems, and the increase in agricultural land conversion and intensification also adds to those problems. Consequently, exploring and monitoring phenological change and environmental impacts are necessary for a better understanding of the ecosystem dynamics and environmental change in this region. This research aimed to investigate inter-annual variability of vegetation phenology and rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an enhanced visualization method for phenological information dissemination. In this research, spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. Furthermore, a web mapping application was developed to present the output of phenological and environmental analysis with interactive functions. The results revealed that satellite time-series data provided a great opportunity to study regional vegetation variability and internal climatic fluctuation. The EVI and phenological patterns varied spatially according to climate variations and human management. The overall regional mean EVI value in SEA from 2001 to 2010 has gradually decreased and phenological trends appeared to shift towards a later and slightly longer growing season. Regional vegetation dynamics over SEA exhibited patterns associated with major climate events such as El Nino in 2005. The rainy season tended to start early and end late and the length of rainy season was slightly longer. However, the amount of rainfall has decreased from 2001 to 2010. The relationship between phenology and rainfall varied among different ecosystems. Additionally, the local scale results indicated that rainfall is a dominant force of phenological changes in naturally vegetated areas and rainfed croplands, whereas human management is a key factor in heavily agricultural areas with irrigated systems. The results of estimating GHG emissions from rice fields in Thailand demonstrated that human management, climate variation, and physical geography had a significant influence on the change in GHG emissions. In addition, the complexity of spatio-temporal patterns in phenology and related variables were displayed on the visualization system with effective functions and an interactive interface. The information and knowledge in this research are useful for local and regional environmental management and for identifying mitigation strategies in the context of climate change and ecosystem dynamics in this region.
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah
2011-12-01
SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.
2016-12-01
The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.
2017-12-01
Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.
A space-time multifractal analysis on radar rainfall sequences from central Poland
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Deidda, Roberto
2014-05-01
Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia
2017-04-01
The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.
Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan
NASA Astrophysics Data System (ADS)
Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik
2018-05-01
Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.
NASA Astrophysics Data System (ADS)
Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2017-04-01
This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.
Into the complexity of coseismic landslide clustering
NASA Astrophysics Data System (ADS)
Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels
2014-05-01
Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.
NASA Astrophysics Data System (ADS)
Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René
2017-11-01
Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm
NASA Astrophysics Data System (ADS)
Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.
2017-12-01
The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.
Validation of satellite-based rainfall in Kalahari
NASA Astrophysics Data System (ADS)
Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter
2018-06-01
Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2015-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...
Changes to Sub-daily Rainfall Patterns in a Future Climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.
2012-12-01
An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
NASA Technical Reports Server (NTRS)
Turner, B. J.; Austin, G. L.
1993-01-01
Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Chung, Eun-Sung; Ismail, Tarmizi bin
2017-11-01
This study assesses the possible changes in rainfall patterns of Sarawak in Borneo Island due to climate change through statistical downscaling of General Circulation Models (GCM) projections. Available in-situ observed rainfall data were used to downscale the future rainfall from ensembles of 20 GCMs of Coupled Model Intercomparison Project phase 5 (CMIP5) for four Representative Concentration Pathways (RCP) scenarios, namely, RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Model Output Statistics (MOS) based downscaling models were developed using two data mining approaches known as Random Forest (RF) and Support Vector Machine (SVM). The SVM was found to downscale all GCMs with normalized mean square error (NMSE) of 48.2-75.2 and skill score (SS) of 0.94-0.98 during validation. The results show that the future projection of the annual rainfalls is increasing and decreasing on the region-based and catchment-based basis due to the influence of the monsoon season affecting the coast of Sarawak. The ensemble mean of GCMs projections reveals the increased and decreased mean of annual precipitations at 33 stations with the rate of 0.1% to 19.6% and one station with the rate of - 7.9% to - 3.1%, respectively under all RCP scenarios. The remaining 15 stations showed inconsistency neither increasing nor decreasing at the rate of - 5.6% to 5.2%, but mainly showing a trend of decreasing rainfall during the first period (2010-2039) followed by increasing rainfall for the period of 2070-2099.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Liwei; Qian, Yun; Zhou, Tianjun
2014-10-01
In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less
NASA Astrophysics Data System (ADS)
Hess, L.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2016-12-01
As global surface temperatures rise, the proportion of total rainfall that falls in heavy storm events is increasing in many areas, in particular the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for ecosystem nutrient losses, especially from agricultural ecosystems. We conducted a multi-year rainfall manipulation experiment to examine how more extreme rainfall patterns affect nitrogen (N) leaching from row-crop ecosystems in the upper Midwest, and to what extent tillage may moderate these effects. 5x5m rainout shelters were installed in April 2015 to impose control and extreme rainfall patterns in replicated plots under conventional tillage and no-till management at the Kellogg Biological Station LTER site. Plots exposed to the control rainfall treatment received ambient rainfall, and those exposed to the extreme rainfall treatment received the same total amount of water but applied once every 2 weeks, to simulate larger, less frequent storms. N leaching was calculated as the product of measured soil water N concentrations and modeled soil water drainage at 1.2m depth using HYDRUS-1D. Based on data to date, more N has been leached from both tilled and no-till soils exposed to the extreme rainfall treatment compared to the control rainfall treatment. Results thus far suggest that greater soil water drainage is a primary driver of this increase, and changes in within-system nitrogen cycling - such as net N mineralization and crop N uptake - may also play a role. The experiment is ongoing, and our results so far suggest that intensifying precipitation patterns may exacerbate N leaching from agricultural soils, with potentially negative consequences for receiving ground- and surface waters, as well as for farmers.
Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function
NASA Astrophysics Data System (ADS)
Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.
2016-12-01
The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.
Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Gall, H. E.; Rao, P.
2013-12-01
What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël
2018-03-01
The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of rainfall pattern on interrill erosion process
USDA-ARS?s Scientific Manuscript database
The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...
A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young
2016-09-01
The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.
From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study
NASA Astrophysics Data System (ADS)
Meron, Ehud
2018-03-01
Spatial patterns are ubiquitous in animate matter. Besides their intricate structure and beauty they generally play functional roles. The capacity of living systems to remain functional in changing environments is a question of utmost importance, but its intimate relationship to pattern formation is largely unexplored. Here, we address this relationship using dryland vegetation as a case study. Following a brief introduction to pattern-formation theory, we describe a mathematical model that captures several mechanisms of vegetation pattern formation and discuss ecological contexts that showcase different mechanisms. Using this model, we unravel the different vegetation patterns that keep dryland ecosystems viable along the rainfall gradient, identify multistability ranges where fronts separating domains of alternative stable states exist, and highlight the roles of front dynamics in mitigating or reversing desertification. The utility of satellite images in testing model predictions is discussed. An outlook on outstanding open problems concludes this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with themore » latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.« less
A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall
NASA Astrophysics Data System (ADS)
Raut, Bhupendra A.; Seed, Alan W.; Reeder, Michael J.; Jakob, Christian
2018-02-01
Distributions of rainfall with the time and space resolutions of minutes and kilometers, respectively, are often needed to drive the hydrological models used in a range of engineering, environmental, and urban design applications. The work described here is the first step in constructing a model capable of downscaling rainfall to scales of minutes and kilometers from time and space resolutions of several hours and a hundred kilometers. A multiplicative random cascade model known as the Short-Term Ensemble Prediction System is run with parameters from the radar observations at Melbourne (Australia). The orographic effects are added through multiplicative correction factor after the model is run. In the first set of model calculations, 112 significant rain events over Melbourne are simulated 100 times. Because of the stochastic nature of the cascade model, the simulations represent 100 possible realizations of the same rain event. The cascade model produces realistic spatial and temporal patterns of rainfall at 6 min and 1 km resolution (the resolution of the radar data), the statistical properties of which are in close agreement with observation. In the second set of calculations, the cascade model is run continuously for all days from January 2008 to August 2015 and the rainfall accumulations are compared at 12 locations in the greater Melbourne area. The statistical properties of the observations lie with envelope of the 100 ensemble members. The model successfully reproduces the frequency distribution of the 6 min rainfall intensities, storm durations, interarrival times, and autocorrelation function.
Reichwaldt, Elke S; Ghadouani, Anas
2012-04-01
Toxic cyanobacterial blooms represent a serious hazard to environmental and human health, and the management and restoration of affected waterbodies can be challenging. While cyanobacterial blooms are already a frequent occurrence, in the future their incidence and severity are predicted to increase due to climate change. Climate change is predicted to lead to increased temperature and changes in rainfall patterns, which will both have a significant impact on inland water resources. While many studies indicate that a higher temperature will favour cyanobacterial bloom occurrences, the impact of changed rainfall patterns is widely under-researched and therefore less understood. This review synthesizes the predicted changes in rainfall patterns and their potential impact on inland waterbodies, and identifies mechanisms that influence the occurrence and severity of toxic cyanobacterial blooms. It is predicted that there will be a higher frequency and intensity of rainfall events with longer drought periods in between. Such changes in the rainfall patterns will lead to favourable conditions for cyanobacterial growth due to a greater nutrient input into waterbodies during heavy rainfall events, combined with potentially longer periods of high evaporation and stratification. These conditions are likely to lead to an acceleration of the eutrophication process and prolonged warm periods without mixing of the water column. However, the frequent occurrence of heavy rain events can also lead to a temporary disruption of cyanobacterial blooms due to flushing and de-stratification, and large storm events have been shown to have a long-term negative effect on cyanobacterial blooms. In contrast, a higher number of small rainfall events or wet days can lead to proliferation of cyanobacteria, as they can rapidly use nutrients that are added during rainfall events, especially if stratification remains unchanged. With rainfall patterns changing, cyanobacterial toxin concentration in waterbodies is expected to increase. Firstly, this is due to accelerated eutrophication which supports higher cyanobacterial biomass. Secondly, predicted changes in rainfall patterns produce more favourable growth conditions for cyanobacteria, which is likely to increase the toxin production rate. However, the toxin concentration in inland waterbodies will also depend on the effect of rainfall events on cyanobacterial strain succession, a process that is still little understood. Low light conditions after heavy rainfall events might favour non-toxic strains, whilst inorganic nutrient input might promote the dominance of toxic strains in blooms. This review emphasizes that the impact of changes in rainfall patterns is very complex and will strongly depend on the site-specific dynamics, cyanobacterial species composition and cyanobacterial strain succession. More effort is needed to understand the relationship between rainfall patterns and cyanobacterial bloom dynamics, and in particular toxin production, to be able to assess and mediate the significant threat cyanobacterial blooms pose to our water resources. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Over, Thomas, M.; Gupta, Vijay K.
1994-01-01
Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.
NASA Astrophysics Data System (ADS)
Weiler, M.
2016-12-01
Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.
NASA Astrophysics Data System (ADS)
Prasetyo, S. Y. J.; Hartomo, K. D.
2018-01-01
The Spatial Plan of the Province of Central Java 2009-2029 identifies that most regencies or cities in Central Java Province are very vulnerable to landslide disaster. The data are also supported by other data from Indonesian Disaster Risk Index (In Indonesia called Indeks Risiko Bencana Indonesia) 2013 that suggest that some areas in Central Java Province exhibit a high risk of natural disasters. This research aims to develop an application architecture and analysis methodology in GIS to predict and to map rainfall distribution. We propose our GIS architectural application of “Multiplatform Architectural Spatiotemporal” and data analysis methods of “Triple Exponential Smoothing” and “Spatial Interpolation” as our significant scientific contribution. This research consists of 2 (two) parts, namely attribute data prediction using TES method and spatial data prediction using Inverse Distance Weight (IDW) method. We conduct our research in 19 subdistricts in the Boyolali Regency, Central Java Province, Indonesia. Our main research data is the biweekly rainfall data in 2000-2016 Climatology, Meteorology, and Geophysics Agency (In Indonesia called Badan Meteorologi, Klimatologi, dan Geofisika) of Central Java Province and Laboratory of Plant Disease Observations Region V Surakarta, Central Java. The application architecture and analytical methodology of “Multiplatform Architectural Spatiotemporal” and spatial data analysis methodology of “Triple Exponential Smoothing” and “Spatial Interpolation” can be developed as a GIS application framework of rainfall distribution for various applied fields. The comparison between the TES and IDW methods show that relative to time series prediction, spatial interpolation exhibit values that are approaching actual. Spatial interpolation is closer to actual data because computed values are the rainfall data of the nearest location or the neighbour of sample values. However, the IDW’s main weakness is that some area might exhibit the rainfall value of 0. The representation of 0 in the spatial interpolation is mainly caused by the absence of rainfall data in the nearest sample point or too far distance that produces smaller weight.
SUBPIXEL-SCALE RAINFALL VARIABILITY AND THE EFFECTS ON SEPARATION OF RADAR AND GAUGE RAINFALL ERRORS
One of the primary sources of the discrepancies between radar-based rainfall estimates and rain gauge measurements is the point-area difference, i.e., the intrinsic difference in the spatial dimensions of the rainfall fields that the respective data sets are meant to represent. ...
NASA Astrophysics Data System (ADS)
Darnius, O.; Sitorus, S.
2018-03-01
The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.
Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki
2013-01-01
Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.
NASA Astrophysics Data System (ADS)
Bauwe, Andreas; Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd
2015-04-01
Nitrate is one of the most important sources of pollution for surface waters in tile-drained agricultural areas. In order to develop appropriate management strategies to reduce nitrate losses, it is crucial to first understand the underlying hydrological processes. In this study, we used Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to analyze 212 storm events between 2004 and 2011 across three spatial scales (collector drain, ditch, and brook) to identify the controlling factors for hydrograph response characteristics and their influence on nitrate concentration patterns. Our results showed that the 212 hydrological events can be classified into six different types: summer events (28%), snow-dominated events (10%), events controlled by rainfall duration (16%), rainfall totals (8%), dry antecedent conditions (10%), and events controlled by wet antecedent conditions (14%). The relatively large number of unclassified events (15%) demonstrated the difficulty in separating event types due to mutually influencing variables. NO3-N concentrations showed a remarkably consistent pattern during the discharge events regardless of event type, with minima at the beginning, increasing concentrations at the rising limb, and maxima around peak discharge. However, the level of NO3-N concentrations varied notably among the event types. The highest average NO3-N concentrations were found for events controlled by rainfall totals (NO3-N=17.1 mg/l), events controlled by wet antecedent conditions (NO3-N=17.1 mg/l), and snowmelt (NO3-N=15.2 mg/l). Average maximum NO3-N concentrations were significantly lower during summer events (NO3-N=10.2 mg/l) and events controlled by dry antecedent conditions (NO3-N=11.7 mg/l). The results have furthermore shown that similar hydrological and biogeochemical processes determine the hydrograph and NO3-N response on storm events at various spatial scales. The management of tile-drained agricultural land to reduce NO3-N losses should focus explicitly on flow events and, more specifically, active management should preferably be conducted in the winter season for discharge events after snowmelt, after heavy rain storms and when the soil moisture conditions are wet.
NASA Astrophysics Data System (ADS)
Bauwe, Andreas; Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd
2015-12-01
Nitrate is one of the most important sources of pollution for surface waters in tile-drained agricultural areas. In order to develop appropriate management strategies to reduce nitrate losses, it is crucial to first understand the underlying hydrological processes. In this study, we used Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to analyze 212 discharge events between 2004 and 2011 across three spatial scales (68 events at the collector drain, 72 at the ditch, and 72 at the brook) to identify the controlling factors for hydrograph response characteristics and their influence on nitrate concentration patterns. Our results showed that the 212 hydrological events can be classified into six different types: summer events (28%), snow-dominated events (10%), events controlled by rainfall duration (16%), rainfall totals (8%), dry antecedent conditions (10%), and events controlled by wet antecedent conditions (14%). The relatively large number of unclassified events (15%) demonstrated the difficulty in separating event types due to mutually influencing variables. NO3-N concentrations showed a remarkably consistent pattern during the discharge events regardless of event type, with minima at the beginning, increasing concentrations at the rising limb, and maxima around peak discharge. However, the level of NO3-N concentrations varied notably among the event types. The highest average NO3-N concentrations were found for events controlled by rainfall totals (NO3-N = 17.1 mg/l), events controlled by wet antecedent conditions (NO3-N = 17.1 mg/l), and snowmelt (NO3-N = 15.2 mg/l). Average maximum NO3-N concentrations were significantly lower during summer events (NO3-N = 10.2 mg/l) and events controlled by dry antecedent conditions (NO3-N = 11.7 mg/l). The results have furthermore shown that similar hydrological and biogeochemical processes determine the hydrograph and NO3-N response on storm events at various spatial scales. The management of tile-drained agricultural land to reduce NO3-N losses should focus explicitly on flow events and, more specifically, active management should preferably be conducted in the winter season for discharge events after snowmelt, after heavy rain storms and when the soil moisture conditions are wet.
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. L.; Cohen, A. S.
2010-12-01
Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.
NASA Astrophysics Data System (ADS)
Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.
2014-05-01
Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
Evaluating the use of different precipitation datasets in simulating a flood event
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Ozkaya, A.
2016-12-01
Floods caused by convective storms in mountainous regions are sensitive to the temporal and spatial variability of rainfall. Space-time estimates of rainfall from weather radar, satellites and numerical weather prediction models can be a remedy to represent pattern of the rainfall with some inaccuracy. However, there is a strong need for evaluation of the performance and limitations of these estimates in hydrology. This study aims to provide a comparison of gauge, radar, satellite (Hydro-Estimator (HE)) and numerical weather prediciton model (Weather Research and Forecasting (WRF)) precipitation datasets during an extreme flood event (22.11.2014) lasting 40 hours in Samsun-Turkey. For this study, hourly rainfall data from 13 ground observation stations were used in the analyses. This event having a peak discharge of 541 m3/sec created flooding at the downstream of Terme Basin. Comparisons were performed in two parts. First the analysis were performed in areal and point based manner. Secondly, a semi-distributed hydrological model was used to assess the accuracy of the rainfall datasets to simulate river flows for the flood event. Kalman Filtering was used in the bias correction of radar rainfall data compared to gauge measurements. Radar, gauge, corrected radar, HE and WRF rainfall data were used as model inputs. Generally, the HE product underestimates the cumulative rainfall amounts in all stations, radar data underestimates the results in cumulative sense but keeps the consistency in the results. On the other hand, almost all stations in WRF mean statistics computations have better results compared to the HE product but worse than the radar dataset. Results in point comparisons indicated that, trend of the rainfall is captured by the radar rainfall estimation well but radar underestimates the maximum values. According to cumulative gauge value, radar underestimated the cumulative rainfall amount by % 32. Contrary to other datasets, the bias of WRF is positive due to the overestimation of rainfall forecasts. It was seen that radar-based flow predictions demonstrated good potential for successful hydrological modeling. Moreover, flow predictions obtained from bias corrected radar rainfall values produced an increase in the peak flows compared to the ones obtained from radar data itself.
A dependence modelling study of extreme rainfall in Madeira Island
NASA Astrophysics Data System (ADS)
Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra
2016-08-01
The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.
Remote rainfall sensing for landslide hazard analysis
Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay
2001-01-01
Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.
NASA Astrophysics Data System (ADS)
López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.
2015-04-01
Hydrological and soil erosion models allow mapping and quantifying spatially distributed rates of runoff depth and soil redistribution for different land uses, management and tillage practices and climatic scenarios. The different temporal and spatial [very small (< 1 km2), small (1-5 km2), medium (5-50 km2) and large catchments (50-1000 km2) or river basins (>1000 km2)] scales of numerical simulations make model selection specific to each range of scales. Additionally, the spatial resolution of the inputs is in agreement with the size of the study area. In this study, we run the GIS-based water balance DR2-2013© SAGA v1.1 model (freely downloaded as executable file at http://digital.csic.es/handle/10261/93543), in the Vandunchil stream catchment (23 km2; Ebro river basin, NE Spain). All input maps are generated at 5 x 5 m of cell size (924,573 pixels per map) allowing sound parameterization. Simulation is run at monthly scale with average climatic values. This catchment is an open hydrological system and it has a long history of human occupation, agricultural practices and water management. Numerous manmade infrastructures or landscape linear elements (LLEs: paved and unpaved trails, rock mounds in non-cultivated areas, disperse and small settlements, shallow and long drainage ditches, stone walls, small rock dams, fences and vegetation strips) appear throughout the hillslopes and streams and modify the natural runoff pathways and thus the hydrological and sediment connectivity. Rain-fed cereal fields occupy one third of the catchment area, 1% corresponds to sealed soils, and the remaining area is covered with Mediterranean forest, scrubland, pine afforestation and meadow. The parent material corresponds to Miocene sandstones and lutites and Holocene colluvial and alluvial deposits. The climate is continental Mediterranean with two humid periods, one in spring and a second in autumn that summarizes 63% of the total annual precipitation. We created a synthetic weather station (WS) from the Caseda and Uncastillo WS. The effective rainfall that reaches the soils (after canopy interception and slope correction) was 85% on average from the total rainfall depth (556 mm yr-1) and the average initial runoff, before overland flow processes, was 320 mm yr-1. The simulated effective runoff (CQeff) ranged from 0 until 29,960 mm yr-1 and the corresponding map showed the typical spatial pattern of overland flow pathways though numerous disruptions appeared along the hillslopes and the main streams due to the presence of LLEs. The total depth of annual runoff corresponds to 37.8% of the total effective rainfall (TER) and 32.0% of the total rainfall depth (TR). The remaining volume of water, the soil water content (Waa) associated with the runoff and rainfall events, meant 62.2% and 52.7% of the TER and TR, respectively. The map of the Waa presented a different spatial pattern where the land uses play a more important role than the processes of cumulative overland flow. Significant variations in the monthly values of CQeff and Waa were described. This study proves the ability of the DR2-2013© SAGA v1.1 model to simulate the hydrological response of the soils at catchment scale.
Indices of climate change based on patterns from CMIP5 models, and the range of projections
NASA Astrophysics Data System (ADS)
Watterson, I. G.
2018-05-01
Changes in temperature, precipitation, and other variables simulated by 40 current climate models for the 21st century are approximated as the product of the global mean warming and a spatial pattern of scaled changes. These fields of standardized change contain consistent features of simulated change, such as larger warming over land and increased high-latitude precipitation. However, they also differ across the ensemble, with standard deviations exceeding 0.2 for temperature over most continents, and 6% per degree for tropical precipitation. These variations are found to correlate, often strongly, with indices based on those of modes of interannual variability. Annular mode indices correlate, across the 40 models, with regional pressure changes and seasonal rainfall changes, particularly in South America and Europe. Equatorial ocean warming rates link to widespread anomalies, similarly to ENSO. A Pacific-Indian Dipole (PID) index representing the gradient in warming across the maritime continent is correlated with Australian rainfall with coefficient r of - 0.8. The component of equatorial warming orthogonal to this index, denoted EQN, has strong links to temperature and rainfall in Africa and the Americas. It is proposed that these indices and their associated patterns might be termed "modes of climate change". This is supported by an analysis of empirical orthogonal functions for the ensemble of standardized fields. Can such indices be used to help constrain projections? The relative similarity of the PID and EQN values of change, from models that have more skilful simulation of the present climate tropical pressure fields, provides a basis for this.
Unidirectional trends in annual and seasonal climate and extremes in Egypt
NASA Astrophysics Data System (ADS)
Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan
2018-05-01
The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Mirás-Avalos, J. M.; Díaz, M. C.; Paz-Ferreiro, J.
2009-04-01
Mathematical description of the spatial characteristics of soil surface microrelief still remains a challenge. Soil surface roughness parameters are required for modelling overland flow and erosion. The objective of this work was to evaluate the potential of multifractal for analyzing the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. In each plot soil surface microrelief was measured for times, with increasing amounts of natural rainfall using a pinmeter. The sampling scheme was a square grid with 25 x 25 mm point spacing and the plot size was 1350 x 1350 mm, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. All the investigated microrelief data sets exhibited, in general, scale properties, and the degree of multifractality showed wide differences between them. Multifractal analysis distinguishes two different patterns of soil surface microrelief, the first one has features close to monofractal spectra and the second clearly indicates multifractal behavior. Both, singularity spectra and generalized dimension spectra allow differentiating between soil tillage systems. In general, changes in values of multifractal parameters under simulated rainfall showed no or little correspondence with the evolution of the vertical microrelief component described by indices such as the standard deviation of the point height measurements. Multifractal parameters provided valuable information for chararacterizing the spatial features of soil surface microrelief as they were able to discriminate data sets with similar values for the vertical component of roughness.
Is the Aquarius sea surface salinity variability representative?
NASA Astrophysics Data System (ADS)
Carton, J.; Grodsky, S.
2016-12-01
The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.
NASA Astrophysics Data System (ADS)
Magalhães, André; Pereira, Luci Cajueiro Carneiro; da Costa, Rauquírio Marinho
2015-03-01
The influence of rainfall and hydrological variables on the abundance and diversity of the copepod community was investigated on a monthly basis over an annual cycle in the Taperaçu mangrove estuary. In general, the results show that there were no clear spatial or tidal patterns in any biological variables during the study period, which was related to the reduced horizontal gradient in abiotic parameters, determined mainly by the morphological and morphodynamic features of the estuary. Nevertheless, seasonal and monthly trends were recorded in both the hydrological data and the abundance of the dominant copepod species. In particular, Pseudodiaptomus marshi (6,004.6 ± 22,231.6 ind m-3; F = 5.0, p < 0.05) and Acartia tonsa (905.6 ± 2,400.9 ind m-3; F = 14.6, p < 0.001) predominated during the rainy season, whereas Acartia lilljeborgii (750.8 ± 808.3 ind m-3; U = 413.0, p < 0.01) was the most abundant species in the dry season. A distinct process of succession was observed in the relative abundance of these species, driven by the shift in the rainfall regime, which affected hydrological, in particular salinity, and consequently the abundance of copepod species. We suggest that this may be a general pattern governing the dynamics of copepod populations in the estuaries of the Brazilian Amazonian region.
Multisite rainfall downscaling and disaggregation in a tropical urban area
NASA Astrophysics Data System (ADS)
Lu, Y.; Qin, X. S.
2014-02-01
A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2011-10-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2017-04-01
Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.
NASA Astrophysics Data System (ADS)
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-02-01
Weather forecasting is an important issue in the field of meteorology all over the world. The pattern and amount of rainfall are the essential factors that affect agricultural systems. India experiences the precious Southwest monsoon season for four months from June to September. The present paper describes an empirical study for modeling and forecasting the time series of Southwest monsoon rainfall patterns in the North-East India. The Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting for this region. The study has shown that the SARIMA (0, 1, 1) (1, 0, 1)4 model is appropriate for analyzing and forecasting the future rainfall patterns. The Analysis of Means (ANOM) is a useful alternative to the analysis of variance (ANOVA) for comparing the group of treatments to study the variations and critical comparisons of rainfall patterns in different months of the season.
Nonlocal grazing in patterned ecosystems.
Siero, E
2018-01-07
Many ecosystems exhibit gapped, labyrinthine, striped or spotted patterns. Important examples are vegetation patterns in drylands: these patterns are viewed as precursors of a catastrophic transition to a degraded state. A possible source of degradation is overgrazing, but many current spatially extended models include grazing in a local linear way. In this article nonlocal grazing responses are derived, taking into account (1) how many consumers there are (demographic response) (2) where they are (aggregative response) and (3) how much they forage (functional response). Different assumptions lead to different grazing responses, the type of grazing has a large influence on how ecosystems adapt to changing environmental conditions. In dryland simulations the different types of grazing are shown to alter the desertification process driven by decreasing rainfall. A sufficiently strong aggregative response leads to the suppression of vegetation patterns, nuancing their role as generic early warning signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial and temporal synchrony in reptile population dynamics in variable environments.
Greenville, Aaron C; Wardle, Glenda M; Nguyen, Vuong; Dickman, Chris R
2016-10-01
Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.
NASA Astrophysics Data System (ADS)
van Westen, Cees; Jetten, Victor; Alkema, Dinand
2016-04-01
The aim of this study was to generate national-scale landslide susceptibility and hazard maps for four Caribbean islands, as part of the World Bank project CHARIM (Caribbean Handbook on Disaster Geoinformation Management, www.charim.net). This paper focuses on the results for the island country of Dominica, located in the Eastern part of the Caribbean, in-between Guadalupe and Martinique. The available data turned out to be insufficient to generate reliable results. We therefore generated a new database of disaster events for Dominica using all available data, making use of many different sources. We compiled landslide inventories for five recent rainfall events from the maintenance records of the Ministry of Public Works, and generated a completely new landslide inventory using multi-temporal visual image interpretation, and generated an extensive landslide database for Dominica. We analyzed the triggering conditions for landslides as far as was possible given the available data, and generated rainfall magnitude-frequency relations. We applied a method for landslide susceptibility assessment which combined bi-variate statistical analysis, that provided indications on the importance of the possible contributing factors, with an expert-based iterative weighing approach using Spatial Multi-Criteria Evaluation. The method is transparent, as the stakeholders (e.g. the engineers and planners from the four countries) and other consultants can consult the criteria trees and evaluate the standardization and weights, and make adjustments. The landslide susceptibility map was converted into a landslide hazard map using landslide density and frequencies for so called major, moderate and minor triggering events. The landslide hazard map was produced in May 2015. A major rainfall event occurred on Dominica following the passage of tropical storm Erika on 26 to 28 August 2015. An event-based landslide inventory for this event was produced by UNOSAT using very high resolution optical images, and an additional field-based inventory was obtained from BRGM. These were used to analyze the predictive capabilities of the national-scale landslide susceptibility and hazard maps. Although the spatial patterns of the landslide susceptibility map was fairly accurate in predicting the locations of the landslides triggered by the recent tropical storm, the landslide densities and related frequencies used for the hazard assessment turned out to deviate considerably taking into account the spatial landslide pattern and estimated frequency of rainfall for tropical storm Erika. This study demonstrates the importance of reconstructing landslide inventories for a variety of triggering events, and the requirement of including landslide inventory data of a major event in the hazard assessment.
NASA Astrophysics Data System (ADS)
Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.
2010-10-01
The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.
Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.
2007-01-01
Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity-duration threshold is developed by examining a number of landslide occurrences and their corresponding TMPA precipitation characteristics across the world. These early results , in combination with TRMM real-time precipitation estimation system, may form a starting point for developing an operational early warning system for rainfall-triggered landslides around the globe.
NASA Astrophysics Data System (ADS)
Adi-Kusumo, Fajar; Gunardi, Utami, Herni; Nurjani, Emilya; Sopaheluwakan, Ardhasena; Aluicius, Irwan Endrayanto; Christiawan, Titus
2016-02-01
We consider the Empirical Orthogonal Function (EOF) to study the rainfall pattern in Daerah Istimewa Yogyakarta (DIY) Province, Indonesia. The EOF is one of the important methods to study the dominant pattern of the data using dimension reduction technique. EOF makes possible to reduce the huge dimension of observed data into a smaller one without losing its significant information in order to figures the whole data. The methods is also known as Principal Components Analysis (PCA) which is conducted to find the pattern of the data. DIY Province is one of the province in Indonesia which has special characteristics related to the rainfall pattern. This province has an active volcano, karst, highlands, and also some lower area including beach. This province is bounded by the Indonesian ocean which is one of the important factor to provide the rainfall. We use at least ten years rainfall monthly data of all stations in this area and study the rainfall characteristics based on the four regencies of the province. EOF analysis is conducted to analyze data in order to decide the station groups which have similar characters.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2016-04-01
The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.
NASA Astrophysics Data System (ADS)
Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.
2012-04-01
The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network framework is lost. The new method we present is motivated by the ES and borrows ideas from signal processing where a signal is represented by its intensity and frequency. Even though the anomaly signals are not periodic, the idea of phase synchronization is not far fetched. It brings into one umbrella, the traditionally known linear Intensity correlation methods like Pearson correlation, spear-man's rank or non-linear ones like mutual information with the ES for non-linear temporal synchronization. The intensity correlation is only performed where there is a temporal synchronization. The former just measures how constant the intensity differences are. In other words, how monotonic are the two functions. The overall measure of correlation and synchronization is the product of the two coefficients. Complex networks constructed by this technique has all the advantages inherent in each of the techniques it borrows. But, it is more superior and able to uncover many known and unknown dynamical features in rainfall field or any variable of interest. The main aim of this work is to develop a method that can identify the footprints of coherent or incoherent structures within the ICTZ, the African and the Indian monsoons and the ENSO signal on the tropical African continent and their temporal evolution.
A statistical model of extreme storm rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1990-02-01
A model of storm rainfall is developed for the central Appalachian region of the United States. The model represents the temporal occurrence of major storms and, for a given storm, the spatial distribution of storm rainfall. Spatial inhomogeneities of storm rainfall and temporal inhomogeneities of the storm occurrence process are explicitly represented. The model is used for estimating recurrence intervals of extreme storms. The parameter estimation procedure developed for the model is based on the substitution principle (method of moments) and requires data from a network of rain gages. The model is applied to a 5000 mi2 (12,950 km2) region in the Valley and Ridge Province of Virginia and West Virginia.
NASA Astrophysics Data System (ADS)
Katzensteiner, H.; Bell, R.; Petschko, H.; Glade, T.
2012-04-01
The prediction and forecast of widespread landsliding for a given triggering event is an open research question. Numerous studies tried to link spatial rainfall and landslide distributions. This study focuses on analysing the relationship between intensive precipitation and rainfall-triggered shallow landslides in the year 2009 in Lower Austria. Landslide distributions were gained from the building ground register, which is maintained by the Geological Survey of Lower Austria. It contains detailed information of landslides, which were registered due to damage reports. Spatially distributed rainfall estimates were extracted from INCA (Integrated Nowcasting through Comprehensive Analysis) precipitation analysis, which is a combination of station data interpolation and radar data in a spatial resolution of 1km developed by the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria. The importance of the data source is shown by comparing rainfall data based on reference gauges, spatial interpolation and INCA-analysis for a certain storm period. INCA precipitation data can detect precipitating cells that do not hit a station but might trigger a landslide, which is an advantage over the application of reference stations for the definition of rainfall thresholds. Empirical thresholds at regional scale were determined based on rainfall-intensity and duration in the year 2009 and landslide information. These thresholds are dependent on the criteria which separate the landslide triggering and non-triggering precipitation events from each other. Different approaches for defining thresholds alter the shape of the threshold as well. A temporarily threshold I=8,8263*D^(-0.672) for extreme rainfall events in summer in Lower Austria was defined. A verification of the threshold with similar events of other years as well as following analyses based on a larger landslide database are in progress.
Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.
2017-12-01
The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
Tree rings and rainfall in the equatorial Amazon
NASA Astrophysics Data System (ADS)
Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel
2018-05-01
The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.
Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model
NASA Astrophysics Data System (ADS)
Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.
2015-12-01
Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.
Precipitation and temperature trends over central Italy (Abruzzo Region): 1951-2012
NASA Astrophysics Data System (ADS)
Scorzini, Anna Rita; Leopardi, Maurizio
2018-02-01
This study analyses spatial and temporal trends of precipitation and temperatures over Abruzzo Region (central Italy), using historical climatic data from a dense observation network. The results show a general, although not significant, negative trend in the regionally averaged annual precipitation (- 1.8% of the yearly mean rainfall per decade). This reduction is particularly evident in winter, especially at mountain stations (average - 3% change/decade). Despite this general decreasing trend, a partial rainfall recovery is observed after the 1980s. Furthermore, the majority of meteorological stations register a significant warming over the last 60 years, (mean annual temperature increase of + 0.15 °C/decade), which reflects a rise in both minimum and maximum temperatures, with the latter generally increasing at a faster rate. Spring and summer are the seasons which contribute most to the general temperature increase, in particular at high elevation sites, which exhibit a more pronounced warming (+ 0.24 °C/decade). However, this tendency has not been uniform over 1951-2012, but it has been characterised by a cooling phenomenon in the first 30 years (1951-1981), followed by an even stronger warming during the last three decades (1982-2012). Finally, correlations between the climatic variables and the dominant teleconnection patterns in the Mediterranean basin are analysed to identify the potential influence of large-scale atmospheric dynamics on observed trends in Abruzzo. The results highlight the dominant role of the East-Atlantic pattern on seasonal temperatures, while more spatially heterogeneous associations, depending on the complex topography of the region, are identified between winter precipitation and the North Atlantic Oscillation, East-Atlantic and East-Atlantic/Western Russian patterns.
NASA Astrophysics Data System (ADS)
Furl, Chad; Sharif, Hatim; ElHassan, Almoutaz; Mazari, Newfel; Burtch, Daniel; Mullendore, Gretchen
2015-04-01
Heavy rainfall and flooding associated with Tropical Storm Hermine occurred 7-8 September 2010 across central Texas resulting in several fatalities and extensive property damage. The largest rainfall totals were received near Austin, TX and immediately north where twenty four hour accumulations reached a 500 year recurrence interval. Among the most heavily impacted drainage basins was the Bull Creek watershed (58 km2) in Austin, TX where peak flows exceeded 500 m3 s-1. The large flows were produced from a narrow band of intense storm cells training over the small watershed for approximately six hours. Meteorological analysis along with Weather Research and Forecasting (WRF) model simulations indicate a quasi-stationary synoptic feature slowing the storm, orographic enhancement from the Balcones Escarpment, and moist air from the Gulf of Mexico were important features producing the locally heavy rainfall. The effect from the Balcones Escarpment was explicitly tested by conducting simulations with and without the escarpment terrain. High resolution, gauge adjusted radar collected as part of a flash flood warning system was used to describe spatiotemporal rainfall patterns and force the Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model. The radar dataset indicated the basin received nearly 300 mm of precipitation with maximum sustained intensities of 50 mm hr-1. Roughly 60 percent of storm totals fell during two periods lasting a combined five hours. Stream flow showed a highly non-linear response to two periods of intense rainfall. GSSHA simulations indicate this can be partially explained by the spatial organization of rainfall coupled with landscape retention.
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Li, Tim
2017-01-01
The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.
Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua
2017-10-01
Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of different rainfall patterns on hyporheic zone under transient conditions
NASA Astrophysics Data System (ADS)
Liu, Suning; Chui, Ting Fong May
2018-06-01
The hyporheic zone (HZ) plays an important role in stream ecology. Previous studies have mainly focused on the factors influencing the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can become transient during a storm. This study investigates the impacts of different rainfall patterns (varying in intensity and duration) on the HZ under transient conditions. A two-dimensional numerical model of a 10-m long and 2-m deep domain is developed, in which the streambed consists of a series of dunes. Brinkman-Darcy and Navier-Stokes equations are respectively solved for groundwater and surface water, and velocity and pressure are coupled at the interface (i.e., the streambed surface). To compare the results under different transient conditions, this study proposes two indicators, i.e., the influential time (IT, the time required for the HZ to return to its initial state once it starts to change) and the influential depth (ID, the maximum increment in the HZ depth). To detect the extent to which the HZ undergoes significant spatial changes, moving split-window and inflection point tests are conducted. The results indicate that rainfall intensity (RI) and rainfall duration (RD) both display logarithmic relationships with the IT and ID with high coefficients of determination, but only between certain lower and upper thresholds of the RI and RD. Moreover, the distributions of the IT and ID as a function of the RI and RD are mapped using the surface spline and kriging interpolation methods to facilitate future prediction of the IT and ID. In addition, it is observed that the IT has a linear negative correlation with the groundwater response while the ID is not affected by different groundwater responses. All of the derived relationships can be used to predict the impacts of a future rainfall event on the HZ.
Merging gauge and satellite rainfall with specification of associated uncertainty across Australia
NASA Astrophysics Data System (ADS)
Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish
2013-08-01
Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.
Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past
NASA Astrophysics Data System (ADS)
Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.
2016-12-01
The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.
NASA Astrophysics Data System (ADS)
Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad
2018-04-01
Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.
NASA Astrophysics Data System (ADS)
Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk
2009-01-01
SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.
NASA Astrophysics Data System (ADS)
Nobert, Joel; Mugo, Margaret; Gadain, Hussein
Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.
Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2016-12-01
The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.
TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization
NASA Astrophysics Data System (ADS)
Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.
2015-06-01
The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.
Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region
NASA Astrophysics Data System (ADS)
Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg
2015-04-01
Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.
Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong
2012-01-01
Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.
The assessment of Global Precipitation Measurement estimates over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.
2017-08-01
Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.
Fire patterns in the Amazonian biome
NASA Astrophysics Data System (ADS)
Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan
2010-05-01
This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).
NASA Astrophysics Data System (ADS)
Yoo, Jung-Moon; Carton, James A.
1988-10-01
We develop a Spatially dependent formula to estimate rainfall from satellite-derived outgoing longwave radiation (OLR) data and the height of the base of the trade-wind inversion. This formula has been constructed by comparing rainfall records from twelve islands in the tropical Atlantic with 11 years of OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the cast are included.The climatological winter and summer rainfall derived from the above formula concurs with ship observations described by Dorman and Bourke. However, during the spring and fall, OLR-derived rainfall is higher than observations by 2-4 mm day1 in the intertropical convergence zone. The largest discrepancy occurs during the fall in the region west of 28°W. Interannual anomalies of rainfall computed using this technique are large enough to cause potentially important changes in ocean surface salinity.
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
NASA Astrophysics Data System (ADS)
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
The stochastic runoff-runon process: Extending its analysis to a finite hillslope
NASA Astrophysics Data System (ADS)
Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.
2016-10-01
The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
NASA Astrophysics Data System (ADS)
Olivera, F.; Choi, J.; Socolofsky, S.
2006-12-01
Watershed responses to storm events are strongly affected by the spatial and temporal patterns of rainfall; that is, the spatial distribution of the precipitation intensity and its evolution over time. Although real storms are moving entities with non-uniform intensities in both space and time, hydrological applications often synthesize these attributes by assuming storms that are uniformly distributed and have variable intensity according to a pre-defined hyetograph shape. As one considers watersheds of greater size, the non-uniformity of rainfall becomes more important, because a storm may not cover the watershed's entire area and may not stay in the watershed for its full duration. In order to incorporate parameters such as storm area, propagation velocity and direction, and intensity distribution in the definition of synthetic storms, it is necessary to determine these storm characteristics from spatially distributed precipitation data. To date, most algorithms for identifying and tracking storms have been applied to short time-step radar reflectivity data (i.e., 15 minutes or less), where storm features are captured in an effectively synoptic manner. For the entire United States, however, the most reliable distributed precipitation data are the one-hour accumulated 4 km × 4 km gridded NEXRAD data of the U.S. National Weather Service (NWS) (NWS 2005. The one-hour aggregation level of the data, though, makes it more difficult to identify and track storms than when using sequences of synoptic radar reflectivity data, because storms can traverse over a number of NEXRAD cells and change size and shape appreciably between consecutive data maps. In this paper, we present a methodology to overcome the identification and tracking difficulties and to extract the characteristics of moving storms (e.g. size, propagation velocity and direction, and intensity distribution) from one-hour accumulated distributed rainfall data. The algorithm uses Gaussian Mixture Models (GMM) for storm identification and image processing for storm tracking. The method has been successfully applied to Brazos County in Texas using the 2003 Multi-sensor Precipitation Estimator (MPE) NEXRAD rainfall data.
Trends and spatial distribution of annual and seasonal rainfall in Ethiopia
Cheung, W.H.; Senay, G.B.; Singh, A.
2008-01-01
As a country whose economy is heavily dependent on low-productivity rainfed agriculture, rainfall trends are often cited as one of the more important factors in explaining various socio-economic problems such as food insecurity. Therefore, in order to help policymakers and developers make more informed decisions, this study investigated the temporal dynamics of rainfall and its spatial distribution within Ethiopia. Changes in rainfall were examined using data from 134 stations in 13 watersheds between 1960 and 2002. The variability and trends in seasonal and annual rainfall were analysed at the watershed scale with data (1) from all available years, and (2) excluding years that lacked observations from at least 25% of the gauges. Similar analyses were also performed at the gauge, regional, and national levels. By regressing annual watershed rainfall on time, results from the one-sample t-test show no significant changes in rainfall for any of the watersheds examined. However, in our regressions of seasonal rainfall averages against time, we found a significant decline in June to September rainfall (i.e. Kiremt) for the Baro-Akobo, Omo-Ghibe, Rift Valley, and Southern Blue Nile watersheds located in the southwestern and central parts of Ethiopia. While the gauge level analysis showed that certain gauge stations experienced recent changes in rainfall, these trends are not necessarily reflected at the watershed or regional levels.
Requirements for future development of small scale rainfall simulators
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Ries, Johannes B.; Seeger, Manuel
2013-04-01
Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. Following the outcomes of the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" and the "International Rainfall Simulator Workshop 2011" in Trier, the necessity for further technical improvements of simulators and strategies towards an adaption of designs and methods becomes obvious. Uniform measurements of artificially generated rainfall and comparative measurements on a prepared bare fallow with rainfall simulators used by European research groups showed limitations of the comparability of the results. The following requirements, essential for small portable rainfall simulators, were identified: (I) Low and efficient water consumption for use in areas with water shortage, (II) easy handling and control of test conditions, (III) homogeneous spatial rainfall distribution, (IV) best possible drop spectrum (physically), (V) reproducibility and knowledge of spatial distribution and drop spectrum, (VI) easy and fast training of operators to obtain reproducible experiments and (VII) good mobility and easy installation for use in remote areas and in regions where highly erosive rainfall events are rare or irregular. The presentation discusses possibilities for a common use of identical plot designs, rainfall intensities and nozzles.
He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo
2012-05-01
Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.
NASA Astrophysics Data System (ADS)
Epps, T.
2015-12-01
Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2012-03-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS
NASA Technical Reports Server (NTRS)
Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer
2016-01-01
Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.
Tales from the Paleoclimate Underground: Lessons Learned from Reconstructing Extreme Events
NASA Astrophysics Data System (ADS)
Frappier, A. E.
2017-12-01
Tracing patterns of paleoclimate extremes over the past two millennia is becoming ever more important in the effort to understand and predict costly weather hazards and their varied societal impacts. I present three paleoclimate vignettes from the past ten years of different paleotempestology projects I have worked on closely, illustrating our collective challenges and productive pathways in reconstructing rainfall extremes: temporal, spatial, and combining information from disparate proxies. Finally, I aim to share new results from modeling multiple extremes and hazards in Yucatan, a climate change hotspot.
NASA Astrophysics Data System (ADS)
Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia
2013-03-01
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m-3; Mérida 53 spores m-3 and Málaga 35 spores m-3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.
Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia
2013-03-01
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m(-3); Mérida 53 spores m(-3) and Málaga 35 spores m(-3)) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.
NASA Astrophysics Data System (ADS)
Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.
2017-11-01
Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.
The Eastern Pacific ITCZ during the Boreal Spring
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.; Sobel, Adam H.
2004-01-01
The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.
Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall
NASA Astrophysics Data System (ADS)
Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern
2017-04-01
Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation, accretionary pellet formation, rapid surface sealing and infiltration-excess overland flow generation whilst a coarse surface layer demonstrated exclusively rainsplash-driven particle detachment throughout the rainfall simulations. This experimental protocol has the potential to quantitatively examine the effects of a variety of individual parameters in RTL initiation under controlled conditions.
Stan Lebow
2014-01-01
There is a need to develop improved accelerated test methods for evaluating the leaching of wood preservatives from treated wood exposed to precipitation. In this study the effects of rate of rainfall and length of intervals between rainfall events on leaching was evaluated by exposing specimens to varying patterns of simulated rainfall under controlled laboratory...
Missonnier, Hélène; Jacques, Alban; Bang, JiSu; Daydé, Jean; Mirleau-Thebaud, Virginie
2017-01-01
In breeding for disease resistance, the magnitude of the genetic response is difficult to appreciate because of environmental stresses that interact with the plant genotype. We discuss herein the fundamental problems in breeding for disease resistance with the aim being to better understand the interactions between plant, pathogen, and spatial patterns. The goal of this study is to fine tune breeding decisions by incorporating spatial patterns of such biotic factors into the definition of disease-occurrence probability. We use a preexisting statistics method based on geostatistics for a descriptive analysis of biotic factors for trial quality control. The plant-population structure used for spatial-pattern analysis consists of two F1-hybrid cultivars, defined as symptomatic and asymptomatic controls with respect to the studied pathogen. The controls are inserted at specific locations to establish a grid arrangement over the field that include the F1-hybrid cultivars under evaluation. We characterize the spatial structure of the pathogen population and of the general plant environment—with undetermined but present abiotic constraints—not by using direct notation such as flower time or rainfall but by using plant behavior (i.e., leaf symptom severity, indirect notation). The analysis indicates areas with higher or lower risk of disease and reveals a correlation between the symptomatic control and the effective level of disease for sunflowers. This result suggests that the pathogen and/or abiotic components are major factors in determining the probability that a plant develops the disease, which could lead to a misinterpretation of plant resistance. PMID:28817567
Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M
2013-11-01
Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.
Missonnier, Hélène; Jacques, Alban; Bang, JiSu; Daydé, Jean; Mirleau-Thebaud, Virginie
2017-01-01
In breeding for disease resistance, the magnitude of the genetic response is difficult to appreciate because of environmental stresses that interact with the plant genotype. We discuss herein the fundamental problems in breeding for disease resistance with the aim being to better understand the interactions between plant, pathogen, and spatial patterns. The goal of this study is to fine tune breeding decisions by incorporating spatial patterns of such biotic factors into the definition of disease-occurrence probability. We use a preexisting statistics method based on geostatistics for a descriptive analysis of biotic factors for trial quality control. The plant-population structure used for spatial-pattern analysis consists of two F1-hybrid cultivars, defined as symptomatic and asymptomatic controls with respect to the studied pathogen. The controls are inserted at specific locations to establish a grid arrangement over the field that include the F1-hybrid cultivars under evaluation. We characterize the spatial structure of the pathogen population and of the general plant environment-with undetermined but present abiotic constraints-not by using direct notation such as flower time or rainfall but by using plant behavior (i.e., leaf symptom severity, indirect notation). The analysis indicates areas with higher or lower risk of disease and reveals a correlation between the symptomatic control and the effective level of disease for sunflowers. This result suggests that the pathogen and/or abiotic components are major factors in determining the probability that a plant develops the disease, which could lead to a misinterpretation of plant resistance.
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
Spatial extremes modeling applied to extreme precipitation data in the state of Paraná
NASA Astrophysics Data System (ADS)
Olinda, R. A.; Blanchet, J.; dos Santos, C. A. C.; Ozaki, V. A.; Ribeiro, P. J., Jr.
2014-11-01
Most of the mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well developed, the extension of these tools to model spatial extremes includes an area of very active research nowadays. A natural approach to such a modeling is the theory of extreme spatial and the max-stable process, characterized by the extension of infinite dimensions of multivariate extreme value theory, and making it possible then to incorporate the existing correlation functions in geostatistics and therefore verify the extremal dependence by means of the extreme coefficient and the Madogram. This work describes the application of such processes in modeling the spatial maximum dependence of maximum monthly rainfall from the state of Paraná, based on historical series observed in weather stations. The proposed models consider the Euclidean space and a transformation referred to as space weather, which may explain the presence of directional effects resulting from synoptic weather patterns. This method is based on the theorem proposed for de Haan and on the models of Smith and Schlather. The isotropic and anisotropic behavior of these models is also verified via Monte Carlo simulation. Estimates are made through pairwise likelihood maximum and the models are compared using the Takeuchi Information Criterion. By modeling the dependence of spatial maxima, applied to maximum monthly rainfall data from the state of Paraná, it was possible to identify directional effects resulting from meteorological phenomena, which, in turn, are important for proper management of risks and environmental disasters in countries with its economy heavily dependent on agribusiness.
HD Hydrological modelling at catchment scale using rainfall radar observations
NASA Astrophysics Data System (ADS)
Ciampalini
2017-04-01
Hydrological simulations at catchment scale repose on the quality and data availability both for soil and rainfall data. Soil data are quite easy to be collected, although their quality depends on the resources devoted to this task, rainfall data observations, instead, need further effort because of their spatiotemporal variability. Rainfalls are normally recorded with rain gauges located in the catchment, they can provide detailed temporal data, but, the representativeness is limited to the point where the data are collected. Combining different gauges in space can provide a better representation of the rainfall event but the spatialization is often the main obstacle to obtain data close to the reality. Since several years, radar observations overcome this gap providing continuous data registration, that, when properly calibrated, can offer an adequate, continuous, cover in space and time for medium-wide catchments. Here, we use radar records for the south of the France on the La Peyne catchment with the protocol there adopted by the national meteo agency, with resolution of 1 km space and 5' time scale observations. We present here the realisation of a model able to perform from rainfall radar observations, continuous hydrological and soil erosion simulations. The model is semi-theoretically based, once it simulates water fluxes (infiltration-excess overland flow, saturation overland flow, infiltration and channel routing) with a cinematic wave using the St. Venant equation on a simplified "bucket" conceptual model for ground water, and, an empirical representation of sediment load as adopted in models such as STREAM-LANDSOIL (Cerdan et al., 2002, Ciampalini et al., 2012). The advantage of this approach is to furnish a dynamic representation - simulation of the rainfall-runoff events more easily than using spatialized rainfalls from meteo stations and to offer a new look on the spatial component of the events.
Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas
2013-10-01
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.
Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E
2017-07-19
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa
2017-01-01
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584173
NASA Astrophysics Data System (ADS)
Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.
2015-01-01
Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation, and to (b) decompose the NDVI signal into partial primary production components for herbaceous vegetation and shrubs across the study site. We further apply remote-sensed annual net primary production (ANPP) estimations and landscape type classification to explore the influence of inter-annual variations in seasonal precipitation on the production of herbaceous and shrub vegetation. Our results suggest that changes in the amount and temporal pattern of precipitation comprising reductions in monsoonal summer rainfall and/or increases in winter precipitation may enhance the shrub-encroachment process in desert grasslands of the American Southwest.
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Accounting for rainfall spatial variability in the prediction of flash floods
NASA Astrophysics Data System (ADS)
Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.
2017-04-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
NASA Astrophysics Data System (ADS)
Peng, Yu; Wang, Qinghui; Fan, Min
2017-11-01
When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.
Soil Carbon Recovery of Degraded Steppe Ecosystems of the Mongolian Plateau
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Togtohyn, C.; Qi, J.
2013-12-01
Mongolian steppe grassland systems are critical source of ecosystem services to societal groups in temperate East Asia. These systems are characterized by their arid and semiarid environments where rainfall tends to be too variable or evaporative losses reduce water availability to reliably support cropping systems or substantial forest cover. These steppe ecosystems have supported land use practices to accommodate the variable rainfall patterns, and seasonal and spatial patterns of forage production displayed by the nomadic pastoral systems practiced across Asia. These pastoral systems are dependent on grassland ecosystem services, including forage production, wool, skins, meat and dairy products, and in many systems provide critical biodiversity and land and water protection services which serve to maintain pastoral livelihoods. Precipitation variability and associated drought conditions experienced frequently in these grassland systems are key drivers of these systems. However, during the past several decades climate change and grazing and land use conversion have resulted in degradation of ecosystem services and loss of soil organic matter. Recent efforts in China and Mongolia are investigating different grazing management practices to restore soil organic matter in these degraded systems. Simulation modeling is being applied to evaluate the long-term benefits of different grazing management regimes under various climate scenarios.
Analysis of rainfall over northern Peru during El Nino: A PCDS application
NASA Technical Reports Server (NTRS)
Goldberg, R.; Tisnado, G.
1986-01-01
In an examination of GOES satellite data during the 1982 through 1983 El Nino period, the appearance of lee wave cloud patterns was revealed. A correlation was hypothesized relating an anomalous easterly flow across the Andes with the appearance of these wave patterns and with the subsequent onset of intense rainfall. The cloud patterns are belived to be associated with the El Nino period and could be viewed as precursors to significant changes in weather patterns. The ultimate goal of the researchers will be the ability to predict occurrences of rainstorms associated with the appearance of lee waves and related cloud patterns as harbingers of destruction caused by flooding, huaycos, and other catastrophic consequences of heavy and abnormal rainfall. Rainfall data from about 70 stations in northern Peru from 1980 through 1984 were formatted to be utilized within the Pilot Climate Data System (PCDS). This time period includes the 1982 through 1983 El Nino period. As an example of the approach, a well-pronounced lee wave pattern was shown from a GOES satellite image of April 4, 1983. The ground truth data were then displayed via the PCDS to graphically demonstrate the increase in intensity and areal distribution of rainfall in the northern Peruvian area in the next 4 to 5 days.
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2014-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
NASA Astrophysics Data System (ADS)
Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.
2010-12-01
Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.
NASA Astrophysics Data System (ADS)
Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish
2018-03-01
The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.
Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W
2007-01-01
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
Contribution of tropical cyclones to global rainfall
NASA Astrophysics Data System (ADS)
Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James
2016-04-01
Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar patterns using the POT approach to identify extremes. The fractional contributions decrease as we move inland from the coast. Moreover, the relationship between TC-induced extreme rainfall and the El Niño-Southern Oscillation is also examined using logistic and Poisson regression. Results indicate that TC-induced extreme rainfall tends to occur more frequently in Australia and along the U.S. East Coast during La Niña, and along eastern Asia and northwestern Pacific islands during El Niño.
Effects of variability in probable maximum precipitation patterns on flood losses
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul
2018-05-01
The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.
Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Pei-Jui, Wu; Hwa-Lung, Yu
2016-04-01
The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .
A regression-kriging model for estimation of rainfall in the Laohahe basin
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Li L.; Liu, Gao H.
2009-10-01
This paper presents a multivariate geostatistical algorithm called regression-kriging (RK) for predicting the spatial distribution of rainfall by incorporating five topographic/geographic factors of latitude, longitude, altitude, slope and aspect. The technique is illustrated using rainfall data collected at 52 rain gauges from the Laohahe basis in northeast China during 1986-2005 . Rainfall data from 44 stations were selected for modeling and the remaining 8 stations were used for model validation. To eliminate multicollinearity, the five explanatory factors were first transformed using factor analysis with three Principal Components (PCs) extracted. The rainfall data were then fitted using step-wise regression and residuals interpolated using SK. The regression coefficients were estimated by generalized least squares (GLS), which takes the spatial heteroskedasticity between rainfall and PCs into account. Finally, the rainfall prediction based on RK was compared with that predicted from ordinary kriging (OK) and ordinary least squares (OLS) multiple regression (MR). For correlated topographic factors are taken into account, RK improves the efficiency of predictions. RK achieved a lower relative root mean square error (RMSE) (44.67%) than MR (49.23%) and OK (73.60%) and a lower bias than MR and OK (23.82 versus 30.89 and 32.15 mm) for annual rainfall. It is much more effective for the wet season than for the dry season. RK is suitable for estimation of rainfall in areas where there are no stations nearby and where topography has a major influence on rainfall.
The role of stochastic storms on hillslope runoff generation and connectivity in a dryland basin
NASA Astrophysics Data System (ADS)
Michaelides, K.; Singer, M. B.; Mudd, S. M.
2016-12-01
Despite low annual rainfall, dryland basins can generate significant surface runoff during certain rainstorms, which can cause flash flooding and high rates of erosion. However, it remains challenging to anticipate the nature and frequency of runoff generation in hydrological systems which are driven by spatially and temporally stochastic rainstorms. In particular, the stochasticity of rainfall presents challenges to simulating the hydrological response of dryland basins and understanding flow connectivity from hillslopes to the channel. Here we simulate hillslope runoff generation using rainfall characteristics produced by a simple stochastic rainfall generator, which is based on a rich rainfall dataset from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. We assess hillslope runoff generation using the hydrological model, COUP2D, driven by a subset of characteristic output from multiple ensembles of decadal monsoonal rainfall from the stochastic rainfall generator. The rainfall generator operates across WGEW by simulating storms with areas smaller than the basin and enables explicit characterization of rainfall characteristics at any location. We combine the characteristics of rainfall intensity and duration with data on rainstorm area and location to model the surface runoff properties (depth, velocity, duration, distance downslope) on a range of hillslopes within the basin derived from LiDAR analysis. We also analyze connectivity of flow from hillslopes to the channel for various combinations of hillslopes and storms. This approach provides a framework for understanding spatial and temporal dynamics of runoff generation and connectivity that is faithful to the hydrological characteristics of dryland environments.
Smettem, Keith R J; Waring, Richard H; Callow, John N; Wilson, Melissa; Mu, Qiaozhen
2013-08-01
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes. © 2013 John Wiley & Sons Ltd.
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
NASA Astrophysics Data System (ADS)
Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo
2017-04-01
In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall more than 10mm/h was large in the southern half of the heavy rainfall area, moderate rain with less than 10 mm/h contributed greatly to the total rainfall in the northern half. In Patter B, that heavy rainfall area was located just in the area with strong low-level warm advection around the Baiu front to the east of the typhoon. The warm advection near the heavy rainfall area was also found in Pattern A, the heavy rainfall occurred just on the southwest of the large advection. It is noted that, although the very warm humid air can intrude northward by the strong S-ly wind to the east of the typhoon in both Pattern A and B, the low-level baroclinicity around the eastern Japan was stronger in Pattern B. In midsummer, the similar situations to while the "Pattern B"-like situation was not seen. This might be greatly reflected by the seasonal change in the southern boundary of the Okhotsk air mass from the Baiu to midsummer and we will also examine that in the future.
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
Ground and satellite based assessment of meteorological droughts: The Coello river basin case study
NASA Astrophysics Data System (ADS)
Cruz-Roa, A. F.; Olaya-Marín, E. J.; Barrios, M. I.
2017-10-01
The spatial distribution of droughts is a key factor for designing water management policies at basin scale in arid and semi-arid regions. Ground hydro-meteorological data in neo-tropical areas are scarce; therefore, the merging of ground and satellite datasets is a promissory approach for improving our understanding of water distribution. This paper compares three monthly rainfall interpolation methods for drought evaluation. The ordinary kriging technique based on ground data, and cokriging with elevation as auxiliary variable were compared against cokriging using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Twenty rain gauge stations and the 3B42V7 version of the TMPA research dataset were considered. Comparisons were made over the Coello river basin (Colombia) at 3″ spatial resolution covering a period of eight years (1998-2005). The best spatial rainfall estimation was found for cokriging using ground data and elevation. The spatial support of TMPA dataset is very coarse for a merged interpolation with ground data, this spatial scales discrepancy highlight the need to consider scaling rules in the interpolation process.
Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.
Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru
2012-06-15
Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.
Rainfall: State of the Science
NASA Astrophysics Data System (ADS)
Testik, Firat Y.; Gebremichael, Mekonnen
Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
Capturing the Initiation and Spatial Variability of Runoff on Soils Affected by Wildfire
NASA Astrophysics Data System (ADS)
Martin, D. A.; Wickert, A. D.; Moody, J. A.
2011-12-01
Rainfall after wildfire often leads to intense runoff and erosion, since fire removes ground cover that impedes overland flow and water is unable to efficiently infiltrate into the fire-affected soils. In order to understand the relation between rainfall, infiltration, and runoff, we modified a camera to be triggered by a rain gage to take time-lapse photographs of the ground surface every 10 seconds until the rain stops. This camera allows us to observe directly the patterns of ground surface ponding, the initiation of overland flow, and erosion/deposition during single rainfall events. The camera was deployed on a hillslope (average slope = 23 degrees) that was severely burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado. The camera's field of view is approximately 3 m2. We integrate the photographs with rainfall and overland flow measurements to determine thresholds for the initiation of overland flow and erosion. We have recorded the spatial variability of wetted patches of ground and the connection of these patches together to initiate overland flow. To date we have recorded images for rain storms with 30-minute maximum intensities ranging from 5 mm/h (our threshold to trigger continuous photographs) to 32 mm/h. In the near future we will update the camera's control system to 1) include a clock to enable time-lapse photographs at a lower frequency in addition to the event-triggered images, and 2) to add a radio to allow the camera to be triggered remotely. Radio communication will provide a means of starting the camera in response to non-local events, allowing us to capture images or video of flash flood surge fronts and debris flows, and to synchronize the operations of multiple cameras in the field. Schematics and instructions to build this camera station, which can be used to take either photos or video, are open-source licensed and are available online at http://instaar.colorado.edu/~wickert/atvis. It is our hope that this tool can be used by other researchers to better understand processes in burned watersheds and other sensitive areas that are likely to respond rapidly to rainfall.
Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments
NASA Astrophysics Data System (ADS)
Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.
2016-12-01
Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.
Furuya-Kanamori, Luis; Robson, Jenny; Soares Magalhães, Ricardo J; Yakob, Laith; McKenzie, Samantha J; Paterson, David L; Riley, Thomas V; Clements, Archie C A
2014-11-01
To identify the spatio-temporal patterns and environmental factors associated with Clostridium difficile infection (CDI) in Queensland, Australia. Data from patients tested for CDI were collected from 392 postcodes across Queensland between May 2003 and December 2012. A binomial logistic regression model, with CDI status as the outcome, was built in a Bayesian framework, incorporating fixed effects for sex, age, source of the sample (healthcare facility or community), elevation, rainfall, land surface temperature, seasons of the year, time in months and spatially unstructured random effects at the postcode level. C. difficile was identified in 13.1% of the samples, the proportion significantly increased over the study period from 5.9% in 2003 to 18.8% in 2012. CDI peaked in summer (14.6%) and was at its lowest in autumn (10.1%). Other factors significantly associated with CDI included female sex (OR: 1.08; 95%CI: 1.01-1.14), community source samples (OR: 1.12; 95%CI: 1.05-1.20), and higher rainfall (OR: 1.09; 95%CI: 1.02-1.17). There was no significant spatial variation in CDI after accounting for the fixed effects in the model. There was an increasing annual trend in CDI in Queensland from 2003 to 2012. Peaks of CDI were found in summer (December-February), which is at odds with the current epidemiological pattern described for northern hemisphere countries. Epidemiologically plausible explanations for this disparity require further investigation. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oriani, F.; Stisen, S.; Demirel, C.
2017-12-01
The spatial representation of rainfall is of primary importance to correctly study the uncertainty of basin recharge and its propagation to the surface and underground circulation. We consider here the daily grid rainfall product provided by the Danish Meteorological Institute as input to the National Water Resources Model of Denmark. Due to a drastic reduction in the rain gauge network (from approximately 500 stations in the period 1996-2006, to 250 in the period 2007-2014), the grid rainfall product, based on the interpolation of these data, is much less reliable. The research is focused on the Skjern catchment (1,050 km2 western Jutland), where we can dispose of the complete rain-gauge database from the Danish Hydrological Observatory and compute the distributed hydrological response at the 1-km scale.To give a better estimation of the gridded rainfall input, we start from ground measurements by simulating the missing data with a stochastic data-mining approach, then we compute again the grid interpolation. To maximize the predictive power of the technique, combinations of station time-series that are the most informative to each other are selected on the basis of their correlation and available historical data. Then, the missing data inside these time-series are simulated together using the direct sampling technique (DS) [1, 2]. DS simulates a datum by sampling the historical record of the same stations where a similar data pattern occurs, preserving their complex statistical relation. The simulated data are reinjected in the whole dataset and used as well as conditioning data to progressively fill up the gaps in other stations.The results show that the proposed methodology, tested on the period 1995-2012, can increase the realism of the grid rainfall product by regenerating the missing ground measurements. The hydrological response is analyzed considering the observations at 5 hydrological stations. The presented methodology can be used in many regions to regenerate the missing data using the information contained in the historical record and propagate the uncertainty of the prediction to the hydrological response. [1] G.Mariethoz et al. (2010), Water Resour. Res., 10.1029/2008WR007621.[2] F. Oriani et al. (2014), Hydrol. Earth Syst. Sc., 10.5194/hessd-11-3213-2014.
On the uncertainties associated with using gridded rainfall data as a proxy for observed
NASA Astrophysics Data System (ADS)
Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.
2011-09-01
Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods)? This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia (SA) initially using gridded data as the source of rainfall input and then gauged rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged or point data. Rather the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Xu, Y. P.; Gu, H.
2014-12-01
Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.
NASA Astrophysics Data System (ADS)
Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira
2016-04-01
The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.
Scaling of hydrologic and erosion parameters derived from rainfall simulation
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Lane, Patrick; Noske, Philip; Sherwin, Christopher
2010-05-01
Rainfall simulation experiments conducted at the temporal scale of minutes and the spatial scale of meters are often used to derive parameters for erosion and water quality models that operate at much larger temporal and spatial scales. While such parameterization is convenient, there has been little effort to validate this approach via nested experiments across these scales. In this paper we first review the literature relevant to some of these long acknowledged issues. We then present rainfall simulation and erosion plot data from a range of sources, including mining, roading, and forestry, to explore the issues associated with the scaling of parameters such as infiltration properties and erodibility coefficients.
Re-assessing Rainwater Harvesting Volume by CHIRPS Satellite in Semarang Settlement Area
NASA Astrophysics Data System (ADS)
Prihanto, Yosef; Koestoer, Raldi H.; Sutjiningsih, Dwita
2017-12-01
Semarang City is one of the most influential coastal cities in Java Island. The city is facing increasingly-high water demand due to its development and water problems due to climate change. The spatial physiography and landscape of Semarang City are also exposed the city to water security problem. Hence, rainwater harvesting treatment is an urgent effort to meet the city’s water needs. However, planning, implementation and management of rainwater harvesting are highly depended on multitemporal rainfall data. It has not yet been fully compiled due to limited rain stations. This study aims to examine the extent to which CHIRPS satellite data can be utilized in estimating volume of rainwater harvesting 16 sub-districts in Semarang and determine the water security status. This study uses descriptive statistical method based on spatial analyses. Such method was developed through spatial modeling for rainfall using isohyetal model. The parameters used are rainfall, residential rooftop area, administrative area, population, physiographic and altitude units. Validation is carried out by using monthly 10 rain stations data. The results show level of validity by utilizing CHIRPS Satellite data and mapping rainfall distribution. This study also produces a potential map of distribution rainfall volume that can be harvested in 16 sub-districts of Semarang.
Santos, Celso Augusto Guimarães; Brasil Neto, Reginaldo Moura; Passos, Jacqueline Sobral de Araújo; da Silva, Richarde Marques
2017-06-01
In this work, the use of Tropical Rainfall Measuring Mission (TRMM) rainfall data and the Standardized Precipitation Index (SPI) for monitoring spatial and temporal drought variabilities in the Upper São Francisco River basin is investigated. Thus, the spatiotemporal behavior of droughts and cluster regions with similar behaviors is identified. As a result, the joint analysis of clusters, dendrograms, and the spatial distribution of SPI values proved to be a powerful tool in identifying homogeneous regions. The results showed that the northeast region of the basin has the lowest rainfall indices and the southwest region has the highest rainfall depths, and that the region has well-defined dry and rainy seasons from June to August and November to January, respectively. An analysis of the drought and rain conditions showed that the studied region was homogeneous and well-distributed; however, the quantity of extreme and severe drought events in short-, medium- and long-term analysis was higher than that expected in regions with high rainfall depths, particularly in the south/southwest and southeast areas. Thus, an alternative classification is proposed to characterize the drought, which spatially categorizes the drought type (short-, medium-, and long-term) according to the analyzed drought event type (extreme, severe, moderate, and mild).
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Michaelides, Silas; Lange, Manfred A.
2015-04-01
Space-time variability of precipitation plays a key role as a driver of many processes in different environmental fields like hydrology, ecology, biology, agriculture, and natural hazards. The objective of this study was to compare two approaches for statistical downscaling of precipitation from climate models. The study was applied to the island of Cyprus, an orographically complex terrain. The first approach makes use of a spatial temporal Neyman-Scott Rectangular Pulses (NSRP) model and a previously tested interpolation scheme (Camera et al., 2014). The second approach is based on the use of the single site NSRP model and a simplified gridded scheme based on scaling coefficients obtained from past observations. The rainfall generators were evaluated on the period 1980-2010. Both approaches were subsequently used to downscale three RCMs from the EU ENSEMBLE project to calculate climate projections (2020-2050). The main advantage of the spatial-temporal approach is that it allows creating spatially consistent daily maps of precipitation. On the other hand, due to the assumptions made using a stochastic generator based on homogeneous Poisson processes, it shows a smoothing out of all the rainfall statistics (except mean and variance) all over the study area. This leads to high errors when analyzing indices related to extremes. Examples are the number of days with rainfall over 50 mm (R50 - mean error 65%), the 95th percentile value of rainy days (RT95 - mean error 19%), and the mean annual rainfall recorded on days with rainfall above the 95th percentile (RA95 - mean error 22%). The single site approach excludes the possibility of using the created gridded data sets for case studies involving spatial connection between grid cells (e.g. hydrologic modelling), but it leads to a better reproduction of rainfall statistics and properties. The errors for the extreme indices are in fact much lower: 17% for R50, 4% for RT95, and 2% for RA95. Future projections show a decrease of the mean annual rainfall (for both approaches) over the study area between 70 mm (≈15%) and 5 mm (≈1%), in comparison to the reference period 1980-2010. Regarding extremes, calculated only with the single site approach, the projections show a decrease of the R50 index between 25% and 7%, and of the RT95 between 8% and 0%. Thus, these projections indicate that a slight reduction in the number and intensity of extremes can be expected. Further research will be done to adapt and evaluate the use of a spatial-temporal generator with nonhomogeneous spatial activation of raincells (Burton et al., 2010) to the study area. Burton, A., Fowler, H.J., Kilsby, C.G., O'Connell, P. E., 2010a. A stochastic model for the spatial-temporal simulation of non-homogeneous rainfall occurrence and amounts, Water Resour. Res. 46, W11501. DOI: 10.1029/2009WR008884 Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., Lange, M. A., 2014. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010. J. Geophys. Res. Atmos., 119, 693-712. DOI: 10.1002/2013JD020611.
The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.
Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong
2016-12-01
We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J
2015-06-16
Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.
NASA Astrophysics Data System (ADS)
Chaves, Luis Fernando
2016-11-01
It has been suggested that climate change may have facilitated the global expansion of invasive disease vectors, since several species have expanded their range as temperatures have warmed. Here, we present results from observations on two major global invasive mosquito vectors (Diptera: Culicidae), Aedes albopictus (Skuse) and Aedes japonicus (Theobald), across the altitudinal range of Mt. Konpira, Nagasaki, Japan, a location within their native range, where Aedes flavopictus Yamada, formerly a rare species, has now become dominant. Spatial abundance patterns of the three species suggest that temperature is an important factor influencing their adult distribution across the altitudinal range of Mt. Konpira. Temporal abundance patterns, by contrast, were associated with rainfall and showed signals of density-dependent regulation in the three species. The spatial and temporal analysis of abundance patterns showed that Ae. flavopictus and Ae. albopictus were negatively associated, even when accounting for differential impacts of weather and other environmental factors in their co-occurrence patterns. Our results highlight a contingency in the expansion of invasive vectors, the potential emergence of changes in their interactions with species in their native communities, and raise the question of whether these changes might be useful to predict the emergence of future invasive vectors.
NASA Astrophysics Data System (ADS)
Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.
2012-04-01
Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.
Satellite-based high-resolution mapping of rainfall over southern Africa
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Drönner, Johannes; Nauss, Thomas
2017-06-01
A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results towards improved spatio-temporal estimates of rainfall over southern Africa.
NASA Astrophysics Data System (ADS)
Rochyani, Neny
2017-11-01
Acid mine drainage is a major problem for the mining environment. The main factor that formed acid mine drainage is the volume of rainfall. Therefore, it is important to know clearly the main climate pattern of rainfall and season on the management of acid mine drainage. This study focuses on the effects of rainfall on acid mine water management. Based on daily rainfall data, monthly and seasonal patterns by using Gumbel approach is known the amount of rainfall that occurred in East Pit 3 West Banko area. The data also obtained the highest maximum daily rainfall on 165 mm/day and the lowest at 76.4 mm/day, where it is known that the rainfall conditions during the period 2007 - 2016 is from November to April so the use of lime is also slightly, While the low rainfall is from May to October and the use of lime will be more and more. Based on calculation of lime requirement for each return period, it can be seen the total of lime and financial requirement for treatment of each return period.
NASA Astrophysics Data System (ADS)
Wu, Songbai; Yu, Minghui; Chen, Li
2017-02-01
The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.
NASA Astrophysics Data System (ADS)
Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa
2018-02-01
The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.
Stochastic Analysis and Probabilistic Downscaling of Soil Moisture
NASA Astrophysics Data System (ADS)
Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.
2017-12-01
Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.
Quantification of Holocene Asian monsoon rainfall from spatially separated cave records
NASA Astrophysics Data System (ADS)
Hu, Chaoyong; Henderson, Gideon M.; Huang, Junhua; Xie, Shucheng; Sun, Ying; Johnson, Kathleen R.
2008-02-01
A reconstruction of Holocene rainfall is presented for southwest China — an area prone to drought and flooding due to variability in the East Asian monsoon. The reconstruction is derived by comparing a new high-resolution stalagmite δ18O record with an existing record from the same moisture transport pathway. The new record is from Heshang Cave (30°27'N, 110°25'E; 294 m) and shows no sign of kinetic or evaporative effects so can be reliably interpreted as a record of local rainfall composition and temperature. Heshang lies 600 km downwind from Dongge Cave which has a published high-resolution δ18O record (Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854-857). By differencing co-eval δ18O values for the two caves, secondary controls on δ18O (e.g. moisture source, moisture transport, non-local rainfall, temperature) are circumvented and the resulting Δ δ18O signal is controlled directly by the amount of rain falling between the two sites. This is confirmed by comparison with rainfall data from the instrumental record, which also allows a calibration of the Δ δ18O proxy. The calibrated Δ δ18O record provides a quantitative history of rainfall in southwest China which demonstrates that rainfall was 8% higher than today during the Holocene climatic optimum (≈ 6 ka), but only 3% higher during the early Holocene. Significant multi-centennial variability also occurred, with notable dry periods at 8.2 ka, 4.8-4.1 ka, 3.7-3.1 ka, 1.4-1.0 ka and during the Little Ice Age. This Holocene rainfall record provides a good target with which to test climate models. The approach used here, of combining stalagmite records from more than one location, will also allow quantification of rainfall patterns for past times in other regions.
NASA Astrophysics Data System (ADS)
Abancó, Clàudia; Hürlimann, Marcel; Moya, José
2014-05-01
Debris flows represent a risk to the society due to their high destructive power. Rainfall is the main debris-flow triggering factor. Rainfall thresholds are generally used for warning of debris flow occurrence in susceptible catchments. However, the efficiency of such thresholds for real time hazard assessment is often conditioned by many factors, such as: the location and number of the rain gauges used (both to define the thresholds, and for setting off warnings); the temporal and spatial evolution of rainfall's convective cells or the effect of snow cover melting. These factors affect the length of the warning time, which is of crucial importance for issuing alert messages or alarms to the people and infrastructures at risk. The Rebaixader catchment (Central Pyrenees, Spain) is being monitored since 2009 by six stations recording information on initiation (4 stations) and flow detection and cinematic behaviour (2 stations). Until December 2013, 7 debris flows, 17 debris floods and 4 rockfalls have been recorded. The objectives of this work were: a) the definition of rainfall thresholds at two different rain gauges; b) the analysis of the infiltration patterns in order to define their potential use for warning systems and c) preliminary testing of rainfall thresholds' efficiency in terms of warning time, in this catchment. This last goal consisted in the comparison of the time elapsed between the rainfall threshold was exceeded and the event occurrence was detected by the stations at the channel area. The results suggest that the intensity-duration rainfall thresholds sometimes provide warning times which would be too short for an adequate reaction in the Rebaixader catchment (less than 10 minutes). The combination of such rainfall thresholds with infiltration measurements is useful to increase the warning time. This occurs especially in the events triggered in spring, when the snowmelt plays an important role in the event's triggering conditions. However, the effects of infiltration associated to the summer convective rainfalls are almost imperceptible; therefore their importance in warning systems decreases.
Prediction of future climate change for the Blue Nile, using RCM nested in GCM
NASA Astrophysics Data System (ADS)
Sayed, E.; Jeuland, M.; Aty, M.
2009-04-01
Although the Nile River Basin is rich in natural resources, it faces many challenges. Rainfall is highly variable across the region, on both seasonal and inter-annual scales. This variability makes the region vulnerable to droughts and floods. Many development projects involving Nile waters are currently underway, or being studied. These projects will lead to land-use patterns changes and water distribution and availability. It is thus important to assess the effects of a) these projects and b) evolving water resource management and policies, on regional hydrological processes. This paper seeks to establish a basis for evaluation of such impacts within the Blue Nile River sub-basin, using the RegCM3 Regional Climate Model to simulate interactions between the land surface and climatic processes. We first present results from application of this RCM model nested with downscaled outputs obtained from the ECHAM5/MPI-OM1 transient simulations for the 20th Century. We then investigate changes associated with mid-21st century emissions forcing of the SRES A1B scenario. The results obtained from the climate model are then fed as inputs to the Nile Forecast System (NFS), a hydrologic distributed rainfall runoff model of the Nile Basin, The interaction between climatic and hydrological processes on the land surface has been fully coupled. Rainfall patterns and evaporation rates have been generated using RegCM3, and the resulting runoff and Blue Nile streamflow patterns have been simulated using the NFS. This paper compares the results obtained from the RegCM3 climate model with observational datasets for precipitation and temperature from the Climate Research Unit (UK) and the NASA Goddard Space Flight Center GPCP (USA) for 1985-2000. The validity of the streamflow predictions from the NFS is assessed using historical gauge records. Finally, we present results from modeling of the A1B emissions scenario of the IPCC for the years 2034-2055. Our results indicate that future changes in rainfall may vary over different areas of the Upper Blue Nile catchment in Ethiopia. Our results suggest that there may be good reasons for developing climate models with finer spatial resolution than the more commonly used GCMs.
Hu, Kexiang; Awange, Joseph L; Khandu; Forootan, Ehsan; Goncalves, Rodrigo Mikosz; Fleming, Kevin
2017-12-01
For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10 -4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability <10 -7 m/s and lags > 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope < 0.45). This is due to two impermeable rock layer-like 'walls' (permeability <10 -8 m/s) along the northern and southern Alter do Chão aquifer that help retain groundwater. The largest groundwater storage capacity in Brazil is the Amazon aquifer (with annual amplitudes of > 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm). Copyright © 2017 Elsevier B.V. All rights reserved.
Mbogo, Charles M; Mwangangi, Joseph M; Nzovu, Joseph; Gu, Weidong; Yan, Guiyan; Gunter, James T; Swalm, Chris; Keating, Joseph; Regens, James L; Shililu, Josephat I; Githure, John I; Beier, John C
2003-06-01
The seasonal dynamics and spatial distributions of Anopheles mosquitoes and Plasmodium falciparum parasites were studied for one year at 30 villages in Malindi, Kilifi, and Kwale Districts along the coast of Kenya. Anopheline mosquitoes were sampled inside houses at each site once every two months and malaria parasite prevalence in local school children was determined at the end of the entomologic survey. A total of 5,476 Anopheles gambiae s.l. and 3,461 An. funestus were collected. Species in the An. gambiae complex, identified by a polymerase chain reaction, included 81.9% An. gambiae s.s., 12.8% An. arabiensis, and 5.3% An. merus. Anopheles gambiae s.s. contributed most to the transmission of P. falciparum along the coast as a whole, while An. funestus accounted for more than 50% of all transmission in Kwale District. Large spatial heterogeneity of transmission intensity (< 1 up to 120 infective bites per person per year) resulted in correspondingly large and significantly related variations in parasite prevalence (range = 38-83%). Thirty-two percent of the sites (7 of 22 sites) with malaria prevalences ranging from 38% to 70% had annual entomologic inoculation rates (EIR) less than five infective bites per person per year. Anopheles gambiae s.l. and An. funestus densities in Kwale were not significantly influenced by rainfall. However, both were positively correlated with rainfall one and three months previously in Malindi and Kilifi Districts, respectively. These unexpected variations in the relationship between mosquito populations and rainfall suggest environmental heterogeneity in the predominant aquatic habitats in each district. One important conclusion is that the highly non-linear relationship between EIRs and prevalence indicates that the consistent pattern of high prevalence might be governed by substantial variation in transmission intensity measured by entomologic surveys. The field-based estimate of entomologic parameters on a district level does not provide a sensitive indicator of transmission intensity in this study.
NASA Astrophysics Data System (ADS)
Kashid, Satishkumar S.; Maity, Rajib
2012-08-01
SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.
Interpretation of heavy rainfall spatial distribution in mountain watersheds by copula functions
NASA Astrophysics Data System (ADS)
Grossi, Giovanna; Balistrocchi, Matteo
2016-04-01
The spatial distribution of heavy rainfalls can strongly influence flood dynamics in mountain watersheds, depending on their geomorphologic features, namely orography, slope, land covers and soil types. Unfortunately, the direct observation of rainfall fields by meteorological radar is very difficult in this situation, so that interpolation of rain gauge observations or downscaling of meteorological predictions must be adopted to derive spatial rainfall distributions. To do so, various stochastic and physically based approaches are already available, even though the first one is the most familiar in hydrology. Indeed, Kriging interpolation procedures represent very popular techniques to face this problem by means of a stochastic approach. A certain number of restrictive assumptions and parameter uncertainties however affects Kriging. Many alternative formulations and additional procedures were therefore developed during the last decades. More recently, copula functions (Joe, 1997; Nelsen, 2006; Salvadori et al. 2007) were suggested to provide a more straightforward solution to carry out spatial interpolations of hydrologic variables (Bardossy & Pegram; 2009). Main advantages lie in the possibility of i) assessing the dependence structure relating to rainfall variables independently of marginal distributions, ii) expressing the association degree through rank correlation coefficients, iii) implementing marginal distributions and copula functions belonging to different models to develop complex joint distribution functions, iv) verifying the model reliability by effective statistical tests (Genest et al., 2009). A suitable case study to verify these potentialities is provided by the Taro River, a right-bank tributary of the Po River (northern Italy), whose contributing area amounts to about 2˙000 km2. The mountain catchment area is divided into two similar watersheds, so that spatial distribution is crucial in extreme flood event generation. A quite well diffused hydro-meteorological network, consisting of about 30 rain gauges and 10 hydrometers, monitors this medium-size watershed. A decade of rainfall-runoff event observations are available. Severe rainfall events were identified with reference to a main raingauge station, by using an interevent time definition and a depth threshold. Rainfall depths were thus derived and the spatial variability of their association degree was represented by using the Kendall coefficient. A unique copula model based on Gumbel copula function was finally found to be suitable to represent the dependence structure relating to rainfall depths observed in distinct raingauges. Bardossy A., Pegram G. (2009), Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299-2314. Genest C., Rémilland B., Beaudoin D. (2009), Goodness-of-fit tests for copulas: a review and a power study, Insur. Math. Econ., 44(2), 199-213. Joe H. (1997), Multivariate models and dependence concepts, Chapman and Hall, London. Nelsen R. B. (2006), An introduction to copulas, second ed., Springer, New York. Salvadori G., De Michele C., Kottegoda N. T., Rosso R. (2007), Extremes in nature: an approach using copulas, Springer, Dordrecht, The Nederlands.
Spatial characterization of catchment dispersion mechanisms in an urban context
NASA Astrophysics Data System (ADS)
Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice
2014-12-01
Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.
NASA Technical Reports Server (NTRS)
Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.
2016-01-01
Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.
Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.
2017-04-01
In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.
Wind erodibility response of physical and biological crusts to rain and flooding
NASA Astrophysics Data System (ADS)
Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.
2015-12-01
Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Chamizo, Sonia; Belnap, Jayne; Elridge, David J; Issa, Oumarou M
2016-01-01
Biocrusts exert a strong influence on hydrological processes in drylands by modifying numerous soil properties that affect water retention and movement in soils. Yet, their role in these processes is not clearly understood due to the large number of factors that act simultaneously and can mask the biocrust effect. The influence of biocrusts on soil hydrology depends on biocrust intrinsic characteristics such as cover, composition, and external morphology, which differ greatly among climate regimes, but also on external factors as soil type, topography and vegetation distribution patterns, as well as interactions among these factors. This chapter reviews the most recent literature published on the role of biocrusts in infiltration and runoff, soil moisture, evaporation and non-rainfall water inputs (fog, dew, water absorption), in an attempt to elucidate the key factors that explain how biocrusts affect land hydrology. In addition to the crust type and site characteristics, recent studies point to the crucial importance of the type of rainfall and the spatial scale at which biocrust effects are analyzed to understand their role in hydrological processes. Future studies need to consider the temporal and spatial scale investigated to obtain more accurate generalizations on the role of biocrusts in land hydrology.
Which measurement strategies to improve spatial erosion and deposition patterns modelling?
NASA Astrophysics Data System (ADS)
Pineux, Nathalie; Maugnard, Alexandre; Swerts, Gilles; Bielders, Charles; Degré, Aurore
2014-05-01
Validation of the erosion models requires field data. To date, many authors continue to highlight the paucity of accurate field observations and long-term enough studies. The fields observations are often put aside because these measures are difficult to obtain: weighty experimental devices, climatic dependence, … Hence the models are evolving and propose refined calculation procedures including for instance the calculation of landscape evolution. The need of field data therefore increases and new measuring strategies should arise. In the centre of Belgium we choose an agricultural watershed quite representative of the local context. It covers 124 ha of loamy soil with more than 90% of arable land and a weak proportion of forest and artificial lands. The slope ranges between 0 and 9%. Instrumentation on the watershed includes meteorological observations and discharge measurement coupled with water sampling at different outlets. The weather data (radiation, temperature, wind velocity, relative humidity and rainfall) and discharge measurement (comparison between Doppler and pressure sensors) will allow us to model the hydrological behaviour of the catchment. Rainfall readings (tipping buckets) are completed with erosivity readings (disdrometer). Erosivity, together with soil data, land use and agricultural practices observations on field, will be used as entry in the Landsoil model. The sediment samplings at 3 points in the catchment will give an insight of the sediment delivery of 3 subcatchments. The Landsoil model calculates the evolution of the DTM through time. This cannot be compared to measurements at the outlet and requires further data collection. Older elevation data and/or archaeological data are a possible source of information even if their precision remains scarce in our context. 1950's soil surveys are on the contrary really informative since they detail the horizons depth in a spatial way and can be compared to new observation across the watershed. Coupled with unmanned aerial system, they should allow us to test the model performances and improve our knowledge of the spatial patterns of erosion and deposition.
NASA Astrophysics Data System (ADS)
Yanites, B.; Bregy, J. C.; Carlson, G.; Cataldo, K.; Holahan, M.; Johnston, G.; Mitchell, N. A.; Nelson, A.; Valenza, J.; Wanker, M.
2017-12-01
Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how these events impact the entire geomorphic system over a range of timescales. Taiwan is a steep, seismically active region and is highly prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, delivering record-breaking rainfall and inducing more than 22,000 landslides in southern Taiwan. The topographic gradient in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long-term impact of landslides on channel morphology. The availability of pre and post typhoon imagery allows a quantitative reconstruction on the propagating impact of this event on channel width. The pre and post typhoon patterns of channel width to river and hillslope gradients in 20 basins in the study area reveal the importance of cascading hazards from landslides on landscape evolution. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3-10 times wider than the channels in the south. Aggradation and widening was also a maximum in these basins where hillslope gradients and channel steepness is high. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment-limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long-term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology.
Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting
NASA Astrophysics Data System (ADS)
Anggraeni, D.; Kurnia, I. F.; Hadi, A. F.
2018-04-01
Unpredictable rainfall changes can affect human activities, such as in agriculture, aviation, shipping which depend on weather forecasts. Therefore, we need forecasting tools with high accuracy in predicting the rainfall in the future. This research focus on local forcasting of the rainfall at Jember in 2005 until 2016, from 77 rainfall stations. The rainfall here was not only related to the occurrence of the previous of its stations, but also related to others, it’s called the spatial effect. The aim of this research is to apply the GSTAR model, to determine whether there are some correlations of spatial effect between one to another stations. The GSTAR model is an expansion of the space-time model that combines the time-related effects, the locations (stations) in a time series effects, and also the location it self. The GSTAR model will also be compared to the ARIMA model that completely ignores the independent variables. The forcested value of the ARIMA and of the GSTAR models then being combined using the ensemble forecasting technique. The averaging and stacking method of ensemble forecasting method here provide us the best model with higher acuracy model that has the smaller RMSE (Root Mean Square Error) value. Finally, with the best model we can offer a better local rainfall forecasting in Jember for the future.
Disaggregating from daily to sub-daily rainfall under a future climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J.; Mehrotra, R.; Sharma, A.
2012-04-01
We describe an algorithm for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous fine-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of atmospheric predictors representative of the future climate. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric profile more reflective of expected future conditions. When looking at the scaling from daily to sub-daily rainfall over the historical record, it was found that the relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically showing more intense rain falling over shorter periods compared with cooler seasons and stations. Importantly, by regressing against atmospheric covariates such as temperature this effect was almost entirely eliminated, providing a basis for suggesting the approach may be valid when extrapolating sub-daily sequences to a future climate. The method of fragments algorithm was then applied to nine stations around Australia, and showed that when holding the total daily rainfall constant, the maximum intensity of a short duration (6 minute) rainfall increased by between 4.1% and 13.4% per degree change in temperature for the maximum six minute burst, between 3.1% and 6.8% for the maximum one hour burst, and between 1.5% and 3.5% for the fraction of the day with no rainfall. This highlights that a large proportion of the change to the distribution of precipitation in the future is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.
NASA Astrophysics Data System (ADS)
Lorite, I. J.; Mateos, L.; Fereres, E.
2005-01-01
SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.
Friedel, M.J.
2008-01-01
A regularized joint inverse procedure is presented and used to estimate the magnitude of extreme rainfall events in ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. Since streamflow measurements reflect temporal and spatial rainfall information, peak-flow discharge is hypothesized to represent a similarity measure suitable for regionalization. To test this hypothesis, peak-flow discharge values determined from streamflow recurrence information (10-year, 25-year, and 100-year) collected outside the study basins are used to develop regional (country-wide) regression equations. Peak-flow discharge derived from these equations together with preferred spatial parameter relations as soft prior information are used to constrain the simultaneous calibration of 20 tributary basin models. The nonlinear range of uncertainty in estimated parameter values (1 curve number and 3 recurrent rainfall amounts for each model) is determined using an inverse calibration-constrained Monte Carlo approach. Cumulative probability distributions for rainfall amounts indicate differences among basins for a given return period and an increase in magnitude and range among basins with increasing return interval. Comparison of the estimated median rainfall amounts for all return periods were reasonable but larger (3.2-26%) than rainfall estimates computed using the frequency-duration (traditional) approach and individual rain gauge data. The observed 25-year recurrence rainfall amount at La Hachadura in the Paz River basin during Hurricane Mitch (1998) is similar in value to, but outside and slightly less than, the estimated rainfall confidence limits. The similarity in joint inverse and traditionally computed rainfall events, however, suggests that the rainfall observation may likely be due to under-catch and not model bias. ?? Springer Science+Business Media B.V. 2007.
How predictable is the anomaly pattern of the Indian summer rainfall?
NASA Astrophysics Data System (ADS)
Li, Juan; Wang, Bin
2016-05-01
Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the predictable modes, a set of P-E models is established to predict the principal component of each predictable mode, so that the ISMR anomaly pattern can be predicted by using the sum of the predictable modes. Three validation schemes are used to assess the performance of the P-E models' hindcast and independent forecast. The validated TCC skills of the P-E model here are more than doubled that of dynamical models' MME hindcast, suggesting a large room for improvement of the current dynamical prediction. The methodology proposed here can be applied to a wide range of climate prediction and predictability studies. The limitation and future improvement are also discussed.
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
NASA Astrophysics Data System (ADS)
Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.
2017-04-01
Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.
On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling
NASA Astrophysics Data System (ADS)
Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.
2016-12-01
Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.
NASA Astrophysics Data System (ADS)
Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2016-04-01
The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year high-resolution atmospheric reanalysis over France with the SAFRAN-gauge-based analysis system (Vidal et al., 2010). We have then built samples of maximal rainfalls for each cell location (the "point" rainfalls) and for different areas centered on each cell location (the areal rainfalls) of these gridded data. To compute rainfall quantiles, we have fitted a Gumbel law, with the L-moment method, on each of these samples. Our daily and hourly ARF have then shown four main trends: i) a sensitivity to the return period, with ARF values decreasing when the return period increases; ii) a sensitivity to the rainfall duration, with ARF values decreasing when the rainfall duration decreases; iii) a sensitivity to the season, with ARF values smaller for the summer period than for the winter period; iv) a sensitivity to the geographical location, with low ARF values in the French Mediterranean area and ARF values close to 1 for the climatic zones of Northern and Western France (oceanic to semi-continental climate). The results of this data-intensive study led for the first time on the whole French territory are in agreement with studies led abroad (e.g. Allen and DeGaetano 2005, Overeem et al. 2010) and confirm and widen the results of previous studies that were carried out in France on smaller areas and with fewer rainfall durations (e.g. Ramos et al., 2006, Neppel et al., 2003). References Allen R. J. and DeGaetano A. T. (2005). Areal reduction factors for two eastern United States regions with high rain-gauge density. Journal of Hydrologic Engineering 10(4): 327-335. Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Cantet, P. and Arnaud, P. (2014). Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation, Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg, 28(6), 1479-1492. Neppel L., Bouvier C. and Lavabre J. (2003). Areal reduction factor probabilities for rainfall in Languedoc Roussillon. IAHS-AISH Publication (278): 276-283. Omolayo, A. S. (1993). On the transposition of areal reduction factors for rainfall frequency estimation. Journal of Hydrology 145 (1-2): 191-205. Overeem A., Buishand T. A., Holleman I. and Uijlenhoet R. (2010). Extreme value modeling of areal rainfall from weather radar. Water Resources Research 46(9): 10 p. Ramos M.-H., Leblois E., Creutin J.-D. (2006). From point to areal rainfall: Linking the different approaches for the frequency characterisation of rainfalls in urban areas. Water Science and Technology. 54(6-7): 33-40. Tabary P., Dupuy P., L'Henaff G., Gueguen C., Moulin L., Laurantin O., Merlier C., Soubeyroux J. M. (2012). A 10-year (1997-2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results. IAHS-AISH Publication (351) : 255-260. Vidal J.-P., Martin E., Franchistéguy L., Baillon M. and Soubeyroux J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30(11): 1627-1644.
Improved spatial mapping of rainfall events with spaceborne SAR imagery
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Brisco, B.; Dobson, C.
1983-01-01
The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.
Unbiased estimation of oceanic mean rainfall from satellite borne radiometer measurements
NASA Technical Reports Server (NTRS)
Mittal, M. C.
1981-01-01
The statistical properties of the radar derived rainfall obtained during the GARP Atlantic Tropical Experiment (GATE) are used to derive quantitative estimates of the spatial and temporal sampling errors associated with estimating rainfall from brightness temperature measurements such as would be obtained from a satelliteborne microwave radiometer employing a practical size antenna aperture. A basis for a method of correcting the so called beam filling problem, i.e., for the effect of nonuniformity of rainfall over the radiometer beamwidth is provided. The method presented employs the statistical properties of the observations themselves without need for physical assumptions beyond those associated with the radiative transfer model. The simulation results presented offer a validation of the estimated accuracy that can be achieved and the graphs included permit evaluation of the effect of the antenna resolution on both the temporal and spatial sampling errors.
Rainfall height stochastic modelling as a support tool for landslides early warning
NASA Astrophysics Data System (ADS)
Capparelli, G.; Giorgio, M.; Greco, R.; Versace, P.
2009-04-01
Occurrence of landslides is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Although heavy landslides frequently occurred in Campania, southern Italy, during the last decade, no complete data sets are available for natural slopes where landslides occurred. As a consequence, landslide risk assessment procedures and early warning systems in Campania still rely on simple empirical models based on correlation between daily rainfall records and observed landslides, like FLAIR model [Versace et al., 2003]. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction. In mountainous areas, rainfall spatial and temporal variability are very pronounced due to orographic effects, making predictions even more complicated. Existing rain gauge networks are not dense enough to resolve the small scale spatial variability, and the same limitation of spatial resolution affects rainfall height maps provided by radar sensors as well as by meteorological physically based models. Therefore, analysis of on-site recorded rainfall height time series still represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR and ARMA [Box and Jenkins, 1976]. Sometimes exogenous information coming from additional series of observations is also taken into account, and the models are called ARX and ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted in conjunction with FLAIR model to calculate the probability of flowslides occurrence. The final aim of the study is in fact to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil protection agency meteorological warning network. So far, the model has been applied only to data series recorded at a single rain gauge. Future extension will deal with spatial correlation between time series recorded at different gauges. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Box, G.E.P. and Jenkins, G.M., 1976. Time Series Analysis Forecasting and Control, Holden-Day, San Francisco. Cowpertwait, P.S.P., Kilsby, C.G. and O'Connell, P.E., 2002. A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes, Water Resources Research, 38(8):1-14. Salas, J.D., 1992. Analysis and modeling of hydrological time series, in D.R. Maidment, ed., Handbook of Hydrology, McGraw-Hill, New York. Heneker, T.M., Lambert, M.F. and Kuczera G., 2001. A point rainfall model for risk-based design, Journal of Hydrology, 247(1-2):54-71. Versace, P., Sirangelo. B. and Capparelli, G., 2003. Forewarning model of landslides triggered by rainfall. Proc. 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos.
Beever, E.A.; Huso, M.; Pyke, D.A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.
Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.
NASA Astrophysics Data System (ADS)
Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng
2018-02-01
The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.
NASA Technical Reports Server (NTRS)
Tang, Ling; Hossain, Faisal; Huffman, George J.
2010-01-01
Hydrologists and other users need to know the uncertainty of the satellite rainfall data sets across the range of time/space scales over the whole domain of the data set. Here, uncertainty' refers to the general concept of the deviation' of an estimate from the reference (or ground truth) where the deviation may be defined in multiple ways. This uncertainty information can provide insight to the user on the realistic limits of utility, such as hydrologic predictability, that can be achieved with these satellite rainfall data sets. However, satellite rainfall uncertainty estimation requires ground validation (GV) precipitation data. On the other hand, satellite data will be most useful over regions that lack GV data, for example developing countries. This paper addresses the open issues for developing an appropriate uncertainty transfer scheme that can routinely estimate various uncertainty metrics across the globe by leveraging a combination of spatially-dense GV data and temporally sparse surrogate (or proxy) GV data, such as the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and the Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar. The TRMM Multi-satellite Precipitation Analysis (TMPA) products over the US spanning a record of 6 years are used as a representative example of satellite rainfall. It is shown that there exists a quantifiable spatial structure in the uncertainty of satellite data for spatial interpolation. Probabilistic analysis of sampling offered by the existing constellation of passive microwave sensors indicate that transfer of uncertainty for hydrologic applications may be effective at daily time scales or higher during the GPM era. Finally, a commonly used spatial interpolation technique (kriging), that leverages the spatial correlation of estimation uncertainty, is assessed at climatologic, seasonal, monthly and weekly timescales. It is found that the effectiveness of kriging is sensitive to the type of uncertainty metric, time scale of transfer and the density of GV data within the transfer domain. Transfer accuracy is lowest at weekly timescales with the error doubling from monthly to weekly.However, at very low GV data density (<20% of the domain), the transfer accuracy is too low to show any distinction as a function of the timescale of transfer.
On the uncertainties associated with using gridded rainfall data as a proxy for observed
NASA Astrophysics Data System (ADS)
Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.
2012-05-01
Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods). This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. The results of the monthly, seasonal and annual comparisons show that not only are the three gridded datasets different relative to each other, there are also marked differences between the gridded rainfall data and the rainfall observed at gauges within the corresponding grids - particularly for extremely wet or extremely dry conditions. Also important is that the differences observed appear to be non-systematic. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia initially using gauged data as the source of rainfall input and then gridded rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged data. Rather, the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.
NASA Astrophysics Data System (ADS)
Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi
2017-12-01
Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.
The Effect of Spatial Aggregation on the Skill of Seasonal Precipitation Forecasts.
NASA Astrophysics Data System (ADS)
Gong, Xiaofeng; Barnston, Anthony G.; Ward, M. Neil
2003-09-01
Skillful forecasts of 3-month total precipitation would be useful for decision making in hydrology, agriculture, public health, and other sectors of society. However, with some exceptions, the skill of seasonal precipitation outlooks is modest, leaving uncertainty in how to best make use of them. Seasonal precipitation forecast skill is generally lower than the skill of forecasts for temperature or atmospheric circulation patterns for the same location and time. This is attributable to the smaller-scale, more complex physics of precipitation, resulting in its `noisier' and hence less predictable character. By contrast, associated temperature and circulation patterns are larger scale, in keeping with the anomalous boundary conditions (e.g., sea surface temperature) that often give rise to them.Using two atmospheric general circulation models forced by observed sea surface temperature anomalies, the skill of simulations of total seasonal precipitation is examined as a function of the size of the spatial domain over which the precipitation total is averaged. Results show that spatial aggregation increases skill and, by the skill measures used here, does so to a greater extent for precipitation than for temperature. Corroborative results are presented in an observational framework at smaller spatial scales for gauge rainfalls in northeast Brazil.The findings imply that when seasonal forecasts for precipitation are issued, the accompanying guidance on their expected skills should explicitly specify to which spatial aggregation level the skills apply. Information about skills expected at other levels of aggregation should be supplied for users who may work at such levels.
Hassan, A N; Dister, S; Beck, L
1998-04-01
Geographic information system (GIS) was used to analyze the spatial distribution of filariasis in the Nile Delta. The study involved 201 villages belonging to Giza, Qalubiya, Monoufiya, Gharbiya, and Dakahliya governorates. Villages with similar microfilarial (mf) prevalence rates were observed to cluster within 1-2 km distance, then, clustering started to decrease significantly with distance up to 5 km (Pearson correlation coefficient = -0.98). the likelihood of negative and high prevalence villages being contiguous was very low (approximately 1.8%, n = 612 village-pairs) indicating homogeneity in disease processes within the defined spatial scales. Of the villages located within 2 km from the main Nile branches (n = 46), 95% exhibited low prevalence. In addition, the spatial pattern of mf prevalence was shown to be negatively associated with annual rainfall and relative humidity, while it was positively associated with annual daily temperature. Average mf prevalence in warmer, relatively drier areas receiving 25 mm of rain was significantly higher (3.9%) than that in less warmer but more humid areas receiving 50 mm of rain (1.6%) (P < 0.0001). Based on the results of the present study, GIS was used to generate a "filariasis risk map" that could be used by health authorities to efficiently direct surveillance and control efforts. This investigation identified some of the factors underlying filariasis spatial pattern, quantified clustering and demonstrated the potential of GIS application in vector-borne disease epidemiology.
A multivariate ecogeographic analysis of macaque craniodental variation.
Grunstra, Nicole D S; Mitteroecker, Philipp; Foley, Robert A
2018-06-01
To infer the ecogeographic conditions that underlie the evolutionary diversification of macaques, we investigated the within- and between-species relationships of craniodental dimensions, geography, and environment in extant macaque species. We studied evolutionary processes by contrasting macroevolutionary patterns, phylogeny, and within-species associations. Sixty-three linear measurements of the permanent dentition and skull along with data about climate, ecology (environment), and spatial geography were collected for 711 specimens of 12 macaque species and analyzed by a multivariate approach. Phylogenetic two-block partial least squares was used to identify patterns of covariance between craniodental and environmental variation. Phylogenetic reduced rank regression was employed to analyze spatial clines in morphological variation. Between-species associations consisted of two distinct multivariate patterns. The first represents overall craniodental size and is negatively associated with temperature and habitat, but positively with latitude. The second pattern shows an antero-posterior tooth size contrast related to diet, rainfall, and habitat productivity. After controlling for phylogeny, however, the latter dimension was diminished. Within-species analyses neither revealed significant association between morphology, environment, and geography, nor evidence of isolation by distance. We found evidence for environmental adaptation in macaque body and craniodental size, primarily driven by selection for thermoregulation. This pattern cannot be explained by the within-species pattern, indicating an evolved genetic basis for the between-species relationship. The dietary signal in relative tooth size, by contrast, can largely be explained by phylogeny. This cautions against adaptive interpretations of phenotype-environment associations when phylogeny is not explicitly modelled. © 2018 Wiley Periodicals, Inc.
Determining Scale-dependent Patterns in Spatial and Temporal Datasets
NASA Astrophysics Data System (ADS)
Roy, A.; Perfect, E.; Mukerji, T.; Sylvester, L.
2016-12-01
Spatial and temporal datasets of interest to Earth scientists often contain plots of one variable against another, e.g., rainfall magnitude vs. time or fracture aperture vs. spacing. Such data, comprised of distributions of events along a transect / timeline along with their magnitudes, can display persistent or antipersistent trends, as well as random behavior, that may contain signatures of underlying physical processes. Lacunarity is a technique that was originally developed for multiscale analysis of data. In a recent study we showed that lacunarity can be used for revealing changes in scale-dependent patterns in fracture spacing data. Here we present a further improvement in our technique, with lacunarity applied to various non-binary datasets comprised of event spacings and magnitudes. We test our technique on a set of four synthetic datasets, three of which are based on an autoregressive model and have magnitudes at every point along the "timeline" thus representing antipersistent, persistent, and random trends. The fourth dataset is made up of five clusters of events, each containing a set of random magnitudes. The concept of lacunarity ratio, LR, is introduced; this is the lacunarity of a given dataset normalized to the lacunarity of its random counterpart. It is demonstrated that LR can successfully delineate scale-dependent changes in terms of antipersistence and persistence in the synthetic datasets. This technique is then applied to three different types of data: a hundred-year rainfall record from Knoxville, TN, USA, a set of varved sediments from Marca Shale, and a set of fracture aperture and spacing data from NE Mexico. While the rainfall data and varved sediments both appear to be persistent at small scales, at larger scales they both become random. On the other hand, the fracture data shows antipersistence at small scale (within cluster) and random behavior at large scales. Such differences in behavior with respect to scale-dependent changes in antipersistence to random, persistence to random, or otherwise, maybe be related to differences in the physicochemical properties and processes contributing to multiscale datasets.
Short Term Patterns of Landslides Causing Death in Latin America and the Caribbean
NASA Astrophysics Data System (ADS)
Sepulveda, S. A.; Petley, D. N.
2015-12-01
Among natural hazards, landslides represent a significant source of loss of life in mountainous terrains. Many regions of Latin America and the Caribbean are prone to landslide activity, due to strong topographic relief, high tectonic uplift rates, seismicity and/or climate. Further, vulnerable populations are often concentrated in deep valleys or mountain foothills susceptible to catastrophic landslides, with vulnerability further increased by dense urbanization and precarious settlements in some large cities. While historic extremely catastrophic events such as the 1999 Vargas flows in Venezuela or the 1970 Huascaran rock avalanche in Peru are commonly cited to characterize landslide hazards in this region, less known is the landslide activity in periods without such large disasters. This study assesses the occurrence of fatal landslides in Latin America and the Caribbean between 2004 and 2013. Over this time period we recorded 611 landslides that caused 11,631 deaths in 25 countries, mostly as a result of rainfall triggers. The countries with the highest number of fatal landslides are Brazil, Colombia, Mexico, Guatemala, Peru and Haiti. The highest death toll for a single event was ca.3000. The dataset has not captured a strong El Niño event or large earthquakes in landslide prone areas, thus the analysis is indicative of short term rather than long term spatial and temporal patterns. Results show that at continental scale, the spatial distribution of landslides in the 2004-2013 period correlates well with relief, precipitation and population density, while the temporal distribution reflects the regional annual rainfall patterns. In urban areas, the presence of informal settlements has a big impact on the number of fatalities, while at national level weaker correlations with gross income, human development and corruption indices can be found. This work was funded by the Durham International Fellowships for Research and Enterprise and Fondecyt project 1140317.
NASA Astrophysics Data System (ADS)
Lee, Doo Young; Ahn, Joong-Bae; Yoo, Jin-Ho
2015-08-01
The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone.
Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system
NASA Astrophysics Data System (ADS)
Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho
2015-04-01
Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under grant project PJ009353 and Korea Meteorological Administration Research and Development Program under grant CATER 2012-3100, Republic of Korea.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
Current and future pluvial flood hazard analysis for the city of Antwerp
NASA Astrophysics Data System (ADS)
Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert
2016-04-01
For the city of Antwerp in Belgium, higher rainfall extremes were observed in comparison with surrounding areas. The differences were found statistically significant for some areas and may be the result of the heat island effect in combination with the higher concentrations of aerosols. A network of 19 rain gauges but with varying records length (the longest since the 1960s) and continuous radar data for 10 years were combined to map the spatial variability of rainfall extremes over the city at various durations from 15 minutes to 1 day together with the uncertainty. The improved spatial rainfall information was used as input in the sewer system model of the city to analyze the frequency of urban pluvial floods. Comparison with historical flood observations from various sources (fire brigade and media) confirmed that the improved spatial rainfall information also improved sewer impact results on both the magnitude and frequency of the sewer floods. Next to these improved urban flood impact results for recent and current climatological conditions, the new insights on the local rainfall microclimate were also helpful to enhance future projections on rainfall extremes and pluvial floods in the city. This was done by improved statistical downscaling of all available CMIP5 global climate model runs (160 runs) for the 4 RCP scenarios, as well as the available EURO-CORDEX regional climate model runs. Two types of statistical downscaling methods were applied for that purpose (a weather typing based method, and a quantile perturbation approach), making use of the microclimate results and its dependency on specific weather types. Changes in extreme rainfall intensities were analyzed and mapped as a function of the RCP scenario, together with the uncertainty, decomposed in the uncertainties related to the climate models, the climate model initialization or limited length of the 30-year time series (natural climate variability) and the statistical downscaling (albeit limited to two types of methods). These were finally transferred into future pluvial flash flood hazard maps for the city together with the uncertainties, and are considered as basis for spatial planning and adaptation.
ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations
NASA Astrophysics Data System (ADS)
Adler, R. F.; Wang, J. J.
2017-12-01
Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.
Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA
NASA Astrophysics Data System (ADS)
Thorndahl, S.; Smith, J. A.; Krajewski, W. F.
2012-04-01
During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise the question if it is possible to derive general characteristics of the space-time structures of these heavy storms. This is important in order to understand hydrometeorological features, e.g. how storms evolve and with what frequency we can expect extreme storms to occur. In the literature, most studies of extreme rainfall are based on point measurements (rain gauges). However, with high resolution and quality radar observation periods exceeding more than two decades, it is possible to do long-term spatio-temporal statistical analyses of extremes. This makes it possible to link return periods to distributed rainfall estimates and to study precipitation structures which cause floods. However, doing these statistical frequency analyses of rainfall based on radar observations introduces some different challenges, converting radar reflectivity observations to "true" rainfall, which are not problematic doing traditional analyses on rain gauge data. It is for example difficult to distinguish reflectivity from high intensity rain from reflectivity from other hydrometeors such as hail, especially using single polarization radars which are used in this study. Furthermore, reflectivity from bright band (melting layer) should be discarded and anomalous propagation should be corrected in order to produce valid statistics of extreme radar rainfall. Other challenges include combining observations from several radars to one mosaic, bias correction against rain gauges, range correction, ZR-relationships, etc. The present study analyzes radar rainfall observations from 1996 to 2011 based the American NEXRAD network of radars over an area covering parts of Iowa, Wisconsin, Illinois, and Lake Michigan. The radar observations are processed using Hydro-NEXRAD algorithms in order to produce rainfall estimates with a spatial resolution of 1 km and a temporal resolution of 15 min. The rainfall estimates are bias-corrected on a daily basis using a network of rain gauges. Besides a thorough evaluation of the different challenges in investigating heavy rain as described above the study includes suggestions for frequency analysis methods as well as studies of hydrometeorological features of single events.
NASA Astrophysics Data System (ADS)
Mafi-Gholami, Davood; Mahmoudi, Beytollah; Zenner, Eric K.
2017-12-01
Relating the changes of mangrove forests to spatially explicit reductions in rainfall amounts and increases in drought occurrences is a prerequisite for improving the effectiveness and success of mangrove forest conservation programs. To this end, we investigated the relationship between drought events (quantified using the Standardized Precipitation Index [SPI]) and changes in area and canopy cover of mangrove forests on the northern coast of the Persian Gulf and the Oman Sea using satellite imagery and long-term annual rainfall data over a period of 30 years (1986-2016). Statistical analyses revealed 1998 as the year marking the most significant change-point in the mean annual rainfall values in the catchments and mangroves, after which average SPI values consistently remained at lower levels. In the period of 1998-2016, decreases in the mean annual rainfall and increases in the severity of droughts differed spatially and were greater in the catchments and mangroves on the coasts of the Oman Sea than the coasts of the Persian Gulf. These spatially explicit results were closely mirrored by the mangrove response, with differential in reductions in mangrove areas and canopy cover that corresponded closely with the spatial distribution of drought intensities in the different parts of the coasts, with correlation coefficients ≥0.89 for the different coastal regions.
NASA Astrophysics Data System (ADS)
Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried
2017-04-01
WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.
Eddy-induced salinity pattern in the North Pacific
NASA Astrophysics Data System (ADS)
Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.
2017-12-01
This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.
NASA Astrophysics Data System (ADS)
Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen
2017-04-01
Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.
NASA Astrophysics Data System (ADS)
Selvakumar, R.; Ramasamy, SM.
2014-12-01
Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.
NASA Astrophysics Data System (ADS)
Thiaw, W. M.
2013-12-01
The ability of coupled climate models from the national multi-model ensemble (NMME) dataset to reproduce the basic state and interannual variability of precipitation in West Africa and associated teleconnections is examined. The analysis is for the period 1982-2010 for most of the models, which corresponds to the NMME hindcast period, except for the CFS version 1 (CFSv1) which covers the period 1981-2009. The satellite based CPC African Rainfall Climatology (ARC2) data is used as proxy for observed rainfall and to validate the models. We examine rainfall patterns throughout the year. Models are able to reproduce the north-south migration of precipitation from winter and spring when the area of maximum precipitation is located in Central Africa and the Gulf of Guinea region to the summer when it is in northern Sub-Saharan Africa, and the later return to the south. Models also appropriately place precipitation over the Gulf of Guinea region during the equinoxes in MAM and OND. However, there are considerable differences in the representation of the intensities and locations of the rainfall. Three of the models including the two versions of the NCEP CFS and the NASA models also have a systematic dry (wet) bias over the Sahel (Gulf of Guinea region) during the summer rainfall season, while the others show alternating wet and dry biases across West Africa. All models have spatially averaged values of standard deviation lower than that observed. Models are also able to reproduce to some extent the main features of the precipitation variability maximum, but again with deficiencies in the amplitudes and locations. The areas of highest variability are generally depicted, but there are significant differences among the models, and even between the two versions of the CFS. Teleconnections in the models are investigated by first conducting an EOF in the precipitation anomaly fields and then perform a regression of the first or second EOF time series onto the global SST. Focusing on JAS rainfall season, only the CFSv1 and the NASA models were able to depict the dipole pattern between the Sahel and the Gulf of Guinea rainfall. However, none of the models was able to reproduce the observed upward trend of Sahel rainfall in the last decade. The relationship to SST is also examined. The observed influence of tropical north Atlantic SST on the Sahel rainfall is only partially represented even in the CFSv1, while the NASA model inconsistently emphasizes the role of the tropical South Atlantic. A majority of the models show a partial ENSO teleconnection combined with the tropical south Atlantic mode. However, observations indicate that the influence of ENSO on northern Sub-Saharan summer rainfall has been very weak over the past 30 years. Results for MAM, and OND are also presented. The influence of model errors on the predictions of African rainfall is presented. Canonical correlation analysis (CCA) is employed to correct the model simulations. A new ensemble based on models corrected forecasts is then formed and the results are presented.
NASA Astrophysics Data System (ADS)
Smettem, Keith; Waring, Richard; Callow, Nik; Wilson, Melissa; Mu, Qiaozhen
2013-04-01
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. Ecological optimality proposes that the long term average canopy size of undisturbed perennial vegetation is tightly coupled to climate. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study we analysed satellite-derived estimates of monthly LAI across forested coastal catchments of South-west Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, inter-annual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long term decline in areal average underground water storage storage and diminished summer flows, with a trend towards more ephemeral flow regimes.
NASA Astrophysics Data System (ADS)
Roh, Joon-Woo; Jee, Joon-Bum; Lim, A.-Young; Choi, Young-Jean
2015-04-01
Korean warm-season rainfall, accounting for about three-fourths of the annual precipitation, is primarily caused by Changma front, which is a kind of the East Asian summer monsoon, and localized heavy rainfall with convective instability. Various physical mechanisms potentially exert influences on heavy precipitation over South Korea. Representatively, the middle latitude and subtropical weather fronts, associated with a quasi-stationary moisture convergence zone among varying air masses, make up one of the main rain-bearing synoptic scale systems. Localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances along the Changma front or convective instabilities resulted from unstable air mass including the direct or indirect effect of typhoons. In recent years, torrential rainfalls, which are more than 30mm/hour of precipitation amount, in warm-season has increased threefold in Seoul, which is a metropolitan city in South Korea. In order to investigate multiple potential causes of warm-season localized heavy precipitation in South Korea, a localized heavy precipitation case took place on 20 June 2014 at Seoul. This case was mainly seen to be caused by short-wave trough, which is associated with baroclinic instability in the northwest of Korea, and a thermal low, which has high moist and warm air through analysis. This structure showed convective scale torrential rain was embedded in the dynamic and in the thermodynamic structures. In addition to, a sensitivity of rainfall amount and maximum rainfall location to the integration time-step sizes was investigated in the simulations of a localized heavy precipitation case using Weather Research and Forecasting model. The simulation of time-step sizes of 9-27s corresponding to a horizontal resolution of 4.5km and 1.5km varied slightly difference of the maximum rainfall amount. However, the sensitivity of spatial patterns and temporal variations in rainfall were relatively small for the time-step sizes. The effect of topography was also important in the localized heavy precipitation simulation.
Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.
Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta
2011-02-01
The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models which provide the appropriate output data, such as reliable information on rainfall characteristics relevant for environmental management. Copyright © 2009. Published by Elsevier Ltd.
NREPS Applications for Water Supply and Management in California and Tennessee
NASA Technical Reports Server (NTRS)
Gatlin, P.; Scott, M.; Carery, L. D.; Petersen, W. A.
2011-01-01
Management of water resources is a balancing act between temporally and spatially limited sources and competitive needs which can often exceed the supply. In order to manage water resources over a region such as the San Joaquin Valley or the Tennessee River Valley, it is pertinent to know the amount of water that has fallen in the watershed and where the water is going within it. Since rain gauge networks are typically sparsely spaced, it is typical that the majority of rainfall on the region may not be measured. To mitigate this under-sampling of rainfall, weather radar has long been employed to provide areal rainfall estimates. The Next-Generation Weather Radars (NEXRAD) make it possible to estimate rainfall over the majority of the conterminous United States. The NEXRAD Rainfall Estimation Processing System (NREPS) was developed specifically for the purpose of using weather radar to estimate rainfall for water resources management. The NREPS is tailored to meet customer needs on spatial and temporal scales relevant to the hydrologic or land-surface models of the end-user. It utilizes several techniques to mitigate artifacts in the NEXRAD data from contaminating the rainfall field. These techniques include clutter filtering, correction for occultation by topography as well as accounting for the vertical profile of reflectivity. This presentation will focus on improvements made to the NREPS system to map rainfall in the San Joaquin Valley for NASA s Water Supply and Management Project in California, but also ongoing rainfall mapping work in the Tennessee River watershed for the Tennessee Valley Authority and possible future applications in other areas of the continent.
NASA Astrophysics Data System (ADS)
Tang, L.; Hossain, F.
2009-12-01
Understanding the error characteristics of satellite rainfall data at different spatial/temporal scales is critical, especially when the scheduled Global Precipitation Mission (GPM) plans to provide High Resolution Precipitation Products (HRPPs) at global scales. Satellite rainfall data contain errors which need ground validation (GV) data for characterization, while satellite rainfall data will be most useful in the regions that are lacking in GV. Therefore, a critical step is to develop a spatial interpolation scheme for transferring the error characteristics of satellite rainfall data from GV regions to Non-GV regions. As a prelude to GPM, The TRMM Multi-satellite Precipitation Analysis (TMPA) products of 3B41RT and 3B42RT (Huffman et al., 2007) over the US spanning a record of 6 years are used as a representative example of satellite rainfall data. Next Generation Radar (NEXRAD) Stage IV rainfall data are used as the reference for GV data. Initial work by the authors (Tang et al., 2009, GRL) has shown promise in transferring error from GV to Non-GV regions, based on a six-year climatologic average of satellite rainfall data assuming only 50% of GV coverage. However, this transfer of error characteristics needs to be investigated for a range of GV data coverage. In addition, it is also important to investigate if proxy-GV data from an accurate space-borne sensor, such as the TRMM PR (or the GPM DPR), can be leveraged for the transfer of error at sparsely gauged regions. The specific question we ask in this study is, “what is the minimum coverage of GV data required for error transfer scheme to be implemented at acceptable accuracy in hydrological relevant scale?” Three geostatistical interpolation methods are compared: ordinary kriging, indicator kriging and disjunctive kriging. Various error metrics are assessed for transfer such as, Probability of Detection for rain and no rain, False Alarm Ratio, Frequency Bias, Critical Success Index, RMSE etc. Understanding the proper space-time scales at which these metrics can be reasonably transferred is also explored in this study. Keyword: Satellite rainfall, error transfer, spatial interpolation, kriging methods.
Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall
NASA Astrophysics Data System (ADS)
Bosma, C.; Wright, D.; Nguyen, P.
2017-12-01
While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.
2012-12-01
Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long-term average streamflow isotopic composition indicates a disproportionately large contribution of this trade-wind precipitation to streamflow, highlighting the importance of this climate pattern to the hydrology of the watersheds. Isotopic composition of groundwater suggests a slightly higher proportion of convective precipitation, but still smaller than in total rainfall. Hydrograph separation experiments yielded information on stormflow characteristics, with quantification of contributing sources determined from water isotopes and solute chemistry. The evidence that intense convective rain events run off and light trade-wind showers appear to contribute much of the baseflow indicates that the area may undergo a change in water supply if the trade-wind orographic precipitation dynamics in the Caribbean are affected by future climate change.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D.; Kiem, A. S.
2008-10-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
Tectonic control of erosion in the southern Central Andes
NASA Astrophysics Data System (ADS)
Val, Pedro; Venerdini, Agostina L.; Ouimet, William; Alvarado, Patricia; Hoke, Gregory D.
2018-01-01
Landscape evolution modeling and global compilations of exhumation data indicate that a wetter climate, mainly through orographic rainfall, can govern the spatial distribution of erosion rates and crustal strain across an orogenic wedge. However, detecting this link is not straightforward since these relationships can be modulated by tectonic forcing and/or obscured by heavy-tailed frequencies of catchment discharge. This study combines new and published along-strike average rates of catchment erosion constrained by 10Be and river-gauge data in the Central Andes between 28°S and 36°S. These data reveal a nearly identical latitudinal pattern in erosion rates on both sides of the range, reaching a maximum of 0.27 mm/a near 34°S. Collectively, data on topographic and fluvial relief, variability of rainfall and discharge, and crustal seismicity suggest that the along-strike pattern of erosion rates in the southern Central Andes is largely independent of climate, but closely relates to the N-S distribution of shallow crustal seismicity and diachronous surface uplift. The consistently high erosion rates on either side of the orogen near 34°S imply that climate plays a secondary role in the mass flux through an orogenic wedge where the perturbation to base level is similar on both sides.
NASA Astrophysics Data System (ADS)
Devineni, Naresh; Perveen, Shama; Lall, Upmanu
2013-04-01
India is a poster child for groundwater depletion and chronic water stress. Often, water sustainability is measured through an estimate of the difference between the average supply and demand in a region. However, water supply and demand are highly variable in time and space. Hence, measures of scarcity need to reflect temporal imbalances even for a fixed location. We introduce spatially distributed indices of water stress that integrate over time variations in water supply and demand. The indices reflect the maximum cumulative deficit in a regional water balance within year and across years. This can be interpreted as the amount that needs to be drawn from external storage (either aquifers or surface reservoirs or interarea transfers) to meet the current demand pattern given a variable climate and renewable water supply. A simulation over a long period of record (historical or projected) provides the ability to quantify risk. We present an application at a district level in India considering more than a 100 year data set of rainfall as the renewable supply, and the recent water use pattern for each district. Consumption data are available through surveys at the district level, and consequently, we use this rather than river basins as the unit of analysis. The rainfall endogenous to each district is used as a potentially renewable water supply to reflect the supply-demand imbalances directly at the district level, independent of potential transfers due to upstream-induced runoff or canals. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution. Implications of the analysis for India and for other applications are discussed.
Zhang, Yunqi; Long, Yi; An, Juan; Yu, Xingxiu; Wang, Xiaoli
2014-10-01
The Yimeng Mountains is one of China's most susceptible regions to soil erosion. In this region, slopes are composed of granite- or gneiss-derived soils that are commonly cultivated using earth-banked terraces. Based on the (137)Cs measurement for nine reference cores, the present study analysed the spatial patterns of (137)Cs inventory and soil erosion using 105 sampling points in a seven-level earth-banked terrace system. The mean (137)Cs inventory, standard deviation, coefficient of variation, and allowable error for the nine reference cores were 987 Bq m(-2), 71 Bq m(-2), 7%, and 6%, respectively, values that may reflect the heterogeneity of the initial (137)Cs fallout deposit. Within each terrace, the (137)Cs inventory generally increases from the rear edge to the front edge, accompanied by a decrease in the erosion rate. This results from planation by tillage and rainfall runoff during the development of the earth-banked terraces. Across the entire seven-level terrace system, (137)Cs inventories decrease from the highest terrace downwards, but increase in the lower terraces, whereas erosion rate displays the opposite trend. These trends are the result of the combined effects of the earth-bank segmented hillslope, the limited protection of the earth banks, and rainfall runoff in combination with tillage. The high coefficients of variation of (137)Cs inventories for the 21 sampling rows, with a mean value of 44%, demonstrate the combined effects of variations in original microtopography, anthropogenic disturbance, the incohesive soils weathered from underlying granite, and the warm climate. Although earth-banked terraces can reduce soil erosion to some extent, the estimated erosion rates for the study area are still very high. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Shaoni; Huang, Fei
2012-06-01
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Niño-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Niño, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a `Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a `Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the `Silk Road' teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
Alonso-Carné, J; García-Martín, A; Estrada-Peña, A
2015-01-01
Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.